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 2

Abstract 21 

Deep non-rapid eye movement sleep (NREM) – also called slow wave sleep 22 

(SWS) – and general anesthesia are prominent states of reduced arousal linked to the 23 

occurrence of slow oscillations in the electroencephalogram (EEG). Rapid eye 24 

movement (REM) sleep, however, is also associated with a diminished arousal level, 25 

but is characterized by a desynchronized, ‘wake-like’ EEG. This observation challenges 26 

the notion of oscillations as the main physiological mediator of reduced arousal. Using 27 

intracranial and surface EEG recordings in four independent data sets, we establish the 28 

1/f spectral slope as an electrophysiological marker that accurately delineates 29 

wakefulness from anesthesia, SWS and REM sleep. The spectral slope reflects the 30 

non-oscillatory, scale-free measure of neural activity and has been proposed to index 31 

the local balance between excitation and inhibition. Taken together, these findings 32 

reconcile the long-standing paradox of reduced arousal in both REM and NREM sleep 33 

and provide a common unifying physiological principle — a shift in local Excitation/ 34 

Inhibition balance — to explain states of reduced arousal such as sleep and anesthesia 35 

in humans.  36 

 37 
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Significance Statement 42 

The clinical assessment of arousal levels in humans depends on subjective measures 43 

such as responsiveness to verbal commands. While non-rapid eye movement (NREM) 44 

sleep and general anesthesia share some electrophysiological markers, rapid eye 45 

movement sleep (REM) is characterized by a ‘wake-like’ electroencephalogram. Here, 46 

we demonstrate that non-oscillatory, scale-free electrical brain activity — recorded from 47 

both scalp electroencephalogram and intracranial recordings in humans — reliably 48 

tracks arousal levels during both NREM and REM sleep as well as under general 49 

anesthesia with propofol. Our findings suggest that non-oscillatory brain activity can be 50 

used effectively to monitor vigilance states.  51 

 52 

Introduction 53 

Sleep and anesthesia both present with a behaviorally similar state of diminished 54 

arousal(1) and shared neurophysiologic features, namely increased low frequency 55 

power(2, 3) and a reduction in effective connectivity(4, 5). It has been argued that the 56 

reduced arousal in both states stems from a common neuronal mechanism. Current 57 

definitions of arousal vary and include e.g. autonomic, behavioral or mental arousal. An 58 

updated framework has been proposed recently(6). Here, we use the term arousal in its 59 

relation to vigilance states. 60 

Most studies comparing sleep and anesthesia concentrated on slow-wave sleep 61 

and oscillatory dynamics such as slow waves (< 1.25 Hz)(1, 7, 8) as an increased 62 

activity in this frequency band has been associated with reduced arousal(1, 3). REM 63 

sleep is also associated with decreased arousal but is characterized by a 64 
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desynchronized, active pattern in the electroencephalogram (EEG) similar to 65 

wakefulness(8). This paradox challenges the notion that changes in oscillatory activity 66 

such as slow waves are the exclusive determinant of reduced arousal.  67 

Non-oscillatory, scale-free neural activity constitutes an important index of brain 68 

physiology and behavior(9–11). In the frequency domain, the scaling law between the 69 

power and the frequency of non-oscillatory brain activity can be estimated from the 70 

exponential decay of the power spectral density(9) and has previously been used to 71 

assess a variety of cognitive and EEG phenomena(12–18). A variety of terms have 72 

been used to describe this power-frequency relationship, such as power-law 73 

distribution, scale-free behavior, 1/f electrophysiological noise, fractal/spectral 74 

exponent(12, 17, 19) or fractal dynamics(9, 20–22). The exponent of the 1/f power-law 75 

distribution, also called spectral slope, differs between rest and task activity(9, 10) and 76 

changes with aging(21). Fractal dynamics and neural avalanches have also been 77 

observed in long-range temporal correlations of band-limited signals(23), however, it is 78 

likely that these two phenomena may reflect distinct entities with a different 79 

neurophysiological basis(9). Here, we focus on the fractal 1/f dynamics of the 80 

background activity. 81 

Computational simulations indicate that the spectral slope provides a surrogate 82 

marker for the excitatory to inhibitory (E/I) balance with more negative slope values 83 

indexing enhanced inhibition(10, 20, 22) (Fig. S1), while others have observed the 84 

reversed pattern(11). 85 

For this study, we followed the framework of Laureys et al. that defined 86 

consciousness on two axis – content (awareness) and level (arousal)(24). While the 87 
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conscious content is low in NREM sleep and GABAergic anesthesia, it is high in 88 

wakefulness and dreaming states like REM. The arousal level, on the other hand, is low 89 

in all sleep states including REM. We hypothesized that states of reduced arousal are 90 

characterized by a shift of the E/I balance towards inhibition indexed by more negative 91 

slopes. To test this prediction, we analyzed four independent datasets: 92 

Electrophysiological recordings during sleep using either scalp EEG (Study 1, n = 20) or 93 

combined scalp and intracranial EEG (Study 2, n = 10; coverage see Fig. S2a) as well 94 

as under general anesthesia with propofol combined with scalp EEG (Study 3, n = 9) or 95 

intracranial EEG (Study 4, n = 12; subdural grid electrodes (electrocorticography; 96 

ECoG) and stereotactically placed depth electrodes (SEEG); coverage see Fig. S2b).  97 

 98 

Results 99 

 During a full night of sleep, the time-resolved spectral slope closely 100 

tracked the hypnogram (Fig. 1a). In the scalp EEG group (Study 1, n = 20; a baseline 101 

rest recording was available in n = 14), we observed a decrease from values of -1.87 ± 102 

0.18 (mean ± SEM) during quiescent rest to -3.46 ± 0.16 in NREM (N3) and -4.73 ± 0.23 103 

in REM sleep (Fig. 1b). These differences were significant across all scalp EEG 104 

channels (repeated-measures ANOVA: p < 0.0001, F1.94, 25.17 = 56.05, dRest-Sleep = 3.07). 105 

Furthermore, N2 sleep exhibited an average slope of -3.67 ± 0.10 that was also 106 

significantly below rest (n = 14; pRest-N2 < 0.0001; t13 = 7.97; dRest-N2 = 3.31; Fig. S3a). 107 

Post-hoc t-tests (uncorrected) revealed a significant difference between rest and N3 108 

(pRest-N3 < 0.0001, t13 = 5.69, dRest-N3 = 2.49), between rest and REM (pRest-REM < 0.0001, 109 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/625210doi: bioRxiv preprint 

https://doi.org/10.1101/625210


 6

t13 = 11.67, dRest-REM = 3.71) and between N3 and REM sleep (pN3-REM = 0.0007, t13 =110 

4.44, dN3-REM = 1.70).   111 

 112 

113 

Fig. 1: The spectral slopes tracks changes of arousal level in sleep. a, Time-114 

resolved average of three frontal EEG channels (F3, Fz, F4) during a night of sleep.115 

Upper panel: Expert-scored hypnogram (black), wake (pink), REM (light green). Upper116 

middle: Time-frequency decomposition. Lower middle: Spectral slope (black; mean ±117 

