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Abstract 

There is continuous interest in the genetic determinants of plasma triglycerides (TGs) and 

phospholipids and their role in the etiology of cardiovascular disease (CVD). Here, we report 

the results of a Dutch genome wide association study (GWAS) of an in-house developed 

lipidomics platform, focusing on 90 plasma lipids. Lipids were assessed by liquid 

chromatography mass spectrometry in participants from the Leiden Longevity Study, the 

Netherlands Twin Register and the Erasmus Rucphen Family (ERF) study and meta-

analysed, resulting in a sample size of 5537 participants. In addition, we performed genetic 

correlation analyses between the 90 plasma lipids and markers of metabolic health, as well as 

vascular pathology and CVD combining our GWAS results with publicly available GWAS 

outputs. We replicated previously known associations between 34 lipids and 10 lipid 

quantitative trait loci (lipQTL) (GCKR, APOA1, FADS1, SGPP1,TMEM229B, LIPC, 

PDXDC1, CETP, CERS4 and SPTLC3) with metabolome-wide (P < 1.61 × 10-9 ) 

significance. Moreover, we report 6 novel phospholipid-related and 5 triglyceride (TG)-

related loci:  SGGP1 (SM21:0), SPTLC3 (SM21:0 and SM25:1), FADS1 (LPCO16:1, 

PC38:2, PEO36:5, PEO38:5, TG56:5, TG56:6, and TG56:7), TMEM229 (LPCO16:1), GCKR 

(TG50:2), and APOA1 (TG54:4). In addition, we report suggestively significant (P < 5 × 10-

8) associations mapping to eleven novel lipQTLs, three of which are supported by mining 

previous GWAS data: MAU (PC34:4), LDLR (SM16:0), and MLXIPL (TG48:1 and 

TG50:1)). The other loci failed to replicate. Genetic correlation analysis indicated that one 

specific sphingomyelin, SM22:0, shared common genetic background with CVD. Levels of 

SM22:0 also positively associated with carotid artery intima-media thickness in the ERF 

study, and this observation was independent of LDL-C level. Our findings yield higher 

resolution of plasma lipid species and new insights in the biology of circulating phosholipids 

and their relation to CVD risk.   

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/621334doi: bioRxiv preprint first posted online May. 3, 2019; 

http://dx.doi.org/10.1101/621334


Introduction  

Although numerous genetic loci have been associated with metabolic diseases1,2 and disease 

markers3,4, functional interpretation of these loci is lagging discovery. Plasma metabolites are 

hypothesized to function as markers and mediators of cardiovascular disease (CVD) and 

extensive efforts have sought to both refine and expand our understanding of the causal 

determinants of circulating metabolite levels5-7. Notably, loci have been identified that 

encode enzymes or transport proteins directly involved in a given metabolite’s turnover5-8. 

Many of these loci have shown relatively large effect sizes on metabolite levels, as compared 

to effect sizes in genome wide association studies (GWAS) for common diseases, and explain 

a relatively large proportion of the heritability of these metabolites 9,10. 

Total circulating triglycerides (TGs) and lipoproteins are established risk factors for both type 

2 diabetes (T2D) and CVD4. The genetic determinants of circulating total TGs have been 

partially uncovered by the Global Lipids Genetics Consortium (GLGC)3. However, the 

genetics underlying the individual TG species are largely unknown. Rhee and colleagues 

have previously addressed this question in 2076 participants of the Framingham Heart Study 

(FHS)11. They uncovered 23 novel genetic loci associated with plasma metabolites, including 

a set of lipid species that were not investigated in prior GWAS11.  We aimed to expand upon 

these findings using a larger sample size and a denser population specific genotype 

imputation panel. In addition, we exploited a liquid chromatography mass spectrometry (LC-

MS)-based lipidomics platform that measures lipids in plasma and serum12. This platform 

includes 4 ether phospholipids (PCO16:1, PCO36:6, PEO36:5, PCO38:5), 3 sphingomyelins 

(SM17:0, SM 21:0, SM25:1) and 5 TGs (TG50:0, TG51:1, TG51:2, TG51:4 and TG53:1 ) 

which have not yet been previously analyzed by other platforms. We investigated the 

genetics underlying the plasma lipidome in 5537 individuals from the Netherlands that were 

genotype imputed using the Dutch genome (GoNL) reference panel. We further investigated 
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the genetic overlap of identified lipids with CVD-related traits and addressed the dynamics of 

plasma TGs by comparing the genetic determinants of total plasma TGs to the genetic 

determinants of individual TG species. 

 

Methods 

Study populations 

The study sample consisted of 5537 participants from 3 Dutch population-based cohorts; the 

Leiden Longevity Study (LLS)13, the Erasmus Rucphen Family (ERF) study14 and the 

Netherlands Twin Register (NTR)15. An overview of all samples is provided in Table 1. 

More detailed information on the design of the cohorts can be found in the Supplementary 

text. 

