
Supplementary Information

Supplement

Benchmark Dataset

Pfam contains one profile HMM for each family, constructed from the family seed alignment.
These manually curated seed alignments contain between 1 and 4545 sequences, originally
picked due to their trusted functional annotations [9], avoiding some of the circularity of
using sequence labels assigned by a profile HMM model. However, many Pfam seeds have
recently been rebuilt to incorporate sequences from Pfam full that were found by the original
family HMM, reducing their model-free status [40]. Pfam seed sequences vary between 4
and 2037 amino acids in length, with 27045 seed sequences of length > 500. Supplementary
Fig. 1 contains a histogram of Pfam seed family sizes, the Pfam seed sequence length
distribution and also the frequency of amino acid usage in the Pfam seed dataset.

Baseline Classifiers

phmmer

Perhaps the simplest existing sequence classification method that we implement is based
on the phmmer function from HMMER 3.1b [11]. For phmmer we used the dev sequence
set to run a small hyperparameter optimization study for phmmer speed on a 12-core
Intel Xeon workstation with a 3.6 GHz processor. Each trial of the optimization had
three hyperparameters: the number of sequences to feed to each command line invocation
of phmmer, the number to pass to the --cpu argument of phmmer, and the number of
concurrent processes (coroutines) to run. The settings 131, 9, 8 (respectively) produced the
lowest running time, though performance was robust to different choices. Overall, settings
with much larger block size and few CPUs, or with many fewer threads produced significantly
longer run times.

Gathering Thresholds

Family-specific gathering thresholds, shown in Supplementary Fig. 1D, are used by HMMer
3.1b to determine whether a sequence belongs to each family [12]. The role of these gathering
threshold is to increase coverage and decrease false positives. However our setup simply
takes the top match by score, regardless of the assigned gathering threshold. This raises
the question of whether implementing the family-specific gathering thresholds would have
improved the accuracy score achieved by the HMM top pick algorithm.

1

a b

c d

e f

Figure 1: Benchmark Pfam seed dataset statistics calculated across the entire Pfam seed
dataset. (A) Number of sequences per family. Values larger than 1000 are clipped to the last
histogram bucket. (B) Sequence length distribution of unaligned sequences. (C) Frequency
of amino acids in sequences in the dataset. (D) Histogram of gathering thresholds used in
Pfam 32.0. Scores achieved by the top hits for (E) the HMM top pick model and (F) phmmer.
The x axis has been truncated in both panels. Compare to (D) the actual histogram of
gathering thresholds used by Pfam.

2

To address this, Supplementary Fig. 1E and F shows the distribution of top scores
for both HMMer and phmmer, for both correct and incorrect predictions. We note that
the majority of incorrect predictions have scores below the assigned gathering thresholds.
However, there also appear to be at least as many correct predictions below these values.
This qualitative analysis is backed up by experimentation wherein we determined 8.5% of
top picks were below their family-specific gathering thresholds from Pfam. As such, using
the assigned gathering thresholds would not have helped performance, and would required
us to re-tune each of these values for the training dataset used in this benchmark study.

Hyperparameters for k-mer model

The hyperparameters that were tuned using the development set for the baseline kmer model
are described in Supplementary Table 1. Though we expected the optimal kmer order to be
larger, empirically, the optimal ‘k’ is 2.

kmer
batch size 64

gradient clip 1
learning rate .0005*

learning rate decay rate 0.997
learning rate decay step 1000

learning rate warmup steps 3000
kmer order 2*

number of hash buckets 10000*
train steps 300000

Table 1: Hyperparameters used in kmer benchmark models. An asterisk denotes a tuned
value.

Multiple Family Membership

Pfam allows a domain to belong to multiple families if these families are in the same clan
[12]. Our top pick formulation of HMMer for sequence classification does not allow for
multiple membership. However, within the seed sequences, there are only two sequences
that belong to more than one family. The first sequence has the two distinct names
ABEC3_MOUSE/245-418 and E9QMH1_MOUSE/234-407, and the second has the two
distinct names NLP_DROME/6-104 and B4HZJ8_DROSE/6-104. Both of these sequences
are found in our training dataset, so the accuracy of their classification does not affect the
model performance statistics that we report using the test dataset.

