
Islam and Sarwar

Identifying Brain Region Connectivity using
Steiner Minimal Tree Approximation and a
Genetic Algorithm
Syed Islam1 and Dewan M. Sarwar2*

Abstract

Background: Computation and visualization of connectivity among the brain regions is vital for tasks such as
disease identification and drug discovery. An effective visualization can aid clinicians and biologists to perform
these tasks addressing a genuine research and industrial need. In this paper, we present SMT-Neurophysiology,
a web-based tool in a form of an approximation to the Steiner Minimal Tree (SMT) algorithm to search
neurophysiology partonomy and connectivity graph in order to find biomedically-meaningful paths that could
explain, to neurologists and neuroscientists, the mechanistic relationship, for example, among specific
neurophysiological examinations. We also present SMT-Genetic, a web-based tool in a form of a Genetic
Algorithm (GA) to find better paths than SMT-Neurophysiology.

Results: We introduce an approximation to the SMT algorithm to identify the most parsimonious connectivity
among the brain regions of interest. We have implemented our algorithm as a highly interactive web
application called SMT-Neurophysiology that enables such computation and visualization. It operates on brain
region connectivity dataset curated from the Neuroscience Information Framework (NIF) for four species –
human, monkey, rat and bird. We present two case studies on finding the most biomedically-meaningful
solutions that identifies connections among a set of brain regions over a specific route. The case studies
demonstrate that SMT-Neurophysiology is able to find connection among brain regions of interest.
Furthermore, SMT-Neurophysiology is modular and generic in nature allowing the underlying connectivity
graph to model any data on which the tool can operate. In order to find better connections among a set of
brain regions than SMT-Neurophysiology, we have implemented a web-based tool in a form of a GA called
SMT-Genetic. We present further three case studies where SMT-Genetic finds better connections among a set
of brain regions than SMT-Neurophysiology. SMT-Genetic gives better connections because SMT-Genetic
finds global optimum whereas SMT-Neurophysiology finds local optimum although execution time of
SMT-Genetic is higher than SMT-Neurophysiology.

Conclusion: Our analysis would provide key insights to clinical investigators about potential mechanisms
underlying a particular neurological disease. The web-based tools and the underlying data are useful to
clinicians and scientists to understand neurological disease mechanisms; discover pharmacological or surgical
targets; and design diagnostic or therapeutic clinical trials. The source codes and links to the live tools are
available at https://github.com/dewancse/connected-brain-regions and
https://github.com/dewancse/SMT-Genetic.

Keywords: Brain regions connectivity; Steiner Minimal Tree; Genetic Algorithm; SMT-Neurophysiology;
SMT-Genetic

Background
Brain systems are inherently complex. Such systems
are comprised of various functional networks that en-
able connections among different regions of the brain.
Computational models are essential to be able to dis-
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cover the brain regions relationships that define the

points of integration among the regions. Such relation-

ships could be anatomical and functional [1], and can

be formed into graphs [2]. Computational graph the-

ory can be used to identify connectivity paths in such

graphs, where the biological entities are represented

as nodes and the relationships are represented as the

edges of the graph.
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Developing computational models about neurophys-
iology (i.e. about brain structure and function) is one
of the major challenges in biomedicine. As a result
of this challenge, neurologists and neuroscientists still
have a number of unmet requirements in neurophysi-
ology knowledge management. For instance, one of the
key requirements is to consistently represent the rela-
tionship between (i) the results of neurophysiological
examination carried out in the clinic and (ii) brain
structures that are functionally responsible for the be-
haviour elicited by this examination. The ability to
curate such information in a form of a graph where
parsimonious routes can be inferred are useful to clini-
cians and basic scientists who want to understand neu-
rological disease mechanisms to: a) further investigate
cause and complications of a pathology, b) discover
pharmacological or surgical targets to interfere with
the mechanism of the disease, and c) design diagnostic
or therapeutic clinical trials for a particular condition.
For example, understanding brain region connectivity
is vital to progress disease identification and preven-
tion: alzheimer’s disease [3, 4], parkinson’s disease [5];
or drug discovery [6, 7].

An effective connectivity identification and visualiza-
tion tool can aid clinicians and biologists to address
a genuine research and industrial need. We have de-
veloped a web-based tool, SMT-Neurophysiology, that
carries out calculations over a neurophysiology graph
to find biomedically-meaningful paths, that could ex-
plain, to neurologists and neuroscientists, the mech-
anistic relationship, for example, among specific neu-
rophysiological examinations. In particular, this tool
takes into account a neurophysiology graph of the mul-
tiscale structural organization of the brain in terms of
regions (nodes), and parthood and connectivity rela-
tions among these regions (edges). It enables computa-
tion and visualization of connectivity among different
regions of the brain. Pharmaceutical companies can
use this tool for the development of disease biomarkers
(e.g. radiological image markers) or drugs that target
proteins expression in particular brain regions.

SMT-Neurophysiology is able to identify and visual-
ize the parsimonious connectivity links in a form of
an approximation to the SMT [8] algorithm among a
set of nodes that are of interest. SMT-Neurophysiology
finds connections among a given set of brain regions
via some intermediate brain regions over a neurophys-
iology graph. The neurophysiology graph on which our
instance of the tool operates was curated from the Neu-
roscience Information Framework (NIF)[1] [9].

