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Abstract

Transparent research in musculoskeletal imaging is fundamental to reliably investigate diseases such
as knee osteoarthritis (OA), a chronic disease impairing femoral knee cartilage. To study cartilage de-
generation, researchers have developed algorithms to segment femoral knee cartilage from magnetic
resonance (MR) images and to measure cartilage morphology and relaxometry. The majority of these
algorithms are not publicly available or require advanced programming skills to be compiled and run.
However, to accelerate discoveries and findings, it is crucial to have open and reproducible workflows. We
present pyKNEEr, a framework for open and reproducible research on femoral knee cartilage from MR im-
ages. pyKNEEr is written in python, uses Jupyter notebook as a user interface, and is available on GitHub
with a GNU GPLv3 license. It is composed of three modules: 1) image preprocessing to standardize
spatial and intensity characteristics, 2) femoral knee cartilage segmentation for intersubject, multimodal,
and longitudinal acquisitions, and 3) analysis of cartilage morphology and relaxometry. Each module
contains one or more Jupyter notebooks with narrative, code, visualizations, and dependencies to re-
produce computational environments. pyKNEEr facilitates transparent image-based research of femoral
knee cartilage because of its ease of installation and use, and its versatility for publication and sharing
among researchers. Finally, due to its modular structure, pyKNEEr favors code extension and algorithm
comparison. We tested our reproducible workflows with experiments that also constitute an example of
transparent research with pyKNEEr. We provide links to executed notebooks and executable environments
for immediate reproducibility of our findings.

Keywords: reproducible research, open science, knee cartilage, segmentation, medical image analysis,
interactive paper
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1 Introduction

Open science and computational reproducibility are recent movements in the scientific community that
aim to promote and encourage transparent research. They are supported by national and international
funding agencies, such as the United States National Institutes of Health (NIH) [9] and the European
Commission [10]. Open science refers to the free availability of data, software, and methods developed by
researchers with the aim to share knowledge and tools [75]. Computational reproducibility is the ability
of researchers to duplicate the results of a previous study, using the same data, software, and methods
used by the original authors [5]. Openness and reproducibility are essential to researchers to assess the
accuracy of scientific claims [55], build on the work of other scientists with confidence and efficiency (i.e.
without "reinventing the wheel") [54], and collaborate to improve and expand robust scientific workflows
to accelerate scientific discoveries [53, 14, 42]. Historically, research data, tools, and processes were rarely
openly available because of limited storage and computational power [42]. Nowadays, there are several
opportunities to conduct transparent research: data repositories (e.g. Zenodo and FigShare), code repos-
itories (e.g. GitHub, GitLab, and Bitbucket), and platforms for open science (e.g. The European Open
Science Cloud and Open Science Framework). In addition, there exist computational notebooks that com-
bine narrative text, code, and visualization of results (e.g. Jupyter notebook and R markdown), allowing
researchers to create workflows that are computationally transparent and well documented [54]. Finally,
it is possible to recreate executable environments from repositories to run notebooks directly in a browser
and thus make code immediately reproducible (e.g. Binder).

In the evolution of research practice, the structure of scientific papers, intended as vehicles to com-
municate methods and results to peers, is changing. In 1992, Claerbout was among the first to envision
interactive publications: "[...] an author attaches to every figure caption a pushbutton or a name tag usable
to recalculate the figure from all its data, parameters, and programs. This provides a concrete definition
of reproducibility in computationally oriented research" [8]. Following this vision, papers are transform-
ing from static to interactive. They will progressively integrate data and code repositories, metadata files
describing data characteristics (e.g. origin, selection criteria, etc.), and computational notebooks used to
compute results and create graphs and tables [19, 21] for more transparent research.