SEM). Lower panel: Low-frequency (<1.25 Hz) power (red; mean ± SEM). b, Sleep in118 

scalp EEG. Upper panel: Left: Cluster permutation test of slope difference between119 

sleep and rest (n = 14).  * p < 0.05. Right: Mutual Information between the time-resolved120 

slope and hypnogram (n = 20). Cluster permutation test against surrogate distribution121 

created by random block swapping: * p < 0.05. Lower panel: Left - Power spectra (n =122 

14; mean ± SEM); Right – Spectral slope (n = 14). Rest (magenta), NREM stage 3123 

(blue), REM sleep (green) and grand average (black; mean ± SEM).  Repeated124 

measures ANOVA: *** p < 0.001. c, Sleep in intracranial study (n = 10). Upper panel:125 

Left – coronal, right – axial view of intracranial channels that followed (magenta) or did126 

not follow (white) the EEG pattern of a lower slope during sleep (REM/NREM 3). Lower127 

panel: Left – Power spectra (mean ± SEM); Right – Spectral slope of simultaneous EEG128 

recordings (Fz, Cz, C3, C4, Oz). Wakefulness (red), NREM stage 3 (N3; blue), REM129 

sleep (green) and grand average (black; mean ± SEM). Repeated measures ANOVA:130 

*** p = 0.001. 131 

 132 

If all the available wake periods before, during and after the sleep recordings133 

were utilized for slope analysis (n = 20), it resulted in a higher variability across subjects134 

during wakefulness (Fig. S3b), which can be explained by the fact that the subjects135 

were already or still drowsy and data during state transitions was included. However,136 
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the overall pattern was remarkably similar (Fig. S3c). As this approach increased our 137 

available data, we used all wake trials (referred to as wake) for subsequent analysis. 138 

To assess where on the scalp the slope tracks arousal states best, we calculated 139 

the Mutual Information (MI) between the time-resolved spectral slope and the 140 

hypnogram in all 20 subjects. We observed a significant positive cluster across all 141 

sensors, which peaked over frontal electrodes F3, Fz and F4 (Fig. 1b).  142 

Cranial muscle activity has similar frequency characteristics in the 30-70 Hz 143 

range and might confound spectral slope estimates. Therefore, we controlled for any 144 

impact of muscle activity by repeating the analysis after local referencing (Laplacian, 145 

pSpearman < 0.001; pMI < 0.0001) and additionally utilized partial correlations that 146 

considered the slope of the electromyography (EMG) as a confounding variable 147 

(pSpearman < 0.001). All control analyses confirmed that the observed effect was not 148 

confounded by muscle activity (Fig. S4).  149 

During REM sleep, power in the slow wave range (SO power; <1.25 Hz) was 150 

comparable to wakefulness corroborating the observation of a ‘wake-like’ EEG pattern 151 

in REM and the paucity of slow oscillations (p = 0.423, t18= -0.82, d = -0.25; Fig. 1a). 152 

The spectral slope, however, was significantly different between these states. To further 153 

quantify this effect, we trained a classifier (linear discriminant analysis; LDA) to 154 

discriminate between REM sleep and wakefulness using either the spectral slope or SO 155 

power (n = 18). The classifier performance was significantly better for the spectral slope 156 

compared to SO power when differentiating between REM and waking (78.75 ± 2.98 % 157 

(mean ± SEM) vs. 60.03 ± 3.72 %; p = 0.0023, t17 = 3.58, dSlope-SO power= 1.21, chance 158 

level: 50 %). When differentiating between N3 sleep and wakefulness, both spectral 159 
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slope and SO power had a classifier performance that was significantly above the 50 % 160 

chance level (for slope p < 0.001 vs. for SO power p < 0.001) and comparable to each 161 

other (73.05 ± 2.97 % for spectral slope vs. 82.09 ± 2.13 % for SO power, p = 0.0423, 162 

t17 = -2.19, dSlope-SO power = -0.83). Likewise, when all three states were classified 163 

simultaneously, both SO power and the spectral slope performed well above chance 164 

(chance = 33%; SO: 64.94 ± 2.04%, mean ± SEM; t17 = 15.04, p < 0.001, d = 5.01; 165 

slope: 58.09 ± 2.35%; t17 = 10.55, p < 0.001, d = 3.52) and did not differ in the overall 166 

performance (t17 = -1.80, p = 0.0899, d = -0.63). This is due to the fact that SO power is 167 

advantageous to classify N3 sleep, while the slope is superior to detect REM sleep. 168 

Notably, significant classification is also possible when the spectral slope is estimated at 169 

lower frequencies (e.g. 1-20 Hz; 84.19% ± 2.46, paired t-test vs. chance (33%): p < 170 

0.001, t17 = 20.64, d = 6.88). This effect is partly driven by an increase in low frequency 171 

power needed to correctly classify N3, and is equivalent to using SO power, but the 1-172 

20 Hz ranges does not track wakefulness and REM, thus, reducing mutual information 173 

with the hypnogram (see also Fig. S7).  174 

 These results reveal that the spectral slope is a more powerful predictor of REM 175 

sleep than SO power and also reliably discriminates deep N3 sleep from wakefulness. 176 

Furthermore, classification based on the spectral slope provides comparable accuracy 177 

levels in discriminating REM from wakefulness as trained personnel, given that the 178 

inter-rater reliability between sleep scoring experts is typically about 80%(25). Finally, 179 

the discrimination between REM and waking using the spectral slope does not require 180 

simultaneous electrooculography (EOG) or EMG recordings but can be detected solely 181 

from the electrophysiological brain state. 182 
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In the intracranial recording group (Study 2, n = 10), the simultaneous EEG 183 

recordings (Fz, Cz, C3, C4, Oz) again displayed a more negative spectral slope for 184 

reduced arousal levels: From -2.99 ± 0.32 (mean ± SEM) in wakefulness the slope 185 

decreased to -3.69 ± 0.12 in NREM (N3) to -4.15 ± 0.29 in REM sleep (Fig. 1c). Again, 186 

these three states were significantly different in a repeated-measures ANOVA (p = 187 

0.001; F1.97, 17.74 = 10.79, dWake-Sleep = 1.12). Post-hoc t-tests (uncorrected) showed a 188 

significant difference between wakefulness and REM (p < 0.001; t9 = 4.78; d = 1.19) and 189 

wakefulness and N3 (p = 0.026; t9 = 2.66; d = 0.97) but not between N3 and REM (p = 190 

0.098; t9 = 1.84; d = 0.64).  191 

The intracranial SEEG contacts that mirrored the observed scalp EEG pattern 192 

(more negative spectral slope in N3 and REM; 155 of 352 SEEG (44.03 %; significantly 193 

above chance; X2 = 8.20, p = 0.0042; chi-squared test); Fig. 1c) exhibited a clear 194 

anatomical distribution centered in the medial prefrontal cortex and medial temporal 195 

lobe structures (for Wake - N3 and Wake - REM see Fig. S5a, b; grid electrodes see 196 

