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Abstract 68 
 69 

We characterized two reference samples for NGS technologies: a human triple-negative 70 
breast cancer cell line and a matched normal cell line. Leveraging several whole-genome 71 
sequencing (WGS) platforms, multiple sequencing replicates, and orthogonal mutation detection 72 
bioinformatics pipelines, we minimized the potential biases from sequencing technologies, 73 
assays, and informatics. Thus, our “truth sets” were defined using evidence from 21 repeats of 74 
WGS runs with coverages ranging from 50X to 100X (a total of 140 billion reads). These “truth 75 
sets” present many relevant variants/mutations including 193 COSMIC mutations and 9,016 76 
germline variants from the ClinVar database, nonsense mutations in BRCA1/2 and missense 77 
mutations in TP53 and FGFR1. Independent validation in three orthogonal experiments 78 
demonstrated a successful stress test of the truth set. We expect these reference materials and 79 
“truth sets” to facilitate assay development, qualification, validation, and proficiency testing. In 80 
addition, our methods can be extended to establish new fully characterized reference samples 81 
for the community.  82 

 83 
 84 

Introduction 85 
  86 
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In oncology, accurate somatic mutation detection is essential to diagnose cancer, pinpoint 87 
targeted therapies, predict survival, and identify resistance mutations. Despite the recent 88 
explosion of technological advancements, many studies have reported difficulties in obtaining 89 
consistent and concordant somatic mutation calls from individual platforms or pipelines1–3, which 90 
hampers clinical validation and advancement of these biomarkers. 91 

 92 
As more sequencing technologies can detect clinically actionable somatic mutations for 93 

oncology, the need grows stronger for benchmark samples with known “ground-truth” variants. 94 
Such a publicly available sample set would allow platform and pipeline developers to quantify 95 
accuracy of somatic mutation calls, study reproducibility across platforms or pipelines, perform 96 
validation usig orthogonal techniques, and calibrate best practices of protocols and methods. The 97 
FDA has released a guidance on the use of NGS technologies for in vitro diagnosis of suspected 98 
germline diseases4, in which well-characterized reference materials are recommended to 99 
establish NGS test performance.  100 

 101 
In the absence of well-characterized samples with somatic mutations, normal samples 102 

such as the Platinum Genome5, HapMap6 cell lines, or Genome in a Bottle (GiaB) consortium 103 
materials7,8 are often used in clinical test development and validation of somatic applications. 104 
Also there are some gene-specific reference samples available, such as KRAS in the WHO 1st 105 
International Reference Panel9, or from synthetic materials10. Such samples do not adequately 106 
address cancer-specific quality metrics such as somatic mutation variant allele frequency (VAF), 107 
heterogeneity, tumor mutation burden (TMB), etc. Therefore, cancer reference samples with an 108 
abundance of well-defined genetic alterations characterized across the whole genome are highly 109 
desirable and urgent needed. 110 

 111 
Previous attempt has characterized a cancer cell line (from metastatic melanoma) that 112 

inquired somatic mutations (SNV/indels) in exon regions only. Germline variants and somatic 113 
mutations across the rest of the genome were not defined11. In addition, this dataset is 114 
distributed under dbGAP-controlled access, limiting its accesibility and utility. In fact, a recent 115 
landscape analysis of currently available somatic variant reference samples published by the 116 
Medical Devices Innovation Consortium (MDIC) did not identify any reference mutation sets that 117 
can be used to evaluate the somatic mutation calling accuracy on a whole-genome basis12. 118 
   119 

To fulfill this unmet need, we chose a pair of cell lines, HCC1395 (triple-negative breast 120 
cancer) and HCC395BL (B lymphocytes) from the same donor, supplied by the American Type 121 
Culture Collection (ATCC). These two specific cell lines were chosen because they are rich in 122 
testable features (CNVs, SNVs, indels, SVs, and genome rearrangements13), and may have a 123 
potential to serve as a long-term, publicly available, and renewable reference samples with 124 
appropriate consent from donor. Using multiple next generation sequencing (NGS) platforms, 125 
sequencing centers, and various bioinformatics analysis pipelines we profiled these tumor-126 
normal matching cell lines. Thus, we minimized biases that were specific to any platform, 127 
sequencing center, or bioinformatic algorithm, to create a list of high-confidence mutation calls 128 
across the whole genome, here called the “truth set.” A subset of these calls was further 129 
confirmed with orthogonal targeted sequencing and Whole Exome Sequencing (WES). We also 130 
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sequenced a series of titrations between HCC1395 and HCC1395BL genomic DNA (gDNA) to 131 
confirm candidate somatic SNV/indels.  132 

