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Supplemental Text 
 

Phasing validation and performance 

Phasing of simulated single sperm data showed that phasing was 99.9% accurate when an 

average of 1% of heterozygous sites were covered in 1000 cells (Methods), similar to 15 

experimental coverage (Table 1). SNP coverage and the number of cells included affect phasing 

performance (Extended Data Fig. 1a,b). Comparison of experimental results to population-

based phasing by Eagle1,2 showed 97.5% phase concordance of consecutive heterozygous sites 

phased in both methods. Comparison to heterozygous SNP pairs in perfect linkage 

disequilibrium in population-matched 1000 Genomes3 samples showed 97.9% concordance of 20 

experimental phase with linked alleles.  

In this study, 97.3-99.98% (with a median across donors of 99.9%) of all called 

heterozygous sites were phased into chromosome length haplotypes; not all single SNPs were 

observed in enough cells to be phased. 

 25 

Number and resolution of detected crossovers 

Analysis of Sperm-seq data identified 813,122 crossovers in 31,228 gamete genomes 

(25,839–62,110 per sperm donor, Table 1). Previous human sperm cell sequencing and typing 

studies identified 2,000–2,400 crossovers4,5, and the most recent single-sperm sequencing 

technology identified 24,672 crossovers in hybrid mice6. Recently, a very large pedigree-based 30 

study found 1,476,140 paternal crossovers in 56,321 paternal meioses7. 
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The resolution of crossovers, which depends on density of SNP ascertainment in the cell 

and at the locus where they occur, was < 10 kb for 1.2% (9,746) of crossovers, < 100 kb for 

23.0% (186,695), < 500 kb for 75.0% (610,121), < 1 Mb for 90.5% (735,955), and < 5 Mb for 

99.7% (810,331). 35 

 

Quantification of similarity in genetic maps among sperm donors, HapMap, and deCODE 

Crossover rates (cM/physical distance) were correlated between sperm donors and 

between sperm donors and known genetic maps (pedigree-derived paternal map from deCODE8 

and population linkage disequilibrium-derived sex-averaged map from HapMap9). Among-sperm 40 

donor correlation (Pearson’s r) in crossover rate (cM/physical distance) ranged from 0.62 to 0.88 

at small 500 kb scale, and from 0.95 to 0.99 at larger 10 Mb scale, and the correlation between 

sperm donors and deCODE’s recombination rates ranged from 0.66 to 0.86 at 500 kb scale and 

0.92 to 0.96 at 10 Mb scale. Between sperm donors and HapMap’s recombination rates, 

correlation coefficients ranged from 0.51 to 0.64 at 500 kb scale and 0.89 to 0.93 at 10 Mb scale. 45 

The individual genetic map from a previous single-sperm study4 had similar correlation with 

population resources: in 3 Mb bins, Pearson’s r correlation coefficients with HapMap sex-

averaged and deCODE paternal maps were 0.71 and 0.77, respectively. 

 

Correlation of crossover number on different chromosomes in gametes 50 

 Because crossover number is noisy within cells, a correlation of crossover number across 

chromosomes within cells could be hard to detect in our data. Moreover, in sperm cells, 

coordination of crossover number across chromosomes would occur in the primary 

spermatocytes undergoing meiosis, with its effects (crossovers) distributed randomly among the 

four daughter cells, resulting in a diffuse, hard-to-detect signal of small magnitude. To maximize 55 

power, we looked for this correlation between the number of crossovers in the largest possible 

equally sized sets of chromosomes (odd-numbered vs. even-numbered), recognizing that any 

observed correlation would likely substantially underestimate the biological effect size. 

Furthermore, we aggregated all 31,228 cells across all 20 donors by converting the total 

crossovers on all odd-numbered chromosome crossovers to a percentile and doing the same with 60 

the summed even-numbered chromosome crossovers. The correlation across these 31,228 cells 

was r = 0.09, p = 8 × 10-54. 
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All 20 individual donors had a positive Pearson's r (sign test p = 2 × 10-6). Among donors 

(median r = 0.1, median p = 3 × 10-5), the donor with r closest to median (NC4) had r = 0.11, p = 

3 × 10-5; the donor with the smallest r (NC12) had r = 0.04, p = 0.09; and the donor with the 65 

largest r (NC10) had r = 0.25, p < 10-14. 

 

The distribution of crossover number per cell vs. expected (random, independent) 

distribution 

 The number of observed crossovers per chromosome per gamete exhibited less variance 70 

than expected relative to a purely random (Poisson) process, in which all crossovers are 

independent events. The observed median variance in crossover number across chromosomes 

and donors was 0.71, a 41% reduction relative to the median expected variance of 1.20 (this 

reduction was significant: one-sample chi-squared test on variance p < 6 x 10-10 for all donors 

and chromosomes). Additionally, fewer cells had chromosomes with no crossovers or many 75 

crossovers than would be predicted by a model in which crossovers are independent, random 

events (Extended Data Fig. 7) (all donors’ and chromosomes’ chi-squared test against the 

expected Poisson distribution p < 2 x 10-6; Methods). 

 

Control analyses for inter-individual differences in crossover interference and its 80 

correlation with crossover rate  

Different donors with different crossover rates had different chromosomal compositions 

of two-crossover chromosomes (i.e., high–crossover rate donors may have few two-crossover 

chromosome 1s but many two-crossover chromosome 18s, whereas low crossover rate donors 

may have the reverse pattern). To determine whether the observation of individuals’ crossover 85 

interference differences and the negative correlation between interference and crossover rate 

were robust to this compositional effect, we down-sampled each individual to have the same 

number of two-crossover chromosomes for each chromosome as the individual with the lowest 

number of two-crossover chromosomes for that chromosome (for example, NC26 had the 

minimum number of two-crossover chromosome 3s, 329, so for of all other donors, 329 two-90 

crossover chromosome 3s were randomly chosen for the analysis). We performed this down-

sampling five times, and in all cases, crossover interference still differed among individuals 

(Kruskal–Wallis test chi-square from 5,522 two-crossover chromosomes in each of the 20 
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donors, 1,158.3–1,231.1 [median, 1,175.5]; p-value, 2 × 10-249 – 8 × 10-234 [median, 2 × 10-237]) 

and was still negatively correlated with crossover rate, with similar correlation coefficient as 95 

when all data were included (Pearson’s r across 20 donors, -0.90 – -0.93 [median, -0.91]; p-

value, 5 × 10-9 – 6 x 10-8 [median, 2 × 10-8]). 

In theory, the inter-individual difference in crossover interference difference and its 

negative correlation with crossover rate could be due to differential rates of failure to detect 

crossovers at the very ends of the chromosome, causing true three-crossover chromosomes to be 100 

included in the two-crossover chromosome pool. If this were to happen in a biased fashion (more 

often in higher recombination rate sperm donors), it could inflate the observed difference. To 

control for this possibility, we preferentially removed chromosomes with the shortest inter-

crossover distances from the highest–crossover rate individuals (Methods); in this analysis, the 

inter-individual differences in crossover interference (Kruskal–Wallis chi-squared = 992, df = 19, 105 

p = 3 × 10-198, from n two-crossover chromosomes retained per donor = NC1: 5,337, NC10: 

6,120, NC11: 104,57, NC12: 11,107, NC13: 8,450, NC14: 7,344, NC15: 9,171, NC16: 9,214, 

NC17: 8,186, NC18: 8,831, NC2: 8,268, NC22: 9,166, NC25: 12,392, NC26: 5,300, NC27: 

7,019, NC3: 7,084, NC4: 8,084, NC6: 7,466, NC8: 9,144, NC9: 10,359) and negative correlation 

with crossover rate across 20 donors (Pearson’s r = -0.80, p = 3 × 10-5) persisted. 110 

 

Inter-individual aneuploidy frequency variance 

 The observed 4.5-fold variation in aneuploidy frequency across sperm donors could 

possibly derive from differences in statistical sampling. To investigate this possibility, we 

simulated the presence or absence of aneuploidy in each cell of each donor by drawing from the 115 

Poisson distribution with lambda equal to the total number of whole aneuploidies observed 

divided by the total number of cells observed across donors (787/31,228); each donor’s 

simulation had the same number of cells as ascertained in that donor as in Table 1. For each 

simulation, we calculated the variance and median absolute deviation (MAD) across 20 

simulated donors’ aneuploidy frequencies; this process was repeated for a total of 10,000 120 

simulations. We performed the same calculation for whole-chromosome losses and gains 

(lambda = 554/31,228 and 233/31,228, respectively). All observed across-donor variances and 

MADs were larger than the mean of the simulated variances (ratio of observed vs. simulated 

mean for variance: 4.5, 3.0, and 2.7 for all aneuploidies, losses, and gains, respectively; for 
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MAD: 1.7, 1.5, and 1.7), and the permutation tests were significant (variance: p < 1 × 10-4, p < 1 125 

× 10-4, and p = 2 × 10-4 for all aneuploidies, losses, and gains, respectively; MAD: p = 0.006, p = 

0.037, and p = 0.007). 