Fig. S6a, b), hence, converging on the very same brain regions known to be the most 197 

relevant for sleep-dependent memory consolidation(26–29). Note that we did not 198 

specifically target any brain regions and in contrast to previous studies using grid 199 

electrodes(9, 22), the majority of our probes were stereo-tactically placed depth 200 

electrodes. Given the spatial heterogeneity of intracranial responses(30), the 201 

convergence on medial PFC nicely resembles the observed scalp pattern as observed 202 

at the overlying scalp EEG electrode Fz. The distinct intracranial spatial pattern 203 

combined with the bipolar referencing scheme again confirms that the results are not 204 

confounded by muscle activity. 205 
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To verify the chosen fit parameters, we reanalyzed the correlation and MI 206 

analysis between hypnogram and time-resolved slope as a function of different center 207 

frequencies and window lengths (Fig. S7). In addition, we explored a wide-range of fit 208 

parameters after discounting the oscillatory components from the PSD by means of 209 

irregular resampling (IRASA(26, 31)). All control analyses corroborated our findings and 210 

indicate that the spectral slope in the range from 30 - 45 Hz reliably tracks arousal 211 

levels and behavioral state transitions (Fig. S7). Given the relationship between spectral 212 

edge frequency and median frequency(32), we assessed the relationship between SO 213 

power and the PSD slope. We observed that the SO power explains 7.9 ± 0.01% (mean 214 

± SEM) of the variance in the slope, however, a partial correlation with SO power as a 215 

confound does not change the correlation between slope and hypnogram (Fig. S7). 216 

 On the scalp level, the trough of a slow wave is associated with cortical ‘down-217 

state’, while the peak reflects an ‘up-state’(33, 34). The spectral slope was able to 218 

reflect these rapid changes during sleep with a more negative 1/f slope observed at 219 

troughs compared to peaks (Fig. S8). This effect was most pronounced over frontal 220 

channels (cluster-based permutation test: p = 0.005, dTrough-Peak = -0.65).  221 

Slow waves are detected in slow-wave sleep but are also observed during REM 222 

sleep(35) as well as wakefulness(36); albeit less prevalently. We detected a significantly 223 

higher number of slow waves during N3 sleep (SON3 = 28.79 ± 0.79 per minute; mean ± 224 

SEM) compared to REM sleep (SOREM = 2.16 ± 0.89 per minute; SON3-REM: p < 0.0001, 225 

t19 = 22.64, d = 7.05) and wakefulness (SOWake = 5.05 ± 0.51 per minute; SON3-Wake: p < 226 

0.0001, t19 = 25.32, d = 6.92; Extended Data Fig. 9c). Interestingly, the averaged slope 227 

at the through of the slow waves was significantly different between arousal states: -228 
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3.40 ± 0.09 in slow-wave, -4.00 ± 0.18 in REM sleep and -2.26 ± 0.12 in wakefulness 229 

(mean ± SEM) mirroring our observation of the overall slope differences (Fig. S9c; 230 

uncorrected for multiple testing: Wake-N3: p < 0.0001, t18 = 7.07, d = 2.38; Wake-REM: 231 

p < 0.0001, t18 = 9.67, d = 2.55, N3-REM: p = 0.01, t19 = 2.73, d = 0.91). Therefore, the 232 

spectral slope is able to discern arousal even during slow wave events. 233 

 234 

To test if the state-dependent modulation of the spectral slope was sleep-specific 235 

or generalized to other forms of decreased arousal, we analyzed two datasets obtained 236 

during general anesthesia with propofol. Under propofol anesthesia the time-resolved 237 

spectral slope again closely tracked changes in arousal level (Fig. 2a). In both scalp and 238 

intracranial EEG, we observed a more negative spectral slope under anesthesia 239 

compared to wakefulness (Fig. 2b, c): In the scalp EEG group (Study 3, n = 9), we 240 

found a decrease from -1.81 ± 0.29 (mean ± SEM) during wakefulness to -3.10 ± 0.19 241 

under anesthesia. This difference was significant (paired t-test: p < 0.0001, t8 = 7.73, 242 

dWake-Anesthesia = 1.71) and in a cluster-based permutation test, the effect formed one 243 

single cluster spanning all 25 electrodes (p < 0.001). 244 

 245 
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246 

Fig. 2: The spectral slope tracks changes in arousal level under general 247 

anesthesia with propofol. 248 

a, Time-resolved average of 35 intracranial frontal channels during anesthesia. Upper249 

panel: Time-frequency decomposition. Dotted white lines: Induction with propofol, loss250 

of responsiveness (LOR). Middle: Spectral slope (black; mean ± SEM). Lower panel:251 

Low frequency (<1.25 Hz; red) and alpha (8 – 12 Hz; orange) power (mean ± SEM). b,252 

Anesthesia in scalp EEG (n = 9). Upper panel: Spatial extent of spectral slope253 

difference. Cluster permutation test: * p < 0.05. Lower panel: Left - Power spectra254 

(mean ± SEM); Right – Spectral slope. Wakefulness (red), anesthesia (blue) and grand255 

average (black; all mean ± SEM). Paired t-test *** p < 0.001. c, Anesthesia in256 

intracranial recordings (n = 12). Upper panel: Left – coronal, right – axial view of slope257 

difference. Lower panel: Left – Power spectra; Right – Spectral slope. Wakefulness258 

(red), anesthesia (blue) and grand average (black; mean ± SEM). Paired t-test: *** p <259 

0.001. 260 

 261 

In the intracranial recordings (Study 4, n = 12), we observed a spectral slope of262 

-2.75 ± 0.15 during wakefulness and -4.34 ± 0.11 under anesthesia. Again, this263 

difference was significant (paired t-test: p < 0.0001, t11 = 9.93, dWake-Anesthesia = 3.57) and264 

could be detected in the majority of electrodes (470 of 485 SEEG (96.9 %); Fig. 2c).265 

Patients who were implanted with surface grid in addition to depth electrodes (n = 4)266 

showed the same pattern: The spectral slope decreased from wakefulness to267 

anesthesia in the majority of the recording sites (129 of 147 ECoG (87.75 %); Fig. S6c). 268 
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These findings demonstrate that the spectral slope reliably differentiates between 269 

wakefulness and general anesthesia in humans(22). Future studies will be needed to 270 

determine the reliability of this marker on larger cohorts to establish clinical usability. In 271 

both scalp and intracranial recordings, we observed a brain-wide decrease in the 272 

spectral slope, supporting the notion that propofol anesthesia induces a global brain-273 

wide state of increased inhibition(8).  274 

 275 

  276 
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Discussion 277 

Collectively, the results from these four studies provide five main advances. First, 278 

the spectral slope tracks changes in arousal levels in both sleep and anesthesia with 279 

high temporal precision from sub-second epochs to full night recordings. Note that the 280 

slope differences between wakefulness and states of reduced arousal show a similar 281 

pattern on the scalp level (Fig. 1b, 2b). 282 

According to the framework proposed by Laureys et al., consciousness can be 283 

assessed on two axis – the content (e.g. awareness) and the level (e.g. arousal)(24), 284 

however, an updated framework has recently been proposed(6). Our definition of 285 

arousal is similar to what has been described as vigilance. However, our 286 

neurophysiological investigations did not set out to test one specific framework, but we 287 

do interpret our findings in light of previously published definitions. Hence, we assume 288 

that our marker does not track conscious thoughts, content or awareness, but indexes a 289 

vigilance state. While the arousal level is reduced in all three states, conscious content 290 

is thought to fluctuate during sleep, mostly in the form of dreams during REM(37). Thus, 291 

measures such as the Perturbational Complexity Index(38) that might track the level of 292 

consciousness are decreased in slow-wave sleep and GABAergic anesthesia but are 293 

maintained to a certain degree during REM sleep and ketamine anesthesia, both states 294 

associated with vivid dreams(37–39). These measures are unable – unlike the spectral 295 

slope – to reliably differentiate arousal levels, e.g. wakefulness and REM. Previous 296 

studies in rodents identified markers of reduced arousal in sleep and under general 297 

anesthesia, namely fronto-parietal theta and high-gamma connectivity(39, 40). In 298 

several control analyses we found that the spectral slope was superior to fronto-parietal 299 
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theta connectivity in tracking sleep stage dependent dynamics (p < 0.0001, t19 = 7.01; d 300 

