
6 
 

 
Fig. 2. Motor primitive trajectories in their own space.  Representative data showing the 
filtered trajectories of motor primitives when the number of synergies (Syn) is equal to three. 
Panel A (blue curves) refers to a walking trial, unperturbed, young participant. Panel B (red 
curves) refers to a running trial, unperturbed, young participant. Trajectories are color-coded 5 
from touchdown (TD, dark blue or red), to lift-off (LO, light blue or red), to the next TD (white). 
The amplitude of motor primitives is normalized to the maximum value of each trial for better 
visualization. 
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Fig. 3. Maximum Lyapunov Exponents of motor primitives.  Boxplots and curves describing 
the maximum Lyapunov exponents (MLE) and the average logarithmic divergence curves for the 
three experimental setups (E1 = walking and running, overground and treadmill; E2 = walking 5 
and running, even- and uneven-surface; E3 = unperturbed and perturbed walking, young and 
old). The minimum value was subtracted from each curve for improving the visualization. The 
actual vertical intercept was negative and different for all curves (Fig. S3). Lower MLE imply 
more stable motor primitives. 
 10 
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Discussion 
MLE contain information about chaoticity and noisiness (11, 12), both of which are intrinsic 
properties of neural systems (1, 2). Chaos is thought to be required or “almost unavoidable” for 
exploring the available opportunities of action when the system is challenged and, consequently, 
to maintain robustness, which is the ability to cope with perturbations (1, 7). The presence of 5 
internal and external noise, together with the resulting constraints, shaped the evolution of neural 
systems and might be beneficial for information processing (2). Yet, whether different levels of 
robustness imply different stability of neural control is a question that does not find intuitive 
answers. Historically, MLE have been used to give information about the behavior of chaotic 
dynamical systems (7, 11, 20, 33, 34). In this study, we described the stability of modular motor 10 
control in humans by calculating the MLE of motor primitives (i.e. the time-dependent 
coefficients of muscle synergies) during locomotion (walking and running) overground and on a 
treadmill, with or without external perturbations and in aging. Our results show higher stability 
(i.e. lower MLE) and longer basic activation patterns (i.e. higher FWHM) associated with aging, 
external perturbations, and the switch from walking to running. We proposed an innovative and 15 
simple approach to describe the behavior of neural system modularity, with an eye on increasing 
the reproducibility of results. Typically, MLE are calculated from data expanded in the state 
space, which is a set of all the possible states of a system at any given time (1, 5, 35). The main 
assumption underlying our method is that the analysis must be conducted in the muscle synergies 
space, with its own dimension which is equal to the factorization rank (i.e. the minimum number 20 
of synergies necessary to sufficiently reconstruct the original EMG signals). By doing so, we did 
not model the whole system dynamics, but focused on the modular behavior of the CNS. In this 
assumption lies also the high reproducibility of our approach, since this simplification of the 
calculations avoids a well-known weakness (12) of the classical approach: the choice of time 
delay and state space dimension for delay embedding. 25 
In the past, we used the FWHM of motor primitives as a measure of robustness (7). Our 
conclusion was that wider (i.e. timewise longer active) primitives indicate more robust control 
(7). We reasoned that the overlap of chronologically-adjacent synergies increased the fuzziness 
(9, 36) of temporal boundaries allowing for easier shifts between one synergy (or gait phase) to 
the other (7), a conclusion that fits the optimal feedback control theory (37, 38). For the CNS, 30 
this solution must come at a cost: the reduction of accuracy or, as others called it, optimality (9) 
or efficiency (39). For instance, it has been recently found that human neurons allow less 
vocabulary overlap than monkey’s, showing a tradeoff between accuracy (complex human 
feature) and robustness (basic, typical of non-human primates) across species (39). In this study 
we confirmed a widening of motor primitives in those conditions that were more constrained 35 
than their equivalent baseline and in aging. Specifically, we considered running as a more 
constrained locomotion type than walking (20), treadmill- as more constrained than overground-
locomotion (11) and perturbed- as more constrained than unperturbed-locomotion (7). We found 
an effect of motor constraints and aging on the widening of motor primitives. 
However, we discovered that aging and the more constrained locomotion conditions imply not 40 
only wider primitives, but a different stability of neural control as well. We calculated lower 
MLE (i.e. higher stability) in old compared to young, in running compared to walking and in 
perturbed compared to unperturbed locomotion. These outcomes indicate that robustness is not 
only achieved by allowing motor primitives to be wider and fuzzier, but by making them more 
stable as well. Interestingly, we recently found that the classical calculation of MLE from 45 
kinematic data (e.g. by considering the trajectories of specific body landmarks recorded via 
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motion capture) shows decreased stability in the presence of constraints in both humans (7, 20, 
33) and mice (27). Our interpretation of this apparent discordance lies in the results of the 
present study. The MLE calculation by means of state space reconstruction acts as a 
representation of the human locomotor system as a whole (11). Thus, increased MLE mean 
higher sensitivity of the entire dynamical system to infinitesimal perturbations (11). The analysis 5 
we propose, though, does not include any sort of state space embedding, and aims to the 
description of the CNS as a subsystem for the control of the main system’s motion. This 
rationale tells us that the two descriptions are intrinsically different, possibly because they 
describe different portions of the “human being” as a dynamical system. From this perspective, it 
is not surprising that two different approaches give opposite results. In fact, the higher stability 10 
of motor primitives might describe a strategy employed by the CNS to maintain acceptable levels 
of functionality when constraints are added globally. 
In conclusion, our analysis reveals a new view on neural stability: fuzzier, more robust muscle 
activation patterns are generated by the CNS in the presence of constraints to cope with 
perturbations (7). The stability of neural control increases when constraints are added to 15 
movement, ensuring robust locomotion across a variety of challenges. 
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Materials and Methods 
This study was reviewed and approved by the Ethics Committees of the Humboldt-