 133 
We defined truth sets containing somatic mutations and germline variants in a paired cell 134 

lines, HCC1395/HCC1395BL, with methods that minimized potential bias from library preparation, 135 
sequencing center, or bioinformatics pipeline. While the “truth set” germline variants in 136 
HCC1395BL can be used for benchmarking germline variant detection, the “truth set” somatic 137 
mutations in HCC1395 can be used for benchmarking cancer mutation detection with VAF as low 138 
as 5%. Many of variants and mutations have clinical implications. In the coding regions, a total of 139 
193 somatic mutations are documented in the COSMIC database and 8 germline variants are 140 
annotated as pathogenic in the ClinVar database. Interestingly, there is a nonsense somatic 141 
mutation in the BRCA2 gene and a nonsense germline variant in the BRAC1 gene. Other hotspot 142 
somatic mutations are also observed in the TP53 and FGFR1 genes. Thus, we believe these paired 143 
cell lines may be highly valuable for those looking for reference samples to benchmark products 144 
in detection of mutations in these four genes.   145 
 146 
Results 147 

 148 
Massive data generated to characterize the reference samples  149 
 150 

To provide reference samples for the community well into the future, a matched pair, 151 
HCC1395 and HCC1395BL was selected for profiling14. Previous studies of this triple negative 152 
breast cancer cell line have revealed the existence of many somatic structural and ploidy 153 
changes13, which are confirmed by our cell karyotype and cytogenetic analysis (Suppl. Fig S1, S2). 154 
Several attempts have been made to identify SNVs and small indels15–17. Given that appropriate 155 
consent from the donor has been obtained for tumor HCC1395 and normal HCC1395BL for the 156 
purposes of genomic research, we sought to characterize this pair of cell lines as publicly available 157 
reference samples for the NGS community. In this manuscript, we focued our efforts on germline 158 
and somatic SNVs and indels. By performing numerous sequencing experiments with multiple 159 
platforms at different sequencing centers, we obtained high-confidence call sets of both somatic 160 
and germline SNVs and indels (Table 1). Larger structural variants and copy number analysis will 161 
be included in a separate manuscript that will discuss these fundings in greater detail. 162 
 163 
Initial Determination of Somatic Mutation Call Set 164 

  165 
High-confidence somatic SNVs and indels were obtained based primarily on 21 pairs of 166 

tumor-normal Whole Genome Sequencing (WGS) replicates from six sequencing centers;  167 
sequencing depth ranged from 50X to 100X (see manuscript NBT-RA46164). Each of the 21 168 
tumor-normal sequencing replicates was aligned with BWA MEM18, Bowtie219, and NovoAlign20 169 
to create 63 pairs of tumor-normal Binary Sequence Alignment/Map (BAM) files. Six mutation 170 
callers (MuTect221, SomaticSniper22, VarDict23, MuSE24, Strelka225, and TNscope26) were applied 171 
to discover somatic mutation candidates for each pair of tumor-normal BAM files (Fig. 1). 172 
SomaticSeq27 was then utilized to combine the call sets and classify the candidate mutation calls 173 
into “PASS”, “REJECT”, or “LowQual”. Four confidence levels (HighConf, MedConf, LowConf, and 174 
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Unclassified) were determined based on the cross-aligner and cross-sequencing center 175 
reproducibility of each mutation call. HighConf and MedConf calls were grouped together as the 176 
“truth set” (also known as high-confidence somatic mutations). The call set in its entirety is 177 
referred to as the “super set” which includes low-confidence (LowConf) and likely false positive 178 
(Unclassified) calls. For low-VAF (Variant Allele Frequency) calls, a HiSeq data set with 300× 179 
coverage and a NovaSeq data set with 380× coverage were employed to rescue initial LowConf 180 
and Unclassified calls into the truth set. The details are described in the Methods. 181 

 182 
A breakdown of the four confidence levels is displayed in Fig. 2a. In the truth set, HighConf 183 

calls consist of 94% of the SNVs and 79% of the indels. LowConf calls typically do not have enough 184 
“PASS” classifications across the 63 data sets to be included in the truth set. Variants calls labeled 185 
as Unclassified are not reproducible and likely false positives, with more “REJECT” classifications 186 
than “PASS”. The vast majority of the calls in the super set are either HighConf or Unclassified. In 187 
other words, super set calls tend to be either highly reproducible or not at all reproducible. 188 