= 2.22) and in reliably differentiating REM and slow wave sleep (Fig. S10). Our dataset 301 

did not have a sufficient number of electrodes in the parietal lobe to extend the analysis 302 

to the high-gamma band since this is an infrequent site for epilepsy. 303 

Second, the spectral slope provides a mechanistic explanation – a shift of the E/I 304 

balance towards inhibition – for the reduced arousal level in both slow-wave and REM 305 

sleep. The estimation of local E/I balance has been limited to invasive single cell 306 

recordings with a classification of neuron subtypes into excitatory and inhibitory 307 

cells(22). Recent computational simulations, however, demonstrated that local E/I 308 

balance can be inferred from changes of the spectral slope: An increase in inhibition 309 

results in a decrease of slope(11, 22). Our results of a decreased slope in slow-wave 310 

and REM sleep as well as under general anesthesia may be explained by an increase 311 

in inhibition. This interpretation is supported by results of single cell studies in animals 312 

that reported a reduction of multiunit or pyramidal cell activity during not only in slow-313 

wave but also in REM sleep(41–44). Interestingly, REM exhibited a significantly lower 314 

slope than slow-wave sleep (Fig. S11). This result is in line with previous studies 315 

reporting a lower neuronal firing rate for REM sleep compared to slow-wave sleep(41, 316 

43, 44) that was associated with an increase in inhibitory activity(41, 43). While these 317 

lines of research converge on the notion that the spectral slope tracks the E/I balance of 318 

the underlying population, it might also reflect changes in firing rate or synchronization. 319 

A testable hypothesis that arises from our observations is that cell-type specific causal 320 

manipulations by optogenetics (e.g. pyramidal and SOM interneurons) should bias the 321 

spectral slope in opposite directions.  322 
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Previous studies utilized a variety of different fit parameters and it is currently 323 

unclear what the ‘best’ range for slope fitting is(12–18). It had been suggested that fits 324 

to different frequencies might index different properties of the underlying population 325 

activity(9, 14, 16, 17). Our results that demonstrate that the range from 30-45 Hz best 326 

correlates (and exhibits significant mutual information) with the hypnogram, which is in 327 

line with recent modeling work indicating a similar range(22). Future studies involving 328 

single neuron recordings will be needed to unravel the precise relationship between 329 

population firing statistics and band-limited changes in the PSD slope. We believe that 330 

in particular comparative studies involving rodents(22, 45), primates(22) and humans 331 

combined with modeling work has the potential to integrate divergent findings into a 332 

coherent framework and to determine the neurophysiologic basis of the spectral slope. 333 

It will be of substantial interest to assess whether neurophysiological mechanisms are 334 

preserved across species, which greatly vary in anatomy, in particular in the prefrontal 335 

cortex(46, 47). 336 

Third, the rapid changes in spectral slope observed over the course of a slow 337 

wave are in accordance with the notion that these oscillations orchestrate cortical 338 

activity during sleep by interleaving periods of neural silence with enhanced neural 339 

activity(41). This suggests that E/I balance and arousal level during slow wave sleep are 340 

not constant but wax and wane on a short time scale – whereas they seem to be more 341 

constant during REM sleep(41). This finding is in line with the active, maximal inhibition 342 

during REM sleep observed in single cell recordings of animal cortices(41, 43) and 343 

could explain why epileptic seizures during the night occur predominantly in NREM and 344 

rarely during REM sleep(48).  345 
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Fourth, our observations support the premise that anesthesia is a brain-wide 346 

state(8), whereas sleep exhibits network-specific activity patterns (e.g. between the 347 

PFC and the hippocampus)(49). This is especially relevant considering the theories of 348 

active memory processing in sleep(50, 51).  349 

Fifth, the spectral slope can be reliably estimated from scalp EEG recordings, 350 

providing a potential tool that can be incorporated into intraoperative neuromonitoring, 351 

automatic sleep stage classification algorithms and tracking other states of reduced 352 

arousal such as epileptic seizures, coma and the vegetative or minimally conscious 353 

state. 354 

 355 

  356 
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Data Availability 357 

Data generated and/or analyzed in the current study is available from the corresponding 358 

author upon reasonable request.   359 

 360 

Code availability 361 

Custom code used for analyzing the datasets of the current study is available from the 362 

corresponding author upon reasonable request.  363 
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Materials and Methods 475 

 476 

Participants 477 

We collected four independent datasets for this study to assess the 478 

neurophysiological basis of states of reduced arousal, namely sleep and general 479 

anesthesia. We recorded either non-invasive scalp electroencephalography (EEG) or 480 

intracranial EEG (electrocorticography; ECoG) using surface grid and strip electrodes 481 

and stereotactically placed depth electrodes (SEEG; for coverage see Fig. S2).  482 

 483 

Sleep 484 

Study 1 - Sleep scalp EEG: Study 1 was conducted at the University of California 485 

at Berkeley. All participants were informed and provided written consent in accordance 486 

with the local ethics committee (Berkeley Committee for Protection of Human Subjects 487 

Protocol Number 2010-01-595). We analyzed recordings from 20 young healthy 488 

participants (20.4 ± 2.0 years, mean ± SD; 12 female). Polysomnography was recorded 489 

during over an 8-hour period as well as during 5 min quiescent rest with eyes closed 490 

before and after sleep. Data was recorded on a Grass Technologies Comet XL system 491 

(Astro-Med, Inc., West Warwick, RI) with a 19-channel EEG using the standard 10-20 492 

setup as well as three electromyography (EMG) and four electro-oculography (EOG) 493 

electrodes at the outer canthi. The EEG was referenced to the bilateral linked mastoids 494 

and digitized at 400 Hz (0.1 to 100 Hz)(26, 27, 52, 53). Sleep staging was carried out by 495 

trained personnel and according to the newest guidelines(54). 496 

 497 
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Study 2 - Sleep intracranial EEG: Study 2 was conducted at the University of 498 

California at Irvine, Medical Center. Ten epilepsy patients (6 female) undergoing 499 

invasive pre-surgical localization of their seizure focus were included in this study. All 500 

patients provided informed consent according to the local ethics committees of the 501 

University of California at Berkeley and at Irvine (University of California at Berkeley 502 

Committee for the Protection of Human Subjects Protocol Number 2010-01-520; 503 

University of California at Irvine Institutional Review Board Protocol Number 2014-1522, 504 

UCB relies on UCI Reliance Number 1817) and gave their written consent before data 505 

collection. They were between 22 and 55 years old (33.1 ± 11.5 years; mean ± SD). 506 