 

Is the observed excess of chromosome loss vs. gains likely to reflect a technical artifact? 

The observed overabundance of chromosome losses (or dearth of chromosome gains) 130 

could in theory be a technical artifact. If we over-detected losses, cells would most likely have 

lost chromosomes during sperm or droplet preparation. If so, this should be most common 

among short chromosomes, which might more easily become disentangled from the rest of the 

nucleus than long chromosomes. If we missed gains, cells containing them might have been 

excluded as cell doublets due to the presence of two haplotypes along a chromosome; 135 

consequently, gains of longer chromosomes, which contribute more to the global proportion of 

the genome containing two haplotypes, would be under-called. (To explicitly correct for this 

possibility, we removed the chromosome with the highest prevalence of both parental haplotypes 

from cell doublet.) Alternatively, heavier cells (with gains) might somehow be excluded from 

analysis, although we cannot currently explain why this might have occurred; if so, we would 140 

expect to see fewer gains of large chromosomes. However, none of these cases seem likely: 

chromosome length was not correlated with loss or gain frequency (for losses, Pearson’s r = -

0.29, p = 0.19 and for gains, Pearson’s r = -0.23, p = 0.30, Extended Data Fig. 17). 

Additionally, we observed more losses than gains both on the sex chromosomes and on the 

autosomes, and sex chromosomes were not included in the doublet removal algorithm. 145 

 

Relationship between aneuploidy and crossover in chromosomes, cells, and individuals 

Because crossover calling on gained chromosomes is difficult (Methods), an excess of 

crossovers was sometimes called on individual gained chromosomes. We calculated the total 

number of crossovers both on 1) all gained chromosomes from MI (n = 37) or MII (n = 87) and 150 

2) gained chromosomes with fewer than 5 crossovers called (from MI, n = 32, and MII, n = 71). 

We compared these totals to the total crossovers called in each of 10,000 sets of crossovers 

matched for chromosome and donor (and exclusion based on crossover number), where two 

chromosomes so matched were randomly chosen for each gain and all gains were included for 

one set. In both comparisons, MI gains had fewer total crossovers than matched sets (one-sided 155 
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permutation p = 0.0001 for all gains, p < 0.0001 for gains with under 5 crossovers) and MII gains 

did not have fewer crossovers in total than matched sets (one-sided permutation p = 1 for all 

gains, p = 0.98 for gains with fewer than 5 crossovers).  

The observed near-excess of crossovers on chromosomes gained in MII vs. matched sets 

occurs because the gain approximation (matching) is less appropriate for MII gains than MI 160 

gains. Sister chromatids fail to disjoin in MII gains, resulting in the presence of both sister 

chromatids of one homologous chromosome. These sister chromatids retain every crossover that 

happened on the parent chromosome in the parent spermatocyte, whereas chromatids from 

different homologs (like those gained in MI or in randomly chosen pairs of chromosomes) report 

on average half of the crossovers that happened on the parent chromosome. That is, MII gains 165 

report all physical crossover events (chiasmata) whereas non-sister chromatids report only 

chiasmata in which they were involved. 

If factors that promote crossovers are generally protective against aneuploidy, individuals 

and cells with higher recombination rates would have lower aneuploidy rates. At the cell level, 

euploid and aneuploid gametes exhibited no differences in crossover frequency, nor did gametes 170 

with MI-derived or MII-derived chromosome gains (Extended Data Fig. 18b, Mann–Whitney 

test of crossovers per non-aneuploid megabase W = 7,264,117, 722,191, 1,370,376; p = 0.07, 

0.49, 0.66 for all cells with whole-chromosome aneuploidy, MI whole-chromosome gains, and 

MII whole-chromosome gains vs. euploid, respectively; Methods). In addition, linear regression 

using aneuploidy status to predict crossover number in individual cells found no strong 175 

relationship between crossover rate and the rates of aneuploidy from either meiotic division (all 

aneuploidies p = 0.33, MI gains p = 0.05, MII gains p = 0.26; Methods). If the within-cell effect 

were of the magnitude of missing an entire chromosome’s crossover complement from the non-

aneuploid chromosomes in aneuploid cells, we would have been able to detect it: when we 

included aneuploid chromosomes (which obligately have 0 crossovers in our data unless 180 

specifically investigating gained chromosomes) in the analysis, we obtained significance in both 

the Mann–Whitney test and linear regression (all p < 0.01). Presumably, cells with aneuploidy 

occurring in MI would on average have slightly fewer total crossovers than euploid cells due to 

the observed slight correlation of crossover number across chromosomes. 

Although the 20 individuals exhibited a 4.5-fold variation in aneuploidy rates and a 1.3-185 

fold variation in crossover rates, these rates were not correlated with each other (Pearson’s r = -
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0.09, p = 0.70) (Extended Data Fig. 18c, left). These rates remained uncorrelated when we 

focused on chromosome nondisjunctions occurring in MI (when crossovers occur) (MI: 

Pearson’s r = -0.24, p = 0.31; MII: Pearson’s r = 0.03, p = 0.91; Extended Data Fig. 18c, center 

and right). With 20 donors, we were 80% powered to detect an r of 0.58 at p = 0.05. 190 

 

An excess of gains of more than one copy of chromosome 15 

More cells had three copies of chromosome 15 (potential double nondisjunction or 

unexplained events) than two copies of chromosome 15 (single nondisjunction events). Six cells 

had whole-chromosome triplications (as in Fig. 6b, Extended Data Fig. 19b), four cells had all 195 

of the q arm except for the pericentric region present in three copies (as in Fig. 6c, Extended 

Data Fig. 19c), and only two cells had gains of just one copy of chromosome 15. Twenty-two 

one-copy gains and no two-copy gains were expected from the Poisson distribution (total 

expected number of gains: sum of gained copies of chromosome 15 [22, 1 × 2 gains of one copy 

+ 2 × 10 gains of two copies]; and total number of events: number of cells [31,228]), 200 

significantly different from our observations (Fisher’s exact test p = 2 × 10-7). 
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Methods 
 

Our scripts are available via Zenodo, http://dx.doi.org/10.5281/zenodo.2581596. Scripts are 205 

referenced by name in the sections describing analyses they perform. Other tools are available 

as referenced. 

All statistical analyses were performed in R unless otherwise noted.  

All p-values reported in the main or supplemental text are two-sided unless otherwise noted. 

 210 

Sample information 

Sperm samples from 20 anonymous, karyotypically normal sperm donors were obtained 

from New England Cryogenic Center under a Not Human Subjects determination from the 

Harvard Faculty of Medicine Office of Human Research Administration (protocol numbers 

M23743-101 and IRB16-0834). Donors consented at the time of initial donation for samples to 215 

be used for research purposes. (Specimens can be obtained from New England Cryogenic Center 

upon IRB approval.) Samples arrived in liquid nitrogen in “egg yolk buffer” or “standard buffer 

with glycerol” (no further buffer information provided) and were aliquoted and stored in liquid 

nitrogen in the same buffers until library preparation. 