 189 
In general, HighConf calls were classified as “PASS” in the vast majority of the data sets, 190 

with no variant read in the matched normal and high mapping quality scores. MedConf calls 191 
tended to be low-VAF (VAF ≲ 0.10) variants. Due to stochastic sampling of low frequency variants, 192 
MedConf calls were not reproduced as highly across different sequencing replicates as HighConf 193 
calls. LowConf calls (not a part of truth set) tended to have VAF near or below our detection limits 194 
(VAF ≲	0.05). Distinguishing the LowConf calls with sequencing noise is challenging because they 195 
were not reproduced enough to be high-confidence calls (Fig. 2b). 196 

 197 
Independent AmpliSeq confirmation of Call Set 198 

  199 
We randomly selected 450 SNV and 21 indel calls of different confidence levels from the 200 

super set and performed PCR-based AmpliSeq with approximately 2000× depth for tumor and 201 
normal cells on an Illumina MiSeq sequencer. As we treated the AmpliSeq data set as a 202 
confirmatory experiment, simple rules were devised to determine whether a variant call was 203 
deemed positively confirmed, not confirmed, or uninterpretable based on the presence or 204 
absense of somatic mutation evidence in the AmpliSeq data. Overall, positively confirmed calls 205 
had at least 100 variant-supporting reads in the tumor but had no variant read in the normal 206 
sample, despite sequencing depths of 600× or more in the normal. Not confirmed calls either 207 
had no more variant-supporting read than the expected from base call errors, and/or had 208 
VAF≥10% in the normal cells. Uninterpretable calls did not satisfy the criteria for either positive 209 
or no validation, either because they did not have enough read depth (<50) or had fewer than 210 
10 variant-supporting reads. (See Methods for details). 211 

 212 
Both HighConf and MedConf SNV calls had very high coverage in validation and thus had 213 

impressive validation rates (99% and 92%) (Table 2). There were only three HighConf SNV calls 214 
that were not confirmed by AmpliSeq. Two of them had germline signals below the detection 215 
limit of 50× in the WGS, and the third one was likely an actual somatic mutation missed by 216 
AmpliSeq. There were only seven “positively confirmed” Unclassified SNV calls. Four of those 217 
seven were either a part of di-nucleotide change or had deletions within 1 bp of the call. The 218 
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other three had low mapping quality scores (MQ), which drove the categorization of 219 
“Unclassified”. This result suggests that some of the “positively confirmed” Unclassified calls 220 
might be false positives after all, but it also exposes the limitations of our truth set with regard 221 
to complex variants and low mappability regions. LowConf and Unclassified calls (not part of the 222 
truth set) also had higher fractions of uninterpretable calls, which consist of low-coverage 223 
genomic positions or ambiguous variant signals. In addition, there were also 17 HighConf, 2 224 
MedConf, 1 LowConf, and 1 Unclassified indel calls re-sequenced by AmpliSeq. The only not 225 
confirmed HighConf indel call was caused by a germline signal. The lone Unclassified indel call 226 
was not confirmed (we expect Unclassified calls to be not confirmed). For the inquisitive reader, 227 
these discrepant calls (i.e., not confirmed HighConf calls and confirmed Unclassified calls) are 228 
discussed in greater detail in the Supplementary Material. 229 

 230 
The VAF calculated from the truth set correlated highly with the VAF calculated from 231 

AmpliSeq data set, especially for HighConf calls (Fig. 2c). On the other hand, almost all the data 232 
points at the bottom of the graph (i.e., VAF = 0 by AmpliSeq) are Unclassified calls (red). It 233 
suggests that despite high VAFs (from 21 WGS replicates) for some of the calls, they were 234 
categorized correctly as Unclassified (implying likely false positives). In addition, a large number 235 
of uninterpretable Unclassified calls (red X’s) lying at the bottom suggest those were correctly 236 
labeled as Unclassified in addition to the not confirmed ones (open red circles). Moreover, some 237 
of the seven “positively confirmed” Unclassified calls had dubious supporting evidence. Taken 238 
together, these results suggest that the actual true positive rate for the Unclassified calls may be 239 
even lower than the validation rate (11%) we reported here. The indel equivalent is portrayed in 240 
Suppl. Fig S7a. 241 

 242 
Orthogonal Confirmation of Call Set with WES on Ion Torrent 243 

  244 
We have also sequenced the tumor-normal pair with Whole Exome Sequencing (WES) on 245 

the Ion Torrent S5 XL sequencer with the Agilent SureSelect All Exon + UTR v6 hybrid capture. 246 
The sequencing depths for the HCC1395 and HCC1395BL were 34×  and 47× , respectively. 247 
Results from this Ion Torrent sequencing were leveraged to evaluate high-VAF SNV calls (Table 1 248 
and 2). HighConf and MedConf SNV calls had high positive validation rates (99% and 89%). 249 
However, because the Ion Torrent sequencing was performed at much lower depth, nearly 50% 250 
of the calls were deemed uninterpretable (compared with 16% for AmpliSeq, despite having 251 
AmpliSeq custom target enriched for low-confidence calls vs. WES). The trend of higher 252 
uninterpretable fraction with lower confidence level calls was even more pronounced in this data 253 
set because the coverage was too low to confirm or invalidate many low-VAF calls. The validation 254 
rate for MedConf calls (predominantly low-VAF calls) may have suffered due to low coverage. 255 