Electrode placement was solely dictated by clinical criteria (Ad-Tech, SEEG: 5 mm 507 

inter-electrode spacing; Integra, Grids: 1 cm, 5 or 4 mm spacing). Data was recorded 508 

with a Nihon Kohden recording system (256 channel amplifier, model JE120A), 509 

analogue-filtered above 0.01 Hz and digitally sampled at 5 kHz. To facilitate gold-510 

standard sleep staging, simultaneous EOG, electrocardiography (ECG) from 5 leads 511 

and EEG was recorded by exemplary electrodes of the 10 - 20 setup depending on the 512 

localization of the intracranial electrodes but mostly consisting of Fz, Cz, C3, C4 and 513 

Oz. A surrogate EMG signal was derived from the ECG and EEG by high-pass filtering 514 

above 40 Hz. Sleep staging was carried out by trained personnel. 515 

 516 

  517 
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Anesthesia  518 

The EEG and intracranial anesthesia studies were conducted at the University 519 

Hospital of Oslo. All participants or their parents provided informed written consent 520 

according to the local ethics committee guidelines (Regional Committees for Medical 521 

and Health Research Ethics in Oslo case number 2012/2015 and extension 2012/2015-522 

8) and the Declaration of Helsinki.  523 

 524 

Study 3 - Anesthesia scalp EEG: Ten patients (2 female) undergoing anterior 525 

cervical discectomy and fusion participated in Study 3 and received a total intravenous 526 

anesthesia with remifentanil and propofol. They had an American Society of Anesthesia 527 

status of I - III, were between 46 and 64 years old (53.3 ± 5.7 years; mean ± SD) and 528 

otherwise healthy. Data was recorded from the induction of anesthesia to the recovery 529 

from 25 channel EEG according to the 10 - 20 layout (EEG Amplifier, Pleasanton, 530 

California, USA) with an additional row of electrodes (F9, F10, T9, T10, P9, P10) at a 531 

digitization rate of 512 Hz, or in the case of one patient at 256 Hz. The electrode for 532 

referencing was placed at CP1. Three patients were not recorded for the planned entire 533 

time span – one recording was only started after induction, while two were stopped 534 

before recovery(55). 535 

 536 

Study 4 - Anesthesia intracranial EEG: A total of 12 patients (3 female) with 537 

intractable epilepsy participated in Study 4. They were between 8 and 52 years old 538 

(26.6 ± 13.2 years; mean ± SD). Data was collected during the explantation of the 539 

intracranial electrodes from induction of anesthesia up to the point of their removal. All 540 
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patients received total intravenous anesthesia with propofol and remifentanil at the 541 

University Hospital of Oslo. All patients were placed back on their usual antiepileptic 542 

medication before the procedure. Data was recorded on a Natus NicoletOne system 543 

with a 128-channel capacity and a digitization rate of 1024 Hz for up to 64 or 512 Hz for 544 

up to 128 channels.  545 

 546 

Anesthetic management 547 

All patients received a premedication with 3.75 to 7.5 mg midazolam 548 

(Dormicum®, Basel, Switzerland); the anesthesia scalp EEG group (Study 1) received 549 

additional 1 g oral paracetamol (Paracet®, Weifa, Oslo, Norway) as well as 10 mg 550 

oxycodone sustained release tablet (OxyContin®, Dublin, Ireland) for postoperative pain 551 

management. Propofol (Propolipid®, Fresenius Kabi, Uppsala, Sweden) and 552 

remifentanil (Ultiva®, GlaxoSmithKline, Parma, Italy) were administered by computer-553 

controlled infusion pumps (B Braun Perfusor Space®, Melsungen, Germany) using a 554 

target-controlled infusion (TCI) program (Schnider for propofol and Minto for 555 

remifentanil) in order to achieve plasma concentrations sufficient for anesthesia and 556 

analgesia. Prior to start of anesthesia all patients received an infusion of Ringer’s-557 

Acetate (5 ml /kg) to prevent hypotension during anesthesia induction, as well as 3 - 5 558 

ml 1 % lidocaine intravenously to prevent pain during propofol injection. All patients 559 

were pre-oxygenated with 100 % oxygen and received the non-depolarizing muscle 560 

relaxant cisatracurium for intubation (Nimbex®, GlaxoSmithKline, Oslo, Norway). After 561 

intubation the inspiratory oxygen fraction was reduced to 40 %; nitric oxide was not 562 

used. 563 
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 564 

Data Preprocessing 565 

Study 1 - Sleep scalp EEG: Data was imported to EEGLAB(56) and epoched into 566 

5 seconds bins. Epochs that contained artifacts (e.g. eye blinks or movement) were 567 

manually inspected and rejected by a trained scorer (B.A.M.). None of the channels 568 

were discarded or interpolated. On average, the participants had 5748.9 ± 10.01 of 569 

these five second epochs and 946.95 ± 542.68 of them were rejected (16.44 ± 2.98 %). 570 

The data from the healthy sleep participants has been published before and was 571 

cleaned in a comparable approach(26, 27, 52, 53). For further analysis in MATLAB 572 

(MATLAB Release R2017b, The MathWorks, Inc., Natick, Massachusetts, United 573 

States) the data was then imported into FieldTrip(57).  574 

 575 

Study 2 – Sleep intracranial EEG: Data was imported to FieldTrip(57), 576 

downsampled to 500 Hz and segmented into 30 seconds segments for subsequent data 577 

analysis. Anatomical localization was carried out by fusing pre-implantation T1-weighted 578 

Magnetic Resonance Imaging (MRI) scans with post-implantation MRI and both 579 

automatic and manual labelling of the electrode position (see above). Epileptic, white 580 

matter and channels with other artifacts were discarded. The data was bipolar 581 

referenced, demeaned and detrended.  582 

 583 

Study 3 - Anesthesia scalp EEG: Data was imported into FieldTrip(57) and 584 

epoched in 10 second bins. An Independent Component Analysis (fastica(58)) was 585 

used to clean the data from systematic artifacts such as the ECG. Further data cleaning 586 
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was done manually after inspection by a neurologist (R.T.K.) and an anesthesiologist 587 

(J.D.L). On average, the patients had 1183 ± 81.42 ten second epochs of which 196 ± 588 

103.19 were marked as noisy (15.81 ± 3.15 %); comparable to the sleep EEG study 589 

(Study 1). No channels were excluded or interpolated. Data was referenced using the 590 

common average, demeaned and detrended. Wake periods were defined as time 591 

before induction and after anesthesia when the patients responded reliably to verbal 592 

commands of the study personnel. Anesthesia periods were defined as time after 593 

induction until the termination of propofol application.  594 

 595 

Study 4 – Anesthesia intracranial EEG: Data was recorded with a 512 Hz 596 

digitization rate in eight patients. Four additional patients were recorded with a 597 

digitization rate of 1024 Hz and these datasets were down-sampled to 512 Hz. Data 598 

was then imported to FieldTrip(57), epoched into 10-second segments and inspected by 599 

a neurologist (R.T.K.) for epileptic activity and manually cleaned of epileptic and other 600 

non-neural artifacts. The awake state was defined as time before start of propofol, 601 

anesthesia was defined as time after loss of consciousness (unresponsiveness to 602 

verbal commands assessed by study personnel and attending anesthetist). After fusing 603 

the pre-implantation T1-weighted MRI and the post-implantation Computer Tomography 604 

(CT) scans, electrodes were automatically localized by an openly available brain atlas 605 

(Freesurfer(59)) in parallel with manual positioning by experienced neurologists for 606 

cross validation. Contacts in white matter or lesions were discarded. The remaining 607 

signals were then bipolar referenced to their lateral neighbor, demeaned and detrended. 608 

