








laboratory. Briefly, a 96-well microtiter plate was coated with anti-human IgM (1:50). The plate 726 

was left at 4 C° overnight. Following incubation, coating was removed by dumping and the plate 727 

was blocked for 30 minutes at room temperature. After blocking, the plate was washed once, 728 

and sample dilutions were prepared (1:40) and added to the plate. Positive and negative 729 

controls for ZIKV and DENV were also prepared. After the addition of samples and controls, the 730 

plate was incubated one hour at 37 C° in a humidified chamber. Before adding the antigens, the 731 

plate was washed twice. Stock C6/36 ZIKV and DENV antigens were diluted (1:2 and 1:3, 732 

respectively), and added to the plate. The plate was incubated overnight at 4 C° in a humidified 733 

chamber. The next day, the plate was washed twice, and a horseradish peroxidase (HRP)-734 

conjugated monoclonal antibody (6B6C-1) was added, followed by incubation for one hour at 37 735 

C° in a humidified chamber. Detecting antibody was diluted in blocking buffer 1:1000 prior to 736 

addition to plate. A last cycle of washing (twice) was performed, and TMB substrate was added 737 

to all wells. Plate was covered immediately to block out light and incubated at room temperature 738 

for 30 minutes. Before colorimetric detection, the plate was allowed to sit at room temperature 739 

for 5 minutes. Optical density at 450 nm (OD) values were measured in three separate readings 740 

at 5-minute intervals. Results were expressed as mean OD of sample reacted with viral antigen 741 

(P)/mean OD of normal human serum reacted with viral antigen (N) and reported as negative 742 

(P/N value of <2), presumptive positive (P/N value of >3) or equivocal (2< P/N <3). 743 

 744 

Immunophenotyping. Phenotypic characterization of rhesus macaque PBMCs was performed 745 

by multicolor flow cytometry using direct immunofluorescence. Aliquots of 150 ul of heparinized 746 

whole blood were directly incubated with a mix of antibodies for 30 min. at room temperature. 747 

After incubation, red blood cells were fixed and lysed with ACK, and cells were washed three 748 

times with PBS. Samples were analyzed using a MACSQuant Analyzer 10 flow cytometer 749 

(Miltenyi Biotec, CA). The following antibodies were used in this study: CD123-APC (7G3), 750 

CD20-FITC (2H7), CD14-FITC (M5E2), CD16-Alexa Fluor 700 (3G8), CD20-PacBlue (2H7), 751 

CD69-PE (FN50), CD14-V500 (M5E2), KI67-FITC (B56) and CD3-FITC (SP34) from BD-752 

Biosciences; CD4-PerCP (M-T466), HLA-DR VioGreen (G46.6), CD337 (NKp30)-PE-Vio770 753 

(AF29-4D12), CD8-VioGreen (BW135/80), CD159a (NKG2A)-FITC (REA110), CD3-PE-Vio770 754 

(10D12), CD16-APC-Vio770 (VEP13), CD3-APC (10D12), CD28-APC-Vio770 (15E8) and 755 

CD56-PE (AF12-7H3) from Miltenyi; CD335 (NKp46)-PC5 (BAB281) from Beckman-Coulter; 756 

CD11c-PE/Cy7 (3.9), CD8-FITC (SK1) and CD8-BV421 (SK1) from Biolegend. For analyses, 757 
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LYM were gated based on their characteristic forward and side scatter pattern; T cells were then 758 

selected with a second gate on the CD3 positive population. CD8+ T cells were defined as 759 

CD8+CD3+ and CD4+ T cells were CD4+CD3+. Natural Killer cells were defined as CD3-CD20-760 

CD14- and analyzed by the expression of NK cell markers CD16, CD8, NKG2A, NKG2C, NKp30 761 

and NKp46. B cells were defined as CD20+CD3-CD14-. Activation marker CD69 was determined 762 

in each different lymphoid cell population. Monocytes were defined as CD20-CD3-CD14+ and 763 