However, in order to find better connections among
a given set of brain regions than SMT-Neurophysiology,
we have implemented a web-based tool in a form of a

[1]www.neuinfo.org

GA called SMT-Genetic. Here we have given priority
quality of solution over speed. SMT-Genetic wins in
this case because SMT-Genetic finds global optimum
whereas SMT-Neurophysiology finds local optimum, al-
though execution time of SMT-Genetic is higher than
SMT-Neurophysiology. As a proof of concept, we have
presented three case studies in this manuscript where
SMT-Genetic finds better connections among a set of
brain regions than SMT-Neurophysiology. The SMT-
Neurophysiology and SMT-Genetic have been developed
with highly interactive web applications that visualize
brain connectivity data in a form of a graph and search
for connectivity regions in response to user requests.

Prior research [10, 11] has shown that it is possible to
identify the most densely area of connected brain re-
gions. These regions are known as hubs that coordinate
centrally with other regions with a view to stimulating
overall brains functionality. Hubs play a vital role in
making overall brain pathways and thus play high cost
global network [12]. Because of such complex connec-
tivity, brain regions form correlation by which most
biomedically-meaningful relationships can be inferred
from different test cases [13, 4]. A biology inspired al-
gorithm for Steiner tree problem in networks have been
proposed in [14]. By using the Steiner tree, authors op-
timized a physarum network. Physarum is a amoeba
like tubular structure organism.

A computer simulation tool for folding RNA path-
ways using a GA have been proposed in [15]. The path-
ways are grown up based on the mutation, crossover
and fitness function. This tool is a useful resource for
predicting the RNA folding structure, as well as for
knowing the RNA features. In [16], protein folding has
been illustrated. Initially, GA starts with N number
of structures and makes more organized and compact
in each generation. Ideally, local regions are folded
first and then moved on to the neighbours for fold-
ing. [17] presented a prediction technique of small pro-
teins based on sequence and secondary structure using
GAs. Another study in [18] investigated identification
of various conformation regions in protein molecules
using GA. [19] presented a GA for docking molecules
of low energy conformation while binding proteins. In
this case, GA could find an optimal connection among
protein molecules in a large search environment.

The remainder of this paper is organized as fol-
lows: Implementation section discusses the motivation
of identifying brain regions connectivity and provides
a brief background of the NIF curated dataset, the
Steiner tree problem and the genetic algorithm. Re-
sults section introduces SMT-Neurophysiology, SMT-
Genetic, as well as presents some research questions
and case studies. Discussion and Conclusions section
summarize the work presented in this manuscript, as
well as make concluding remarks.
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Implementation
In order to support the management, querying and ar-
ticulation of data about the connectivity relationships,
we have developed web-based tools that take into ac-
count: a “neurophysiology” graph of the multiscale
structural organization of the brain in terms of regions
(nodes), and its parthood and connectivity relations
among these regions (edges). The creation of a neu-
rophysiology graph that covers the majority of brain
regions’ parthood and connectivity knowledge required
the sourcing of neuroanatomical datasets from differ-
ent organisms, including human, monkey, rat and bird.

The analysis of neurophysiology datasets (e.g. from
clinical trials for specific disease patient populations)
can elicit statistical inter-dependencies between the
scores of two or more neurophysiological tests (e.g.
when the score of test A increases, the scores of tests B
and C decrease). Inferring connectivity links from such
statistical associations provide key insights to clinical
investigators about potential mechanisms underlying a
particular neurological disease and which mechanisms
can be targeted by specific therapies to slow or reverse
the progress of brain pathology.

Our first goal was to develop a knowledge represen-
tation scheme from the NIF dataset in a form of a
graph. This would enable the application of graph the-
ory to infer hidden structures, links and dependencies.
Our goal was then to allow visualization of connec-
tivity networks using a highly interactive web appli-
cation enabling easier understanding and interpreta-
tion of the underlying dataset. Functional properties
of SMT-Neurophysiology is to meet these goals as fol-
lows:
1 Data Model - SMT-Neurophysiology should be

able to operate on any undirected graph. Our in-
stance uses a graph representing the brain regions
as nodes and inter-regional relationships as edges,
where edge weights are assigned based on the rep-
resented species. The graph model has the follow-
ing properties:
(a) a neurophysiological test may be linked to a

number of brain regions;
(b) a brain region may be bridged to another

brain region via multiple routes;
(c) the size of the dataset is such that applying

the multiple constraints to ensure the result-
ing path is biomedically-meaningful is diffi-
cult to achieve manually and reproducibly.

2 Operations - SMT-Neurophysiology operates on
an Input Set (IS) of neurophysiological tests
that correlate (e.g. tests A, B and C) in or-
der to generate a mechanistic hypothesis of the
most biologically-meaningful explanation of why
the tests in the IS correlate with one another.

These mechanistic hypotheses output from SMT-
Neurophysiology take the form of a path over
the neurophysiology graph, such that this path
bridges neurophysiological test-linked brain re-
gions over their parthood and connectivity rela-
tions. SMT-Neurophysiology takes into account ex-
plicit criteria that ensure that the resulting path
offers a biomedically-meaningful hypothesis by se-
lecting sets of edges that favour:
(a) parsimony: the smallest number of steps in

a path,
(b) relevance: brain connectivity that relies

predominantly on human rather than data
from other organisms, and

(c) specificity: brain regions that are specifi-
cally associated with the clinical indices in
the IS, as compared to the rest of the neuro-
physiological tests in the clinical mapping.