We do not know the precise age of these sperm donors because it is against sperm bank 220 

policy to release this information. However, per sperm bank policy, all donors are over 18 years 

old and younger than 38 years old at the time of donation. A different cohort would be required 

for analysis of any age effects.  

All donor identifiers used in the paper were new identifiers created specifically for this 

study and are not linked to any New England Cryogenic Center identifiers. 225 

 

Sperm cell library generation 

Sperm preparation: nuclei decondensation 

 Sperm cells were washed and their nuclei decondensed to create accessible sperm nuclei 

“florets” using a combination of published decondensation protocols10,11 with some 230 

modifications. Sperm aliquots containing >200,000 cells were thawed on ice and then washed by 

spinning for 10 minutes at 400 g at 4°C. After removal of the supernatant, the pellet was 

resuspended in 10 µL phosphate-buffered saline (PBS, Gibco/LifeTechnologies) and re-
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centrifuged under the same conditions. After removal of the supernatant, the sperm pellet was 

resuspended in 2.5 µL of a sucrose buffer containing 250 mM sucrose (Sigma), 5 mM MgCl2 235 

(Sigma), and 10 mM Tris HCl (pH 7.5, Thermo Scientific). Tubes containing sperm aliquots 

were submerged in liquid nitrogen and immediately quick-thawed by holding them in a warm 

fist; a total of three freeze-thaw cycles were performed. 

 The freeze-thawed sperm solution was then combined with 22.5 µL decondensation 

buffer consisting of 113 mM KCl (Sigma), 12.5 mM KH2PO4 (Sigma), 2.5 mM Na2HPO4 240 

(Sigma), 2.5 mM MgCl2 (Sigma), and 20 mM Tris (Thermo Scientific) freshly supplemented 

with 150 µM heparin (sodium salt from porcine, Sigma H3393) and 1 mM beta-mercaptoethanol 

(BME, Sigma). The reaction was incubated at 37°C for 45 minutes. To allow enzymatic DNA 

amplification, heparin was inactivated by mixing the sperm solution with 0.5 U heparinase I 

(Sigma H2519) by gently pipetting and incubating at room temperature for 2 hours12. 245 

 The sperm solution was moved to ice, and sperm floret concentration was determined by 

diluting 1:100 with PBS and staining with 1X SYBR I (Thermo Scientific), and then loading 

onto a hemocytometer and counting using the green fluorescence channel at 10x magnification. 

Single-sperm library preparation 

 Droplets were prepared using the following modifications to 10X Genomics’ GemCode 250 

(version 113) User Guide Revision C (in place of steps 5.1–5.3.9); all reagents come from the 

10X Genomics GemCode kit. Sperm were prepared for use as input by combining 10,833 sperm 

with ultrapure water to a final volume of 5 µL; 10,000 sperm were used for library generation. 

To each sperm sample was added 60 µL of a master mix containing 32.5 µL GemCode reagent 

mix, 1.5 µL primer release agent, 9.2 µL GemCode polymerase, and 16.8 µL ultrapure water, 255 

and then the same was mixed by gentle pipetting with a wide-bore multichannel pipette. 

 GemCode beads were prepared by vortexing at full speed for 25 seconds, and then 

diluted 1:11 with ultrapure water to a total volume of at least 90 µL of 1:11-diluted beads per 

sample. Per 10X’s protocol, 60 µL of sample-master mix combination was added to the droplet 

generation chip, followed by 85 µL of freshly pipette-mixed 1:11-diluted bead mixture and 150 260 

µL of fresh droplet generation oil. 
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 Droplets were then generated and processed through library generation following 10X 

Genomics’ GemCode (version 1) User Guide Revision C (starting with step 5.3.10 and 

continuing with the rest of section 5 and all of section 6). 

 265 

Sequencing 

Two libraries were generated for each of the 20 sperm donors, with eight total libraries 

generated in a batch (eight wells per 10X Genomics GemCode chip). Additional libraries were 

generated for four initial samples with low output (analyzed) cell counts. Libraries were 

sequenced on S2 200 cycle flow cells on an Illumina NovaSeq, with four or five libraries 270 

sequenced per flow cell. The read structure was 178 cycles read 1, 8 cycles read 2 (index read 

one), 14 cycles read 3 (index read two containing the cell barcode), and 5 cycles read 4 (unused; 

included to fulfill the NovaSeq’s paired-end requirement). 

 

Bulk sequence data processing 275 

 To convert the data to mapped BAM files with cell and molecular barcodes encoded as 

read tags, we used Picard Tools (http://broadinstitute.github.io/picard) and Drop-seq Tools 

(https://github.com/broadinstitute/Drop-seq/releases; see https://github.com/broadinstitute/Drop-

seq/blob/master/doc/Drop-seq_Alignment_Cookbook.pdf for details on running many of the 

tools)14:  280 

Illumina BCL files were converted to unmapped BAM files using Picard’s 

ExtractIlluminaBarcodes and IlluminaBasecallsToSam with read structure 178T8B14T (cell 

barcodes, present in the i5 index, were incorporated as read 2 for ease of downstream 

processing). 10X Genomics GemCode index barcode sequences (four per sample) were supplied 

for de-multiplexing. 285 

Next, BAMs were processed to include unique molecular identifiers (UMIs) and cell 

barcodes as read tags, and to exclude reads with poor-quality cell barcodes or UMIs; 

consequently, each read was retained as single-end with its 14-bp cell barcode stored in tag XC 

and its 10-bp molecular barcode/unique molecular identifier (UMI) stored in tag XM. We used 

the first 10 bp of read 1 as the UMI, as this sequence contains the random primer used to prime 290 

the read as well as the bases in the genome directly following the site where the primer bound. 

First, DropSeq Tools’ TagBamWithReadSequenceExtended was called with BASE_RANGE=1-
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14, BASE_QUALITY=10, BARCODED_READ=2, DISCARD_READ=true, 

TAG_NAME=XC, NUM_BASES_BELOW_QUALITY=1  to convert the second read (cell 

barcode) to tag XC and drop this read from the output BAM file, tagging reads with at least one 295 

cell barcode base having quality below 10 with tag XQ. Subsequently, 

TagBamWithReadSequenceExtended was called again with BASE_RANGE=1-10, 

BASE_QUALITY=10, HARD_CLIP_BASES=true, BARCODED_READ=1, 

DISCARD_READ=false, TAG_NAME=XM, NUM_BASES_BELOW_QUALITY=1 to 

convert the first 10 bases of read 1 (template read) into the molecular barcode, tagged XM, 300 

tagging reads with more than one molecular barcode base having quality below 10 with tag XQ. 

Finally, DropSeq Tools’ FilterBAM was called with parameter TAG_REJECT=XQ to exclude 

reads with low-quality bases in either the cell or molecular barcodes. 

Reads were aligned to hg38 using bwa mem15. BAMs were converted to FastQ using 

Picard’s SamToFastQ, FastQ reads were aligned using bwa mem -M, and then unmapped BAMs 305 

were merged with mapped BAMs using Picard’s MergeBamAlignment, with non-default options 

INCLUDE_SECONDARY_ALIGNMENTS=false and PAIRED_RUN=false. Reads were 

considered PCR duplicates if they had the same cell and molecular barcodes and mapped to the 

same start position as a higher-quality read (best quality read retained) using Drop-seq Tools’ 

SpermSeqMarkDuplicates (part of Drop-seq tools v2.2 and above) with options 310 

STRATEGY=READ_POSITION, CELL_BARCODE_TAG=XC, 

MOLECULAR_BARCODE_TAG=XM, NUM_BARCODES=20000, CREATE_INDEX=true. 