 256 
The VAF correlation between truth set and Ion Torrent WES (R=0.928) is lower than that 257 

between truth set and AmpliSeq (R=0.958), although the vast majority of the HighConf SNV calls 258 
in Ion Torrent data still stay within the 95% confidence interval area (Fig. 2d). 259 

 260 
There are uninterpretable Unclassified calls (red X’s) at the bottom for high-VAF calls, 261 

which is again highly suggestive that the true positive rate for Unclassified calls may be lower 262 
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than the reported validation rate (25%) for Ion Torrent data as well. The indel equivalent is 263 
included in Suppl. Fig. S7b. 264 

 265 
Independent Confirmation of Call Set with WES on HiSeq 266 

  267 
We used 14 HiSeq WES replicates from six sequencing centers to evaluate the 268 

concordance between these data sets and the WGS data sets employed to construct the truth 269 
set. While the WES data sets were not sequenced from orthogonal platforms, they provide 270 
insights in terms of the reproducibility of our call sets in different library preparations. The scatter 271 
plot between the super set derived VAF and medium HiSeq WES-derived VAF is presented in Fig. 272 
2e. Almost all truth set (HighConf and MedConf calls) variants had consistent VAFs calculated 273 
from both sources. 274 

 275 
Again, simple rules were implemented for validation with the WES data as well (Table 2). 276 

The validation rate for HighConf, MedConf, LowConf, and Unclassified SNV calls by WES were 277 
100%, 98.4%, 93.1%, and 42.4%. These validation rates are higher than other methods because 278 
these WES data were sequenced on the same platform and sequencing centers as those used to 279 
build the truth set. Thus, the truth set variant calls are reproducible in WES, though these data 280 
sets do not eliminate sequencing center or platform specific artifacts that may exist in both WGS 281 
and WES data sets. The indel equivalent is the subject of Suppl. Fig. S7c. 282 
 283 
Validation with tumor content titration series 284 

  285 
To evaluate the effects of tumor purity, we pooled HCC1395 DNA with HCC1395BL DNA 286 

at different ratios to create a range of admixtures representing tumor purity levels of 100%, 75%, 287 
50%, 20%, 10%, 5%, and 0%. For each tumor DNA dilution point, we performed WGS on a HiSeq 288 
4000 with 300× total coverage by combining three repeated runs (manuscript NBT-RA46164). 289 
We plotted the VAF fitting score between the expected values based on the super set vs. the 290 
observed values at each tumor fraction (Fig. 2f). For real somatic mutations, their observed VAF 291 
should scale linearly with tumor fraction in the tumor-normal titration series. In contrast, the 292 
observed VAF for sequencing artifacts or germline variants will not scale in this fashion. Fig. 2f 293 
shows that the fitting scores for HighConf and MedConf calls are much higher than LowConf and 294 
Unclassified calls across all VAF brackets, indicating that the HighConf and MedConf calls contain 295 
far more real somatic mutations than LowConf and Unclassified calls. The formula [Eq. 2] for the 296 
fitting score is described in the Methods. 297 

 298 
Definition and Confirmation of Germline SNVs/Indels in matched normal 299 

  300 
For the 21 WGS sequencing replicates of HCC1395BL (aligned with BWA MEM, Bowtie2, 301 

and NovoAlign to create 63 BAM files) we employed four germline variant callers, i.e., 302 
FreeBayes28, Real Time Genomics (RTG)29, DeepVariant30, and HaplotypeCaller31, to discover 303 
germline variants (SNV/indels). To consolidate all the calls, a generalized linear mixed model 304 
(GLMM) was fit for each set of SNV calls which are sequenced at different centers on various 305 
replicates, aligned by the three aligners, and discovered by the four callers. We estimated the 306 
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SNVs/indel call probability (SCP) averaged across four factors (sequencing center, sequencing 307 
replicate, aligner, and caller), and examined the variance of SCP across these factors. The SNV 308 
candidates considered were called at least four times (out of a maximum of 21x3x4=252 times) 309 
by various combination of the four factors. The frequency histogram of the averaged SCPs 310 
demonstrates a bimodal pattern (Fig. 3a). The vast majority of SNV calls (97%) had SCPs either 311 
below 0.1 (57%) or above 0.9 (40%). Only a small minority of calls (3%) lie between 0.1 and 0.9. 312 
This indicates when SNVs were repeatedly sequenced and called, only a small proportion of them 313 
would be recurrently called as SNVs, and those recurrent calls were in fact highly recurrent. 314 