CD20-CD3-CD14+CD16+. Finally, dendritic cells (DCs) were separated into two populations by 764 

the expression of CD123 (pDCs) or CD11c (mDCs) in the HLA-DR+CD3- CD14-CD20- 765 

population. Data analysis was performed using Flowjo (Treesar). 766 

 767 

Cellular immune response analysis. Intracellular cytokine staining of PBMCs from rhesus 768 

macaques was performed by multicolor flow cytometry using methods similar to those described 769 

by Meyer et al. Briefly, PBMC samples were thawed 1 day prior to stimulation. Approx. 1.5 x 106 770 

PBMCs were infected overnight with DENV-2 (NGC44) at a MOI of 0.1 or ZIKV at a MOI of 0.5 771 

in RPMI medium with 5% FBS. The remaining PBMCs were rested overnight as described 772 

earlier in 5ml of RPMI with 10% FBS. These PBMCs were then stimulated for 6 h at 773 

37C/5%/CO2 with ZIKV-E peptides (15-mers overlapping by 10 amino acids, 2.5 ug/ml-1 per 774 

peptide), ZIKV-NS1 protein peptides (15-mers overlapping by 10 amino acids, 475 ng/ml-1 per 775 

peptide), or DENV-2 E peptides (1.25 ug/ml-1), all in the presence of brefeldin A (10 ug/ml-1), a-776 

CD107a-FITC (H4A3) (10 ul), and co-stimulated with a-CD28.2 (1 ug/ml-1) and a-CD49d (1 777 

ug/ml-1). After stimulation, the cells were stained for the following markers: CD4-PerCP Cy5.5 778 

(Leu-3A (SK3), CD8b-Texas Red (2ST8.5H7), CD3-PacBlue (SP34), CD20-BV605 (2H7), 779 

CD95-V510 (DX2), CD28.2-PE-Cy5, IFN-g-APC (B27) and TNF-a-PE-Cy7 (MAB11). The 780 

samples were run on an LSRII (BD) and analyzed using Flowjo (Treesar). Lymphocytes were 781 

gated based on their characteristic forward and side scatter pattern, T cells were selected with a 782 

second gate on the CD3-positive population, and at the same time CD20 positive cells were 783 

excluded. CD8+ T cells were defined as CD3+ CD20-CD8+ and CD4+ T cells as CD3+CD20-784 

CD4+. Cytokine expression was determined by the per cent CD4+ or CD8+ positive cells, and 785 

then stained positive for the cytokine IFN-g or TNF-a. CD107a were also measured in these 786 

populations to determine functional cytotoxicity. Further analysis was also performed to examine 787 

CD28 and CD95 expression on the LYM populations to study the presence of central and 788 

effector memory cell populations. 789 
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 790 

Multiplex cytokine analysis. Sera from rhesus macaques was analyzed for 14 cytokines and 791 

chemokines by Luminex using established protocols for Old World primates. Evaluation of 792 

analytes B cell-activating factor (BAFF), eotaxin (CCL11), interferon alpha (IFN-a), IFN-g, IL-1 793 

receptor antagonist (IL-1Ra), IL-6, interferon-inducible T-cell alpha chemoattractant (I-TAC, 794 

CXCL11), monocyte chemoattractant protein 1 (MCP-1, CCL2), macrophage migration 795 

inhibitory factor (MIF), monokine induced by gamma interferon (MIG, CXCL9), inflammatory 796 

protein 1-alpha (MIP-1a, CCL3), MIP-1b (CCL4), perforin and interferon gamma-induced protein 797 

10 (IP-10, CXCL10) were included in this assay.  798 

 799 

Statistical methods. Statistical analyses were performed using GraphPad Prism 7.0 software 800 