(BAM file for all lanes and index sequences from the same sample were merged using Picard’s 

MergeSamFiles prior to alignment and/or during duplicate marking with all BAMs given as 

input to SpermSeqMarkDuplicates.) 315 

 

Sperm donor variant calling and individual sperm cell genotyping 

 For each donor, we pooled all reads from all libraries, including reads that did not derive 

from a barcode associated with a complete sperm cell (sperm cells had many reads per cell 

barcode; some barcodes were only associated with a few reads, which nonetheless derive from 320 

donor DNA, rather than with an entire haploid genome). Using GATK v3.716,17 in hg38, we 

followed GATK’s best practices documentation for base quality score recalibration, gVCF 

generation using HaplotypeCaller (in DISCOVERY mode with -stand_call_conf 20), and joint 
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genotyping with GenotypeGVCFs. We filtered variants by first selecting only SNPs for 

downstream use with SelectVariants -selectType SNP and flagging those with a QD score < 3 for 325 

exclusion using VariantFiltration (--filterExpression “QD<3.0”). We then performed VQSR 

following GATK’s best practices, except that we excluded annotations MQ and DP 

(VariantRecalibrator with GATK provided resources; -an QD, MQRankSum, ReadPosRankSum, 

FS, and SOR; -mode SNP; --trustAllPolymorphic; and tranches 90, 99.0, 99.5, 99.9, and 100.0). 

We applied tranche 99.9 recalibration using ApplyRecalibration -mode SNP and obtained the 330 

names of SNPs from dbSNP 14618 using VariantAnnotator --dbsnp. Because we observed false 

positives even at lower tranches, we further filtered our sites to contain only biallelic SNPs 

present in Hardy–Weinberg equilibrium in 1000 Genomes Phase 33 using SelectVariants --

concordance with a VCF containing only these sites (from GATK’s resource bundle, which 

contained a lifted-over VCF when used). To narrow to the final set of heterozygous SNPs used in 335 

phasing and single-sperm analysis, we also excluded SNPs in centromeric regions or acrocentric 

arms as defined by the UCSC Genome Browser’s cytoband track19,20 (http://genome.ucsc.edu), 

and those in known paralogous regions as lifted over from Genovese et al 201421 (available upon 

request), and selected only heterozygous SNPs using SelectVariants -selectType SNP --

selectTypeToExclude INDEL --restrictAllelesTo BIALLELIC --excludeFiltered --340 

setFilteredGtToNocall --selectexpressions 'vc.getGenotype("'"<sample name>"'").isHet()'. 

 We identified which of these SNPs were present in each sperm cell and which allele was 

present using the tool GenotypeSperm (part of Drop-seq tools v2.2 and above, 

https://github.com/broadinstitute/Drop-seq). First, we generated an interval file for each 

heterozygous SNP in the donor’s genome using Drop-seq Tools’ CreateSNPIntervalFromVCF. 345 

We determined the number of reads and molecular barcodes covering each base at each 

heterozygous SNP using GenotypeSperm with INTERVALS= the previously-generated interval 

file for the donor and cell barcodes (CELL_BC_FILE) expected to correspond to full haploid 

genomes (identification described in the next section). 

 For downstream analyses (identifying doublets, crossover calling), we generated a file 350 

with columns cell, pos, and gt, with gt having the value 0 for the reference allele and 1 for the alt 

allele by including SNPs that had one or more UMIs covering only one base (from 

GenotypeSperm) matching the reference or alternate allele (from GATK). (See our script 

gtypesperm2cellsbyrow.R.)  
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 355 

Generation and validation of chromosome-length phased haplotypes 

 To phase sperm donors’ genomes, we used all quality-controlled sites (as described 

above) from all cell barcodes expected to correspond to sperm cells. We identified barcodes 

potentially associated with cells by plotting the cumulative fraction of reads associated with each 

ranked barcode and identifying the inflection point of this curve, i.e., the point at which 360 

including more barcodes only marginally increased the proportion of total reads included, such 

that each subsequent barcode was associated with few reads (we used DropSeq tool’s 

BamTagHistogram to obtain ranked read counts per cell barcode). We further narrowed this set 

to include only barcodes with substantial read depth on either the X or the Y chromosome but 

not both, as the vast majority of sperm cells should contain only one sex chromosome; thus, most 365 

barcodes associated with both the X and the Y chromosome likely captured two or more sperm 

cells. (We later added all these barcodes back in before formally identifying doublet cell 

barcodes). 

To phase, for each chromosome we converted per-cell SNP calls into “fragments” for 

input into the HapCUT phasing software22,23 by considering each consecutive pair of SNPs 370 

observed in a cell to be a fragment (see our script gtypesperm2fmf.R). We then used HapCUT 

with parameter –maxiter 100 to generate phase blocks; all phase blocks generated are the length 

of entire chromosomes. After identifying and removing cell doublets (see below), we repeated 

phasing with only non-doublet cell barcodes to correct any possible phase errors resulting from 

the inclusion of cell doublets. 375 

We validated our phasing method in several ways. First, we simulated single-cell SNP 

observations from known haplotypes, including 2% genotype errors and a variable percentage of 

cell doublets (Extended Data Fig. 1a,b). Briefly, sites were randomly sampled from one known 

haplotype of chromosome 17 until a crossover location probabilistically assigned based on the 

deCODE recombination map8, then randomly sampled from the other haplotype (for simplicity, 380 

one crossover was simulated per cell, consistent with crossover expectation on a short 

chromosome). To simulate PCR or sequencing errors, after the entire chromosome was 

simulated, 2% of the sites were randomly assigned to an allele. Doublets were simulated by 

combining two cells and retaining 70% of the observed sites at random. (See our script 

simulatespermseqfromhaps.py.) We performed five random simulations for each doublet 385 
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proportion, mean proportion of total chromosomal sites “observed” in each cell, and total 

number of cells simulated, and then followed our phasing protocol on the simulated cell sets. We 

calculated the proportion of sites with the same allele from phasing with our simulated cells as 

the input haplotypes (unphased alleles counted as incorrect).  

We also phased an initial sperm donor’s genome from actual Sperm-seq data and 390 

compared these phased haplotypes to haplotypes generated for this donor using the population-

based phasing algorithm Eagle1,2. We compared the phase relationship between each consecutive 

pair of SNPs (identifying the proportion of switch errors between the two phased sets). We 

further examined all pairs of alleles in perfect linkage disequilibrium in 1000 Genomes Phase 33 

in the populations matching the donor’s ancestry to determine whether these alleles occurred on 395 

the same experimentally derived haplotype.  

 

Identification of cell doublets  

 To identify cell barcodes associated with more than one sperm cell (cell doublets), we 

identified the haplotype of origin for all observed autosomal SNPs in each cell barcode and then 400 

counted the number of times consecutively observed SNP alleles appeared on different parental 

haplotypes, which could occur because of crossover, error, or the presence of two haplotypes in 

the same droplet (doublet). We ranked barcodes by the proportion of consecutive SNPs that 

spanned haplotypes in this way using all SNPs from all autosomes except the autosome with the 

most haplotype-spanning consecutive SNPs (so as to avoid mistakenly identifying cells with 405 

chromosome gains as doublets); this resulted in a clear inflection point wherein cell doublets had 

a higher, quickly accelerating proportion of haplotype-spanning consecutive SNPs (Extended 

Data Fig. 1a). All cell barcodes below this inflection point (identified with the function ede from 

the R package inflection https://CRAN.R-project.org/package=inflection) were considered non-

doublet (Extended Data Fig. 1b). (See our script computeSwitchesandInflThresh.R.) 410 

 

Identification of crossover events 

 We identified crossover events on all autosomes, excluding the p arms of acrocentric 

chromosomes (as SNPs on these arms were excluded from analysis), by assigning each observed 