Metabolomics measurements  

Measurements of the three cohorts on a single metabolomics platform were performed as part 

of the BBMRI-NL initiative (www.bbmri.nl). The plasma lipids were measured by LC-MS 

using the method described in Gonzalez-Covarrubias et al12. For ERF and NTR, the samples 

were collected after overnight fasting and for the LLS we used non-fasted samples. The 90 

lipid species that were successfully measured in all three cohorts and were eligible for meta-

analysis comprised 30 TGs, 39 phosphatidylcholines, 4 phosphatidylethanolamines, and 17 

sphingolipids. Lipid names and abbreviations were assigned according to the Lipid Maps 

nomenclature (http://www.lipidmaps.org). The following abbreviations are used: triglyceride, 

TG; acyl-acyl phosphatidylcholine, PC; alkyl-acyl phosphatidylcholine, PCO 

lysophosphatidylcholine, LPC; sphingomyelin, SM; acyl-acyl phosphatidylethanolamines, PE 

and alkyl-acyl phosphatidylethanolamines, PEO.  Samples were excluded if the participants 

used lipid lowering medication or if more than 10% of the lipid markers were reported as 

missing values.  
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Gaussian graphical model (GGM) network 

The interactions between the metabolic phenotypes were visualized using a Gaussian 

graphical model (GGM)16. In concordance with the GWAS analyses (c.f. below), the 

phenotypes were natural log(Ln)-transformed and standardized. The partial correlation 

network was based on the residual values for each metabolic phenotype after regressing out 

age and sex. We quantified the separation of chemical classes in this network by calculating 

their modularities. The width of the edges scales with the absolute value of the partial 

correlation between nodes.  

 

GWAS 

Genotype data from all three Dutch cohorts were imputed according to the custom-built 

Genome of the Netherlands project reference panel (GoNL, http://www.nlgenome.nl/), which 

is based on the genomes of 250 parent-offspring trios that were sequenced at ~13 x 

coverage17,18 and has previously been used to detect low frequency variants for plasma 

cholesterol19. For this study, we used version 4 of the reference panel. The association 

analysis was performed using linear regression with the lipid levels as outcome, adjusted for 

age, sex, and study specific covariates, such as familial relatedness. The genotyping and 

imputation QC of each cohort are provided  in Table S1. 

Meta-analysis 

Meta-analysis across studies was performed using an inverse variance weighted fixed-effects 

model20, by two separate analysts in parallel, implemented in the METAL21 and GWAMA22 

software. The genome-wide significant p-value (5 × 10-8) was adjusted for the largest number 

of independent variables (as identified using the method of Li and Ji23) found among the three 
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cohorts (N=31). Hence, the metabolome-wide adjusted significance level was set at P < 1.61 

× 10 -9 and the suggestive significance level at P < 5 × 10 -8.  

Phewas of the top lipQTLs 

We looked up PHEWAS results from Pheweb (pheweb.sph.umich.edu) and GWASATLAS 

(http://atlas.ctglab.nl/PheWAS) and reported the associations with genome-wide significance 

(P < 5 × 10-8).  

Genetic correlation analysis  

Genetic correlation analysis between the lipids and other phenotypes was performed using 

the protocol on: https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation, 

which is based on a previous study by Bulik-Sullivan et al.24. We also tested the partitioning 

of heritability as proposed in 25 (see: https://github.com/bulik/ldsc/wiki/Partitioned-

Heritability). For the genetic correlation analyses, we used 21 datasets from published 

GWAS results of body-mass index (BMI)26, fat percentage27, waist-to-hip ratio (WHR) 28, 

childhood obesity29, leptin30, adiponectin31, systolic blood pressure (SBP)32, diastolic blood 

pressure (DBP)32, heart rate 33, cardiovascular disease (CVD)34, carotid intima-media 

thickness (IMT) and plaque,35 LDL cholesterol36, HDL cholesterol15, TGs3, glucose37, 

Hb1Ac38, proinsulin39, 2-hour glucose40, insulin41 and T2D36. A false discovery rate (FDR) of 

0.05 per experiment was applied to adjust for multiple testing.  

Results 

 Gaussian graphical modelling 

The GGM network of the 90 lipids measured in NTR study is shown in Figure 1. All partial 

correlations were observed to be positive. The network shows complete modularity across the 

phospholipid, sphingolipid species and TGs. We did not observe a distinguished modularity 

between the phospholipid subgroups i.e. lysophosphatidylcholine (LPC), 

phosphatidylethanolamines (PE) and phosphatidylcholines (PCs). The clusters within the 
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phospholipid group were driven by two factors; 1) by the chemical bond of residues as all 

alkyl-acyl bonding types (marked as an additional -O in the abbreviations) clustered together 

regardless of their choline or ethanolamine head-groups, e.g. PCO36:2 , PCO36:5 and 

PCO38:5; and 2) by the saturation degree of the fatty acid residues, as polyunsaturated fatty 

acids carrying the same number of double bonds clustered together, e.g. PC38:6 and PC40:6.  

We next checked individual lipids in the TG pool and estimated their contribution to the total 

TG in the circulation in the ERF population. The majority (72%) of the TG pool consists of 

six TGs: TG52:2 (22%), TG52:3 (21%), TG50:2 (8%), TG52:4 (8%), TG50:1 (7%) and 

TG54:4 (6%). The contribution of the other species was less than 5% per measured lipid 

(Figure S1). All TG species correlated strongly and positively to the total TG (measured by 

enzymatic method), including the TGs present in trace amounts.  