 609 
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Spectral Analysis 610 

(1) To obtain average power spectra, after artifact removal the data was epoched 611 

into 10 second segments for anesthesia and 30 second segments for sleep. (2) Time-612 

frequency decomposition was accomplished by using the Fast Fourier Transformation 613 

(mtmfft, FieldTrip(57)) from 0.5 Hz to 45 Hz in 0.5 Hz steps. The analysis was limited to 614 

45 Hz due to line noise at 50 Hz in the Oslo recordings and then adopted to all 615 

consecutive studies for consistency. To obtain reliable spectral estimates we utilized a 616 

multi-taper approach based on discrete prolate slepian sequences (dpss; anesthesia: 9 617 

tapers for 10 second segments, no overlap, frequency smoothing of ± 0.5 Hz; sleep: 29 618 

tapers for 30 second segments, no overlap, frequency smoothing of ± 0.5 Hz). The 619 

power spectrum of each state was averaged over all samples of the state (rest or wake, 620 

non-rapid eye movement sleep stage 3 (N3) and rapid eye movement sleep (REM) or 621 

wake and anesthesia), channels and subjects (Fig. 1b, c and Fig. 2b, c). For better 622 

comparison, we visualized the effect on the scalp level. For study 4 no simultaneous 623 

EEG recordings were available. (2) To elucidate the time frequency relationship over 624 

time as depicted in Figure 1a and 2a, we again employed a multi-taper spectral analysis 625 

of frequencies between 0.5 and 45 Hz in 0.5 Hz steps this time using a sliding, 626 

overlapping time window (anesthesia: 10 seconds, 96% overlap, frequency smoothing 627 

of ± 0.5 Hz and 9 dpss tapers; sleep: 30 seconds, 85% overlap, frequency smoothing of 628 

± 0.5 Hz and 29 dpss tapers). 629 

 630 

Spectral slope estimation 631 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/625210doi: bioRxiv preprint 

https://doi.org/10.1101/625210


 30

We calculated the spectral slope by fitting a linear regression line to the higher 632 

frequency 1/f slope of the power spectrum in the range from 30 - 45 Hz, because it had 633 

been shown that fitting in this range best correlates with the E/I balance(22). In line with 634 

previous reports, we excluded the low frequencies that contain strong oscillatory 635 

responses, which distort the linear fit as well as the range over 50 Hz, which is 636 

confounded by both line noise (50 Hz in Europe, 60 Hz in the US) as well as broad-637 

band muscle artifacts. 638 

We then adapted this range to the calculation of the slope in the other studies for 639 

consistency reasons. To compute a time resolved estimate of the spectral slope, we 640 

calculated the best line fit to the 10 (anesthesia) or 30 (sleep) second segments of the 641 

multi-tapered power spectra (see above) in log-log space using polynomial curve fitting 642 

(polyfit.m, MATLAB and Curve Fitting Toolbox Release R2015a, The MathWorks, Inc., 643 

Natick, Massachusetts, United States).  One subject in Study 1 (sleep EEG) had only 644 

noisy wake trials; therefore, his data had to be excluded from all slope comparisons to 645 

wakefulness. 646 

 647 

 648 

  649 
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Mutual Information 650 

Mutual Information (MI) is a metric of information theory to assess the mutual 651 

dependence of the two signals, specifically the amount of information gained about one 652 

variable when observing the other(60). This is particularly useful for non-linear, binned 653 

signals that need to be analyzed independent of rank. Mutual information between the 654 

two signals X and Y is defined as 655 

MI�X; Y� �  
 
 p�x, y� � log� � p�x, y�
p�x� � p�y��

� � �� ��

 

where p(x,y) depicts the joint probability function and p(x) and p(y) indicate the class 656 

probabilities. Probabilities were normalized by their sum. For MI analysis (Fig. 1b, Fig. 657 

S4, S7, S10), we epoched the time-resolved slope into 30 second segments (the 658 

hypnogram was staged in 30 second epochs) and discretized it into five bins from 659 

minimum to maximum (Wake, REM, N1, N2, N3) using the discretize.m function of 660 

MATLAB Signal Processing Toolbox Release R2015a (MathWorks Inc., USA).  661 

 662 

Spectral slope estimation during a slow wave 663 

Slow wave events (Fig. S8, S9) were detected for each channel based on 664 

established algorithms(61): The raw signal was bandpass-filtered between 0.16 and 665 

1.25 Hz and zero crossings were detected. Events were then selected using a time (0.8 666 

to 2 s duration) and an amplitude criterion (75 % percentile). The raw data was then 667 

epoched relative to the trough of the slow wave (± 2.5 s). Time-frequency 668 

decomposition was computed in 500 ms time windows with a 250 ms overlap using 669 

FieldTrip(57) (mtmfft, frequency smoothing of ± 2 Hz and 1 dpss taper). The spectral 670 

slope was calculated by the best line fit in these time windows in log-log space between 671 
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30 - 45 Hz using polynomial curve fitting (polyfit.m, MATLAB and Curve Fitting Toolbox 672 

Release R2015a, MathWorks, Inc., USA). 673 

 674 

Classification analysis 675 

We employed a linear discriminant analysis (LDA) to assess if slow wave power 676 

or the spectral slope were a better predictor of wakefulness or sleep. We utilized a 677 

leave-one-exemplar-out cross-validation approach that was repeated 50 times after 678 

randomly sampling an equal number of sleep and REM trials to equate the number of 679 

samples. Then every sample of the subsampled distribution was held out of the training 680 

dataset once. The LDA classifier was trained on the remaining samples and tested on 681 

the held-out test sample. The classifier performance was then assessed as percent 682 

correct. Two of the 20 sleep EEG participants had to be excluded due to insufficient 683 

number of wake trials.  684 

 685 

Statistical testing 686 

To compare three states (awake, NREM and REM), we utilized Greenhouse-687 

Geisser corrected 1-way repeated measures analysis of variance (Fig. 1b, 1c; RM-688 

ANOVA). Effect size was calculated using Cohen’s d. The spectral slope of the awake 689 

and anesthetized state was compared using Student’s t-test for paired samples (Fig. 2b, 690 

c).  691 

To assess the spatial extent of the observed effects in EEG, we calculated 692 

cluster-based permutation tests to correct for multiple comparisons as implemented in 693 

FieldTrip(57) (Monte-Carlo method; maxsize criterion; 1000 iterations). A permutation 694 
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distribution was obtained by randomly shuffling condition labels and then compared to 695 

the actual distribution to obtain an estimate of significance. Spatial clusters are formed 696 

by thresholding independent t-tests of slope differences between wake and sleep (Fig. 697 

1b) or wake and anesthesia (Fig. 2b) at a p value < 0.05.  All results were Bonferroni-698 

corrected for multiple comparisons. In order to control for EMG as a potential confound 699 

in the sleep EEG (Study 1), we utilized a partial correlation (Spearman) that partialled 700 

the slope of the EMG out of the correlation before computing the cluster-based 701 

permutation test (Fig. S4a). Correlation coefficients (r-values) were transformed into t-702 

values using the following formula (N = number of subjects):  703 

� � � � ������ � 2�
�����1 � ���  

 For statistical assessment of the Mutual Information, we employed surrogate 704 

testing (Fig. 1b, Fig. S4a). To obtain a surrogate distribution from the observed data, we 705 

utilized a random block swapping procedure(62, 63). The number of repetitions was 706 

equal to the number of available sleep stages. On every iteration, we re-calculated the 707 