SNP in each non-doublet cell to its parental haplotype and finding transitions between these 415 

haplotypes using a Hidden Markov Model written in R with package HMM (https://CRAN.R-
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project.org/package=HMM) (Fig. 2a). To ensure that we detected crossovers located near the 

ends of SNP coverage (as sub-telomeric regions are known to be frequently used for crossovers 

in spermatogenesis), we ran the HMM both in the forward chromosomal and reverse-

chromosomal directions, with start probability for one haplotype equal to 1 if the first two SNPs 420 

observed were of that haplotype. In addition to two states for parental haplotypes, we included a 

third “error” state to capture cases in which a haplotype 1 allele is observed in a haplotype 2 

region (and vice versa), e.g., due to PCR or sequencing error, gene conversion, or cases in which 

a small piece of off-haplotype ambient DNA was captured in a droplet. Crossovers were 

identified as regions where one haplotype transitions to another, or where one haplotype 425 

transitions into the error state and then into the other haplotype; crossover boundaries were 

defined as the last SNP in the first haplotype and the first in the next (with up to a few 

intervening “error” SNPs when boundaries were unclear). The key parameters for this algorithm 

are the transition probability between haplotypes (set to 0.001, from the per-cell median 26 

crossovers divided by the per-cell median 24,710 heterozygous SNPs per cell per donor) and 430 

transition into and out of the “error” state (we set transition probability into this state to 0.03 

from either haplotype, as only a few percent of SNPs are off-haplotype; we set the probability of 

staying in error to a higher value, 0.9, to allow for the occasional tract of SNPs from an ambient 

piece of off-haplotype DNA). Emission probabilities are 100% haplotype 1 alleles from 

haplotype 1, 100% haplotype 2 alleles from haplotype 2, and equal probability haplotype 1 or 435 

haplotype 2 alleles from the third “error” state. Crossover calling was robust with respect to 

transition probabilities so long as the transition probability remained low. (See our script 

spseqHMMCOCaller_3state.R, which calls crossovers on one chromosome.) 

After aneuploidy identification, we marked aneuploid chromosomes as having no 

crossovers for all crossover analyses (absent chromosomes have no crossovers and crossover 440 

calling requires a special procedure on gained chromosomes, described in a later section.). 

 

Restricting to cell barcodes with coverage of the entire genome 

 To examine evenness of coverage and enable aneuploidy identification, we used Genome 

STRiP (http://software.broadinstitute.org/software/genomestrip/) 24,25 to determine sequence read 445 

depth (observed number of reads divided by expected number of reads) in 100-kb uniquely 

mappable bins (which may be larger than 100 kb of chromosomal territory) across the genome in 
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each sperm cell, using Genome STRiP’s default GC bias correction and repetitive region 

masking for gr38. We divided this read depth by 2 to obtain read depth per haploid rather than 

diploid genome. Input to Genome STRiP was a BAM file containing only cells of interest with 450 

read groups set to <sample name>:<cell barcode> (created using Drop-seq Tools’ 

ConvertTagToReadGroup with options CELL_BARCODE_TAG=XC, 

SAMPLE_NAME=<name of sample/donor>, CREATE_INDEX=true, and CELL_BC_FILE 

pointed to a list of cell barcodes potentially associated with cells, described above). 

Although read depth was usually centered at 1 across chromosomes, we noted that a 455 

minority of cell barcodes were associated with eccentric read depth across many chromosomes, 

with read depth vacillating between 0 and 2 or more in waves. (We hypothesize that these cell 

barcodes were associated with sperm cells that did not properly decondense, such that some 

regions of the genome were more accessible than others, leading to undulating read depth due to 

transitions between more and less accessible chromatin.) To identify and exclude such barcodes, 460 

we treated read depths across each chromosome as a time series and used Box-Jenkins 

Autoregressive Integrated Moving Average (ARIMA) modelling (implemented via the R 

package forecast26,27, excluding differencing) to model how read depth observations relied on 

their previous values (as in “wave” cases) and their overall averages. By visual inspection, we 

determined that chromosomes with certain ARIMA criteria were likely to be unstable in read 465 

depth, and that cell barcodes with five or more such identified chromosomes were likely to have 

eccentric read depth globally. We flagged individual chromosomes if 1) The sum of AR1 and 

AR2 coefficients was greater than 0.7, the AR1 coefficient was greater than 0.9, or the net sum 

of all AR and MA coefficients was greater than 1.25 and 2) either the net sum of AR and MA 

coefficients was greater than 0.4 or the intercept was less than 0.8 or greater than 1.2. If both 470 

criteria in (2) were met, this signified an exceedingly odd chromosome, which was therefore 

counted twice. Cell barcodes with five or more chromosomes flagged in this way were excluded 

from downstream analyses. (Because gains of large amounts of the genome cause artificially 

depressed read depths on non-gained chromosomes, we manually examined any cells with a 

large range of ARIMA intercepts and over five chromosomes denoted as unstable. Any such 475 

cells that had simply gained a large proportion of the genome, e.g., 3 copies of chromosome 2, 

were included rather than excluded.) We initially cross-referenced all cell exclusions with called 
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aneuploidies, confirming that cells were not excluded simply on the basis of having lost or 

gained a chromosome. 

(See our scripts setupgsreaddepth.R, exclbadreaddepth_arima_1.R, 480 

exclbadreaddepth_initid_2.R, and exclbadreaddepth_finalize_3.R) 

 

Identification and use of replicate barcodes (“bead doublets”) 

 In addition to cases in which two sperm cells are in the same droplet with the same cell-

barcoded bead (see “Identification of cell doublets”), it is possible for one sperm cell to be 485 

encapsulated in a droplet with more than one barcoded bead. We determined the proportion of 

SNPs that were of the same haplotype for each pair of barcodes to identify cases where pairs of 

sperm genomes were identical. Because barcodes capture different sets of SNPs, we imputed the 

haplotype of all heterozygous SNPs based on the haplotype of surrounding observed SNPs and 

locations of recombination events and compared all SNPs across sperm cell pairs. SNPs 490 

occurring between identified boundaries of crossovers were excluded from analysis. Sperm cells 

shared on average 50% of their genomes, with differential sharing normally distributed except 

for a few high-outlying sets of barcodes that shared nearly 100% of their SNP haplotypes 

(Extended Data Fig. 2a) – these were considered to represent “bead doublets” or replicate 

barcodes. All downstream analyses were performed on a unique set of cell barcodes, i.e., only 495 

one barcode from a set corresponding to the same cell was chosen randomly and used for 

analysis. (See our scripts imputeHaplotypeAllSNPs.R, compareSpermHapsPropSNPs.R, 

combineChrsSpermHapsPropSNPs.R, and curateNonRepBCList.R) 

 We used these bead doublets to examine the reproducibility of SNP and crossover calling 

(Extended Data Fig. 2c-e). We determined the proportion of observed SNPs shared by replicate 500 

barcodes and of these, the proportion in which the same haplotype was detected; we then 

compared this to the same metrics for randomly chosen sets of cell barcodes. We also calculated 

how many of the crossovers observed in either of the two barcodes overlapped with crossovers in 

the other barcode, and for any non-overlapping crossovers, determined whether they occurred 

within 15 SNPs of the end of SNP coverage (suggesting random fluctuations at the end of 505 

coverage among barcodes), whether two crossovers were close to overlapping but were simply 

separated by one SNP, or whether they did not overlap for other reasons. 
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Investigation of whether unequal SNP coverage impacts crossover analyses 

 Because coverage of heterozygous sites is non-uniform across different cells from a given 510 

sperm donor and across sperm donors, it is possible that some inter-cell and inter-individual 

differences in crossovers could derive from this differential coverage and the resultant 

differential ability to call crossovers, or from different genomic resolution of called crossovers. 

To determine whether this affected our conclusions, we randomly downsampled SNP 

observations from each chromosome in each cell to have the same number of observed 515 

heterozygous sites, simply masking any number greater than this, and excluded cells with more 

than two chromosomes with fewer heterozygous sites. After this down-sampling, 98.6% of cells 

(n = 30,778) were retained. We down-sampled to the number of SNPs per chromosome from the 

25th smallest cell from NC26, the donor with the lowest median per-cell SNP observation count, 

for a total of 13,036 SNPs per cell. We chose the 25th smallest cell to avoid any potential 520 

systematic issues with the very smallest cells, while still retaining most cells. (See our scripts 

getNSNPsPerChrForDownsample.R, downsampleCellsByRow.R, and 

getBCsWithEnoughChrs.R.) 