GWAS meta -analysis results 

The meta-analysis yielded 3521 metabolite/SNP associations passing the predefined 

metabolome-wide significance threshold (P-value < 1.62 × 10-9). These signals were coming 

from 10 distinct genomic loci (GCKR, APOA, FADS1, SGPP1,TMEM229B, LIPC, PDXDC1, 

CETP, CERS4 and SPTLC3) shown in Table 2. All of the 10 metabolome-wide significant 

loci have been previously identified in other studies 3,5,6,11,42. In the current study, we show 

evidence for new lipid traits of which the levels in the circulation were also determined by 

these loci: i.e we demonstrate significant evidence for the involvement of GCKR in TG50:2, 

FADS1 in LPCO16:1, PC38:2, PE.O36:5, PE.O38:5, TG56:5, TG56:6 and TG56:7, APOA1 

in TG54:4, SGPP1 in SM21:0, TMEM229B in LPC.O16:1 and SPTLC3 in SM21:0 and 

SM25:1. Emerging associations show that various TGs in the circulation are driven by 

GCKR, FADS1 and APOA but the genes drive different subspecies of TGs. GCKR drives 

TG50.2 which by itself makes up 8% of the TG pool. APOA1 similarly associates with 

TG54.4 TG52.3 and TG52.4 effecting up to 35% of the TG pool. On the other hand, FADS1 
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associates with TG56.5, TG56.6, and TG56.7  which are relatively underrepresented in the 

TG pool, summing up to only 3.3 % of the total TG concentration. FADS1 futher determines 

a wide range of LPCs, PCs and PEs. CETP and TMEM229B drive different subspecies of 

ether phospholipids; CETP associates with PCO34:1 and TMEM229 associates with 

PCO36:5 and LPCO16:1. SGPP1, CERS4 and SPTLC3 drive circulating sphingomyelin 

levels, but the lipids do not overlap across the loci except SM21:0, which is shared between 

SPTLC3 and SGPP1. 

Notably, the common allele (T, major allele frequency = 0.67) of FADS1 SNP rs174547 leads 

to an increase (β > 0) in levels of species which typically carry the polyunsaturated fatty acid 

arachidonic acid (20:4): PC20:4, PC38:4, PC36:4, PCO36:5, PCO38:4, PC36:5, PC34:4, 

PCO36:4, PC40:4, PCO38:5, PEO38:5, TG56:6, PEO36;5, TG56:5, and TG56:7 and 

additionally with PCO16.1. On the other hand, the same allele leads to a decrease (β < 0) in 

levels of  species whith lower saturation status: PC34:2, PC38:2, PC36:3, PC36:2, PE34:2, 

PCO36:2, PE38:2, PC34:3, PC32:2, PCO36:3, and PCO34:2.  

Additionally, 867 metabolite /SNP pairs showed suggestive association with 1.61 × 10-9 < P < 

5 ×10-8 and were located in 18 distinct genomic loci. Seven of these suggestively significant 

signals were coming from already established lipQTLs. These included association of GCKR 

with TG48:2, TG48:3, TG50:3, TG50:4, TG48:1, TG50:1 and TG52:2, FADS1 with TG56:3 

and TG54:6, APOA1 with TG54:5 and TG56:3, SGPP1 with SM22:1 PDXDC1 with PC34:2, 

CETP with PCO34:3 and finally PKD2L1 with LPC16:1. We set up in-silico replication for 

the remaining 11 loci using published GWAS summary statistics from earlier lipid QTL 

studies5,11. Three signals were already known loci for cholesterol and triglyceride metabolism 

from GWAS3, i.e. LDLR (SM16.0), MAU2 (PC34.4)3 and MLXIPL (TG48.1  and TG50.1) 

(Figure 2). The first locus with supporting evidence is the LDL receptor (LDLR), harboring 

rs11668477. This SNP has a P-value of 0.0002 for association in the GWAS of the 
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EUROSPAN consortium, an earlier report5 of the same lipid trait; SM16:0. The second locus 

is rs73001065 near the MAU2 gene, which is associated with PC34:4. We did not find 

rs73001065 in the published earlier GWAS dataset. However, rs3794991, in strong LD with 

rs73001065 (R2=0.81), significantly associated with PC34:4 (P-value = 9.3 ×10 -7) in the 

EUROSPAN dataset. The EUROSPAN dataset included persons from the ERF population. 

To avoid bias due to duplicated samples, we excluded the 912 ERF participants that 

participated in EUROSPAN from the analysis. As a result of this, the P-value for the 

association between SM16:0 and rs11668477 attenuated to 0.002, whereas the P-value for the 

association between rs3794991 and PC34:4 became 7.4 ×10 -5. We did not find the third 

locus (rs10245965 from MLXIPL) among the top findings of the study by Rhee et al11, 

indicating that the SNPs in this loci have P-values > 0.001. For the remaining eight novel 

lipQTL we failed to find any additional evidence supporting their involvement (replication 

results are given in Table S2. Quantile-quantile plots for the GWAS of the 90 metabolites are 

displayed in Figures S2 and Manhattan plots are shown in Figure S3. The full GWAS 

summary statistics have been uploaded to the BBMRI -NL public repository and can be 

downloaded.  

Phewas  

Top SNPs from lipQTLs APOA1, FADS1, LIPC and GCKR are associated with several 

International Classification of Diseases codes and clinical measurements. rs174547 located at 

the FADS1 locus associates with pulse rate, cholelithiasis, asthma, standing height, wine 

intake and naps during the day. rs12366015 located at the APOA1 locus associates with 

hyperlipidemia and lipid lowering medication intake. The GCKR-related SNP rs780094,  a 

proxy for rs11127048, associates with 46 UK Biobank phenotypes, including cholelithiasis, 

height, weight, impedance, diabetes, gout, hypercholesterolemia, daytime dozing, sodium in 

urine, basal metabolic rate and alcohol intake frequency. The LIPC-related SNP, rs10468017,  
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associates with hypercholesterolemia, while the CETP-related SNP, rs1532624,   and LIPC -

related SNP , rs10468017,  associates with age-related macular degeneration in earlier 

GWAS. Table S3 shows the PHEWAS lookup results.  