Universität zu Berlin, Kassel University and Heidelberg University. All the participants gave 
written informed consent for the experimental procedure, in accordance with the Declaration of 
Helsinki. 5 
 
Experimental protocols 

For the three experimental protocols we recruited 86 healthy volunteers and divided them 
into four groups. The first group of 30 (henceforth G1, 15 males and 15 females, height 173 ± 10 
cm, body mass 68 ± 12 kg, age 27 ± 5 years, means ± standard deviation) was assigned to the 10 
first experimental protocol (E1). The second group of 18 (G2, 11 males and 7 females, height 
176 ± 7 cm, body mass 71 ± 13 kg, age 24 ± 3 years) was assigned to the second experimental 
protocol (E2). The last two groups where assigned to the third and last protocol (E3): one group 
of young (G3, 7 males and 12 females, height 171 ± 6 cm, body mass 65 ± 9 kg, age 27 ± 3 
years) and one of older adults (G4, 5 males and 14 females, height 169 ± 8 cm, body mass 71 ± 15 
12 kg, age 72 ± 6 years). All the participants completed a self-selected warm-up running on a 
treadmill, typically lasting between 3 and 5 min (31, 40). After being instructed about the 
protocol, they completed a different set of measurements, depending on the protocol they were 
assigned to. 
The experimental protocol E1 consisted of walking (at 1.40 m/s) and running (at 2.80 m/s) 20 
overground and on a treadmill. The speeds were chosen as the commonly reported average 
comfortable locomotion speeds (29, 40). For the overground trials, we used a light-barrier system 
to control the speeds (average values of 1.40 ± 0.03 and 2.80 ± 0.04 m/s) in two consecutive sectors 
of 3 m each. 

The experimental protocol E2 consisted of walking (1.10 m/s for females, 1.20 m/s for 25 
males) and running (2.00 m/s for females, 2.20 m/s for males) on one standard (Laufergotest, 
Erich Jäger, Würzburg, Germany) and one uneven-surface (Woodway®, Weil am Rhein, 
Germany, Fig. S1, Movie S1) treadmill (7). The uneven-surface treadmill’s belt consisted of 
terrasensa® classic modules (Sensa® by Huebner, Kassel, Germany). The speeds were chosen 
after a pilot study in which we estimated the average comfortable locomotion speed on the 30 
uneven-surface treadmill for males and females separately. Part of the data from this 
experimental protocol was previously reported (7). 