Transparency in image-based research is crucial to provide meaningful and reliable answers to medical
and biological questions [50]. In the musculoskeletal field, quantitative analysis from magnetic resonance
(MR) imaging has assumed an increasingly important role in investigating osteoarthritis (OA) [22]. OA is
the most common joint disease worldwide, affecting about 2 in 10 women and 1 in 10 men over 60 years
of age [76]. It causes structural changes and loss of articular cartilage, with consequent pain, stiffness,
and limitation of daily activities [45]. OA of the knee is one of the main forms of OA, affecting 1/3 of the
adults with OA [39] and accounting for 83% of the total OA economic burden [25]. To investigate knee
OA, scientists have developed algorithms to preprocess MR images, segment femoral knee cartilage, and
extract quantitative measurements of morphology, such as thickness [15] and volume [56], and relaxation
times, such as T1ρ and T2 [32].

In the image analysis pipeline, segmentation constitute a major challenge. Researchers still tend to
segment femoral knee cartilage manually or semi-automatically, using commercial or in-house software,
in a tedious and non-reproducible manner [41, 35]. However, there exist several algorithms that researchers
have developed to automatically segment knee cartilage. In the literature and in published reviews [24,
48, 79], we have found 29 relevant publications that propose new algorithms to segment femoral knee
cartilage. These algorithms are based on different principles, namely active contours, atlas-based, graph-
based, machine and deep learning, and hybrid combinations, and were developed by various research
groups worldwide (Fig. 1). Of these, only the implementations by Wang et al. [69] and by Shan et al. [59]
are open-source and hosted in public repositories (see Wang’s repository and Shan’s repository). These
two implementations, however, have some limitations: in the first case, documentations of code and usage
are not extensive, while in the second case the code is written in C++ and requires advanced programming
skills to be compiled and run. Other communities, such as neuroimaging, largely benefit from robust,
open-source, and easy-to-use software to segment and analyze images (e.g. ANTs [3], FreeSurfer [17],
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Nipype [20]). Because of these open-access tools, researchers do not need to re-implement algorithms for
basic processing and can focus on further statistical analyses [65, 29, 13]. To accelerate discoveries and
findings, it is fundamentally important to have not only open-source tools, but also workflows that are
computationally reproducible, and thus enhance scientific rigor and transparency [14].

In this paper, we present pyKNEEr, an automatic workflow to preprocess, segment, and analyze femoral
knee cartilage from MR images specifically designed for open and reproducible research. pyKNEEr is
written in python with Jupyter notebooks as graphical user-interface, is shared on GitHub, and has a
documentation website. In addition, we provide an example of transparent research with pyKNEEr through
our validation study, implemented using images from the Osteoarthitis Initiative (OAI) [49] as well as in-
house images. Finally, to be compliant with recommendations for interactive publications, throughout
the paper we provide links to data files and repositories (), software repositories (�), specific code and
Jupyter notebooks (/), executable environments ( ), metafiles and web documentation (�), and websites
[37].
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Figure 1: The visualization shows name of first author, year of publication, affiliation of last author, and segmentation
method for 29 relevant publications on femoral knee cartilage segmentation from 1997 to 2018. Publications by segmenta-
tion method and in alphabetical order are: Active contours: Amberg(2010)[2], Carballido-Gamio(2008)[6], Solloway(1997)[62],
Vincent(2011)[67], Williams(2010)[74]; Atlas-based: Pedoia(2015)[47], Shan(2014)[59], Tamez-Pena(2012)[64]; Deep-learning:
Liu(2018)[33], Norman(2018)[43], Prasoon(2013a)[52], Zhou(2018)[81]; Graph-based: Bae(2009)[4], Ozturk(2016)[44], Shim(2009)[60],
WangP(2016)[68], Yin(2010)[78]; Hybrid: Ambellan(2018)[1], Dam(2015)[11], LeeJG(2014)[30], LeeS(2011)[31], Seim(2010)[57],
WangQ(2013)[69], WangZ(2013)[70]; Machine learning: Folkesson(2007)[18], Liu(2015)[34], Pang(2015)[46], Prasoon(2013)[51],
Zhang(2013)[80]. This graph and graphs in Fig. 4 and Fig. 5 were made in Jupyter notebook using ggplot2 [71], an R package
based on the grammar of graphics [72].  /
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2 Characteristics and structure of pyKNEEr

The main characteristics of pyKNEEr are embedded in its name: py is for python, to indicate openness,
KNEE is for femoral knee cartilage, and r is for reproducibility.