 We then re-called crossovers from these SNPs (n = 785,476), and determined the 

correlation between the number of crossovers (per cell and per chromosome) in these calls from 525 

equal SNP coverage and our initial, full-coverage calls (Extended Data Fig. 3a,b,d). We 

compared the locations of crossovers called from both SNP sets via Kruskal–Wallis tests 

comparing each chromosome’s median position of crossovers (from all cells combined, with 

each chromosome’s position distribution tested separately, all crossovers included) (Extended 

Data Fig. 3c,e). To directly confirm that the same conclusions were reached in analyses using 530 

both datasets (data not shown), we also performed most crossover analyses using crossovers 

called from both SNP sets. 

 

Crossover rate analyses 

Comparison of crossover number distribution among cells to the Poisson distribution 535 

 Based on the total number of crossovers observed across all cells for each sperm donor, 

we determined the expected number of cells with each crossover count if crossovers were 

distributed randomly among cells according to the Poisson distribution (lambda = total number 

of crossovers / total number of cells). For this purpose, we used the Poisson density function in R 
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multiplied by the total number of cells to obtain counts with quantiles (x) spanning the minimum 540 

and maximum numbers of crossovers where the Poisson expectation rounded to be greater than 0 

(we extended the analysis to the minimum [maximum] observed crossover count if this was 

lower [higher] than would otherwise be included). To directly compare the observed and 

expected (Poisson) distributions of crossovers per cell, we used a chi-squared test. We also 

determined the experimental (observed) and expected variance and kurtosis (variance of Poisson 545 

is lambda and  kurtosis is 3+1/lambda; observed kurtosis was calculated with the kurtsosis 

function from the R package moments https://CRAN.R-project.org/package=moments). We 

tested whether the observed variances differed from the expected variances using a one-sample 

chi-squared test on variance as implemented with the function varTest in the package EnvStats 

(https://CRAN.R-project.org/package=EnvStats). We performed this analysis for each 550 

chromosome separately. (See our script coRateVariationAnalysis_poisson.R.) 

Correlation of crossover rate across gametes from the same donor 

 To determine whether the (noisy) crossover rate correlated across chromosomes in sperm 

cells from the same donor, we looked for a correlation between the number of crossovers in the 

largest possible equally sized sets of chromosomes (odd-numbered vs. even-numbered) in each 555 

donor. We also aggregated across donors by converting each crossover sum (odd- and even- 

numbered chromosomes) to a percentile within each donor, and then combining all donors and 

performing a correlation test on these percentiles. (See our script 

rateVOtherPtypesAcrossCellAggs.R, which performs these and many other analyses.) 

Comparison of this study to population-based genetic maps 560 

 To determine how our individualized genetic maps compared to genetic maps generated 

from population data, we obtained population genetic maps from HapMap9 (sex-averaged) in 

hg38 from the Eagle phasing package1,2 and from deCODE8 (male-specific) in hg18. We 

converted the deCODE map to hg38 using UCSC Genome Browser’s19 Batch Coordinate 

Conversion (liftover), and dropped liftover failures, as the sequential nature of a genetic map 565 

means it is not damaged by missing SNP observations. Because we observed different 

heterozygous sites across sperm donors, we determined the genetic positions in 500-kb interval 

bins individually for each of the sperm donors. We determined the number of crossovers 

occurring before each 500-kb position, divided this number by the total number of sperm cells 

analyzed, and multiplied by 100 to get each 500-kb physical bin’s location in centimorgans, 570 
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thereby standardizing across donors. We found the genetic positions corresponding to these 

physical bins in HapMap and deCODE by identifying the closest typed SNP to each bin 

boundary, and then examined these standardized maps together (Fig. 2d,e, Extended Data Fig. 

6). From these 500-kb genetic maps, we determined the recombination rate in intervals of 

various sizes for each donor, HapMap, and deCODE and correlated these rate profiles across 575 

samples. (See our scripts computeGenDistsMultSamps.R and plotAnalyzeGenDists.R) 

 

Identification and use of crossover zones 

 To define territories of recombination use (Extended Data Fig. 8), we found local 

minima of the density (built-in function in R) of all crossovers’ median positions across all 580 

samples on each chromosome. Minima were identified using the findPeaks function (from 

https://github.com/stas-g/findPeaks) on the inverse density with m=3. Crossover zones run from 

the beginning of the chromosome (including the whole p arm for acrocentric chromosomes) to 

the location of the first local minimum, from the location of the first local minimum plus one 

basepair to the next local minimum, and so on, with the last zone on each chromosome ending at 585 

the last basepair position of that chromosome. (See our script findcozones_peaks.R.) 

 To determine what proportion of crossovers occurred in the most distal (telomeric) zones, 

we divided zones into “end” and “not-end” groups; all zones that encompassed a telomere were 

defined as end zones. Acrocentric chromosomes have only one end zone because the p arm was 

excluded from analysis, whereas all other chromosomes have two end zones, and chromosomes 590 

with only one zone on the p arm and one on the q arm comprise only end zones. To obtain a per-

cell proportion of the distal crossovers metric, we divided the total number of crossovers in each 

cell with midpoints in these end zones by the total number of crossovers in each cell (Extended 

Data Fig. 10a, left).  To obtain a per-sperm donor proportion of crossovers in distal zones metric 

(as in Extended Data Fig. 10a, right), we divided the total number of crossovers across all cells 595 

with midpoints in the end zones by the total number of crossovers detected across all cells from 

that donor. To get comparable numbers when controlling for crossover rate by restricting 

analyses to chromosomes with two crossovers, for each cell (Fig. 4d), we divided the total 

number of crossovers from two-crossover chromosomes by the number of these crossovers that 

occurred in distal chromosomal zones. For each sperm donor (Fig. 4b), we divided the total 600 

number of crossovers in end zones from two-crossover chromosomes in any cell by the total 
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number of crossovers from two-crossover chromosomes in any cell. (n two-crossover 

chromosomes included per donor = NC3: 7,848, NC9: 11,509, NC6: 8,234, NC25: 13,590, 

NC13: 9,280, NC4: 8,838, NC8: 9,952, NC27: 7,645, NC26: 5,741, NC14: 7,942, NC18: 9,509, 

NC1: 5,745, NC22: 9,816, NC17: 8,766, NC11: 11,104, NC10: 6,432, NC15: 9,618, NC16: 605 

9,481, NC12: 11,420, NC2: 8,268.) 

 

Analysis of crossover interference across donors 

We looked for crossover interference in each donor by computing the distance between 

all consecutive pairs of crossovers on the same chromosome in the same cell (using the midpoint 610 

between the border SNPs as the position of each crossover). We expressed this distance both in 

base pairs and as the proportion of the non-centromeric chromosome (or non-acrocentric arm for 

acrocentric chromosomes) separating each consecutive crossover pair. To determine whether this 

distribution reflected crossover interference, we compared its median to the median distances 

between consecutive crossovers computed by permuting crossovers’ cell identities 10,000 times 615 

(in a fashion similar to that used by Wang et al5). In this permutation, we randomly assigned 

crossovers to cells while keeping constant the distribution of the number of cells with each 

number of crossovers per cell (accomplished by permuting within-chromosome such that 

chromosome 1’s distribution of chromosomes with 1, 2, 3… crossovers was maintained) and 

then computed each inter-crossover distance and the median of this distribution. We compared 620 

the observed median to the 10,000 permuted medians. We performed this process globally 

(combining all chromosomes and on each chromosome (Extended Data Figs. 11b,c). To 

determine whether the 20 samples differed in crossover interference, we used a Kruskal–Wallis 

test on all inter-crossover distances (Extended Data Fig. 10b; n inter-crossover distances per 

donor = NC3: 13,832, NC9: 20,125, NC6: 14,049, NC25: 22,918, NC13: 14,913, NC4: 14,516, 625 

NC8: 16,254, NC27: 12,200, NC26: 9,277, NC14: 12,795, NC18: 14,971, NC1: 9,165, NC22: 

15,239, NC17: 13,515, NC11: 17,163, NC10: 9,499, NC15: 13,792, NC16: 13,134, NC12: 

15,803, NC2: 10,519). We also performed these analyses on chromosomes with two crossovers 

(one inter-crossover distance per chromosome, n two-crossover chromosomes included per 

donor described above in “Identification and use of crossover zones”) (Fig. 4c). (See our scripts 630 

getPermAdjCOs_fixedDistr_2measures.R, and compareAdjDistanceCombine2Measures.R) 
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We also calculated crossover interference in terms of each donor’s individualized genetic 

map (Extended Data Fig. 11e). We determined the proportion of cells with a second crossover 

in windows of sizes 5–95 centimorgans on one chromosome at a time (containing 5–95% of the 

total crossovers from cells with two crossovers on that chromosome). Starting with each 635 

crossover on any chromosome with at least 30 crossovers observed across all cells, we identified 

the window containing X% of the rest of the crossovers on that chromosome in that individual. 