Knowledge Representation
The brain regions dataset are curated from the NIF
dataset to identify brain regions routing. Table 1
presents a sub-section of the NIF dataset and Figure
1 visualizes a sub-section of brain regions connectiv-
ity. From the dataset, we extracted brain regions and
species (column B, C and D in Table 1), and then
curated them into a JSON format [2] in order to con-
struct a graph. In this graph, brain regions and the
relationships are represented as nodes and edges, re-
spectively. Specifically, edges have four attributes: first
brain region, second brain region, weight and species.
Weights of edges have been assigned arbitrarily as fol-
lows: 1 (homo sapiens), 2 (macaque), 5 (rat) and 7
(bird) where lower weight means higher priority, as
shown in Table 2.

We have found seven species in the NIF dataset: hu-
man (homo sapiens), monkey (macaque, macaca mu-
latta, macaca fuscata), rat (rat, rattus norvegicus)
and bird. For simplicity, we have curated four species
in our JSON format by considering monkey species
as macaque and rat species as rat: homo sapiens,
macaque, rat and bird. The brain regions dataset con-
sists of 1449 nodes and 16243 edges. The minimum,
average and maximum outgoing edges are 1, 14 and
196, respectively presented in Table 2.

Steiner Tree Problem
The Steiner tree [8] problem is a classical combinato-
rial optimization problem in graph theory. This prob-
lem is illustrated as follows: given a weighted graph
with some specified vertices (i.e. terminals), idea is to

[2]https://raw.githubusercontent.com/dewancse/SMT-
Genetic/master/data.json
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Table 1 A sub-section of brain regions Neuroscience Information Framework (NIF) dataset: column A (project/organization), B
(first brain region), C (second brain region; brain regions B and C are connected), D (species), E (NIF Id for each record or
database), F (Pubmed reference). We have curated column B, C and D from the NIF dataset.

Project/Organization (A) Brain region (B) Brain region (C) Species (D) NIF ID (E) PubMed ID (F)
ConnectomeWIKI entorhinal cortex subiculum homo sapiens nif-0000-24441
ABCD tegmentum nucleus papillioformis bird nif-0000-00386 PMID:12655512
BAMS precommissural nucleus medullary reticular nucleus dorsal part rat nif-0000-00018 PMID:10331578
ConnectomeWIKI medial entorhinal area lateral entorhinal area rattus norvegicus nif-0000-24441
BAMS ventral posterior visual area v4 macaque nif-0000-00018 PMID:1822724
BrainMaps reticular nucleus of thalamus ventral anterior nucleus of thalamus macaca mulatta nif-0000-00093
ConnectomeWIKI visual area 1 visual area 2 macaca fuscata nif-0000-24441

Table 2 Subgraph statistics of brain regions dataset curated from the Neuroscience Information Framework (NIF)

Nodes Edges Edge count Out-/in-degree Species Edge weight

1449 16243 19772 min: 1 homo sapiens 1
avg: 14 macaque 2
max: 196 rat 5

bird 7

find a subgraph spanning all the terminals via some in-
termediate vertices (i.e. Steiner points). By doing so,
it tries to achieve two properties: connectivity – ter-
minals must be connected; and optimization – find a
minimum cost subgraph called minimum Steiner tree
or Steiner Minimal Tree (SMT) where cost is the sum
of edge weights.

Steiner Minimal Tree
As discussed above, SMT finds connections among a
set of terminals in order to achieve connectivity and
optimization properties. SMT was first introduced in
[20], and later SMT was discussed in a book [21] which
brought attention to a large community. SMT is an
NP-complete problem [22], therefore, does not guar-
antee an optimal solution. There are two special cases
in SMT: if the terminals consist of two vertices, then
SMT can be solved using Dijkstra’s shortest path algo-
rithm [23]. Secondly, if the terminals consist of all the
vertices of a graph, then SMT converges to a Minimum
Spanning Tree (MST) problem. We have introduced an
approximation to the SMT in order to identify the par-
simonious connectivity among a set of brain regions of
interest.

Genetic Algorithm
Genetic algorithm (GA) is an evolutionary algorithm
which solves search and optimization problems [24].
It is a process of iteratively recombining and reusing
current instances of a problem. GA solves a problem
by using some genetic concepts and operators: chro-
mosome, population, seed, mutation, crossover, gener-
ation, and fitness function. A chromosome is a set of
parameters in a form of binary or string that proposes
a solution to the GA. Population is a set of chromo-
somes. Initial population is made from a set of chro-
mosomes which is a seed for the GA. Execution time

varies depending on the size of the chromosomes. Num-
ber of iterations is called generations. On each genera-
tion, chromosomes perform mutation – swapping bit(s)
in a chromosome; crossover – recombination of bits of
two parents chromosomes; and fitness function which
computes a score to evaluate an optimal solution. GA
terminates when a number of generations is executed.
In general, the skeleton of a GA is as follows:
1 Choose an initial population of chromosomes

which is a seed and evaluate the fitness function
of each chromosome in the seed.

2 Crossover and Mutate chromosomes in the popu-
lation.

3 Evaluate the fitness function of each chromosome
in the population.

4 Select chromosomes to make a new population.
5 Exit if stopping condition or goal is met, otherwise

go back to step 2 and continue.