2.1 Openness: python, file formats, code reuse, and GitHub

Characteristics and structure of pyKNEEr are based on recommendations for open scientific software in the
literature, such as usage of open language and file formats, code reuse, and licensed distribution [53, 26,
54]. We wrote pyKNEEr in the open language python, using open-access libraries to perform computations,
such as NumPy for linear algebra, pandas for data analysis, matplotlib for visualizations, SimpleITK
for medical image processing and analysis [36], and itkwidgets for 3D rendering. We used widespread
open-source formats for input and output data, such as text files (.txt) for input image lists, metafile
(.mha) for images, and tabular files (.csv) for tables. To favor our code reuse, we organized pyKNEEr in
three modules: 1) image preprocessing; 2) femoral knee cartilage segmentation; and 3) morphology and
relaxometry analysis (Fig. 3). Modularity will allow us and other researchers to test, enhance, and expand
the code by simply modifying, substituting, or adding Jupyter notebooks. At the same time, we reused
open-source code developed by other scientists, such as preprocessing algorithms developped by Shan et
al. [59] and elastix for atlas-based segmentation [28]. Finally, we released pyKNEEr on GitHub with a
GNU GPLv3 license, which requires openness of derivative work. For citation, we assigned pyKNEEr a
digital object identifier (DOI), obtained through the merge of the GitHub release to Zenodo (Table 1).

Repository Metadata /
Documentation

Language /
Format License DOI Citation

Software
Used

Preprocessing Bitbucket Wiki C++, ITK Apache https://doi.org/
10.1016/j.media.
2014.05.008*

[59]*

elastix 4.8 GitHub Github Wiki C++, ITK Apache https://doi.
org/10.1109/TMI.
2009.2035616*

[28]*

Developed
pyKNEEr GitHub Website python,

Jupyter
notebook

GNU GPLv3 https://doi.org/
10.5281/zenodo.
2574172

Bonaretti S. et al.
"pyKNEER"
(v0.0.1). Zen-
odo. 2019.
10.5281/zen-
odo.2574172

Data
Original OAI Website .dcm Data user

agreement
https://doi.org/
10.1016/j.joca.
2008.06.016*

[49]*

Derived (results) Zenodo Jupyter notebook .mha, .txt, .csv CC-BY-NC-SA https://doi.org/
10.5281/zenodo.
2530608

Bonaretti S. et al.
Dataset used in
(Bonaretti et al.
2019). Zen-
odo. 2019.
10.5281/zen-
odo.2530608

Table 1: Openness and reproducibility of pyKNEEr code and experimental data. DOIs and citations of used software and original
data refers to their corresponding publication (*).

2.2 Reproducibility: Jupyter notebooks with computational narratives and depen-
dencies

We designed pyKNEEr as a tool to perform and support computational reproducible research, using prin-
ciples recommended in the literature [55, 54]. For each module of the framework, we used one or more
Jupyter notebooks as a user-interface, because of their versatility in combining code, text, and visualiza-
tion, and because they can be easily shared among researchers, regardless of operating systems.
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1. Link to GitHub repository
2. Link to documentation

3. Introduction

4. User inputs

7. References

(a) (b)

8. Dependencies

5. Commands
with narrative

6. Visualization 
of outputs

Figure 2: User-interface of modules in pyKNEEr: (a) Structure of Jupyter notebooks and (b) qualitative and quantitative visualization
of outputs (from top: cartilage segmentation on image slice, flattened map of cartilage thickness, relaxation map on image slice, 3D
relaxation map, and plot and table with average and standard deviation of thickness values).