3

Details of Neural Network Architectures and Training

In a residual network (ResNet) [32], the layers are built up additively, with fi = fi−1+gi(fi−1).
Here, each fi is an L× F array and gi(·) is an additional one-layer convolutional network
(along with a kernel-size-one bottleneck convolution; see 5C) with trained weights specific to
that layer. In our model, f0 is obtained by a convolutional layer with F channels applied to
the output of the input network, with no bottleneck convolution applied before the residual
blocks. Each ResNet layer maintains a L×F representation; no downsampling is performed
until the final pooling step. We also note that a convolutional layer is used before any
residual block, so as to convert the per-residue representation into the correct shape before
consumption by the residual blocks.

We primarily use convolutional neural networks (CNNs) to construct this L× F array,
since they are fast to train and evaluate on modern hardware, an advantage that is even more
pronounced when evaluating large sets of sequences in parallel. Convolutional architectures
are also easily composed into higher-order interactions. The L × F array is then pooled
along the length of the sequence, ensuring invariance to padding. Hyperparameters tuned
for ProtCNN include the choice of F and max vs mean pooling in addition to network depth,
which was varied between 1 and 6 layers.

Embedding Networks

Dilated convolutions are a popular method for enabling CNNs to capture long range
interactions across the inputs [33]. One way to to model these long-range interactions
would be to use convolutions with very wide kernels. However, doing so increases the
computational complexity of prediction and introduces a considerable number of parameters
to train. Instead, dilated convolutions use convolution kernels with holes in them, such that
the complexity and number of parameters is the same as small, local convolutions, but the
overall receptive field of the convolution is wide.

Consider a convolution with kernel width 5, and let fi,j be the representation in layer i
of the CNN at position j in the sequence. In a traditional 1-dimensional convolution, fi is a
linear function of

{f(j−2), f(i−1),(j−1), f(i−1),j , f(i−1),(j+1), f(i−1),(j+2)}.

In a dilated convolution with dilation rate r, it is a function of

{f(i−1),(j−2r), f(i−1),(j−r), f(i−1),j , f(i−1),(j+r), f(i−1),(j+2r)}.

At each layer of our CNN, r is increased by a factor of k, so the overall receptive field size
of the CNN is exponential in its depth. Specifically, if the model has n1 non-dilated layers
followed by n2 dilated layers, k is the kernel width and r the dilation rate, then the receptive
field size is k + 2(k − 1)(n1 − 1) + 2(k − 1)

∑n2
i=1 r

i. These terms correspond to the first
layer, the remaining non-dilated layers, and the dilated layers respectively.

4

Supplementary Fig. 2 illustrates the relationship between receptive field size and classifi-
cation accuracy of the resulting ProtCNN model for the Pfam seed dataset.

Model Invariance to Padding

At both train and test time, our model processes sequences in batches. The batches are
of variable length, so input one-hot sequences are padded with zeros before being stacked
together in a rectangle that can be processed in parallel on a GPU (see Fig. 5C. It is
imperative that our model’s predictions are insensitive to the padding, as the amount of
padding depends on the other sequences in the batch (we pad to the longest sequence in
the batch). For RNNs, this can be achieved by ending the recurrence of the RNN at the
end of the un-padded sequence. For CNNs, our model maintains an L× F array of features
at every layer, where each column corresponds to a specific location in the input sequence.
Before each convolution or batch normalization operation, we zero-out the features in any
location that corresponds to padding in the input sequence. This ensures that the model’s
predictions are insensitive to padding at test time. However, the dynamics of training our
CNNs are still effected by padding, since batch normalization computes feature averages
across the length of the sequence, and these lengths vary due to padding.