Greedy Algorithm
Greedy algorithm uses a heuristic to find a local op-
timal at each stage of a problem in order to find a
global optimal solution [25]. Greedy algorithm is sim-
ple because of such computation and is useful for many
applications. However, it can not always give an opti-
mal solution. We have presented an example in Fig-
ure 5 where we applied a GA, SMT-Genetic which is
a global solver, instead of our greedy algorithm, the
SMT-Neurophysiology.

Results
SMT-Neurophysiology
We have implemented an approximation to the SMT
algorithm named as SMT-approx to identify the par-
simonious connectivity among a set of brain regions.
SMT-approx operates on a brain region dataset cu-
rated from the NIF dataset for four species – hu-
man, monkey, rat and bird, as discussed above in the
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Figure 1 Visualization of a sub-section of brain regions connectivity curated from the Neuroscience Information Framework (NIF)
dataset. On the top left corner, different colors with name of species have been used to identify biological relationships among the
brain regions represented as nodes with respect to species as edges in the graph.

Knowledge Representation section. It finds a connec-
tion among a set of nodes called required nodes or ter-
minals, either directly or via some intermediate nodes
which are known as Steiner points. SMT-approx’s edge
weights are positive integers and it is an undirected
graph algorithm.

SMT-approx works as follows: each required node
searches for other required nodes. When this search is
successful, some of the required nodes is able to find
the other required nodes, either directly or via some
intermediate nodes. As such, SMT-approx forms and
marks the corresponding paths as visited. These paths
have been recorded as part of a solution. SMT-approx
is presented in Algorithm 1. It takes nodes, edges, and
required-nodes as input. Nodes is an array of brain
regions and Edges is an array of four attributes: first
brain region, second brain region, weight, and species.
Required-nodes is an array of brain regions which must
be connected either directly or via some intermediate
brain regions.

SMT-approx executes N simultaneous breadth-first
search (BFS) [26], one for each required node. That
means, each required node maintains a separate first
in first out (FIFO) queue. BFS continues until some-
thing is found or until exhaustion occurs. Exhaustion
will occur when all disconnected or unsolved required
nodes have empty FIFOs.

Specifically, each required node carries out 1-step of
the BFS in order to search for the other required nodes
unless that node is already recorded which means it is
already connected or solved. For example, if an un-
recorded path from a required node (n) meets an-
other required node (m), either directly or by meet-
ing a recorded path, then it records as part of a so-
lution. If the meeting was direct and m was not pre-
viously recorded, then the path records m too. If an
unrecorded path from a required node (n) indirectly
meets another required node (m) by meeting an un-
recorded path, then the union of the two unrecorded
paths records both n and m unless n = m in which
case then the unrecorded path has collided itself, so
stop growing it. If the solution graph is not connected,
it is then connected by a recursive method.

SMT-approx may not always find an optimal con-
nection because if two required nodes meet, then the
union of the two paths they take to reach that meet-
ing point gets added to the solution and those two
required nodes stop searching. If a required node does
not ever meet the other required nodes, it’s search gets
exhausted when it has searched its entire connected
component.

We have visualized the output of the SMT-approx
algorithm, SMT-Neurophysiology, in JavaScript using
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Figure 2 An instance of the SMT-Neurophysiology which uses the SMT approximation algorithm in the background to find
connections among a set of brain regions.

Data Driven Documents (D3)[3] library. D3.js facili-
tates interactive visualization of the brain regions con-
nectivity. Together with SMT-approx algorithm and
its visualization is named as SMT-Neurophysiology. An
illustrative example of SMT-Neurophysiology is shown
in Figure 2. On the left panel, brain regions have been
presented for the user to select. On the other hand,
right panel shows visualization of the connectivity path
between the selected brain regions. In order to distin-
guish between four species, we have used different col-
ors on the visualization panel, as shown on the top
left corner of the right panel. Red nodes represent re-
quired nodes which are selected by the user from the
left panel, whereas black nodes are non-required nodes
which connects the required nodes, as well as reduces
the overall length of the tree.

Initially, SMT-Neurophysiology is rendered with left
panel and an empty right panel. When the user se-
lects some brain regions from the the left panel, then
SMT-Neurophysiology executes SMT-approx algorithm

[3]https://d3js.org/

in the background and finds connectivity from the cu-
rated NIF dataset.

SMT-Neurophysiology: Case Study
The SMT-Neurophysiology finds connections among a
set of brain regions, although these connections may
not always be optimal because of greedy problem in
nature. For this reason, SMT-Neurophysiology deviates
from an optimal result. In order to address further,
two research questions are presented below:
RQ1: Can we identify brain regions connectivity paths
using the SMT-Neurophysiology?
RQ2: What is the performance of Dijkstra’s short-
est paths-based minimum Spanning tree to the SMT-
Neurophysiology?