 315 
Each of our germline SNV or indel calls had annotated SCP. See the Methods and Eq. 2 for 316 

details. Suppl. Table S7 demonstrates that, of the highest-confidence calls (SCP=1, i.e, they were 317 
called everywhere), the validation rates were approximately 99% for SNV and 98% for indels by 318 
Illumina MiSeq, and 98% and 97% for Ion Torrent. Of the 11 SNV with SCP below 0.5, all were not 319 
confirmed by MiSeq. Other calls had intermediate validation rates. 320 

 321 
Figs 3b and 3c display that the vast majority of confirmed germline VAF was around 50% 322 

and 100%. A considerable number of lower-confidence germline SNV calls clustered around 20% 323 
VAF in non-exonic regions (Fig. 3b), with a large proportion of them being uninterpretable during 324 
validation. Scatter plots for indels are qualitatively similar (Suppl. Fig. S13). 325 

 326 
SNV Functional Relevance and TMB Benchmarks 327 

 328 
Among the truth set somatic mutations, 186 COSMIC SNVs and 7 COSMIC indels are in 329 

the coding region. One hotspot somatic mutation of particular biological significance is a TP53 330 
c.128G>A (COSMIC99023, chr17:7675088 C>T, VAF>99%), which causes an amino acid change 331 
p.Arg43His that leads to the inactivation of TP53 tumor suppressive function32. In addition, there 332 
is also a stop gain mutation in BRCA2 c.4777G>T (COSMIC13843, chr13:32339132 G>A), which 333 
causes a nonsense at p.Glu1593*, though it is only a heterozygous variant with VAF of 37.5%. 334 
Furthermore, there is a missense mutation in FGFR1 c.473C>T (COSM1456963, chr8: 38428420 335 
G>A, VAF>99%).  336 
 337 

Of the over 3.5 million high-confidence germline variants discovered in HCC1395BL, 9,016 338 
of them are in the ClinVar database. Most of them were annotated as “benign” or “like benign”; 339 
however, 8 SNVs were annotated as “pathogenic” (Suppl. Table S9). One germline variant likely 340 
to substantially increase the risk of an affected patient to develop breast cancer is a premature 341 
stop gain in BRCA1 (chr17:43057078, c.5251C>A, p.Arg1751*, ClinVar #55480, OMIM Entry 342 
#604370). The lifetime risk of breast cancer for carriers of this variant is 80 to 90%33. The 343 
premature stop codon deactivates BRCA1’s function to repair DNA double-strand breaks. It is one 344 
of the most common germline variants among breast cancer patients. HCC1395 has both BRCA1 345 
and TP53 completely inactivated, one from germline and one acquired somatically. The loss of 346 
two critical tumor suppressor genes likely contributed to tumorigenesis. A full list of COSMIC 347 
somatic mutations and ClinVar germline variants in the coding region is provided in Supplemental 348 
File 2. 349 
  350 
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Tumor mutational burden (TMB) is defined as the number of non-synonymous somatic 351 
variants per unit area of the genome, i.e., typically the number of non-synonymous mutations 352 
per Mbps34. Recent literature increasingly has reported correlations between TMB and response 353 
to anti-PD(L)-1 immunotherapy treatment35. The “gold standard” to measure TMB is to perform 354 
tumor-normal WES and find the total number of non-synonymous mutations (all in the coding 355 
regions). Due to the high cost and time required for WES, researchers are trying to infer TMB 356 
with much smaller and less expensive targeted oncology panels. One way to increase the 357 
statistical power of a much smaller panel is to measure all somatic mutations, including 358 
synonymous mutations, which is expected to correlate highly with frequency of non-synonymous 359 
mutations if we believe most somatic mutations, especially in high-TMB patients, occur more-or-360 
less randomly. We inferred TMB with various commercially available target panels. The 361 
uncertainties of mutation rate (calculated as the 95% binomial confidence interval) inferred by 362 
smaller oncology panels are quite large, so we advise caution when attempting to infer TMB from 363 
targeted oncology panels (Suppl. Table S10).  364 
 365 
Defining Genome Callable Regions 366 