Neural Network Hyperparameters

Our embedding network architectures involve a variety of hyperparameters as outlined in
Supplementary Table 3. For all networks, the “dev” fold is used to identify the optimal
hyperparameter settings, while model performance statistics are reported using the com-
pletely distinct “test” fold. The CNN hyperparameters are tuned using values sampled at
random from each hyperparameter search range, reported in Supplementary Table 2. The
number of searched values is reported in Supplementary Table 5. We carried out an initial
study that identified the most promising architecture. Supplementary Fig. 2B illustrates
hyperparameter tuning.

We studied the impact of different hyperparameter settings on ProtCNN. As shown in
Supplementary Table 2 we also allowed the batch size to vary, and introduced additional
learning rate decay parameters in this study. Moreover, the number of filters was greatly
increased, and the number of layers was allowed to vary as a hyperparameter. These
modifications helped to maximize the performance of ProtCNN in terms of accuracy.
However, they made the resulting model more difficult to interpret, in the sense that it
became difficult to attribute increases in performance to specific parameters such as the size
of the receptive field.

Supplementary Table 4 shows the ProtCNN hyperparameters used for the Pfam full
dataset. For the RNN models, we tuned the hyperparameters jointly using Bayesian
optimization with a Gaussian process regressor [41]; see Supplementary Table 5 for the
number of searched values, Supplementary Table 3 for the values, and Supplementary

5

Model Type Hyperparameter Search Range
ProtCNN batch size 32, 64, 128, 256

dilation rate 1, 2, 3, 5
filters 300 thru 3000, increments of 100

ResNet block of first dilated layer 2, 3
kernel size 3, 7, 9, 11, 21, 31

ResNet layers 1 thru 6
learning rate 1e-05, 5e-05, 1e-4, 5e-4, 1e-3

learning rate decay steps 1e3,1e4,1e6, decay off
pooling max, mean

1, 2 ResNet
block CNN dilation rate 1, 2, 3, 5

filters 150 thru 500, increments of 50
ResNet block of first dilated layer 2, 3

kernel size 3, 7, 9, 11, 21, 31
learning rate 1e-4, 5e-4, 1e-3

pooling max, mean
RNN learning rate 1e-4, 5e-4, 1e-3

number of hidden units 25 thru 2048, increments of 1
pooling max, mean

kmer embedding rank 100, 1000, 10000
learning rate 1e-4, 5e-4, 1e-3
ngram order 1 thru 5

Table 2: Search ranges for hyperparameter values, by model.

6

2 Block 1 Block RNN
ProtCNN CNN CNN

batch size 32 64 64 64
dilation rate 3* 2*

filters 1100* 500* 500*
first dilated layer 2* 2*

gradient clip 1 1 1 1
kernel size 21* 31* 31*

Number hidden units 1244*
learning rate .0001* .001* .0001* .0005*

learning rate decay rate 0.997 0.997 0.997 0.997
learning rate decay steps 1000* 1000 1000 1000

learning rate warmup steps 3000 3000 3000 3000
number of ResNet layers 5* 2 1 1

pooling max* max* max* mean*
ResNet bottleneck factor 0.5 0.5 0.5

train steps 500000** 400000 400000 300000

Table 3: Hyperparameters used in neural networks for Pfam seed dataset. Column headers
are model-type. An asterisk denotes a tuned value. Two asterisks denote that the model
was overfit, and the number of tuning steps was chosen post-hoc so as to maximize dev-set
performance.

7

ProtCNN
batch size 64
filters 2000*

first dilated layer NA
gradient clip 1
kernel size 21*

learning rate .001*
learning rate decay rate 0.997
learning rate decay steps 1000*

learning rate warmup steps 3000
pooling max*

ResNet bottleneck factor 0.5
train steps 1100000**

Table 4: Hyperparameters used in neural networks for Pfam full dataset. An asterisk
denotes a tuned value. Two asterisks denote that the model didn’t necessarily converge, but
was ended after a reasonable time training (17 days).