The experimental protocol E3 consisted of walking (1.20 m/s for the group of young adults 
G3, 1.10 m/s for the group of old adults G4) on a treadmill (BalanceTutor™, MediTouch LTD, 
Netanya, Israel, Movie S1) that could provide mediolateral (through sudden displacement of the 35 
belt-supporting platform) and anteroposterior (through rapid acceleration of the belt) 
perturbations. The speeds were chosen after a pilot study in which we estimated the average 
comfortable walking speed under perturbed conditions for young and old adults separately. Both 
the perturbed and unperturbed trials lasted six minutes. The perturbed trials began with ~15 s of 
unperturbed locomotion. Afterwards, the participants were informed about the beginning of 40 
perturbations, which were delivered randomly (left or right mediolateral displacement or 
acceleration) every ~3 s (G3: 3.786 ± 0.986 s; G4: 3.072 ± 0.434 sec) at unspecified phases of 
the gait cycle. The interval between perturbations was a function of perturbation intensity (e.g. 
the larger the displacement of the platform, the longer the time needed to reset the controls and 
start a new perturbation). Perturbation intensities were set in the proprietary software on a scale 45 
from 1 to 30. Mediolateral perturbations were set at an intensity of 15 for G3 and 10 for G4, 
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while the accelerations were set at 12 for G3 and 8 for G4. Intensities were chosen after a pilot 
study in which we defined the “mostly challenging intensity before failure” for young and old 
adults separately. 

The protocols E2 and E3 both included external perturbations to locomotion. However, the 
timing (continuous in E2 and every 3 s in E3) and mechanics (uneven surface in E2 and 5 
displacement of the treadmill’s belt in E3) where of different nature. We chose two perturbation 
paradigms to allow for generalization of the outcomes. During the trials, the participants of both 
E2 and E3 were instructed to keep looking at a fixed spot in front of them and avoid looking at 
the treadmill’s belt. 
 10 
EMG recordings 

Independently on the experimental protocol, the muscle activity of the following 13 
ipsilateral (right side) muscles was recorded: gluteus medius (ME), gluteus maximus (MA), 
tensor fasciæ latæ (FL), rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL), 
semitendinosus (ST), biceps femoris (long head, BF), tibialis anterior (TA), peroneus longus 15 
(PL), gastrocnemius medialis (GM), gastrocnemius lateralis (GL) and soleus (SO). The 
electrodes were positioned as extensively reported previously (27, 31). After around 60 s 
habituation (7), we recorded one trial of 60 s for each participant with an acquisition frequency 
of 1 kHz (E2) or 2 kHz (E1 and E3) by means of a 16-channel wireless bipolar EMG system (E2: 
myon m320, myon AG, Schwarzenberg, Switzerland; E1 and E3: aktos, menios GmbH, 20 
Ratingen, Germany). For the EMG recordings, we used foam-hydrogel electrodes with snap 
connector (H124SG, Medtronic plc, Dublin, Ireland). The first 30 gait cycles of the recorded trial 
were considered for subsequent analysis (31). For the overground locomotion part of E1, due to 
limited length of the walkway (20 m), the participants were asked to repeat the trials 10 times for 
the subsequent concatenation of the data. Trials that did not match the target speed with a 25 
tolerance of ± 0.05 m/s in walking and ± 0.10 m/s in running were repeated. 
 
Gait cycle breakdown 
The gait cycle breakdown was obtained by the elaboration of the data acquired by a 3D 
accelerometer operating at 148 Hz and synchronized with the EMG system. The accelerometer 30 
was strapped to the right shoe, over the most distal portion of the second to fourth metatarsal 
bones. The data was low-pass filtered using a 4th order IIR Butterworth zero-phase filter with 
cut-off frequency of 15 Hz. For estimating touchdown, we used the modified foot contact 
algorithm developed by Maiwald et al. (41). For estimating lift-off, we adopted our foot 
acceleration and jerk algorithm (7). The jerk algorithm searches for the global maximum of the 35 
vertical acceleration between two consecutive touchdown events to estimate the lift-off (LOe, 
where the “e” stays for “estimated”). This estimation, however, does not provide an accurate 
identification of the lift-off and needs some refinement. To get closer to the “real” lift-off timing, 
a characteristic minimum in the vertical acceleration (i.e. when the jerk equals zero) of the foot is 
identified in a reasonably small neighborhood of the LOe. We found [LOe – 250 ms, LOe + 100 40 
ms] for both walking and running to be the sufficiently narrow interval needed to make the initial 
lift-off estimation. However, we reduced this interval to [LOe – 150 ms, LOe + 100 ms] in the 
presence of external perturbations (i.e. for E2 and E3). Both the approaches for the determination 
of touchdown and lift-off have been validated using force plate data (AMTI BP600, Advanced 
Mechanical Technology, Inc., Watertown, MA, USA) from 15 participants walking and running 45 
overground at six different velocities without perturbations and from the data recorded in G1 
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overground. We then calculated the true errors between the contact times detected via force plate 
and those obtained from the acceleration data and used the averages to correct the calculations. 
Errors were of 1.9 ms for touchdown and 13.1 ms for lift-off in walking and -4.1 ms and -13.2 
ms for running. 
 5 
Muscle synergies extraction 