  367 
Accurate variant calling requires an abundance of high-quality reads aligned accurately to 368 

the genomic coordinates in question. False positives are overwhelmingly enriched in genomic 369 
regions where the alignments are challenging, base call qualities are low, and/or reported 370 
coverage is far from the mean or median36. There are parts of the human genome that cannot be 371 
covered by current technologies (Fig. 4a). To obtain the callable regions, we ran GATK CallableLoci 372 
on each of the 63 HCC1395 and HCC1395BL BAM files to identify regions of low coverage (<10), 373 
ultra-high coverage (8× the mean coverage of the sample), difficult to map (MQ<20), poor 374 
reads (Base Quality Score BQ<20), or with N in the reference genome. We then created 375 
consensus callable regions that we deemed callable for our truth set. A limitation of our callable 376 
regions and our truth set is that they were defined and relied on short-read sequencing 377 
technologies (i.e., Illumina sequencers), because currently only high-accuracy short-read 378 
technologies are fit for somatic variant detection due to their low VAF. Variant calls outside the 379 
consensus callable regions were labeled NonCallable in the super set and truth set to warn users 380 
of these potential problems (details in Methods). NonCallable regions consisted of approximately 381 
8% of the genome but contained over 34% of all Unclassified calls and 23% of all LowConf calls in 382 
the super set (Suppl. Table S6).  383 

 384 
The consensus callable regions consist of a total of 2.73 billion bps (Fig. 4b). In comparison 385 

with GiaB NA12878 genome’s more strictly defined high-confidence (HC) regions7, 88% of our 386 
consensus callable regions are in common with GiaB’s HC regions. On the other hand, 98% of 387 
GiaB’s HC regions are a part of our conensus callable regions. Unlike GiaB’s HC which exclude 388 
regions with structural variations as well as regions where variant calls are inconsistent with 389 
pidigree or regions with unexplained pipeline inconsnstencies, when there were disagreements 390 
in a variant call from various sequencing data, we did not exclude the region. Instead, we 391 
attempted to resolve these discrepancies. When there were nearby structural changes, we relied 392 
on machine learning algorithms to resolve these challenging events. As a result, our conensus 393 
callable regions included some difficult genomic regions, such as human leukocyte antigen (HLA) 394 
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and olfactory receptor genes which contain high homologus sequences. The confidence (or the 395 
lack thereof) we hold for each variant call is annotated on a per call basis. We have demonstrated 396 
some benchmarking results with different regions in the Supplementary, section 1.10. 397 

 398 
 399 
Discussion 400 
 401 

Through a community effort, we generated a high confidence somatic mutation call set 402 
with limit of detection (LOD) at 5% VAF (Fig. 2b). To employ as an accuracy benchmark, we 403 
recommend considering the variant calls labeled with both HighConf and MedConf as true 404 
positives. These true positive variants can be used to assess sensitivity, i.e., the fraction of those 405 
variants detected by a pipeline. On the other hand, variant calls labeled as Unclassified plus any 406 
unspecified genomic coordinates are likely false positives. LowConf calls could not be confidently 407 
determined here and should be blacklisted for current accuracy evaluation. LowConf calls had 408 
validation rates around 50%, and often had VAF below our 50× depth detection limit. They 409 
represent opportunities for future work to ascertain their actual somatic status. 410 

 411 
The confidence level of each variant call was determined by the “PASS” classifications 412 

provided by SomaticSeq across different sequencing centers with different aligners (see 413 
Methods). If a variant was not detected by any caller in a data set, it was considered “Missing” in 414 
that data set, which is common for low-VAF calls due to stochastic sampling. For most calls, 415 
however, they either had “PASS” classifications or “REJECT or Missing” classifications, but not 416 
both. Few variant candidates had a large number of “PASS and REJECT” classifications (Suppl. Fig. 417 
S6a). HighConf calls had many “PASS” classifications, very few “REJECT” classifications, and a full 418 
range of VAFs. MedConf calls had fewer “PASS” calls (still high), still very few “REJECT” 419 
classifications, but were mostly low-VAF, which explains the lower number of “PASS” calls. 420 
LowConf calls had even fewer “PASS” calls than MedConf though they overlaped significantly, 421 
and also a low number of “REJECT” classifications. LowConf calls tended to have even lower VAF 422 
than MedConf, around or below our detection limit (Fig. 2b). Only Unclassified calls suffered a 423 
significant number of “REJECT” classifications, and they also displayed a full range of VAF. The 424 
performance of Unclassified calls indicated that SomaticSeq labeled them “REJECT” due to poor 425 
mapping, poor alignment, germline risk, or causes other than lack of variant reads. HighConf and 426 
Unclassified calls are far apart in all of the metrics describedabove. 427 