(If this crossover was near the end of the chromosome such that such a window was impossible, 

it was dropped from analysis, although it would have been included in previous crossovers’ 

windows.) We noted whether this chromosome’s second crossover fell in this window. We did 640 

this for each two-crossover chromosome (n per donor noted above), and then determined the 

proportion of cells with a second crossover in this cM window and compared it to the window 

size (i.e., at a window size of 5 cM, or 5% of all crossovers from two-crossover chromosomes, 

far fewer than 5% of cells contain a second crossover). We then compared the observed 

percentage at each expected percentage (in each 5-cM window) across individuals, both visually 645 

and using the Kruskal–Wallis test (Extended Data Fig. 11f). To confirm that the results were 

not dependent on the direction of analysis or the specific crossovers in each window, we 

implemented this analysis going both from “left” to “right” (increasing physical position) and 

from “right” to “left” (decreasing physical position) on a chromosome. (See our script 

computeSuppression.R.) 650 

High–crossover rate donors may have a different chromosomal composition of two-

crossover chromosomes than low–crossover rate donors, e.g., few two-crossover chromosome 1s 

but many two-crossover chromosome 18s, while low crossover rate donors may have the reverse. 

To determine whether the observation of individuals’ crossover interference differences and the 

negative correlation of interference with crossover rate was robust with respect to this 655 

differential composition, we down-sampled each individual to have the same number of two-

crossover chromosomes for each chromosome as the individual with the lowest number of two-

crossover chromosomes of that number, and then repeated our analyses (n total two-crossover 

chromosomes = 5,522). (See our script compareDonorsConsecDist_samenobschrs.R.) 

In theory, differences among individuals’ crossover interference on chromosomes with 660 

two crossovers could be due to differential failure to detect crossovers at the very end of the 

chromosome. This would lead to the inclusion of chromosomes that actually had three 
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crossovers, only two of which were detected, such that the included distance actually belonged to 

a three-crossover chromosome. These wrongfully included three-crossover chromosome 

distances would be shorter on average than two-crossover inter-crossover distances. Such 665 

mistaken inclusion of three-crossover chromosomes could occur preferentially in higher–

crossover rate sperm donors, because higher–crossover rate individuals would be more likely to 

have a third crossover that could be missed. If so, it could give rise to the observed interference-

rate relationship. To determine how this might manifest, we preferentially removed 10% of the 

chromosomes with the shortest inter-crossover distances from the individual with the highest 670 

crossover rate, left all chromosomes in for the individual with the lowest crossover rate, and 

removed percentages of shortest distances weighted by crossover rate from the intermediate 

crossover rate samples. The choice of 10% was overly conservative, as it is more than double the 

fraction of crossovers that we expect to be missed based on biased coverage near the telomeres: 

the estimate from crossovers in bead doublets that are discordant and near the end of 675 

chromosomes ranged from 0.2–4.0% across donors and was 2.1% globally (Extended Data Fig. 

2e) (n two-crossover chromosomes retained per donor = NC1: 5,337, NC10: 6,120, NC11: 

104,57, NC12: 11,107, NC13: 8,450, NC14: 7,344, NC15: 9,171, NC16: 9,214, NC17: 8,186, 

NC18: 8,831, NC2: 8,268, NC22: 9,166, NC25: 12,392, NC26: 5,300, NC27: 7,019, NC3: 7,084, 

NC4: 8,084, NC6: 7,466, NC8: 9,144, NC9: 10,359). We then repeated the crossover 680 

interference analysis with these unequally downsampled chromosome sets. (See our script 

controlSimTelBias_MultSampInterference.R; we used prop 0.1 and method corate.percentile in 

the parameter file for the described analysis.) 

 

Analysis of crossover interference and proportion of crossovers in distal zones across 685 

sperm cells 

 To determine whether increased crossover interference was associated with lower 

crossover rate in sperm cells, we first assigned each cell (within a donor) to a decile based on its 

crossover number. We then compared the distance between all consecutive crossovers on each 

chromosome with two crossovers from each cell in the bottom decile (i.e., the 10% of cells with 690 

the lowest crossover rate) to the same measurements from each cell in the top decile (the 10% of 

cells with the highest crossover rate). 
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To determine whether increased crossovers in the most telomeric zones of chromosomes 

was associated with lower crossover rate in sperm cells, we determined the proportion crossovers 

in two-crossover chromosomes that occurred  in end zones for each cell (sum of crossovers 695 

occurring in end zones on two-crossover chromosomes / sum of all crossovers occurring on two-

crossover chromosomes). We then compared these proportions across the top and bottom 

crossover-rate deciles determined as described above. 

To increase power, we aggregated all cells across all donors by converting each 

measurement to percentiles within donors: crossover number per cell and each proportion of 700 

crossovers occurring in end zones was converted to a percentile for that sample. We then 

combined all cells, re-computed crossover-rate deciles based on these combined percentiles, and 

performed comparisons across these crossover-rate deciles. For crossover interference, we took 

the percentile of each inter-crossover distance for each chromosome separately (then combined 

across chromosomes) to control for differences in the composition of two-crossover 705 

chromosomes among donors. These distance percentiles were compared in the Mann–Whitney 

test across crossover number deciles, and the median for each cell was plotted to show each 

cell’s aggregate phenotype. (Fig. 4d,e, Extended Data Fig. 16) (See our script 

rateVOtherPtypesAcrossCellAggs.R, which performs these and other analyses. We used 10 for 

the 6th argument [“Number of groups to split cells into based on CO rate for 'meta-cell' 710 

analyses”] for the analyses described here.) 

 

Identification of aneuploidy and chromosome arm-scale structural variants 

 We used an approach based on sequence read depth to determine copy number in regions 

across the genome and identified chromosomes or chromosome arms with aberrant read depth to 715 

identify aneuploidy. As described above (see “Restricting to cell barcodes with coverage of the 

entire genome”), we used Genome STRiP 

(http://software.broadinstitute.org/software/genomestrip/)24,25 to determine read depth across the 

genome in each sperm cell. 

 Before looking for aneuploidy events, we first removed bins that had outlying read depth 720 

across all cells, defined as those with p < 0.05 in a one-sided one-sample t-test (looking for 

increased read depth) against the expected mean read depth of 2# (defined below). To identify 

gains of autosomes, we then performed a one-sided one-sample t-test (expecting increased read 
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depth in a gain) for each cell against expected read depth for a gain of one copy, 2#. For each 

cell, this analysis compared the distribution all bins’ read depth across a region of interest to the 725 

gain expectation 2#, and flagged any cells whose read depth distributions were not significantly 

different (p ≥ 0.05) We used the same approach to identify losses, comparing a cell’s read depth 

distribution across bins to 0.1 and flagging any that were not significantly higher (p ≥ 0.05). 

The expected copy number – and thus read depth – for gains is 2, but the expected read 

depth for gains depends on the size of the chromosome, because the total increased number of 730 

reads in a library with a gain compared to the number that would be in that same library without 

a gain pulls read depth down globally by increasing the total number of expected reads, causing 

the denominator in each read depth bin (the expected number of reads in that bin, tied to total 

number of reads) to increase. To correct for this effect of a gain itself on global read depth, we 

defined the critical value at or above which gains were identified as a chromosome-specific 735 

value, slightly below 2: 2# = 2*(the proportion of the genome in base pairs coming from all 

chromosomes other than the tested one). We used 0.1 rather than 0 because the expected read 

depth for losses, as a small number of reads generally align to a lost chromosome (due to mis-

alignment or possibly DNA from different sources being present in the droplet). 