 

Effect of the known TG loci on the individual TG species 

Subsequently, we tested whether the 41 loci that have been previously associated with total 

TGs as primary or secondary trait in the published GLGC study3 also associate with the TG 

subspecies captured by our lipdomics platform. We uncovered 11 loci which, after FDR 

correction, significantly associated (FDR < 0.05) with at least one or more of the TGs 

(Figure 2). Four loci, i.e. LPL, GCKR, APOA1, and MLXIPL, showed a global association to 

several TGs, at the experiment-wide P-value level. The LPL polymorphism associates with 

22, GCKR with 16, APOA1 with 24 and MLXIPL with 27 out of the 30 studied TGs. Other 

loci that associate with multiple TGs are FADS1 (10), ANGPTL3 (9), SUGP1 (8), MIR148 (7) 

and TOMM40/APOE/APOC1 (6). The TIRB1 and LIPC loci associated with only one species. 

Across the known total TG loci, the direction of effect for the individual TG species was 

consistent, with the exception of the FADS1 locus. For the leading SNP rs174546 at the 

FADS1 locus, the common allele, which associates with increased level of total TGs, 

associates with decreased levels of TGs with high fatty acid polyunsaturation number (e.g. 

TG56:6) and increased levels of TGs with low polyunsaturation number (e.g. TG52:2). 

rs174546 did not associate with saturated TGs. 

Genetic correlations with cardio-metabolic health 

The SNP-based genetic correlations between the 90 lipids and 21 measurements focusing on 

CVD-related traits are depicted in Figure 3. As expected, we observed a strong positive 

correlation between all the different TG species and total TG. Total TG also positively 

correlates with phospholipid species of PC38:3, PE34:2, PC36:3, PC16:0, PC36:4 PC40:4, 
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PC38:2, PC18:0, PC34:3, , PC34:1, PC36:1, PC36:2, PC34:2, and PC40:6. The genetic 

correlations with total TG were negative for the ether phosphatidylcholines; PCO34:3, 

PCO36:3, PCO34:1 and PC36:2, as well as the sphingomyelin; SM15:0. As expected, the 

majority of TG species also show a negative correlation with HDL-C and positive 

correlations with LDL-C. In addition, both LDL-C and HDL-C significantly correlate with a 

cluster of sphingomyelins (SM18:1, SM16:1, SM20:1, SM23:1, SM15:0, SM18:2, SM24:1, 

SM16:0, SM14:0) and ether phospholipids (PCO34:3, PCO36:3, PCO36:2, PCO16:1, 

PCO38:5, PCO36:5, PEO38:5), a well as PC32:0, whereas eight phospholipids specifically 

share a genetic background with LDL-C (PCO36:4, PCO38:4, PEO36:5, SM25:1, SM21:0, 

SM23:0,SM24:0 and SM22:0) and three to HDL-C (PCO34:1, PCO34:2 and PCO36:6). One 

remarkable observation is the significant genetic correlation with two of the LDL-C specific 

lipids and CVD; (P-value = 8.3 × 10-6 for SM22:0 and P-value = 0.03 for PCO38:4). SM22:0 

also shares a genetic background with IMT, however this was not significant after FDR 

correction. There was no statistical evidence for genetic correlation of any of the lipids 

studies with either heart rate, blood pressure, or WHR. Sixteen of the TG species, as well as 

PC38:3, correlate positively with total body fat percentage, whereas PCO34:3 and PCO36:3 

correlate negatively. PC38:3, SM18:1 and SM16:1 correlate positively with BMI as well, 

whereas PC18:2 show a negative genetic correlation to BMI. 

Lipids and risk of CVD 

In the dataset of the ERF population we tested whether SM22:0 and PCO38:4 have a 

phenotypic correlation to carotid intima media thickness (IMT) and whether they predict 

CVD diagnosis. We estimated that one unit increase in plasma SM22:0 associates with an 

increase in IMT (Beta = 0.031, P-value = 0.023) independent of age, sex, BMI, blood 

pressure, LDL-C and lipid lowering medication therapy. However the level of SM22:0 did 
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not associate to the risk of CVD in 15 year follow –up. We found no evidence supporting a 

role of PCO38:4 in IMT nor CVD. 

 

Discussion 

In the current study, we focused on 30 different TG and 60 phospholipids species measured 

by mass spectrometry in 3 Dutch population-based cohorts. Overall, there was high clustering 

of the lipid species within their overall chemical groups, TGs, phospholipids and 

sphingolipids, suggesting distinct molecular pathways responsible for each group. The 

GWAS meta-analysis  replicated 10 previously identified major associations for lipid species 

including the major determinants such as GCKR, APOA, FADS1, SGPP1,TMEM229B, LIPC, 

PDXDC1, CETP, CERS4 and SPTLC3 and reported eleven novel lipids associated with one 

or more of these loci. In addition, by screening across the suggestively significant hits we 

identified three novel loci; MAU for PC34:4, MLXIPL for TG48:1 and TG50:1 and LDLR for 

SM16:0. The lipidomics data included 30 TG species with different relative abundances in 

the TG pool of the plasma, two of the main components, TG52:2 and TG52:3, make up some 