MI of these block swapped hypnograms with the discretized time-resolved slope to 708 

create a surrogate distribution against which we could compare our original observation. 709 

To compare the results across subjects, we z-scored the values by subtracting the 710 

mean of the surrogate distribution from the observed MI and dividing by the standard 711 

deviation of the surrogate distribution. Note that a z = 1.96 reflects an uncorrected two-712 

tailed p-value of 0.05, while a z-score of >2.8 indicates a Bonferroni-corrected 713 

significant p-value (p < 0.05 / 19 channels = 0.0026). The z-values were transformed 714 

into p-values for topographic display (Fig.1b; Fig. S4a) based on a normal cumulative 715 

distribution function (two-tailed). 716 
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 717 

Connectivity 718 

For the analysis of fronto-parietal connectivity (Fig. S10), we choose electrode Fz 719 

and Pz in our sleep EEG recordings (Study 1; n = 20) to calculate the magnitude 720 

squared coherence from frequencies of 0.1 to 64 Hz in 0.1 Hz steps using the 721 

mscohere.m function from the MATLAB Signal Processing Toolbox and described 722 

previously(39, 40). Note that coherence estimates reflect both power changes as well 723 

as changes in phase synchrony. Therefore, we also calculated the Phase-Locking 724 

Value (PLV) and amplitude correlations (rho) to disentangle the effects of phase and 725 

power, respectively. To discount the effects of volume spread, we calculated the 726 

imaginary PLV(64) (iPLV) and orthogonalized power correlations(65) (rhoortho). 727 

We then quantified the Mutual Information(60) (MI; see above) to compare how well the 728 

results capture the changes between different sleep stages across the night. For this 729 

analysis we only utilized the slope values of electrode Fz (as we were calculating the 730 

other measures in Fz-Pz) and defined theta from 4-10 Hz analog to Pal et al.(39, 40). 731 

  732 
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Supplemental Figures 764 

 765 

766 

Fig. S1: The spectral slope - a surrogate marker for excitation / inhibition balance.  767 

a, Power spectral density (PSD) in semi-log plot. Example wake (black) and anesthesia PSD (magenta).768 

More inhibition results in a steeper decrease of the PSD in frequencies above 30 Hz. b, PSD in a log-log769 

plot. Example wake (black) and anesthesia PSD (magenta) with linear fits to 30 – 50 Hz for both states770 

(dotted lines). The linear fit reveals a more negative spectral slope for states with higher inhibition. 771 
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 773 

Fig. S2: Coverage in intracranial subjects.  774 

a, Sleep intracranial EEG – Grid and SEEG contacts of all subjects (n = 10) plotted on MNI brain. Right 775 

(R), left (L), ventral (V), dorsal (D). b, Anesthesia intracranial EEG – Grid, Strip and SEEG contacts of all 776 

subjects (n = 12) plotted on a Montreal Neurological Institute (MNI) brain. Right (R), left (L), ventral (V), 777 

dorsal (D).  778 
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 780 

Fig. S3: Relative changes of spectral slope reliably differentiate between wakefulness, sleep and781 

general anesthesia.  782 

a, Left – Mean power spectra (± SEM) averaged across all channels and subjects (n = 14) during rest783 

recording of 5 min eyes closed recorded before sleep compared to all sleep stages. Right – Slope values.784 

Mean ± SEM in black. Repeated measures ANOVA: *** p < 0.001, F2.54, 33.02 = 38.02, dRest-Sleep = 3.52.785 

Post-hoc t-tests: pRest-N2 < 0.001; t13 = 7.97; d = 3.31; pRest-N3 < 0.001; t13 = 5.69; d = 2.49; pRest-REM < 0.001;786 

t13 = 11.67; d = 3.71; pN3-REM < 0.0001; t13 = 4.44; d = 1.70. b, Slope differences of all sleep stages to rest787 

(n = 14). Mean ± SEM in black. c, Left - Mean power spectra (± SEM) averaged across all channel and788 

subjects (n = 20) during wakefulness and all sleep stages. Right - Slope values. Mean ± SEM in black.789 

Repeated measures ANOVA: *** p < 0.001, F1.86, 33.49 = 13.39, dWake-Sleep = 0.79. Post-hoc t-tests: pWake-N2 =790 

0.029, t18 = 2.36, d = 0.69; pWake-N3 = 0.19; t18 = 1.34; d = 0.48; pWake-REM < 0.0001; t18 = 6.83; d = 1.58; pN3791 

REM < 0.0001; t19 = 5.12; d = 1.66. d, Slope difference of all sleep stages to all wake trials (n = 20) and792 

anesthesia to wake trials before anesthesia (n = 8). Mean ± SEM in black. e, Histogram of slope values793 

pooled across all participants (n= 20). Wakefulness (red), N3 (blue), REM (green). Left: Separated values794 

of each sleep stage. Right: All three sleep stages within one plot. 795 
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797 

Fig. S4: The spectral slope is not confounded by muscle activity.   798 

a, Laplacian re-reference (n = 20). Upper topoplot: Cluster permutation test of Spearman rank correlation799 

between hypnogram and time-resolved slope. * p< 0.05. Lower topoplot: Mututal Information between800 

slope and hypnogram. Statistic with random block swapping. * p < 0.05. b, Cluster permutation test of801 

Spearman rank correlation between hypnogram and time-resolved slope with electromyography (EMG)802 

slope partialled out (n = 20). * p < 0.05. c, Hypnogram of a single subject (upper panel), time-resolved803 

slope averaged over EEG channels F3, Fz and F4 (middle panel), time-resolved slope of EMG signal804 

averaged over three EMG channels (lower panel). d, EMG signal on group level across a full night (n =805 

20). Left: Power spectra of EMG (mean ± SEM). Right: Slope of EMG in wakefulness (red), NREM stage806 

3 (blue), REM (green), grand average (black, mean ± SEM). e, R2 of Spearman rank correlations807 

averaged across all channels between hypnogram and slope (magenta), EMG slope (cyan) and the slope808 

with the EMG slope partialled out (yellow, all mean ± SEM). The correlation of hypnogram - slope and809 

hypnogram - EMG slope is significantly different (paired t-test: p = 0.0059, t19= 3.10). Furthermore, we810 

utilized the LDA classification approach to test if the spectral slope outperforms the EMG slope for state811 

discrimination. We found that the spectral slope performed significantly better at distinguishing all three812 

states (t = 4.19, p < 0.001, d = 1.24; slope: 58.09 ± 2.35%, EMG slope: 46.03 ± 2.12%; chance 33%).813 

Likewise, the slope was better at discriminating only WAKE and REM (t = 3.03, p = 0.008, d = 0.89; slope:814 

76.32 ± 3.61%, EMG slope: 64.89 ± 2.24%; chance 50%). 815 
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816 

Fig. S5: Differences of spectral slope in intracranial electrodes between waking and NREM 3 or817 