Table 2 for the search ranges. RNNs using the final sequence-dimension LSTM cell output
could only predict the mode of the distribution, however using the mean or max across the
sequence dimension fixed this inability to propagate features through time. Increasing the
number of layers did not improve performance, additional RNN hyperparameter settings
are provided in Supplementary Table 3. It was hard to find RNN configurations with stable
training dynamics, and RNNs took substantially longer to train. Furthermore, while CNN
computations can be parallelized along the length of the sequence, RNN computations must
be done sequentially, resulting in considerable slowdown for long sequences.

Model Type Search Algorithm Approx. number of samples
CNN (all depths) random sampling 17000 †

RNN Gaussian process 250
kmer random sampling 50

Table 5: Search algorithms and number of samples for hyperparameter tuning, by model. †
Many of these configurations were not feasible, as they did not fit in GPU memory.

8

a b

c d

e f

Figure 2: (A) Effect of receptive field on accuracy in a dilated residual network (ProtCNN).
This experiment used a fixed batch size so as to decrease the number of “noise” parameters
to maximize over. (B) A graph illustration of hyperparameter configurations of a ProtCNN
model that achieve > 95% accuracy. (C) Predictive accuracy on the held out Pfam seed
test data as a function of the number of ensemble elements. (D) Accuracy of training many
replicates as ensemble elements on the Pfam seed training dataset, e.g. a value at 100K
on the x-axis indicates the model’s accuracy on the test set after seeing 100,000 training
minibatches. E, F) Histogram of percentage agreement on predicted element among all
ensemble elements for (E) incorrect predictions, and (F) all predictions.

9

ProtENN Analysis

Supplementary Fig. 2A shows the rapid increase in accuracy at sequence classification for
the Pfam seed dataset as a function of the number of ProtENN elements, with saturation at
about 13 models. The training of our neural networks was subject to a couple of sources of
stochasticity: variable initializations, example ordering, and floating point computations on
GPUs. As such, a natural question to ask is “How repeatable is the training of these neural
networks?” The accuracy is very stable: even with different hyperparameters (Supplementary
Fig. 2B), the networks’ final accuracies were very close. Moreover, you can see multiple
ensemble elements (replicates) of identical hyperparameter configurations in Supplementary
Fig. 2C. However, as reported in the main text, the actual sequences that were misclassified
were less stable, leading us to employ the use of an ensemble.

To describe the extent to which the predictions of each model in ProtENN agree, we
calculate the ensemble consensus as the ratio of votes for a particular label divided by the
number of ensembled elements. We report this statistic for both misclassified sequences,
and over the entire test dataset in Supplementary Fig. 2E and F. These figures show that
on the whole, the ensemble elements agree with each other. However, there is a nontrivial
tail of disagreement, which sometimes resulted in an incorrect prediction.

In particular, we found that there were 11 sequences that were classified incorrectly
in exactly the same way by every element of the ensemble used for ProtENN, listed in
Supplementary Table 6). Our analysis of these sequences suggested that there may be
some ambiguity over their correct family label in each case. For example, the sequence
R7EGP4_9BACE/13-173 has a 100% identity match (found in UniProtKB) to a sequence
that is classified as belonging to the YIP family. Moreover, this sequence has been in-
dependently annotated with a Gene Ontology term GO:0016021 (integral component of
membrane), which matches that of the YIP family.

In a second example, the true family for Q7UQN3_RHOBA/655-688 and Q9VRV2_
DROME/636-669, PF07719, has the following description: This Pfam entry includes outlying
Tetratricopeptide-like repeats (TPR) that are not matched by PF00515. This indicates that
this family was created because there were TPR domains that didn’t match the HMM for
PF00515. This finding is significant because ProtENN was able to correctly “smooth” over
the noise in the training labels, and classify this protein as a member of PF00515. In a
third example, the true family description for A0A1U8BSR7_MESAU/33-212 describes that
this family is only for amphibian domains, but MESAU is a not an amphibian. Moreover,
the predicted family is also a Novel AID APOBEC clade 1, but allows other species than
mammals. This leads us to believe that the correct label is indeed the label chosen by
ProtENN. annotating newly sequenced organisms to understand the functional capabilities.