43 % of the circulating TGs we detected, wheres the remaining 57% was divided among 28 

species. We further tested whether distinct TG species were associated with genes that were 

identified in the total TG GWASs. We showed that the genes which determine the total TG 

levels mostly have an overall effect on individual TGs, whereas some are species specific. Of 

the 41 genetic variants we tested, the CILP2 locus showed obvious different effect sizes 

across different species and is mainly involved in the unsaturated TGs, whereas the FADS1 

locus regulated the TGs in a fatty acid saturation level specific manner. Finally, we identified 

genetic correlations between particular lipids and determinants of CVD: a total of eight 

sphingomyelines and ether phospholipids genetically correlated with LDL-C, and three ether 

lipids correlated with HDL-C. SM22:0 shares a genetic background with both IMT and CVD.  
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Our study replicates previously identified genes implicated in plasma TG and phospholipid 

levels including GCKR, APOA1, FADS1, SGPP1,TMEM229B, LIPC, PDXDC1, CETP, 

CERS4 and SPTLC35,6. Among them GCKR, APOA1, FADS1, LIPC and CETP have been 

under investigation for their effects on metabolic disorders. Look-ups in UK Biobank datasets 

and earlier sources indicate various outcomes related to FADS1 and GCKR, whereas APOA1, 

CETP and LIPC are more restcricted to dyslipidemia. Here, we provide potential mediators 

for these genes through which their global  effects could be manifested. We also identified a 

series of SNPs that are borderline genome-wide significant but located in interesting 

candidate genes. Among the newly discovered phospholipid loci is the MAU2 gene, which 

codes for the Cohesin Loading Complex Subunit SCC4 Homolog protein that is involved in 

rare neuronal disease Cornelia de Lange syndrome. The top SNP itself in this locus, 

rs73001065, has a strong cis-effect on the expression of GATAD2A gene (P-value = 5.6 × 10-

33 in Westra et al.43), which is a nuclear protein involved in transcriptional repression. We 

were not able to link the GATAD2A molecular function to lipid metabolism directly. The 

second locus of interest was the LDLR locus involved in SM16:0. This variant has been 

previously identified as a strong determinant of LDL-C, total cholesterol, as well as for waist-

to hip ratio. The third locus, MLXIP, is a major determinant of total TG level. We have not 

found evidence for this locus in the previous report of Rhee et al. However, this could be due 

to lack of power as the effect sizes are particularly small. 

The TG pool in the circulation does not consist of a homogenous set of individual TG species 

but is dominated by six species of TGs: TG52:2, TG52:3, TG50:2, TG52:4, TG50:1 and 

TG54:4. These show high similarity in terms of their top genetic determinants, clustering on 

seven different loci : ANGPTL3, APOE, MIR148A, LPL, GCKR , APOA1, MLXLPL and 

FADS. Except the FADS genetic variant, the effects of these loci are also similar for the rest 

of the TGs. From our results, the FADS locus determines the difference between two clusters 
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of TGs, namely saturated ones and polyunsaturated ones. It is of note that the effects of 

FADS were as expected in opposite direction between these two clusters. In addition, the 

CILP2 SNP associates only with TG56:6 (1.1 %), TG60:8 (0.5 %), TG54:7 (0.3%), TG54:6 

(1.6), TG 56:7 (1.3 %), TG52:5 (1.5 %). TG54:5 (3.5 %) and TG50:4 (0.6 %), which 

constitute the less abundant group of TGs.  

The genetic correlation matrix confirmed known associations and also uncovered novel 

associations in line with what has been previously reported for the plasma lipidome. We 

identified six lipids (four ether PCs and a SM) which correlated negatively with total TGs. 

From these, PCO36:3 and PCO34:1 also negatively correlated to adiposity measured as fat 

percentage. Sphingolipids are surface components of serum lipoproteins and are abundant in 

LDL followed by VLDL > HDL44. In line with this, genetic correlation analysis suggest to  

classify thee lipids in two categories; a group of molecules that genetically correlate with 

both LDL-C and HDL-C, and a second group of molecules which only correlate specifically 

with LDL-C. Of interest is also our finding that SM22:0 shares a common genetic 

background with CVD and atherosclerosis as measured by IMT. Sphingomyelins in general 

were previously suggested to be involved in atherosclerosis45. However, to date, it has not 

been possible to pin-point a particular molecule. SMs may influence atherosclerosis, either 

directly or by affecting other risk factors such as cholesterol. It has been shown that 

sphingomyelin levels affect LDL binding and internalization46 . Hydrolysis of LDL-SM by an 

extracellular sphingomyelinase in atherosclerotic lesions alters the aggregation state of the 

particle and promotes foam cell formation by macrophages47-49 The fact that SM 22:0 

correlates with IMT as a measure of atherosclerosis independent of other risk factors, 

including LDL-C, suggests it could be a new molecular candidate for further research for 

prevention and treatment of CVD.  
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Focusing on 90 lipid species of the plasma lipidome and a Dutch population specific 

genotype imputation panel in 5537 samples, we show a total of 9 new locus-lipid associations 

which were replicated via in-silico look-ups. We confirmed  previously identified 

associations and suggest new phenotypes for known loci.  Moreover, we identified a new 

LDL-C and CVD specific lipid; SM 22:0, which is associated with IMT and is a potential 

target for prevention of CVD. Our findings yield higher resolution of plasma lipid species 

and provide new insights in the biology of circulating phosholipids and their relation to CVD 

risk.   