(GraphPad Software, San Diego, CA, USA). For viral burden analysis, the log titers and levels 801 

of vRNA were analyzed unpaired multiple t tests and two-way ANOVA. Also, a Chi-squared test 802 

was used to analyze a contingency table created from obtained viremia data. The statistical 803 

significance between or within groups evaluated at different time points was determined using 804 

two-way analysis of variance (ANOVA) (Tukey’s, Sidak’s or Dunnett’s multiple comparisons 805 

test) or unpaired t-test to compare the means. The p values are expressed in relational terms 806 

with the alpha values. The significance threshold for all analyses was set at 0.05; p values less 807 

than 0.01 are expressed as P<0.01, while p values less than 0.001 are expressed as P<0.001. 808 

Similarly, values less than 0.005 are expressed as P<0.005. In figures, p values from 0.01 to 809 

0.05 are depicted as *, 0.001 to 0.01 as **, 0.0001 to 0.001 as ***, and lastly, values less than 810 

0.0001 are depicted as ****. 811 

 812 

Data availability. All relevant data are available from the authors upon request. 813 
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Table 1. ZIKV RNAemia days of naïve and DENV-immune macaques. ZIKV RNA detection 
was consistent in all groups during the first 4 days post infection (p.i.). Peak viremia occurred on 
day 3 p.i. Cohort 1 animals had no detection of ZIKV RNA in serum by day 6 p.i. Mean viremia 
days per group was calculated using days with detectable RNAemia divided by the number of 
animals in each group. 
 

1 2 3 4 5 6 7 30 60 Total Mean

BS97 5.742 (<20) 6.298 6.071 (<20) 3.626 1.956 (40) 0.0 (40) 0.0 (80) 0.0 (5120) 0.0 (2560)

0P1 4.904 (<20) 5.725 5.448 (<20) 3.947 2.715 (20) 0.0 (20) 0.0 (80) 0.0 (640) 0.0 (640)

5O8 4.522 (<20) 5.631 5.584 (<20) 3.978 0.0 (20) 0.0 (160) 0.0 (320) 0.0 (640) 0.0 (320)

1O1 5.303 (<20) 6.079 5.584 (<20) 4.542 2.264 (40) 0.0  (20) 0.0 (80) 0.0 (640) 0.0 (640)

4P0 5.303 (<20) 5.631 5.419 (<20) 3.716 2.311 (<20) 0.0 (20) 0.0 (40) 0.0 (2560) 0.0 (2560)

7O5 3.922 (<20) 5.766 5.930 (<20) 3.436 0.0 (20) 0.0 (80) 0.0 (80) 0.0 (2560) 0.0 (640)

MA123 4.913 (<20) 5.495 6.240 (<20) 3.012 0.0 (<20) 0.0 (20) 0.0 (40) 0.0 (2560) 0.0 (320)

MA023 5.419 (<20) 5.922 5.815 (<20) 4.575 0.0 (20) 0.0 (<20) 3.252 (80) 0.0 (2560) 0.0 (1280)

MA029 4.684 (<20) 6.049 6.041 (<20) 4.568 2.748 (<20) 2.915 (20) 0.0 (40) 0.0 (1280) 0.0 (1280)

MA062 4.064 (<20) 5.806 5.820 (<20) 5.460 3.802 (<20) 0.0 (<20) 2.639 (80) 0.0 (2560) 0.0 (640)

MA067 5.255 (<20) 6.049 5.488 (<20) 4.260 4.281 (<20) 1.968 (20) 2.09 (40) 0.0 (1280) 0.0 (1280)

MA068 3.546 (20) 4.742 4.271 (<20) 3.542 0.0 (<20) 2.120 (<20) 0.0 (40) 0.0 (640) 0.0 (1280)

BZ34 4.795 (<20) 6.071 6.176 (<20) 4.481 3.766 (<20) 1.946 (20) 2.037 (40) 0.0 (2560) 0.0 (640)

MA141 5.536 (<20) 6.123 5.907 (<20) 4.296 0.0 (20) 2.079 (<20) 2.127 (40) 0.0 (2560) 0.0 (1280)

MA143 4.127 (<20) 5.510 5.754 (<20) 5.158 3.657 (<20) 0.0 (20) 0.0 (20) 0.0 (2560) 0.0 (1280)

MA085 4.324 (<20) 5.428 4.527 (<20) 4.401 3.835 (<20) 3.545 (20) 2.573 (40) 0.0 (2560) 0.0 (640)

*ZIKV Neutralizing antibodies were tested at baseline and days 3, 5, 6, 7, 30 and 60.