RQ1: Can we identify brain regions connectivity paths
using the SMT-Neurophysiology?
This research question has been investigated based
on three case studies. The first two shows that SMT-
Neurophysiology is able to find optimal results, whereas
the third one does not find an optimal result. In order
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SMT-APPROX(nodes,edges,required-nodes)
Initialize nodes and edges
Instantiate queues for each required-node
while number of found required-nodes is less than total
number of required-nodes do

while execute 1-step of BFS for each required-node do
if required-node n meets required-node m then

add this path in solution and mark solved
increment found required-nodes
go back to the beginning of current section

end
if required-node n indirectly meets m then

if visited path collides with itself then
go back to the beginning of current section

end
add this path in solution and mark solved
increment found required-nodes
go back to the beginning of current section

end
mark current-node as visited
mark the required-node as a witness of the

current-node
add the path of the current-node

end
if all queues are empty then

go to next section
end

end
if solution is disconnected then

recursively connect the required-nodes
go to next section

end
return solution

Algorithm 1: Steiner Minimal Tree approximation
algorithm

to move on to further analysis, we have assumed the
following hypothesis:

SMT-Hypothesis:

1 The Input Set (IS) consists of tests A, B and C
2 A is linked with regions x, y; B is linked with y

and C is linked with w, z
3 region v is part of w
4 region v is connected to y on the basis of human

data, and region z is connected to y on the basis
of macaque data.

Then the most biomedically-meaningful solution
that explains why tests A, B and C correlate is a
mechanism over the following route: y connected to
w.

SMT-Neurophysiology: Case Study 1

Figure 3 shows a connectivity path and a correlation
among a set of brain regions spanning four species by
our web-based tool SMT-Neurophysiology.

Hypothesis-CS1:

1 The IS consists of tests A, B, C, and D

Figure 3 Connectivity path in SMT-Neurophysiology spanning
four species – homo sapiens, macaque, rat and bird with
weights 1, 2, 5 and 7 respectively.

2 A is linked with brain regions pallium, hippocam-
pus; B is linked with hippocampus, nucleus me-
dialis dorsalis thalami, entorhinal cortex, claus-
trum, visual area 1, dorsomedial visual area, nu-
cleus pulvinaris lateralis thalami, nucleus of the
posterior commissure; C is linked with nucleus
of the posterior commissure, precommissural nu-
cleus; and D is linked with visual area 1, visual
area 2;

3 regions hippocampus, visual area 1, and nucleus
of the posterior commissure are part of different
tests;

4 region hippocampus is connected to pallium on
the basis of birds data, and to nucleus medialis
dorsalis thalami on the basis of macaque data.
Similar explanations apply for the regions visual
area 1 and nucleus of the posterior commissure.

Then the most biomedically-meaningful solution
that explains why tests A, B, C, and D correlate is
a mechanism over the following route: hippocampus
is connected to visual area 2 and precommissural nu-
cleus.

SMT-Neurophysiology: Case Study 2
The second case study connects and correlates among
a set of brain regions spanning three species by SMT-
Neurophysiology tool, as shown in Figure 4.

Hypothesis-CS2:
1 The IS consists of tests A, B, and C
2 A is linked with brain regions flocculus, pontine

gray; B is linked with pontine gray, cortical ar-
eas 1 & 2, claustrum, visual area 1, nucleus pul-
vinaris lateralis thalami, nucleus of the posterior
commissure, orbitofrontal area 13, agranular area
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Figure 4 Connectivity path in SMT-Neurophysiology spanning
three species – homo sapiens, macaque and rat with weights
1, 2, and 5 respectively.

of temporal polar cortex; C is linked with visual
area 1, lateral geniculate body;

3 regions pontine gray, and visual area 1 are part of
different tests;

4 region pontine gray is connected to flocculus on
the basis of rat data, and to cortical areas 1 & 2
on the basis of macaque data. Similar explanation
applies for the region visual area 1.

Then the most biomedically-meaningful solution
that explains why tests A, B, and C correlate is a
mechanism over the following route: pontine gray is
connected to lateral geniculate body.

SMT-Neurophysiology: Case Study 3
As discussed earlier, SMT-Neurophysiology does not al-
ways find optimal connections. Figure 5 demonstrates
an example where on the left-side, a set of required
nodes (red colored) make a connection via 10 macaque
pathways, however, on the right-side, a better connec-
tivity has been found via 9 pathways for the same set
of required nodes. This happens because of the fact
that if two required nodes meet, then the union of the
two paths they take to reach that meeting point gets
added to the solution and those two required nodes
stop searching. If a required node does not ever meet
the other required nodes, its search gets exhausted
when it has searched the entire connected component.

RQ2: What is the performance of Dijkstra’s shortest
paths-based minimum Spanning tree to the
SMT-Neurophysiology?
Dijkstra is a single source shortest path algorithm.
In contrast, SMT-Neurophysiology finds connections
among multiple sources. Therefore, shortest path

strategy is not applicable to SMT-Neurophysiology.
Figure 6 shows two examples. First one is the SMT
of G where D is a Steiner point, and A, B, and C are
required nodes. Thus, total length of the SMT of G
is 12. On the other hand, second example presents G’
made of all shortest paths between the required nodes.
However, SMT of G’ is not same as the SMT of G.
Hence, if we consider shortest path strategy, we may
not find optimal connections among a set of required
nodes. For example, communication cost between B
and C in the second example costs 14, whereas it only
costs 8 in the first example.

SMT-Genetic
SMT-Neurophysiology uses a heuristic to find a good
approximation of the SMT algorithm. Taking shortest
path among all required nodes does not guarantee an
optimal solution, as illustrated in Figure 6. However,
GA should be able to overcome this problem by con-
sidering a longest distance between two required node
of an entire SMT-Neurophysiology output graph and
then expand that graph from each required node up
to that longest distance. In doing so, GA will be able
to find an optimal solution within the expanded graph
because GA is a global solver while greedy is a local
search algorithm.