10

sequence name
predicted label
family name

true label
family name

A0C5A2_PARTE/441-468
PF00036.32
EF_Hand_1

PF13202.6
EF_Hand_5

B2V696_SULSY/121-156
PF00132.24
HEXAPEP

PF14602.6
HEXAPEP2

R7EGP4_9BACE/13-173*
PF04893.17

YIP1
PF06930.12
DUF1282

H0W9E2_CAVPO/1073-1095 †
PF00560.33
LRR_1

PF05923.12
APC repeat

Q7UQN3_RHOBA/655-688 †
PF00515.28

TPR
PF07719.17
TPR_2

Q9VRV2_DROME/636-669
PF00515.28

TPR
PF07719.17
TPR_2

C5FK45_ARTOC/187-218
PF00023.30

ANK
PF13606.6
ANK_3

Q9T217_BPPHC/205-280
PF01751.22
Toprim

PF13662.6
Toprim_4

A0A1U8BSR7_MESAU/33-212 ‡
PF18778.1
NAD1

PF18782.1
NAD2

Q01NX2_SOLUE/7-54
PF13400.6

TAD
PF07811.12

TADe

F6ZV43_XENTR/909-973
PF00536.30
SAM_1

PF07647.17
SAM_2

Table 6: The 11 test sequences that all ensemble elements classify incorrectly, in exactly
the same way. ∗ This sequence (annotated as belonging to a DUF) is likely a YIP. † These
sequences were split into a different family due to the inability of a single HMM to match
all elements with this function. ‡ The true label in Pfam may be incorrect, and instead be
the predicted label.

11

Comparison of Model Accuracy

In the main text, we benchmark Pfam seed dataset sequence classification task. Here we
provide the same analysis using classification accuracy instead of error rate. In Supplementary
Fig. 3A we plot the accuracy of sequence classification for the Pfam seed heldout test dataset
as a function of the pairwise sequence identity with the closest sequences in the training
set as measured using BLASTp. The pairwise sequence identities for each of the 126171
heldout test sequences are binned into 10 equal sized deciles, and the average accuracy for
each model in each bin is plotted.

In Supplementary Fig. 3B we report the accuracy as a function of the family size in the
unsplit Pfam seed dataset. Again, the sequences are split into equal sized deciles based on
family size, and the average accuracy in each decile is reported.

a b

c d

Figure 3: Performance accuracy for the Pfam seed dataset as a function of (A) the distance
to the nearest training sequence, as measured using BLASTp, and (B) as a function of family
size. Performance accuracy for the Pfam full dataset as a function of (C) the distance to
the nearest training sequence, as measured using BLASTp, and (D) as a function of family
size.

We note that the error rate of all models increases in the last decile of pairwise sequence

12

phmmer
hmmsearch
with filters

hmmsearch
--max BLASTp ProtCNN

Seed train time 9 minutes 9 minutes 24 seconds 3 days
Always
produces
prediction? no no yes no yes

Hardware

12-core Intel
Xeon CPU
3.6 GHz

12-core Intel
Xeon CPU
3.6 GHz

12-core Intel
Xeon CPU
3.6 GHz

12-core Intel
Xeon CPU
3.6 GHz

P100
GPU

Hyperparameters
tuned for
improved

inference speed

Batch size: 131
Coroutines: 8

Cpus/Thread: 9 Coroutines: 12 Coroutines: 12 Threads: 12

Table 7: Additional information about inference experimental setup.

identity for the held out test sequences from Pfam seed. The Pfam seed sequence sets
are constructed such that different sequences within the same family are typically at least
80% different from one another [40]. The final decile spans 78.3%-100% pairwise identity,
meaning that sequences in this decile will, in many cases, be closer in terms of sequence
identity to a member of a different family than to their own. This finding further reflects
the fact that pairwise sequence identity as computed by BLASTp is not a perfect classifier.