ID Immune 
History

Days

28 4.67

RNAemia (Log10 genome copies/mL) (ZIKV PRNT60 ) Post-ZIKV Infection*

21 5.25

37 6.16

1° DENV-2       
12 months

1° DENV-2       
3 months

NaÏve
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Figure 1. Experimental design of ZIKV infection in DENV-immune and naïve 
macaques. Two cohorts of rhesus macaques (Macaca mulatta) were exposed to 
DENV-2 (5 x 105 pfu s.c.) at different timepoints. Both cohorts were exposed to ZIKV 
strain PRABCV59 (1 x 106 pfu s.c.) on September 12th, 2017, along with a third cohort 
composed of zika and dengue naïve animals (n=6). ZIKV infection was performed 12 
months after DENV infection for cohort 1 (n=6), and 3 months after DENV infection for 
cohort 2 (n=4). Serum was collected at baseline and days 1 through 7 post ZIKV 
infection (p.i.). Sample collection was interrupted by Hurricane María’s impact, and 
resumed on day 30 p.i. PBMCs could only be obtained on baseline, day 30 and 60 p.i., 
while heparinized whole blood was collected on baseline and days 1 through 3 p.i. 
Additionally, urine was collected on baseline and days 2, 4 and 6 p.i. 
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DENV-2 (NGC44) 
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Figure 2. Vital signs and clinical laboratory status of macaques before and after 
ZIKV infection. Significant changes in the vital signs and laboratory values after ZIKV 
infection are showed. In all panels, animals exposed to DENV 12 months before ZIKV 
infection are depicted in blue, while animals exposed to DENV 3 months before are in 
orange. Naïve animals are in black. (A) External temperature (in Celsius) and (B) rectal 
temperature (in Celsius) were measured. Statistically significant differences among 
groups were calculated by two-way ANOVA using Tukey’s multiple comparisons test 
(***P<0.0005 and ****P<0.0001). (C) Aspartate Aminotransferase (AST) and (D) Alanine 
Aminotransferase (ALT) levels at different timepoints. Dotted lines represent normal 
clinical ranges for rhesus macaques. Statistically significant differences among groups 
were calculated using an unpaired multiple t test, while differences within cohorts in 
respect with their baseline values were computed by two-way ANOVA using Dunnett’s 
multiple comparisons test (*P<0.05, **P<0.001, ***P≤0.0001 and ****P<0.0001). 
Colored stars represent a significantly different group, while colored lines represent the 
group that it is compared to. 
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Figure 3. Zika RNA kinetics in serum and RNAemia days per cohort. RNAemia 
days are affected by convalescence produced after DENV infection depending on time 
between exposures. In all panels, animals exposed to DENV 12 months before ZIKV 
infection are in blue, while animals exposed to DENV 3 months before are in orange. 
Naïve animals are in black. (A) Zika RNAemia was defined as early RNAemia (days 1 to 
3 p.i.), mid RNAemia (days 4 to 7 p.i.), and late RNAemia (days 7 p.i. onwards). ZIKV 
replication was detected in serum during the first 7 days after infection. Statistically 
significant differences were observed using unpaired multiple t tests (*P<0.05). Genome 
copies per mL are shown logarithmically. (B) Total mid-RNAemia days were calculated 
using the following formula: total viremia days divided by total possible viremia days and 
are expressed as percentage. The obtained values were placed in a contingency table. 
Statistically significant differences of viremia days were calculated using a two-sided 
Fisher’s exact test (*P<0.05). Colored stars represent a significantly different group, 
while colored lines represent the group that it is compared to. 
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Figure 4. Geometric mean titers of dengue and ZIKV neutralizing antibodies. The 
50% effective concentration of neutralizing antibodies was determined. Animals from 
cohort 1 are shown in blue, animals from cohort 2 are shown in orange and naïve 