REM sleep (n = 10).  818 

a, Left – coronal, right – axial view of electrodes that followed observed EEG pattern with a more negative819 

slope for NREM 3 sleep than for waking (magenta). Electrodes that did not show the pattern are depicted820 

in white. Right (R), left (L). b, Left – coronal, right – axial view of electrodes that followed observed EEG821 

pattern with a more negative slope for REM sleep than for waking (magenta). Electrodes that did not822 

show the pattern are depicted in white. Right (R), left (L). 823 
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 825 

Fig. S6: Differences in spectral slope in sleep and under general anesthesia in cortical electrodes.  826 

a, All grid and strip contacts of 3 patients plotted on MNI brain. Electrodes that followed the pattern of 827 

more negative slope in NREM stage 3 sleep than in waking are colored purple to magenta. Electrodes 828 

that did not show the pattern are depicted in white. Ventral (V), dorsal (D). b, All grid and strip contacts of 829 

3 patients plotted on MNI brain. Electrodes that followed the pattern of more negative slope in REM sleep 830 

than in waking are colored in purple to magenta. Electrodes that did not show the pattern are depicted in 831 

white. Ventral (V), dorsal (D). c, All grid and strip contacts of 4 patients plotted on MNI brain. Electrodes 832 

that followed the pattern of more negative slope under anesthesia than in waking are colored in purple to 833 

magenta. Electrodes that did not show the pattern are depicted in white. Right (R), left (L), ventral (V), 834 

dorsal (D).  835 
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 837 

Fig. S7: Evaluation of different slope fit settings in intracranial sleep. a, Spearman rank correlation838 

(R2) between slope and hypnogram with different slope fits with center frequencies from 20 to 150 ± 10839 

Hz with SEM in intracranial data during sleep (blue; n = 10). Red dotted line for p value of 0.05. Black840 

arrow indicates used center frequency of 40 Hz (30 – 50 Hz) for this study. b, Spearman rank correlation841 

(R2) with different slope fit length from 30 to 40 Hz up to 30 to 130 Hz (10 – 100 Hz fit length) with SEM842 

(blue). Red dotted line for p value of 0.05. Black arrow indicates used fit length for this study (20 Hz; 30 –843 

50 Hz). To control for the shared variance between SO power and the spectral slope, we repeated the844 

correlations and partialled out the corresponding SO power, which left the results unchanged (t19 = 1.37, p845 

= 0.188, d = 0.21; before: R2 = 0.13 ± 0.03; after: R2 = 0.09 ± 0.03). c, Mutual Information (MI) between846 

slope and hypnogram with different slope fits with center frequencies from 20 to 150 ± 10 Hz with SEM in847 

intracranial data during sleep (green; n = 10). Red dotted line for p value of 0.05. Black arrow indicates848 

used center frequency of 40 Hz (30 – 50 Hz) for this study. b, Mutual Information (MI) with different slope849 

fit length from 30 to 40 Hz up to 30 to 130 Hz (10 – 100 Hz fit length) with SEM (green). Red dotted line850 

for p value of 0.05. Black arrow indicates used fit length for this study (20 Hz; 30 – 50 Hz). e, Mixed (left)851 

and fractal component (right) of power spectra in scalp EEG (n = 20) after IRASA. f, Z-value of surrogate852 

distribution (random block swapping) of Mutual Information (MI) between slope and hypnogram using the853 

original (blue, 30-45 Hz) and different slope fits to fractal component (obtained by IRASA) in lower854 

frequencies. Note that a z = 1.96 reflects an uncorrected two-tailed p-value of 0.05, while a z-score of855 

>2.8 indicates a Bonferroni-corrected significant p-value (p < 0.05 / 19 channels = 0.0026). 856 
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858 

Fig. S8: The spectral slope tracks changes in inhibition during slow waves.  859 

a, Average spectral slope changes over the time course of all slow waves in scalp EEG (n = 20) during860 

sleep (blue; mean ± SEM), Superimposed in gray is the average slow wave of all subjects. Highlighted861 

are the following time windows: -750 to -250 (orange), -250 to 250 (yellow) and 250 to 500 ms (purple). b,862 

Power spectra in log-log space within specified time windows during the slow wave: -750 to -250 (center:863 

-0.5 s; orange), -250 to 250 (center: 0 s; yellow) and 250 to 500 ms (center: 0.5 s; purple). Note the steep864 

power decrease during the through of the slow wave (yellow). 865 
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867 

Fig. S9: Slow waves during wakefulness, N3 and REM sleep in scalp EEG.  868 

a, Single subject example: Upper panel: Hypnogram. Upper middle panel: Multitapered spectrogram of869 

electrode Fz. Lower middle panel: Number of slow wave (SO) events during 30 second segments of870 

sleep in electrode Fz. Note the decreasing number of SO events during the course of the night. Lower871 

panel: Spectral slope of SO events occurring in N3 (blue), wakefulness (red) and REM sleep (green) in872 

electrode Fz. Background: Time-resolved slope of electrode Fz in light grey. b, Group level (n = 20)873 

average waveforms in electrode Fz during N3 (blue), REM sleep (green) and wakefulness (red; mean ±874 

SEM). c, Left: Slow wave events per minute in wakefulness (red), N3 (blue) and REM (green) in scalp875 

EEG channel FZ (n = 20). In black mean ± SEM. Paired t-test: ** p < 0.01, *** p< 0.001. Right: Slope of876 

slow wave events on the group level (n = 20; averaged across all 19 EEG electrodes) in wakefulness877 

(red), N3 (blue) and REM sleep (green). Mean ± SEM in black. Paired t-test: *** p< 0.001. 878 
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879 

Fig. S10: Comparison of Mutual Information captured by fronto-parietal connectivity and spectral880 

slope.  881 

a, Single subject example: Upper panel – hypnogram. Middle panels – Fz-Pz coherence (Coh), Fz-Pz882 

connectivity measured by orthogonalized power correlation (r) and imaginary phase-locking value (iPLV)883 

between 0.1 and 30 Hz. Right subpanels - Accompanying mutual information between the hypnogram884 

and all frequencies, theta (θ; 4-10 Hz) highlighted in grey. Lower panel – spectral slope (30 - 45 Hz) of Fz.885 

Right subpanel – Mutual information of the Fz slope. b, Group level (n = 20) analysis of mutual886 

information for Fz-Pz coherence and connectivity measured by orthogonalized power correlation (r) or887 

imaginary phase-locking value (iPLV). Left panel – Across all frequencies. Right panel – Comparison of888 

mutual information between Fz slope, theta (θ) coherence and connectivity measured by power889 

correlation (uncorrected and orthogonalized) as well as phase-locking value (uncorrected and imaginary).890 

Paired t-test: *** < 0.001. c, Group level (n = 20) comparison of Fz-Pz theta (θ) coherence,891 

orthogonalized power correlation (r) and weighted phase-locking value (iPLV) between wakefulness, N3892 

and REM sleep, showing that these metrics do not reliably distinguish between N3/SWS and REM sleep.893 

Paired t-test: n.s. – not significant, * p<0.05. 894 
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896 

Fig. S11: Slope difference between N3 and REM sleep.  897 

a, Scalp EEG (n = 20). Left: Topography of slope difference, Right: Cluster permutation test between898 

slope of N3 and REM. * p < 0.05. b, Depth electrodes (n = 10). Left – Coronal view. Right – Axial view on899 

an MNI brain contain all intracranial electrodes of all patients. Colored – contacts that showed a more900 

negative slope in REM compared to N3 slope. White – contacts that did not show the pattern. 901 
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