For the experimental protocol E1, the overground EMG recordings were concatenated after 
identification of the complete gait cycles (touchdown to touchdown of the right foot). For the 
other protocols, we used the 30 gait cycles per trial described above. Muscle synergies data were 
extracted through a custom script (R v3.5.3, R Found. for Stat. Comp.) using the classical 10 
Gaussian non-negative matrix factorization (NMF) algorithm (7, 29, 31, 42). The raw EMG 
signals were band-pass filtered within the acquisition device (cut-off frequencies 10 and 500 Hz). 
Then the signals were high-pass filtered, full-wave rectified and lastly low-pass filtered using a 
4th order IIR Butterworth zero-phase filter with cut-off frequencies 50 Hz (high-pass) and 20 Hz 
(low-pass for creating the linear envelope of the signal) as previously described (7). After 15 
subtracting the minimum, the amplitude of the EMG recordings obtained from the single trials 
was normalized to the maximum activation recorded for every individual muscle (i.e. every 
EMG channel was normalized to its maximum in every trial) (27, 31). Each gait cycle was then 
time-normalized to 200 points, assigning 100 points to the stance and 100 points to the swing 
phase (7, 27, 30, 31). The reason for this choice is twofold (31). First, dividing the gait cycle into 20 
two macro-phases helps the reader understanding the temporal contribution of the different 
synergies, diversifying between stance and swing. Second, normalizing the duration of stance 
and swing to the same number of points for all participants (and for all the recorded gait cycles 
of each participant) makes the interpretation of the results independent from the absolute 
duration of the gait events. Synergies were then extracted through NMF as previously described 25 
(7, 31). For the analysis, we considered the 13 muscles described above (ME, MA, FL, RF, VM, 
VL, ST, BF, TA, PL, GM, GL and SO). The m = 13 time-dependent muscle activity vectors 
were grouped in a matrix V with dimensions m × n (m rows and n columns). The dimension n 
represented the number of normalized time points (i.e. 200). The matrix V was factorized using 
NMF so that V ≈ VR = WH. The new matrix VR, reconstructed multiplying the two matrices W 30 
and H, approximates the original matrix V. The motor primitives (29, 43) matrix H contained the 
time-dependent coefficients of the factorization with dimensions r × n, where the number of rows 
r represents the minimum number of synergies necessary to satisfactorily reconstruct the original 
set of signals V. The motor modules (29, 44) matrix W, with dimensions m × r, contained the 
time-invariant muscle weightings, which describe the relative contribution of single muscles 35 
within a specific synergy (a weight was assigned to each muscle for every synergy). H and W 
described the synergies necessary to accomplish the required task (i.e. walking or swimming). 
The update rules for W and H are presented in Equation (S1) and Equation (S2). 
 

⎩
⎪
⎨

⎪
⎧𝐻𝐻𝑖𝑖+1 = 𝐻𝐻𝑖𝑖

𝑊𝑊𝑖𝑖
𝑇𝑇𝑉𝑉

𝑊𝑊𝑖𝑖
𝑇𝑇𝑊𝑊𝑖𝑖𝐻𝐻𝑖𝑖

                   (S1)

𝑊𝑊𝑖𝑖+1 = 𝑊𝑊𝑖𝑖
𝑉𝑉(𝐻𝐻𝑖𝑖+1)𝑇𝑇

𝑊𝑊𝑖𝑖𝐻𝐻𝑖𝑖+1(𝐻𝐻𝑖𝑖+1)𝑇𝑇
       (S2)