 

References 

 

1 Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility 
loci for coronary artery disease. Nat Genet 43, 333-338, doi:ng.784 [pii] 

10.1038/ng.784 (2011). 
2 Gaulton, K. J. et al. Genetic fine mapping and genomic annotation defines causal 

mechanisms at type 2 diabetes susceptibility loci. Nat Genet 47, 1415-1425, 
doi:ng.3437 [pii] 

10.1038/ng.3437 (2015). 
3 Global Lipids Genetics, C. et al. Discovery and refinement of loci associated with 

lipid levels. Nat Genet 45, 1274-1283, doi:ng.2797 [pii] 
10.1038/ng.2797 (2013). 
4 Do, R. et al. Common variants associated with plasma triglycerides and risk for 

coronary artery disease. Nat Genet 45, 1345-1352, doi:ng.2795 [pii] 
10.1038/ng.2795 (2013). 
5 Demirkan, A. et al. Genome-wide association study identifies novel loci associated 

with circulating phospho- and sphingolipid concentrations. PLoS genetics 8, 
e1002490, doi:10.1371/journal.pgen.1002490 (2012). 

6 Draisma, H. H. et al. Genome-wide association study identifies novel genetic variants 
contributing to variation in blood metabolite levels. Nature communications 6, 7208, 
doi:10.1038/ncomms8208 (2015). 

7 Dharuri, H. et al. Genetics of the human metabolome, what is next? Biochim Biophys 
Acta 1842, 1923-1931, doi:10.1016/j.bbadis.2014.05.030 (2014). 

8 Heemskerk, M. M., van Harmelen, V. J., van Dijk, K. W. & van Klinken, J. B. 
Reanalysis of mGWAS results and in vitro validation show that lactate dehydrogenase 
interacts with branched-chain amino acid metabolism. Eur J Hum Genet 24, 142-145, 
doi:10.1038/ejhg.2015.106 (2016). 

9 Kettunen, J. et al. Genome-wide study for circulating metabolites identifies 62 loci 
and reveals novel systemic effects of LPA. Nature communications 7, 11122, 
doi:10.1038/ncomms11122 (2016). 

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/621334doi: bioRxiv preprint first posted online May. 3, 2019; 

http://dx.doi.org/10.1101/621334


10 Shin, S. Y. et al. An atlas of genetic influences on human blood metabolites. Nat 
Genet 46, 543-550, doi:10.1038/ng.2982 (2014). 

11 Rhee, E. P. et al. A genome-wide association study of the human metabolome in a 
community-based cohort. Cell Metab 18, 130-143, doi:S1550-4131(13)00257-X [pii] 

10.1016/j.cmet.2013.06.013 (2013). 
12 Gonzalez-Covarrubias, V. et al. Lipidomics of familial longevity. Aging cell 12, 426-

434, doi:10.1111/acel.12064 (2013). 
13 Schoenmaker, M. et al. Evidence of genetic enrichment for exceptional survival using 

a family approach: the Leiden Longevity Study. Eur J Hum Genet 14, 79-84, 
doi:5201508 [pii] 

10.1038/sj.ejhg.5201508 (2006). 
14 Demirkan, A. et al. Insight in genome-wide association of metabolite quantitative 

traits by exome sequence analyses. PLoS genetics 11, e1004835, 
doi:10.1371/journal.pgen.1004835 (2015). 

15 Willemsen, G. et al. The Netherlands Twin Register biobank: a resource for genetic 
epidemiological studies. Twin Res.Hum.Genet. 13, 231-245 (2010). 

16 Krumsiek, J., Suhre, K., Illig, T., Adamski, J. & Theis, F. J. Gaussian graphical 
modeling reconstructs pathway reactions from high-throughput metabolomics data. 
BMC Syst Biol 5, 21, doi:1752-0509-5-21 [pii] 

10.1186/1752-0509-5-21 (2011). 
17 Boomsma, D. I. et al. The Genome of the Netherlands: design, and project goals. Eur 

J Hum Genet 22, 221-227, doi:ejhg2013118 [pii] 
10.1038/ejhg.2013.118 (2014). 
18 Genome of the Netherlands, C. Whole-genome sequence variation, population 

structure and demographic history of the Dutch population. Nat Genet 46, 818-825, 
doi:ng.3021 [pii] 

10.1038/ng.3021 (2014). 
19 van Leeuwen, E. M. et al. Genome of The Netherlands population-specific 

imputations identify an ABCA6 variant associated with cholesterol levels. Nature 
communications 6, 6065, doi:ncomms7065 [pii] 

10.1038/ncomms7065 (2015). 
20 de Bakker, P. I. et al. Practical aspects of imputation-driven meta-analysis of genome-

wide association studies. Human molecular genetics 17, R122-128, 
doi:10.1093/hmg/ddn288 (2008). 

21 Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of 
genomewide association scans. Bioinformatics 26, 2190-2191, doi:btq340 [pii] 

10.1093/bioinformatics/btq340 (2010). 
22 Magi, R. & Morris, A. P. GWAMA: software for genome-wide association meta-

analysis. BMC Bioinformatics 11, 288, doi:1471-2105-11-288 [pii] 
10.1186/1471-2105-11-288 (2010). 
23 Li, J. & Ji, L. Adjusting multiple testing in multilocus analyses using the eigenvalues 

of a correlation matrix. Heredity 95, 221-227, doi:10.1038/sj.hdy.6800717 (2005). 
24 Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and 

traits. Nat Genet 47, 1236-1241, doi:ng.3406 [pii] 
10.1038/ng.3406 (2015). 
25 Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-

wide association summary statistics. Nat Genet 47, 1228-1235, doi:ng.3404 [pii] 
10.1038/ng.3404 (2015). 
26 Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity 

biology. Nature 518, 197-206, doi:nature14177 [pii] 

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/621334doi: bioRxiv preprint first posted online May. 3, 2019; 

http://dx.doi.org/10.1101/621334


10.1038/nature14177 (2015). 
27 Lu, Y. et al. New loci for body fat percentage reveal link between adiposity and 

cardiometabolic disease risk. Nature communications 7, 10495, doi:ncomms10495 
[pii] 