In order to find better connections among a set of
brain regions than SMT-Neurophysiology, we have im-
plemented an extension in a form of a GA called SMT-
Genetic. SMT-Genetic is able to find an optimal SMT-
Neurophysiology for a given set of required nodes. How-
ever, SMT-Genetic deals with a large search space and
thus often requires a large execution time. Various
heuristics can be used to reduce such search space. To
reduce the search space, we have applied the following
heuristic: calculating a longest distance between two
required nodes (for example, n) and then restricting
the search space up to nth level by traversing through
the depth-first search (DFS) [27] algorithm, which is an
expansion of the SMT-Neurophysiology output. Con-
struction of the SMT-Genetic is presented below.

Design of Chromosomes
To design chromosomes with the NIF brain region
dataset, we have set ’1’ to represent connected edges
and ’0’ to represent disconnected edges. Figure 7 illus-
trates three examples of disconnected nodes’ calcula-
tion. In Figure 7 (a), node 1 is connected to node 2,
and each of them has 4 disconnected nodes. Similarly,
node 3, 4, 5, and 6 have 4, 4, 5, and 5 disconnected
nodes, respectively. Here all nodes are required nodes
and edge weight is 1. Hence, number of disconnected
nodes from each required node is 26. Similar compu-
tation is done for the examples in Figures 7 (b) and 7
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Figure 5 Connectivity path in SMT-Neurophysiology spanning macaque species with weight 2. On the left-side, number of edges is
10, therefore, total weight is 20, whereas on the right-side, SMT-Genetic connects 9 edges, which weight value is 18.

Figure 6 Shortest path strategy in the SMT-Neurophysiology

(c). Number of disconnected nodes is required to com-
pute a fitness function which is discussed below. This
function penalizes when the number of disconnected
nodes increases; and gives preference to find a set of
optimum connected nodes.

A mathematical graph is created from the brain re-
gion dataset using the graph.js [4] library. The graph.js
is a JavaScript library for storing arbitrary data in
mathematical (di)graphs, as well as traversing and
analyzing them in various ways. From each required
node, we find a longest distance (weight) between the
required nodes from our SMT-Neurophysiology out-
put. Then the required nodes have been expanded

[4]https://github.com/mhelvens/graph.js

from up to that longest distance using the DFS al-
gorithm. If there is any better solution than the SMT-
Neurophysiology solution within the extended graph,
GA should find the better one. Our DFS algorithm is
presented in Algorithm 2.

DFS(Graph, u, LongestWeight)
while each v in AdjList[u] of Graph do

if v is not visited then
if PathToWeight[u] + EdgeValue ¡=
LongestWeight then

PathToWeight[v] = PathToWeight[u] +
Edgevalue

Concatenate EdgeToList[u] and [u, v, EdgeValue]
to EdgeToList[v]

if v is a required node then
push edges from the EdgeToList to

DFSEdgeList
end

end
DFS(Graph, v, LongestWeight)

end
end

Algorithm 2: A DFS algorithm to extend the SMT-
Neurophysiology output up to a longest weight be-
tween two required nodes.

We represent edges as [node1, node2, weight] and
paths as [node1, node2, ..., nodeN]. Nodes, edges and
required nodes, for example, in Figure 7 (c) are: [1, 2,
3, 4, 5, 6]; [[1, 2, 1], [2, 3, 1], [3, 4, 1], [4, 5, 1]]; and [1,
2, 3, 4, 5, 6]. We constructed a graph using the nodes
and edges as mentioned above, and then calculated
a longest distance between two required node. Here,
longest distance between two required node is 4. Next,
we calculated number of paths and number of edges
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Figure 7 Number of disconnected nodes from each required node is in (a) 26, in (b) 18, and in (c) 10. Design of a chromosome in
the SMT-Genetic is in (d) (0, 1, 1, 0, 1, 1).

by traversing through the entire graph in Figure 7(c)
from each required node up to that longest distance.

Our DFS algorithm finds a list of paths from each
required node. These paths are used to make chromo-
somes. In this case, each path represents a chromo-
some. In Figure 7 (c), for required node 1 to required
nodes 2, 3, 4, 5, and 6, we get a set of paths, which is a
set of chromosomes as follows: [1, 2], [1, 2, 3], [1, 2, 3,
4], [1, 2, 3, 4, 5]. From these paths, a list of edges are
sorted; and the redundant edges are removed. SMT-
Genetic will use these edges to find an optimum solu-
tion. Note that number of unique edges is the size of a
chromosome. The above mentioned paths have the fol-
lowing unique edges: [1, 2, 1], [2, 3, 1], [3, 4, 1] and [4,
5, 1]. Thus the size of each chromosome is 4. Note that
weight of each edge is 1. The initial chromosome is set
to 0 in all indexes – [0, 0, 0, 0]. From the above paths,
we split edges; and set 1 if the corresponding edges
exist otherwise 0, which gives the following chromo-
somes: [1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0] and [1, 1, 1,
1]. This calculation is shown in Table 3.