 40 
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The quality of reconstruction was assessed by measuring the coefficient of determination R2 
between the original and the reconstructed data (V and VR, respectively). The limit of 
convergence for each synergy was reached when a change in the calculated R2 was smaller than 
the 0.01% in the last 20 iterations (29) meaning that, with that amount of synergies, the signal 
could not be reconstructed any better. This operation was first completed by setting the number 5 
of synergies to 1. Then, it was repeated by increasing the number of synergies each time, until a 
maximum of 10 synergies. The number 10 was chosen to be lower than the number of muscles, 
since extracting a number of synergies equal to the number of measured EMG activities would 
not reduce the dimensionality of the data. Specifically, 10 is the rounded 75% of 13, which is the 
number of considered muscles. For each synergy, the factorization was repeated 10 times, each 10 
time creating new randomized initial matrices W and H, in order to avoid local minima (45). The 
solution with the highest R2 was then selected for each of the 10 synergies. To choose the 
minimum number of synergies required to represent the original signals, the curve of R2 values 
versus synergies was fitted using a simple linear regression model, using all 10 synergies. The 
mean squared error (46) between the curve and the linear interpolation was then calculated. 15 
Afterwards, the first point in the R2-vs.-synergies curve was removed and the error between this 
new curve and its new linear interpolation was calculated. The operation was repeated until only 
two points were left on the curve or until the mean squared error fell below 10−4. This was done 
to search for the most linear part of the R2-versus-synergies curve, assuming that in this section 
the reconstruction quality could not increase considerably when adding more synergies to the 20 
model.  

 
Local dynamic stability of motor primitives 

We assessed the local dynamic stability of motor primitives using the maximum finite-time 
Lyapunov exponents (MLE) (19). Usually MLE are extracted after reconstruction of the state 25 
space through delay-coordinate embedding starting from a measured one-dimensional time series 
(35). The state space is a set of all the possible states of a system at any given time, the variables 
of which might be position, velocity, temperature, color, species, voltage and many others (1, 5, 
35). Yet, in our typical experimental setups involving complex living systems like humans, the 
state space is often unknown. Theoretically, the behavior of a purely chaotic dynamical system 30 
can be predicted by using only a small set of observations on its state (e.g. joint angles, or 
kinematics, or accelerations, etc.) without losing information on its properties (7, 20). For this 
reason, it is common to use the recorded data to reconstruct the state space, usually by means of 
the ”delay embedding theorem” (47). Typically MLE are then calculated from data expanded in 
the state space (5, 35). We avoided this passage by assuming that the space we are interested into 35 
had dimension equal to the factorization rank (i.e. the minimum number of synergies necessary 
to sufficiently reconstruct the original EMG signals). The work from Sauer and colleagues (48) 
allows to use n-dimensional measurements instead of the classical state space reconstruction. For 
instance, if one trial was factorized by NMF into four synergies, we would calculate the MLE of 
the resulting four motor primitives using four as embedding dimension. This approach has the 40 
advantage that it does not require the estimation of a suitable delay and embedding dimension, 
the latter being particularly sensitive to the presence of noise, which is very likely in 
experimental data (49). The motor primitives associated to the fundamental synergies extracted 
using the methods described above, were analyzed as follows. Each set of motor primitives was a 
time series of 30 gait cycles, normalized in time as described above (100 points for the stance 45 
and 100 for the swing, for a total of 6000 points per trial). Primitives were then scaled to have 
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the same variance by subtracting the mean and dividing by the standard deviation in order to 
avoid having different dynamical ranges across the data set (50). For every point xi in each time 
series (or set of motor primitives), we searched for the nearest neighbors of the point xi excluding 
the neighborhood points [xi – 100, xi + 100]. This interval was chosen in order to impose a temporal 
separation between the nearest neighbors (Theiler window), making sure that they were on 5 
different trajectories (or gait cycles), as previously described (19). Once the algorithm found the 
nearest neighbors, we proceeded to calculate the logarithm of the divergence between the 
trajectory of each point and its nearest neighbor’s and for a maximum of 300 consecutive time 
points. For each trial, the divergence curve was calculated as the average of all divergence curves 
obtained from each point in the time series and their neighbors (19). We then defined MLE as the 10 
slope of the most linear part of the divergence curve, starting from the first point. To define 
linearity, we imposed the R2 between the curve and its linear interpolation to be bigger than 0.9. 
Across all trials for each experimental setup, we then found the minimum number of points 
needed to reach a linear interpolation with R2 > 0.9 and used these values to recalculate the final 
MLE. The minimum number of points was three in E1, E2 and E3 and this is the value we used; 15 
the maximum was 8 (E1), 9 (E2), and 7 (E3), with average values of 5.3 ± 1.1 (E1), 5.5 ± 1.1 
(E2), 5.2 ± 0.8 (E3). 
 