 428 
Variant re-sequencing with AmpliSeq (Suppl. Fig. S6c) pointed to a high validation rate for 429 

HighConf and MedConf calls. Suppl. Fig. S6c also contains a cluster of Unclassified and LowConf 430 
calls in the middle of the XY plane, representing calls with some conflicts (i.e., large number of 431 
“PASS” and “REJECT” calls).  432 

 433 
Each time a human cell divides, somatic mutations could be introduced by replication 434 

errors. Somatic mutations can occur much more frequently in cancer cells with malfunctioning 435 
DNA repair systems. It is not feasible to detect extremely low-VAF somatic mutations because 436 
they may appear in few tumor cells. Our ”truth set” for somatic mutation was built upon WGS 437 
with 50×-100X coverages, and thus it was designed to detect somatic mutations limited to 5% of 438 
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VAF. Variants with low-VAF (≤12%) were cross-referenced with two data sets with depths over 439 
300× to ascertain their presence. While we do not expect our truth set to be 100% accurate or 440 
100% comprehensive, the AmpliSeq and Ion Torrent data sets demonstrated combined 99% and 441 
91% validation rates for HighConf and MedConf SNV calls, respectively. AmpliSeq also showed a 442 
94% validation rate for HighConf indel calls. VAF of 5% represents the lower detection limit of the 443 
first release of the somatic mutation truth set, even though there are many true mutations with 444 
VAF under that threshold. We recommend that if using this truth set as a benchmark, novel 445 
variant calls (i.e., variants calls not present in our super set) with VAF<5% should be blacklisted 446 
from the accuracy calculations because we cannot confidently determine their status. Due to 447 
losses of chr6p, chr16q, and chrX in HCC1395BL (Suppl. Fig S1, S2), somatic mutations in these 448 
regions were excluded. 449 

 450 
For the first time, tumor-normal paired “reference samples” with a whole-genome 451 

characterized somatic mutation and germline “truth sets” are available to the community. Our 452 
samples, data sets, and the list of known somatic mutations can serve as a public resource for 453 
evaluating NGS platforms and pipelines. The massive and diverse amount of sequencing data 454 
generated from multiple platforms at multiple sequencing centers can help tool developers to 455 
create and validate new algorithms and to build more accurate artificial intelligence (AI) models 456 
for somatic mutation detection. The reference samples and call set presented here can help in 457 
assay development, qualification, validation, and proficiency testing. Such community defined 458 
tumor-normal paired reference samples can be helpful in quality assessment by clinical 459 
laboratories engaged in NGS, data exchange between laboratories, characterization of gene 460 
therapy products, and premarket review of NGS-based products. Furthermore, the methodology 461 
used in this study can be extended to establish truth sets for additional cancer reference samples. 462 
Other reference sample efforts may be able to build on the data sets we established or consider 463 
using these samples as a genomic background for other reference samples. 464 

 465 
 466 

Methods 467 
See Online Methods 468 
 469 
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 603 
 604 

NGS technologies platforms 
# of reads (coverage) 

HCC1395 HCC1395BL 

Initial WGS 

HiSeq 57 billion (2,800X) 57 billion (2,800X) 

NovaSeq 13 billion (650X) 13 billion (650X) 

10X Genomics 20 billion (1,000X) 20 billion (1,000X) 

PacBio  20 million (50X) 20 million (50X)  

  

Validation 

WGS-tumor 
content HiSeq 7.6 billion (380X) 7.6 billion (380X) 

WES 
HiSeq 5 billion (12,500X) 5 billion (12,500X) 

Ion Torrent 67 million (34X) 82 million (47X) 

AmpliSeq MiSeq 3.3 million (2000X) 3.3 million (2000X) 

Table 1. Massive data from multiple NGS platforms was obtained to derive and confirm germline 605 
and somatic variants in HCC1395 and HCC1395BL 606 

 607 
Validation 
Platform Variant Type Category Total 

Number Fraction Interpretable Validation Rate 
(Interpretable) 

Validation Rate 
(Total) 

AmpliSeq Deep 
Sequencing 

SNV 

HighConf 247 (237/247) 96.0% (234/237) 98.7% 94.7% 

MedConf 40 (37/40) 92.5% (34/37) 91.9% 85.0% 

LowConf 58 (41/58) 70.7% (22/41) 53.7% 37.9% 

Unclassified 105 (62/105) 59.0% (7/62) 11.3% 6.7% 

INDEL HighConf 17 (17/17) 100.0% (16/17) 94.1% 94.1% 
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MedConf 2 (2/2) 100.0% (2/2) 100.0% 100.0% 