If we assume that we have all the unique edges in
a path, then chromosome representation of this path
will be (1, 1, 1, 1). On the other hand, we have got 10
number of paths in Table 3, which is the total number
of chromosomes and the size of each chromosome is 4.
For example, for required node 1, paths are [1, 2], [1,
2, 3], [1, 2, 3, 4] and [1, 2, 3, 4, 5]. Path [1, 2] also
represents an edge, so chromosome representation of
this path is (1, 0, 0, 0). Similarly, for path [1, 2, 3],
we have got two edges: [1, 2] and [2, 3]. Therefore,
chromosome representation of this path is (1, 1, 0, 0).

Seed
An initial population, seed, is required to start the
SMT-Genetic. We have created 50% of the chromo-
somes from the combination of all 1s chromosome and
the rest of them sequentially from the set of chromo-
somes. The population size is 250 by default, as shown
in Table 4. Initial chromosome in the seed is the com-
bination of all 1s, i.e. [1, 1, 1, 1]. A counter variable is
used to keep track of the number of chromosomes. If
counter is divisible by 2 then chromosomes are taken
sequentially from the set of chromosomes mentioned
in Table 3: [1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0], [1, 1, 1,
1], [0, 1, 0, 0], [0, 1, 1, 0], [0, 1, 1, 1], [0, 0, 1, 0], [0,
0, 1, 1], [0, 0, 0, 1]. Otherwise, chromosomes are the
combination of all 1s, i.e. [1, 1, 1, 1].

Mutation
It is important to keep variation in the population to
get an optimal solution. To mutate, we generate two
random number and swap the corresponding bit posi-
tions of a chromosome. For example, for two random
number 1 and 3, chromosome [1, 0, 0, 1] is mutated
from [1, 1, 0, 0].

Crossover
Crossover recombines bits of two parents chromosome
to generate two children chromosome. We have imple-
mented two-point crossover method where two points
are randomly picked from the parents chromosome and
then two children chromosome swaps the bit position
of two points from their parents chromosome. We have
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Table 3 Number of paths, edges, and chromosomes from each required node for the Figure in 7(c) example graph.

Required Node Paths Unique edges from Paths in column 2 Set of chromosomes

1 [1, 2], [1, 2, 3], [1, 2, 3, 4], [1, 2, 3, 4, 5] [1, 2, 1], [2, 3, 1], [3, 4, 1], [4, 5, 1] (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1)

2 [2, 3], [2, 3, 4], [2, 3, 4, 5] [2, 3, 1], [3, 4, 1], [4, 5, 1] (0, 1, 0, 0), (0, 1, 1, 0), (0, 1, 1, 1)

3 [3, 4], [3, 4, 5] [3, 4, 1], [4, 5, 1] (0, 0, 1, 0), (0, 0, 1, 1)

4 [4, 5] [4, 5, 1] (0, 0, 0, 1)

5 None None None

6 None None None

Table 4 Configuration parameters in the SMT-Genetic algorithm

Parameter Default Range/Type Description

Size 250 Real number Population size

Crossover 0.9 [0.0, 1.0] Probability of crossover

Mutation 0.3 [0.0, 1.0] Probability of mutation

Iterations 100 Real number Maximum number of

iterations before finishing

utilized the Genetic.js [5] library to implement the two-
point crossover method.

Fitness Function
The fitness function computes a score in each iteration
to evaluate an optimal solution. We have calculated
minimum fitness score because our goal was to find
a set of connected nodes with lower weights of edges.
For this, number of disconnected nodes is more penal-
ized than the sum of weights of all edges. However, if
the graph is disconnected at a certain point of execu-
tion, maximum weight would be 0. Therefore, we have
added 1 with the maximum weight of the edges. The
fitness function of SMT-Genetic is presented below:

Minimizing fitness function = Sum of weights of all
edges + ((Maximum weight of edges + 1) * No of
disconnected nodes * No of disconnected nodes)

Generation and Notification
Generation represents an iteration of a population,
whereas notification notifies the outcome of the pop-
ulation. Notification is invoked after each generation.
From the notification, we can find the best chromo-
some and can apply various statistical analysis such as
summation, average, median, and standard deviation.

Configuration parameters
The initial configuration parameters of SMT-Genetic
is illustrated in Table 4. We have kept the default con-
figuration parameters of the Genetic.js library.

Continuing with the example in Figure 7 (c), we have
assigned the configuration parameters as follows: itera-
tions: 3, size: 3, crossover: 0.9, and mutation: 0.2. Table

[5]http://subprotocol.com/system/genetic-js.html

4 illustrates the meaning of each parameter. Number
of iterations is 3, so SMT-Genetic continues up to third
generation (0 to 2). For each generation, SMT-Genetic
does crossover and mutation based on the assigned
probability, and the fitness function checks the min-
imum connectivity for each chromosome among the
required nodes.

SMT-Genetic: Case Study

The research questions to be addressed in this section
are:

RQ1: Can SMT-Genetic find better connection when
compared to SMT-Neurophysiology greedy approach?
RQ2: What is the performance trade-off in using the
SMT-Genetic?
RQ3: Does it help if we seed that SMT-Genetic with
the SMT-Neurophysiology greedy solution?

RQ1: Can SMT-Genetic find better connection when
compared to SMT-Neurophysiology greedy approach?

SMT-Genetic can find better connection among a set of
required nodes than the SMT-Neurophysiology greedy
approach. Following case studies show that SMT-
Genetic gives better connections among a set of brain
regions than SMT-Neurophysiology.