For the split of Pfam full, we also observe this reduction in accuracy for BLASTp
in the last decile (see Supplementary Fig. 3C). Here, the situation is different and there
is no threshold on sequence identity within each family. This is reflected by the fact
that sequences within the last decile have between 98.7% and 100% reported identity (for
the highest scoring pair found in the database as reported by BLASTp) with elements
in the training set. There is another factor involved in the reduction of performance of
BLASTp within this decile, which is that some sequences in the dataset are sub-sequences
of others. Where the sub-sequence is in the test set, BLASTp measures “100%” sequence
identity with the super-sequence contained in the training set. Discerning the correct
classification in these cases can be quite difficult. For example, in Pfam full, one of the
test sequences is A0A010NMM2_9MICC/241-409, and one of the training sequences is
A0A010NMM2_9MICC/4-495. In this case, the former sequence has is identical to part
of the latter, but it is classified differently by Pfam: the test sequence is the NAD binding
domain of AdoHcyase, while the latter is the full AdoHcyase domain. This may explain
some of the difficulty that BLASTp has with sequences that are very similar to those in the
training set.

13

Computational Performance

Model Error Analysis

Supplementary Fig. 4 and Supplementary Table 8 provide further analysis of the type of
errors made by the HMM top pick, ProtCNN and ProtENN on the Pfam seed sequence
classification task. We note that the HMM top pick model tends to make errors for both
small and large families. In particular, it makes errors for many more families with more
than 100 members than either ProtCNN or ProtENN, as shown by comparing the figures in
the left panels of Supplementary Fig. 4.

Number wrong
predictions Imperfect families

Avg imperfect
family size

HMMer 1784 392 1091
ProtCNN 625 550 127
ProtENN 201 164 141

Table 8: Errors made by HMMer and CNN models.

To understand this in more detail, in the right panels of Supplementary Fig. 4 we further
break out the number of incorrect predictions made by each model type for families of
different sizes. These figures show that the HMM top pick model tends to make multiple
errors per family. In contrast, both ProtCNN and ProtENN tend to make just one error
per family in the majority of cases. This is further illustrated by the statistics given in the
main text, which reveal that the HMM top pick model makes an average of 4.55 errors
per imperfect family, while in contrast ProtCNN makes an average of just 1.14 errors per
imperfect family, while ProtENN makes 1.23 errors per imperfect family.

Concordance with known science

As reported in the main text, we challenged ProtENN trained on the Pfam full dataset
to distinguish between single amino acid variants of protein domain sequences. Using the
above method, we examined the purported helical propensity of each amino acid in the
transmembrane regions (the amino acids whose substitutions least changed the predicted
function of the domain), and found that the list, from most to least favored, is VLIAM
FTWCY SNGQH PRDKE. The fact that the charged amino acids, along with proline, are the
least favored is in accord with our understanding of 1) the unfavorability of polarity in the
transmembrane region; 2) the sharp binding angle of proline. We also note the visual effect
of substituting glycine is much like that of substituting proline: we know that glycine has
low helical propensity [42].

For reference, the wild-type sequences that were used for Figures 4B and Supplementary
Fig. 5 are available in the above table.

14

a b

c d

e f

Figure 4: Comparison of errors made by the different models: A, B: HMM top pick; C,
D: ProtCNN; E, F: ProtENN. We note that the HMM tends to make multiple errors for
specific, and often quite large Pfam classes. In contrast, the ProtCNN model tends to make
spurious errors for many small Pfam classes, and the specific errors made vary between
different replicate models. This leads to the performance increase observed for ProtENN.