Across pyKNEEr modules, we used the same notebook structure for consistent computational narratives
(Fig. 2). Each notebook contains:

1. Link to the GitHub repository: The repository contains code and additional material, such as source
files of documentation and publication;

2. Link to documentation: Each notebook is associated with a webpage containing instructions on
how to create input text files, run notebooks, and evaluate outputs. Explanations include step-by-
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step instructions for a demo dataset, provided to the user to become familiar with the software.
Single webpages are part of a documentation website, comprehensive of installation instructions
and frequently asked questions. We created the website using sphinx, the python documentation
generator;

3. Introduction: Brief explanation of the algorithms in the notebook;

4. User inputs: The input of each notebook is a text file (.txt) with folder paths and file names of
images to process or analyze. Additional inputs are variables to customize the process, such as
number of cores and algorithm options;

5. Commands with narrative: Titles and subtitles define narrative units of computations, and additional
texts provide information about command usage and outcome interpretation. Commands in the
notebook call functions in python files associated with that notebook (e.g. in the preprocessing mod-
ule, the notebook preprocessing.ipynb calls the python file preprocessing_for_nb.py). In turn,
associated python files call functions in core files (e.g. the python file preprocessing_for_nb.py
calls sitk_functions.py, containing image handling functions);

6. Visualization of outputs: Qualitative visualizations include sagittal slices with superimposed car-
tilage mask or relaxometry map, 2D thickness maps, and 3D relaxometry maps, to allow users a
preliminary evaluation of outputs. Quantitative visualizations include scatter plots and tables with
numerical values and descriptive statistics (Fig. 2b), which are also saved in .csv files to allow
researcher subsequent analysis;

7. References: List of main references used in notebook algorithms;

8. Dependencies: Code dependencies (i.e. version of python, python packages, and computer operating
systems and hardware) to allow researchers to recreate the current computational environment and
thus reproduce findings. To print dependencies, we used the python package watermark.

2.3 Algorithms in pyKNEEr

pyKNEEr contains specific algorithms to preprocess, segment, and analyze femoral knee cartilage from MR
images. Wherever possible, we implemented multiprocessing using multiple computer cores to optimize
computation effort.

Image preprocessing

Spatial and intensity preprocessing provide standardized high quality images to the segmentation algo-
rithm [16]. In spatial preprocessing, we transform images to right-anterior-inferior (RAI) orientation, we
flip right knees (when present) to the left laterality, and we set image origin to the origin of the carte-
sian system (0,0,0). In intensity preprocessing, we correct image intensities for the inhomogeneities of the
static magnetic field (B0) [61], we rescale intensities to a common range [0 - 100], and we enhance cartilage
edges with edge-preserving smoothing using curvature flow [58] (Fig. 3-I). Implementation of intensity
preprocessing is a translation of the open access code by Shan et al. [59] (�) from C++ to python.

Femoral knee cartilage segmentation

Three steps comprise femoral cartilage segmentation: 1) finding a reference image; 2) segmenting femoral
cartilage; and 3) evaluating segmentation quality (Fig. 3-II). Finding reference image and evaluating
segmentation quality are possible only when ground truth segmentations are available.

Finding a reference image. We propose a convergence study to find the reference image, i.e. a segmented
image used as a template, or atlas, for the segmentation. First, we randomly select an image as a reference
image. Then, we register all images of the dataset to the reference using rigid, similarity, and spline
transformations, as explained in the following paragraph. Next, we average the vector fields that result
from the registrations. Finally, we choose the image whose vector field is the closest to the average vector
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field as the new reference for the following iteration. We repeat until two consecutive iterations converge
to the same reference image or after a fixed number of iterations. It is possible to execute the search for
the reference several times using different images as the initial reference to confirm the selection of the
reference image. This algorithm requires femur masks because the comparison among vector fields and
their average is calculated in the femur volume, as cartilage volume is limited.

Atlas-based segmentation. Initially, we register a moving image (i.e. any image of the dataset) to a ref-
erence image, by transforming first the femur and then the cartilage. Then, we invert the transformation
describing the registration. Finally, we apply the inverted transformation to the cartilage mask of the refer-
ence image to obtain the cartilage mask of the moving image. The images to segment can be new subjects
(intersubject), images of the same subject acquired at different time points (longitudinal), or images of the
same subject acquired with different protocols (multimodal). To segment intersubject images, we use rigid,
similarity, and spline registration, to segment longitudinal images only rigid and spline registration, and
to segment multimodal images only rigid registration. We perform image registration and mask warping
with elastix and transformix, respectively [28, 47], using a multiresolution approach with smoothing
image pyramid, random coordinate sampler, adaptive stochastic gradient descent optimizer, and B-spline
interpolators [47]. Detailed parameters are in the code repository (�).