Width of motor primitives 

We compared motor primitives by evaluating the full-width at half maximum (FWHM), a 20 
metric useful to describe the duration of activation patterns (7, 24, 27). The FWHM was 
calculated cycle-by-cycle as the number of points exceeding each cycle’s half maximum, after 
subtracting the cycle’s minimum and then averaged (24). The FWHM was calculated only for 
the motor primitives relative to fundamental synergies. A fundamental synergy can be defined as 
an activation pattern whose motor primitive shows a single main peak of activation (7). When 25 
two or more fundamental synergies are blended into one, a combined synergy appears. 
Combined synergies usually constitute, in our data, 10 to 20% of the total extracted synergies. 
Due to the lack of consent in the literature on how to interpret them, we excluded the combined 
synergies from the FWHM analysis. The recognition of fundamental synergies was carried out 
based on a previously reported approach (29, 30), which involves the creation of a training set 30 
and the subsequent supervised clustering of similar primitives. 
 
Statistics 

To investigate the main effects on the MLE and FWHM of locomotion type (i.e. walking or 
running), condition (i.e. overground or treadmill), perturbations and age, we fitted the data using 35 
a generalized linear model with Gaussian error distribution. The homogeneity of variances was 
tested using the Levene's test. If the residuals were normally distributed, we carried out a two-
way repeated measures ANOVA with type II sum of squares, the independent variables being: 
locomotion type (walking or running) and condition (overground or treadmill) in E1; locomotion 
type (walking or running) and condition (perturbed or unperturbed) in E2; locomotion condition 40 
(perturbed or unperturbed) and age (young or old) in E3. If the normality assumptions on the 
residuals were not met, we used a robust (rank-based) ANOVA from the R package Rfit 
(function “raov”) (51, 52). All the significance levels were set to α = 0.05 and the statistical 
analyses were conducted using R v3.5.3 (R Found. for Stat. Comp.). 
 45 
Data availability 
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In the supplementary Data S1, available upon request, we made available: a) the metadata 
with anonymized participant information, b) the raw EMG,  c) the touchdown and lift-off timings 
of the recorded limb, d) the filtered and time-normalized EMG, e) the muscle synergies extracted 
via NMF and f) the code to process the data, including the scripts to calculate the MLE of motor 
primitives. 5 

The file “participants_data.dat” is available in ASCII and RData (R Found. for Stat. Comp.) 
format and contains: 

• Code: the participant’s code 
• Experiment: the experimental setup in which the participant was involved (E1 = 

walking and running, overground and treadmill; E2 = walking and running, even- 10 
and uneven-surface; E3 = unperturbed and perturbed walking, young and old) 

• Group: the group to which the participant was assigned (see above for the details) 
• Sex: the participant’s sex (M or F) 
• Speed: the speed at which the recordings were conducted in [m/s] 
• Age: the participant’s age in years (participants were considered old if older than 65 15 

years, but younger than 80) 
• Height: the participant’s height in [cm] 
• Mass: the participant’s body mass in [kg]. 

The files containing the gait cycle breakdown are available in ASCII and RData (R Found. 
for Stat. Comp.) format. The files are structured as data frames with 30 rows (one for each gait 20 
cycle) and two columns. The first column contains the touchdown incremental times in seconds. 
The second column contains the duration of each stance phase in seconds. Each trial is saved 
both as a single ASCII file and as an element of a single R list. Trials are named like 
“CYCLE_TIMES_P0020,” where the characters “CYCLE_TIMES” indicate that the trial 
contains the gait cycle breakdown times and the characters “P0020” indicate the participant 25 
number (in this example the 20th). 

The files containing the raw, filtered and the normalized EMG data are available in ASCII 
and RData (R Found. for Stat. Comp.) format. The raw EMG files are structured as data frames 
with 30000 rows (one for each recorded data point) and 14 columns. The first column contains 
the incremental time in seconds. The remaining thirteen columns contain the raw EMG data, 30 
named with muscle abbreviations that follow those reported in the Materials and Methods 
section of this Supplementary Materials file. Each trial is saved both as a single ASCII file and as 
an element of a single R list. Trials are named like “RAW_EMG_P0053”, where the characters 
“RAW_EMG” indicate that the trial contains raw emg data and the characters “P0053” indicate 
the participant number (in this example the 53rd). The filtered and time-normalized emg data is 35 
named, following the same rules, like “FILT_EMG_P0053”. 