SMT-Genetic: Case Study 1

Figure 5 shows a connection among five required nodes
where SMT-Neurophysiology connects via 10 edges
(weight 20) on the left-side, and on the right-side,
SMT-Genetic connects the same set of required nodes
via 9 edges (weight 18).

SMT-Genetic: Case Study 2

Figure 8 shows a connection among five required nodes
where SMT-Neurophysiology connects via 10 edges
(weight 20) on the left-side, and on the right-side,
SMT-Genetic connects the same set of required nodes
via 8 edges (weight 16).
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Figure 8 Connectivity path in SMT-Neurophysiology spanning macaque species with weight 2. On the left-side, number of edges is
10 and therefore total weight is 20, whereas on the right-side, SMT-Genetic connects with 8 edges, which weight value is 16.

SMT-Genetic: Case Study 3
Figure 9 shows a connection among five required
nodes where SMT-Neurophysiology connects via 8
edges (weight 20) on the left-side, and on the right-
side, SMT-Genetic connects the same set of required
nodes via 7 edges (weight 19).

RQ2: What is the performance trade-off in using the
SMT-Genetic?
SMT-Genetic is able to find a better connection than
SMT-Neurophysiology, as illustrated in Figures 5, 8,
and 9. However, SMT-Genetic takes longer execution
time. In each generation, SMT-Genetic looks for a bet-
ter solution with the help of fitness function’s score. In
some cases, SMT-Genetic finds an optimal solution and
repeats the same solution till the end of the number
of generation. In that case, we could stop the execu-
tion if SMT-Genetic repeats the same solution for a
certain number of generation. For example, if a solu-
tion is repeated more than 50 times, SMT-Genetic will
terminate.

RQ3: Does it help if we seed that SMT-Genetic with
the SMT-Neurophysiology greedy solution?
The SMT-Genetic approach uses a DFS algorithm to
traverse the brain regions dataset up to a longest dis-
tance between two required node of a SMT-Neurophysiology
solution. If there exists any better solution than the
SMT-Neurophysiology solution in the refined search
space, SMT-Genetic should find the better one. The
DFS algorithm is presented in Algorithm 2.

Discussion and Conclusions
In this paper, we have introduced an approximation to
the SMT algorithm to identify the most parsimonious
connectivity among the brain regions of interest. We
have implemented our algorithm as a highly interactive
web application called SMT-Neurophysiology that en-
ables such computation and visualization. It operates
on brain regions connectivity dataset curated from the
NIF dataset for four species – human, monkey, rat and
bird.

We have presented two case studies on finding the
most biomedically-meaningful solutions that identifies
connections among a set of brain regions over a spe-
cific route. The case studies demonstrate that SMT-
Neurophysiology is able to identify several interesting
pathways among brain regions of interest. Further-
more, SMT-Neurophysiology is modular and generic in
nature allowing the underlying connectivity graph to
model any data on which the tool can operate. In order
to find better pathways than SMT-Neurophysiology,
we have implemented an extension in the form of a
GA called SMT-Genetic. We have further presented
three case studies where SMT-Genetic finds better con-
nections among a set of brain regions than SMT-
Neurophysiology.

Our analysis would provide key insights to clinical
investigators about potential mechanisms underlying
a particular neurological disease. The tools and the
underlying data are useful to clinicians and scientists
to understand neurological disease mechanisms; dis-
cover pharmacological or surgical targets; and design
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Figure 9 Connectivity path in SMT-Neurophysiology spanning homo sapiens, macaque, and birds species with weight 1, 2, and 7,
respectively. On the left-side, weight value of 8 edges is 20, whereas on the right-side, SMT-Genetic connects with 7 edges, which
weight value is 19.

diagnostic or therapeutic clinical trials. Pharmaceuti-
cal companies can use these tools for the development
of disease biomarkers (e.g. radiological image markers)
or drugs that target proteins expression in particular
brain regions.

In future, we want to use SMT-Genetic to achieve
better results as opposed to the SMT-Neurophysiology
greedy approach. Evolutionary and optimization algo-
rithms will be used to address the greedy problem of
the SMT-Neurophysiology. These search algorithms by
their nature deal with a large search space and often
require extremely large amount of time to run. Vari-
ous heuristics could be used to reduce the search space
in order to reduce the resources and run-time require-
ments.

To improve the performance of the SMT-Genetic by
combining global and local search, we would like to
propose some thoughts as follows: If we operate un-
der the assumption that while different instances of
the problem will get different required nodes, most if
not all instances will run on the same graph. Under
this assumption we can make run-time queries really
fast if we spend significant time beforehand to opti-
mize for a specific graph we intend to use and perform
pre-processing. The pre-processing step will identify
the best search strategy to retrieve SMT in (near) lin-
ear time which when employed will give the feeling of
interactive search results for the end-user.

A promising technique that may be used to achieve
this pre-processing is a neural network trained with
a deep learning algorithm. The pre-processing phase

will take a long time to run (may be days), but only
has to run once, and will find a near-optimal search
strategy for the run-time algorithm. The expectation
is to have near linear-time speeds for run-time queries.
Note that if small changes to the underlying graph
are made, it may not be necessary to start the pre-
processing phase all over. Training the neural network
may be done incrementally.
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