Evaluating segmentation quality. We quantitatively evaluate quality of segmentation using the Dice Simi-
larity Coefficient (DSC), a measure of the overlap between a newly segmented mask and the corresponding
ground truth segmentation [12]. The Dice Similarity Coefficient is calculated as:

DSC =
2|NM ∩ GT|
|NM|+ |GT|

where NM is the newly segmented mask, and GT is the ground truth.

Morphology and relaxometry analysis

In pyKNEEr, cartilage analysis includes morphology and relaxometry (Fig. 3-III).
Cartilage morphology. Morphology quantifications are cartilage thickness and cartilage volume. To

calculate cartilage thickness, first we extract contours from each slice of the cartilage mask as a point
cloud. Then, we separate the subchondral side of the cartilage from the articular side, we interpolate
each cartilage side to a cylinder that we unroll to flatten cartilage [41], and we calculate thickness between
the two cartilage sides using a nearest neighbor algorithm in the 3D space [6, 38]. Finally, we associate
thicknesses to the subchondral point cloud to visualize them as a 2D map. We compute cartilage volume
as the number of voxels of the mask multiplied by the voxel volume.

Cartilage relaxometry. We implemented two algorithms to calculate relaxometry maps: Exponential or
linear fitting and Extended Phase Graph (EPG) modeling. We use exponential or linear fitting to compute
T1ρ maps from T1ρ-weighted images and T2 maps from T2-weighted images. We calculate exponential
fitting by solving a mono-exponential equation voxel-wise using a Levenberg-Marquardt fitting algorithm
[32]:

S(Ta) = K · exp(−Ta/Tb)

where: for T1ρ-weighted images, Ta is time of spin-lock (TSL) and Tb is T1ρ; for T2-weighted images, Ta
is echo time (TE) and Tb is T2; and K is a constant. We compute linear fitting by transforming the images
to their logarithm and then linearly interpolating voxel-by-voxel. Linear fitting is not recommended when
signal-to-noise ratio is high because the logarithm transformation alters the normality of noise distribution,
but it is fast and computationally inexpensive [7]. Before calculating exponential or linear fitting, the user
has the option to register the images with lowest TE or TSL to the image with the highest TE or TSL to
correct for image motion during acquisition [66]. We use EPG to calculate T2 maps from DESS acquisition.
The implementation in pyKNEEr is the one proposed by Sveinsson et al. [63], which is based on a linear
approximation of the relationship between the two DESS signals.
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MAIN ALGORITHMS IN pyKNEEr

I. Preprocessing
preprocessing.ipybn/�

RAI orientation Flip to left Origin (0,0,0) B0 correction
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II. Segmentation
segmentation.ipybn/�
(find_reference.ipybn/)
(segmentation_quality.ipybn/)

Reference MaskMoving Mask

Reference ImageMoving Image

(d) (c)

Inversion of
Registration

Transformation

Intensity
Registration

Mask
Warping

(a) (b)

Atlas-based segmentation. We reg-
ister a moving image (a) to a refer-
ence image (b). We invert the com-
puted transformation and we apply
it to the mask of the reference image
(c) to obtain the mask of the moving
image (d).

III. Analysis
morphology.ipybn/�

(a) (c)(b) (d)
(1) (2)

Calculating cartilage thickness. (a)
To separate cartilage sides, we inter-
polate a circle (green) in the cartilage
and we connect its center to cartilage
points through rays. When a ray
(blue) intersects a segment (red) con-
necting two consecutive points, the
point belongs to articular cartilage
(1), otherwise to subchondral carti-
lage (2). (b) Interpolation to a cylin-
der to flatten the cartilage. (c) Visual-
ization of subchondral (yellow) and
articular (blue) surfaces. (d) 2D map
of cartilage thickness.

relaxometry_fitting.ipybn/�
(relaxometry_EPG.ipybn/)

(a) (c)
time

(b)

Calculating relaxometry maps us-
ing exponential fitting. (a) Voxel-
wise interpolation of images at sub-
sequent TE or TSL. (b) Relaxation
map superimposed on one slice of
the image. (c) Relaxation map in 3D.