animals from cohort 3 are shown in black in all panels. Dotted line indicates the limit of 
detection for the assay. Non-neutralizing sera were assigned a value of one-half of the 
limit of detection for visualization and calculation of the geometric means and 
confidence intervals. (A) EC50 values of neutralizing antibodies against ZIKV after ZIKV 
infection. (B) EC50 values of neutralizing antibodies against DENV2 after ZIKV 
infection. Statistically significant differences among groups were calculated by two-way 
ANOVA using Tukey’s multiple comparisons test (*P<0.05 and ***P≤0.001). (C) Dilution 
titers against ZIKV are shown during day 6 and 7 post ZIKV infection. Statistically 
significant differences among groups were calculated by two-way ANOVA using Tukey’s 
multiple comparisons test (*P<0.05, **P<0.001, ***P≤0.001 and ****P<0.0001). Colored 
stars represent a significantly different group, while colored lines represent the group 
that it is compared to. 
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Figure 5. Dynamic and relationship of the central and effector memory cells in the 
CD4+ and CD8+ T compartments. Changes in the level of and in the relationship 
between the central and effector memory cells are modified by the time passed after a 
previous DENV immunity. In all panels, animals exposed to DENV 12 months before 
ZIKV infection are in blue, while animals exposed to DENV 3 months before are in 
orange. Naïve animals are in black. (A) Frequency of CD4 T cells, central memory CD4 
T cells and effector memory CD4 T cells. (B) Frequency of CD8 T cells, central memory 
CD8 T cells and effector memory CD8 T cells. (C) Frequency of CD4 TCM and TEM 
cells in each group separately. (D) Frequency of CD8 TCM and TEM cells in each group 
separately. Dotted and solid lines denote statistical differences between TCM or TEM 
cells at different time points respectively. Statistically significant differences among 
groups were calculated by two-way ANOVA using Tukey’s multiple comparisons test 
(*P<0.05). Colored stars represent a significantly different group, while colored lines 
represent the group that it is compared to.    
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Figure 6. Antigen-specific CD4+ and CD8+ response prior and after ZIKV infection. 
The frequency of the specific response to DENV and ZIKV antigens differs among 
cohorts. In all panels, animals exposed to DENV 12 months before ZIKV infection are in 
blue, while animals exposed to DENV 3 months before are in orange. Naïve animals are 
in black. All percentages shown are subtracted from the unstimulated background. (A) 
Analysis of CD4 T cell response to different stimuli before (upper panel) and 30 days 
after ZIKV infection (lower panel). (B) Analysis of CD8 T cell response to different 
stimuli before (upper panel) and 30 days after ZIKV infection (lower panel). Statistically 
significant differences among groups were calculated by two-way ANOVA using 
Dunnett’s multiple comparisons test (*P<0.05 and ****P<0.0001). Colored stars 
represent a significantly different group, while colored lines represent the group that it is 
compared to. 
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Figure 7. Previous exposure to DENV modulates the cytokine and chemokine 
profiles after ZIKV infection. (A-G) Significant cytokine and chemokine profiles of are 
depicted logarithmically in pg per mL-1. In all panels, animals exposed to DENV 12 
months before ZIKV infection are in blue, while animals exposed to DENV 3 months 
before are in orange. Naïve animals are in black. Statistically significant differences 
among groups were calculated by two-way ANOVA using Tukey’s, Sidak’s and 
Dunnett’s multiple comparisons tests (*P<0.05, **P<0.001 and ***P≤0.0001). Colored 
stars represent a significantly different group, while colored lines represent the group 
that it is compared to. 
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