10.1038/ncomms10495 (2016). 
28 Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat 

distribution. Nature 518, 187-196, doi:nature14132 [pii] 
10.1038/nature14132 (2015). 
29 Bradfield, J. P. et al. A genome-wide association meta-analysis identifies new 

childhood obesity loci. Nat Genet 44, 526-531, doi:ng.2247 [pii] 
10.1038/ng.2247 (2012). 
30 Kilpelainen, T. O. et al. Genome-wide meta-analysis uncovers novel loci influencing 

circulating leptin levels. Nature communications 7, 10494, doi:ncomms10494 [pii] 
10.1038/ncomms10494 (2016). 
31 Dastani, Z. et al. Novel loci for adiponectin levels and their influence on type 2 

diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals. 
PLoS genetics 8, e1002607, doi:10.1371/journal.pgen.1002607 

PGENETICS-D-11-02099 [pii] (2012). 
32 International Consortium for Blood Pressure Genome-Wide Association, S. et al. 

Genetic variants in novel pathways influence blood pressure and cardiovascular 
disease risk. Nature 478, 103-109, doi:nature10405 [pii] 

10.1038/nature10405 (2011). 
33 den Hoed, M. et al. Identification of heart rate-associated loci and their effects on 

cardiac conduction and rhythm disorders. Nat Genet 45, 621-631, doi:ng.2610 [pii] 
10.1038/ng.2610 (2013). 
34 Nikpay, M. et al. A comprehensive 1,000 Genomes-based genome-wide association 

meta-analysis of coronary artery disease. Nat Genet 47, 1121-1130, doi:ng.3396 [pii] 
10.1038/ng.3396 (2015). 
35 Bis, J. C. et al. Meta-analysis of genome-wide association studies from the CHARGE 

consortium identifies common variants associated with carotid intima media thickness 
and plaque. Nat Genet 43, 940-947, doi:ng.920 [pii] 

10.1038/ng.920 (2011). 
36 Morris, A. P. et al. Large-scale association analysis provides insights into the genetic 

architecture and pathophysiology of type 2 diabetes. Nat Genet 44, 981-990, 
doi:ng.2383 [pii] 

10.1038/ng.2383 (2012). 
37 Scott, R. A. et al. Large-scale association analyses identify new loci influencing 

glycemic traits and provide insight into the underlying biological pathways. Nat 
Genet 44, 991-1005, doi:ng.2385 [pii] 

10.1038/ng.2385 (2012). 
38 Soranzo, N. et al. Common variants at 10 genomic loci influence hemoglobin A(1)(C) 

levels via glycemic and nonglycemic pathways. Diabetes 59, 3229-3239, doi:db10-
0502 [pii] 

10.2337/db10-0502 (2010). 
39 Strawbridge, R. J. et al. Genome-wide association identifies nine common variants 

associated with fasting proinsulin levels and provides new insights into the 
pathophysiology of type 2 diabetes. Diabetes 60, 2624-2634, doi:db11-0415 [pii] 

10.2337/db11-0415 (2011). 
40 Saxena, R. et al. Genetic variation in GIPR influences the glucose and insulin 

responses to an oral glucose challenge. Nat Genet 42, 142-148, doi:ng.521 [pii] 

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/621334doi: bioRxiv preprint first posted online May. 3, 2019; 

http://dx.doi.org/10.1101/621334


10.1038/ng.521 (2010). 
41 Prokopenko, I. et al. A central role for GRB10 in regulation of islet function in man. 

PLoS genetics 10, e1004235, doi:10.1371/journal.pgen.1004235 
PGENETICS-D-13-01536 [pii] (2014). 
42 Hicks, A. A. et al. Genetic determinants of circulating sphingolipid concentrations in 

European populations. PLoS genetics 5, e1000672, doi:10.1371/journal.pgen.1000672 
(2009). 

43 Westra, H. J. et al. Systematic identification of trans eQTLs as putative drivers of 
known disease associations. Nat Genet 45, 1238-1243, doi:10.1038/ng.2756 (2013). 

44 Martinez-Beamonte, R., Lou-Bonafonte, J. M., Martinez-Gracia, M. V. & Osada, J. 
Sphingomyelin in high-density lipoproteins: structural role and biological function. 
Int J Mol Sci 14, 7716-7741, doi:ijms14047716 [pii] 

10.3390/ijms14047716 (2013). 
45 Kummerow, F. A. Interaction between sphingomyelin and oxysterols contributes to 

atherosclerosis and sudden death. Am J Cardiovasc Dis 3, 17-26 (2013). 
46 Chatterjee, S. Neutral sphingomyelinase action stimulates signal transduction of 

tumor necrosis factor-alpha in the synthesis of cholesteryl esters in human fibroblasts. 
J Biol Chem 269, 879-882 (1994). 

47 Marathe, S. et al. Human vascular endothelial cells are a rich and regulatable source 
of secretory sphingomyelinase. Implications for early atherogenesis and ceramide-
mediated cell signaling. J Biol Chem 273, 4081-4088 (1998). 

48 Schissel, S. L., Schuchman, E. H., Williams, K. J. & Tabas, I. Zn2+-stimulated 
sphingomyelinase is secreted by many cell types and is a product of the acid 
sphingomyelinase gene. J Biol Chem 271, 18431-18436 (1996). 