 For non-acrocentric chromosomes, we performed gain and loss calling for the arms 740 

separately, as well as for the whole chromosome. Because amplification of more than two copies 

of a chromosome arm could result in the whole chromosome passing the p-value threshold, we 

required a whole-chromosome event to both pass the p-value threshold at the whole-chromosome 

level and to have rounded read depth of both arms ≥ 2 for a gain (or 0 for a loss). For the 

acrocentric chromosomes (13, 14, 14, 21, 22, Y), only the q arm was considered and any q arm 745 

gain or loss was considered to be a whole-chromosome event due to the difficulty of processing 

the p arm (unless investigated further, e.g., Fig. 6c). The total number of copies gained was 

inferred from the overall read depth for any flagged chromosome (Fig. 6, Extended Data Fig. 

19).  

 For the sex chromosomes, we followed a similar statistical framework, but did not call a 750 

flagged loss as an aneuploidy unless losses were flagged for both the X and the Y chromosomes. 

A gain was also called if both the X and Y chromosomes were present (i.e. not flagged as 

losses).  (See our scripts setupgsreaddepth.R, idaneus_initialttests.R, curateaneudata_clean.R, 

getautosomalaneumatrix.R, and getxykaryos_aneus.R for aneuploidy calling and output 
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formatting; see our scripts curateAnFreqFromCodeMatrix.R, curateInitAnalyzeXYKaryos.R, and 755 

combineAnFreq_AutXY.R for conversion of outputs of aneuploidy calling to cross-donor 

aneuploidy frequency tables.) 

 

Identification of the meiotic division of origin for chromosome gains 

 To see whether chromosome gains originated in meiosis I (MI) or meiosis II (MII), we 760 

determined whether the centromeres of the multiple copies of the chromosomes were 

heterozygous and therefore from homologous chromosomes, which typically disjoin in MI, or 

homozygous and therefore from sister chromatids, which typically disjoin in MII. We first 

identified heterozygous regions for all cells using a Hidden Markov Model (HMM) in which the 

states are 1) heterozygous (emitting either haplotype’s alleles) or 2) homozygous (emitting only 765 

one haplotype’s alleles), with transition probability between the states equal to the recombination 

transition probability (see “Identification of crossover events” section), saving the start and end 

positions and indexes of any heterozygous tracts of SNPs. For each gain, we then determined 

whether heterozygous tracts overlapped with the centromere, with the same centromere locations 

as those used for SNP calling (from the UCSC cytoband track19,20). If a heterozygous tract 1) 770 

started before the start of the centromere and ended after the end of the centromere or 2) started 

at the first SNP observed on an acrocentric chromosome or within the first 10 SNPs and was 

more than 10 SNPs long, it was classified as an MI gain; if no heterozygous tract overlapped the 

centromere, it was classified as an MII gain. (See our scripts getDiploidTracts_hmm.R, 

originOfGainID.R, and curateOriginMultSamps.R.) 775 

 For the sex chromosomes, we used the logic that the X and Y chromosomes are 

homologs and separate at MI, whereas X and Y sisters separate at meiosis II. Therefore, any XY 

sex chromosome gain derives from MI, whereas an XX or YY gain derives from MII. 

 

Examination of the relationship between recombination and aneuploidy 780 

 We examined the relationship between recombination and aneuploidy at three levels: 

sperm donor, cell, and aneuploid chromosome. To determine whether the aneuploid 

chromosomes themselves had fewer crossovers than chromosomes that were not lost or gained, 

we first determined the number of crossovers on chromosomes that had been gained by 

identifying the number of transitions between heterozygous and homozygous states using an 785 
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HMM, as described above in “Identifying the meiotic division of origin for chromosome gains.” 

This is the total number of gains that occurred on both of the present chromosomes together, as it 

is impossible to determine for, e.g., two crossovers, whether one occurred on each starting 

chromatid or both occurred on one starting chromatid. (See our script getGainChrCOs.R) 

 This process sometimes yielded very many crossovers (>10) being called on gained 790 

chromosomes because the presence of two haplotypes can be difficult to algorithmically 

distinguish from multiple crossovers depending on the haplotype patterns of observed alleles 

make. Therefore, we performed downstream analyses on 1) all gained chromosomes, including 

those with these high crossover numbers and 2) on the large majority of gained chromosomes  

with fewer than five called crossovers to exclude any with a crossover number that was likely to 795 

be inflated. We report the results of both versions of the analysis in the supplemental text, and 

the result of the analysis excluding chromosomes with inflated crossover number in the main text 

and figures. 

 We then calculated the total number of crossovers occurring on all gained chromosomes, 

chromosomes gained in MI, and chromosomes gained in MII; all donors’ gains of one copy were 800 

included. To determine whether these numbers were lower or higher than expected, we 

ascertained 10,000 matched sets of the same number of gains and compared the sum of 

crossovers for each of the sets to our observed total (Fig. 5f, Extended Data Fig. 18a), 

computing a one-sided p-value based on the hypothesis that gained chromosomes would have 

fewer crossovers. For each matched gain, we considered each chromosome gain, randomly 805 

selected two non-aneuploid cells from the same donor, and summed the crossovers on the same 

chromosome as the gain, thereby controlling for differences in crossover rate among 

chromosomes and individuals. In each matched set, we performed this procedure for each of the 

observed gains and summed all crossovers. (See our script combineGainsLookInCis.R.) 

 To determine whether cells with aneuploidy had fewer crossovers overall on the 810 

remaining, non-aneuploid chromosomes than euploid cells, we first determined the number of 

crossovers per non-aneuploid megabase in each cell in order to control for aneuploid territory: 

for euploid cells, all chromosomes were included, whereas for aneuploid cells, aneuploid 

chromosomes were excluded. The set of euploid cells used for comparison against aneuploid 

cells included only cells with no detected structural variant, including arm-level chromosome 815 

gains or losses. In each sperm donor, we used the Mann–Whitney test to compare the distribution 
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of crossovers per megabase in cells with any aneuploidy, MI gains, or MII gains to the 

distribution of crossovers per megabase in euploid cells. To increase power, we pooled all cells 

from all donors, taking the within-donor z-score of crossovers per megabase to control for 

crossover rate differences among donors, and repeated the same tests (Extended Data Fig. 18b). 820 

To demonstrate that we could detect differences between aneuploid and euploid cells without 

correcting for aneuploidy (when aneuploid chromosomes’ 0 crossovers were included in the 

analysis), we performed this analysis on the total number of crossovers per megabase in the 

genome, rather than non-aneuploid territory. To assess in a different way whether aneuploid 

status alone, rather than the absence of the chromosome from analysis due to the aneuploidy, was 825 

significantly associated with crossover number, we also performed a linear regression including 

all cells as observations, using the following equation: 

# Crossovers = [any whole chromosome aneuploidy: 0 = no; 1 = yes] + [0 of 1 for aneuploidy at 

each chromosome: 1 = aneuploidy] + [sperm donor dummy variables with values of 0 or 1 to 

control for underlying differences in crossover and aneuploidy frequency]  830 

We performed this analysis without chromosome covariates to demonstrate that we did have 

power to detect a relationship at the level of entire chromosomes left out of aneuploid cells. (See 

our scripts coPerMbVaneuploidy.R, linregCOVAneuploidy.R, and 

mImIIgains_copermbandlinreg.R) 

 At the donor level, we performed a Pearson’s correlation test of mean crossovers per cell 835 

per donor versus mean (whole-chromosome) aneuploidy events per cell per donor, the mean MI 

gains per cell per donor, and the mean MII gains per cell per donor (Extended Data Fig. 18c). 

We calculated the statistical power for this analysis using the function pwr.r.test from the R 

package pwr (https://CRAN.R-project.org/package=pwr). 

 840 
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