15

Sequence Name Residues Sequence

AT1A1_PIG 161-352

NMVPQQALVIRNGEKMSINAEEVVVG
DLVEVKGGDRIPADLRIISANGCKVD
NSSLTGESEPQTRSPDFTNENPLETR
NIAFFSTNCVEGTARGIVVYTGDRTV
MGRIATLASGLEGGQTPIAAEIEHFI
HIITGVAVFLGVSFFILSLILEYTWL
EAVIFLIGIIVANVPEGLLATVTVCL

TLTAKRMARK

V2R_HUMAN 54-325

SNGLVLAALARRGRRGHWAPIHVFIG
HLCLADLAVALFQVLPQLAWKATDRF
RGPDALCRAVKYLQMVGMYASSYMIL
AMTLDRHRAICRPMLAYRHGSGAHWN
RPVLVAWAFSLLLSLPQLFIFAQRNV
EGGSGVTDCWACFAEPWGRRTYVTWI
ALMVFVAPTLGIAACQVLIFREIHAS
LVPGPSERPGGRRRGRRTGSPGEGAH
VSAAVAKTVRMTLVIVVVYVLCWAPF
FLVQLWAAWDPEAPLEGAPFVLLMLL

ASLNSCTNPWIY

Table 9: Wildtype sequences, keyed by Uniprot ID, that were used for saturation mutagenesis
predictions.

Figure 5: Predicted change in function for each missense mutation in vasopressin domain
V2R_HUMAN/54-325 from family PF00001.21. The x-axis is residue indices in the protein
P30518 (the domain starts at index 54), the y axis is the substitution of a particular amino
acid, and a dark color saturation describes a large predicted change in function.
The model (trained on Pfam-full) appropriately predicts that substituting proline, glycine,
or charged amino acids in the transmembrane helix regions is very likely to change the
function of the protein substantially.

16

Few Shot Sequence Classification

As described in the main text, we construct F -dimensional embeddings using an embedding
network consisting of all but the final layer of a pretrained CNN. Protein embeddings may,
for example, provide annotation for various domains of unknown function or help avoid
overfitting when performing supervised learning using small labeled datasets.

We evaluate our embeddings in terms of their ability to provide accurate nearest-neighbor
classification. When confronted with a new sequence, we compute its embedding and find
proteins with known labels that have nearby embeddings. This approach is fundamentally
different than using a CNN for classification, where we are constrained to only predict
families that were seen during model training. Along the lines of popular tools such as
BLAST or phmmer, we can perform nearest neighbors classification with any set of proteins
and any annotation scheme, independent of how the embedding network was trained. A
key difference is that we avoid direct comparisons between sequences and instead compute
similarity in terms of embeddings, which uses linear algebra routines that can be accelerated
substantially using modern hardware. The shared model has been trained across Pfam
families, so that general protein sequence statistics need not be rediscovered from a few
examples of the novel family, but instead can be used as a prior from which the statistics of
the novel family can be derived.

Table 4 evaluates the performance of nearest-neighbor classification in embedding space
using the ProtCNN embedding network on the above randomly-split set of Pfam seed
sequences. We first train ProtCNN using the procedure described in the main text, leaving
out small families from the training set, and discard the final layer. Then, we compute the
output of this embedding network for every sequence in the training set and compute a
linear whitening transformation such that their covariance becomes the identity.

Then, we compute whitened embeddings for test-set sequences. We consider three
classification methods. Per-Instance 1-NN performs 1-nearest-neighbor classification using
cosine similarity between whitened embeddings. In Per-Family 1-NN, we first pre-compute
an average whitened embedding for every family in the train set, and then form a prediction
for a test sequence by finding the nearest neighbor between the embedding of a sequence
and the set of average embeddings. This approach is desirable because its computational
complexity scales with the number of families (the same as prediction in the original CNN)
instead of with the number of training examples. Per-Instance 1-NN is analogous to
classification with phmmer or BLASTp, whereas in terms of computational complexity
Per-Family 1-NN is analogous to using HMMER.

17