49 Schissel, S. L. et al. Rabbit aorta and human atherosclerotic lesions hydrolyze the 
sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall 
sphingomyelinase in subendothelial retention and aggregation of atherogenic 
lipoproteins. J Clin Invest 98, 1455-1464, doi:10.1172/JCI118934 (1996). 

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/621334doi: bioRxiv preprint first posted online May. 3, 2019; 

http://dx.doi.org/10.1101/621334


Table 1. Description of the samples that were used in the meta-analyses 

Study   Age BMI Female%  

N Mean(SD)  Mean(SD)   

ERF 2,118 48.2 (14.7)  26.7(4.7)  58 

LLS 2,227 59.2(6.8)  25.4(3.5)  54 

NTR 1,192 38.8(12.8)  24.6(4.2)  64 

 ERF; Erasmus Rucphen Family study, LLS; Leiden Longevity Study, NTR; Netherlands Twin Register, BMI; Body mass index. 

 

 

 

 

 

 

 

 

 

 

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

w
as not peer-review

ed) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity.
T

he copyright holder for this preprint (w
hich

. 
http://dx.doi.org/10.1101/621334

doi: 
bioR

xiv preprint first posted online M
ay. 3, 2019; 

http://dx.doi.org/10.1101/621334


 

Table 2. Top significant LipQTL and their associated lipids which pass the metabolome–wide significance threshold. 

Lipids SNP Chr Position Locus #SNPs  NEA/EA EAF β SEβ P-value 

TG50.2 shown in the current study 

 rs11127048 2 27598097 GCKR 1 A/G 0.63 -0.13 0.02 1.27 × 10
-9

 

LPC.O16.1, PC38.2, PE.O36.5, PE.O38.5, TG56.5, 

TG56.6,  and TG56.7
 
 shown in the current study; 

PC.O34.2, PC.O36.2, PC.O36.3, PC.O36.4, 

PC.O36.5, PC.O38.4, PC.O38.5, LPC20.3, LPC20.4, 

PC32.2, PC34.2, PC34.3, PC34.4, PC36.2, PC36.3, 

PC36.4, PC36.5, PC38.3, PC38.4, PC40.4, PE34.2, 

and PE38.2 shown previously 
1,2

 rs174547 11 61570783 FADS1 228 T/C 0.67 0.44 0.02 1.02 × 10
-107

 

TG54.4 shown in the current study; TG52.3, 

TG52.4 shown previously
3
  rs12366015 11 116990851 APOA 2 G/A 0.82 -0.1 0.02 2.60 × 10

-10
 

SM21.0 shown in the current study; SM14.0 and 

SM15.0 shown previously
1
 rs12878001 14 64239629 SGPP1 242 T/G 0.86 -0.35 0.03 8.51 × 10

-32
 

LPC.O16.1 shown in the current study, PC.O36.5 

shown previously
1,2

 rs10873201 14 67966599 TMEM229B 49 C/T 0.52 0.19 0.02 2.08 × 10
-21

 

PE34.2 shown previously 
1
 rs10468017 15 58678512 LIPC 114 C/T 0.68 -0.26 0.02 3.26 × 10

-33
 

LPC20.3, PC38.3 shown previously 
1
 rs12928099 16 15150505 PDXDC1 54 C/A 0.67 -0.19 0.02 6.71 × 10

-16
 

PC.O34.1 shown previously
2
, rs1532624 16 57005479 CETP 6 C/A 0.54 -0.12 0.01 4.59 × 10

-10
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SM18.1, SM20.1 shown previously
1
 rs8105664 19 8290878 CERS4 56 G/A 0.78 0.23 0.02 3.54 × 10

-27
 

SM21.0, SM25.1
 
shown in the current study rs680379 20 12969400 SPTLC3 63 G/A 0.65 -0.26 0.02 9.67 × 10

-39
 

 

SNP: lead SNP at each locus. Chr : Chromosome. #SNPs: Number of SNPs that were below the metabolome–wide significance threshold 

at each locus. NEA/EA: Non-effect allele/effect allele. EAF: Effect allele frequency. β: Effect estimate. SEβ: Standard error of the effect 

estimate. Previous evidence refers to the same or very closely related phenotypes that have shown a genome –wide significant 

association with the same locus. Italic and bold text refer to the strongest association in case multiple phenotypes are associated with 

the same locus. Novel traits associated with the particular loci have been marked. SPTLC3 has previously been shown to associate with 

related traits, i.e. SM22:0 and SM16:1-OH
1

 . The following abbreviations are used: triglyceride, TG; acyl-acyl phosphatidylcholine, PC; 

alkyl-acyl phosphatidylcholine, PCO lysophosphatidylcholine, LPC; sphingomyelin, SM; acyl-acyl phosphatidylethanolamines, PE and 

alkyl-acyl phosphatidylethanolamines, PEO.  
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Figure 1 GGM model of positively charged plasma lipidome 

 

 

  

Figure shows the clustering of individiual lipids captured by the LC-MS platform, in the 

participants of the Netherland Twin Register.
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Figure 2 Effect of previously discovered triglyceride loci 

 

 

 

The “.” Indicated the association that are nominally significant but not when corrected by 

FDR. “*” Indicates the associations that are significant by FDR. The value refers to the Z-

score as a combination of correlation coefficient and significance. 
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Figure 3 Genetic correlation between the circulating lipids and metabolic health-related phenotypes 

 

 

The “.” Indicated the association that are nominally significant but not when corrected by 

FDR. “*” Indicates the associations that are significant by FDR. The value refers to the Z-

score as a combination of correlation coefficient and significance. 
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