LowConf 1 (0/1) 0.0% (0/0) NA nan% 

Unclassified 1 (1/1) 100.0% (0/1) 0.0% 0.0% 

Ion Torrent 
WES 

SNV 

HighConf 703 (629/703) 89.5% (623/629) 99.0% 88.6% 

MedConf 43 (27/43) 62.8% (24/27) 88.9% 55.8% 

LowConf 134 (39/134) 29.1% (28/39) 71.8% 20.9% 

Unclassified 802 (155/802) 19.3% (39/155) 25.2% 4.9% 

INDEL 

HighConf 31 (25/31) 80.6% (22/25) 88.0% 71.0% 

MedConf 15 (7/15) 46.7% (6/7) 85.7% 40.0% 

LowConf 8 (0/8) 0.0% (0/0) NA nan% 

Unclassified 36 (8/36) 22.2% (6/8) 75.0% 16.7% 

WES 

SNV 

HighConf 1074 (1068/1074) 99.4% (1068/1068) 100% 99.4% 

MedConf 64 (63/64) 98.4% (62/63) 98.4% 96.9% 

LowConf 197 (144/197) 73.1% (134/144) 93.1% 68.0% 

Unclassified 1218 (436/1218) 35.8% (184/436) 42.4% 15.1% 

INDEL 

HighConf 45 (43/45) 95.6% (43/43) 100% 95.6% 

MedConf 17 (17/17) 100.0% (17/17) 100% 100.0% 

LowConf 13 (10/13) 76.9% (9/10) 90% 69.2% 

Unclassified 54 (19/54) 35.2% (14/19) 73.7% 25.9% 

 608 
Table 2: Validation of SNVs of different confidence levels by three different methods 609 

Figure legends 610 
 611 
Figure 1: Schematic of the bioinformatics pipeline used to define the confidence levels of the 612 
super set and truth set (see Online Methods for detail) 613 

   614 
Figure 2: Initial definition of somatic mutation truth set and subsequent validation. (a) A 615 
breakdown of the four confidence levels in the super set. (b) Histograms of VAF for SNVs (top) 616 
and Indels (bottom) calls. (c) Validation of initial definition of somatic mutation truth set with 617 
AmpliSeq. Solid circles are variant calls that were positively confirmed. Open circles are variants 618 
that were not confirmed. X’s are when validation data were deemed uninterpretable due to low 619 
depth or unclear signal. The dashed lines at the diagonal represent the 95% binomial confidence-620 
interval of observed VAF given the actual VAF, calculated based on 2000× depth for AmpliSeq. 621 
The figure shows very high correlation between VAF estimated from super set data and validation 622 
data for HighConf calls (R=0.958). Many Unclassified data points lie at the bottom, implying that 623 
those calls were not real mutations despite the large number of apparent variant-supporting 624 
reads in the super set data. X-axis: VAF calculated from the super set. Y-axis: VAF calculated from 625 
AmpliSeq data. (d) Validation of the initial definition of the somatic mutation truth set with Ion 626 
Torrent WES. The 95% binomial confidence-interval dash lines were calculated based on 34× 627 
depth for Ion Torrent. R=0.928 for HighConf calls. (e) Validation of initial definition of somatic 628 
mutation truth set with 12 repeats of WES on the HiSeq platform. Y-axis: median VAF calculated 629 
based on 12 HiSeq WES replicates. The 95% binomial confidence-interval dashed lines were 630 
calculated based on 150× depth for HiSeq WES. R=0.992 for HighConf calls. (f) Average tumor 631 
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purity fitting scores for the VAF of each SNV across the four different confidence levels vs. the 632 
observed VAF in the tumor-normal titration series. The formula for fitting scores is described in 633 
Eq. 1 in the Online Methods. 634 
 635 
Figure 3: Initial definition of germline variants and validation. (a) Histogram of SNV call probability 636 
for germline variants identified by four callers from 63 BAM files. (b) VAF scatter plot of germline 637 
SNVs by the truth set and AmpliSeq. R=0.986 for SCP=1 calls. (c) VAF scatter plot of germline SNVs 638 
by the truth set and Ion Torrent WES. R=0.758 for SCP=1 calls. 639 
 640 
Figure 4: Genome coverage and high-confidence regions on reference genome GRCh38. a) 641 
Genome coverage comparison between three technologies. Inner track: PacBio. Middle track: 642 
10X Genomics. Outer track: Illumina. Red line: HCC1395. Green line: HCC1395BL. b) Genome 643 
regions coverage by Illumina short reads in comparison to NA12878. Inner track: NA12878. 644 
Middle track: the callable regions in HCC1395 and HCC1395BL. Outer track: gene density 645 
 646 
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