The files containing the muscle synergies extracted from the filtered and normalized EMG 
data are available in ASCII and RData (R Found. for Stat. Comp.) format. The muscle synergies 
files are divided in motor primitives and motor modules and are presented as direct output of the 
factorization and not in any functional order. Motor primitives are data frames with a number of 40 
rows equal to the number of synergies (which might differ from trial to trial) and 6000 columns. 
The rows contain the time-dependent coefficients (motor primitives), one row for each synergy 
(named e.g. “Syn1, Syn2, Syn3”, where “Syn” is the abbreviation for “synergy”). Each gait cycle 
contains 200 data points, 100 for the stance and 100 for the swing phase which, multiplied by the 
30 recorded cycles, result in 6000 data points distributed in as many columns. Each set of motor 45 
primitives is saved both as a single ASCII file and as an element of a single R list. Trials are 
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named like “SYNS_H_P0012”, where the characters “SYNS_H” indicate that the trial contains 
motor primitive data and the characters “P0012” indicate the participant number (in this example 
the 12th). Motor modules are data frames with 13 rows (number of recorded muscles) and a 
number of columns equal to the number of synergies (which might differ from trial to trial). The 
rows, named with muscle abbreviations that follow those reported in the Materials and Methods 5 
section of this Supplementary Materials file, contain the time-independent coefficients (motor 
modules), one for each synergy and for each muscle. Each set of motor modules relative to one 
synergy is saved both as a single ASCII file and as an element of a single R list. Trials are named 
like “SYNS_W_P0082”, where the characters “SYNS_W” indicate that the trial contains motor 
module data and the characters “P0082” indicate the participant number (in this example the 10 
82nd). 

All the code used for the preprocessing of EMG data, the extraction of muscle synergies and 
the calculation of MLE is available in R (R Found. for Stat. Comp.) format. Explanatory 
comments are profusely present throughout the scripts (“SYNS.R”, which is the script to extract 
synergies, “fun_synsNMFn.R”, which contains the NMF function, “MLE.R”, which is the script 15 
to calculate MLE of motor primitives and “fun_MLE.R”, which contains the MLE function). 
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Fig. S1. Sketch of the uneven-surface treadmill used for the experimental protocol E2. The 
belt of this treadmill was built to reproduce an uneven-terrain environment. 
 5 
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Fig. S2. Full width at half maximum of motor primitives not shown in Table 1. Boxplots 
describing the full width at half maximum (FWHM) of the motor primitives extracted from the 
data of the three experimental setups (E1 = walking and running, overground and treadmill; E2 = 5 
walking and running, even- and uneven-surface; E3 = unperturbed and perturbed walking, young 
and old). Motor primitives are the temporal coefficients of the four fundamental synergies for 
locomotion. Lower FWHM imply shorter duration of activation. 
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Fig. S3. Average logaritmic divergence curves of motor primitives with their original 
vertical intercept not shown in Fig. 3.  Curves describing the average logarithmic divergence 
curves for the three experimental setups (E1 = walking and running, overground and treadmill; 5 
E2 = walking and running, even- and uneven-surface; E3 = unperturbed and perturbed walking, 
young and old). 
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Movie S1. Treadmills for perturbed locomotion used in this study. This video shows the 
typical setup of the two treadmills used for introducing external perturbations during locomotion. 
The first treadmill is equipped with an uneven-surface belt. The second one can provide sudden 
accelerations of the belt and displacements of the platform to induce anteroposterior and 
mediolateral perturbations, respectively. 5 
 
Data S1. (separate file) Raw electromyographic (EMG) data and code to extract muscle 
synergies and calculate Maximum Lyapunov Exponents (MLE). This supplementary data set 
contains: a) the metadata with anonymized participant information, b) the raw EMG acquired 
during locomotion, c) the touchdown and lift-off timings of the recorded limb, d) the filtered and 10 
time-normalized EMG, e) the muscle synergies extracted via NMF and f) the code written in R 
(R Found. for Stat. Comp.) to process the data, including the scripts to calculate the MLE of 
motor primitives. 
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