Figure 3: Main algorithms in pyKNEEr modules: I. Image preprocessing; II. Femoral cartilage segmentation; and III. Analysis of
morphology and relaxometry. Left: Links to Jupyter notebooks (/) and documentation (�). In parenthesis, notebooks in the
module not depicted here. Middle: Graphic summary of algorithms. Right: Algorithm descriptions.

3 Open and reproducible research with pyKNEEr: Our validation study

We validated pyKNEEr with experiments that also constitute an example of open and reproducible research
with pyKNEEr.

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2019. ; https://doi.org/10.1101/556423doi: bioRxiv preprint 

https://github.com/sbonaretti/pyKNEEr/blob/master/code/preprocessing.ipynb
https://sbonaretti.github.io/pyKNEEr/preprocessing.html
https://github.com/sbonaretti/pyKNEEr/blob/master/code/segmentation.ipynb
https://sbonaretti.github.io/pyKNEEr/segmentation.html
https://github.com/sbonaretti/pyKNEEr/blob/master/code/find_reference.ipynb
https://github.com/sbonaretti/pyKNEEr/blob/master/code/segmentation_quality.ipynb
https://github.com/sbonaretti/pyKNEEr/blob/master/code/morphology.ipynb
https://sbonaretti.github.io/pyKNEEr/morphology.html
https://github.com/sbonaretti/pyKNEEr/blob/master/code/relaxometry_fitting.ipynb
https://sbonaretti.github.io/pyKNEEr/relaxometry.html
https://github.com/sbonaretti/pyKNEEr/blob/master/code/relaxometry_EPG.ipynb
https://doi.org/10.1101/556423
http://creativecommons.org/licenses/by/4.0/


3.1 Image data

We used three datasets that we named OAI1, OAI2, and inHouse (Table 2). OAI1 contained 19 Double-
Echo in Steady-State (DESS) images and T2-weighted (T2-w) spin-echo images acquired at year 4 of the
OAI study. Ground truth segmentations were created using an atlas-based method (Qmetrics Technolo-
gies, Rochester, NY, USA) [64] for a previous study [23]. OAI2 consisted of 88 DESS images acquired at
baseline and at 1-year followup. Ground truth segmentations were computed using an active appearance
model (imorphics, Manchester, UK) [67]. Finally, inHouse contained 4 images acquired at Stanford Univer-
sity using DESS and CubeQuant protocols. For clarity in the following, OAI1 will be split in OAI1-DESS
and OAI1-T2, OAI2 in OAI2-BL (baseline) and OAI2-FU (followup), and inHouse in inHouse-DESS and
inHouse-CQ (CubeQuant). Details of the acquisition parameters are in Table 2-I.

Dataset OAI1-DESS OAI1-T2 OAI2-BL OAI2-FU inHouse-DESS inHouse-CQ
Number of subjects 19 19 88 88 4 4

I. Acquisition parameters
Acquisition protocol DESS T2-w DESS DESS CubeQuant
Acquisition plane sagittal sagittal sagittal sagittal sagittal
Number of images in series 2 (1 available)� 7 2 (1 available)� 2 4
In-plane spacing [mm] 0.3646 x 0.3646

(0.4270 x 0.4270)?
0.3125 x 0.3125

(0.4296 x 0.4296)?
0.3646 x 0.3646 0.3125 x 0.3125 0.3125 x 0.3125

Slice thickness [mm] 0.7 (0.75)? 3 (3.5)? 0.7 1.5 3
Echo time (TE) [ms] 4.7 10, 20, 30, 40,

50, 60, 70
4.7 42.52 -

Spin-lock time (TSL) [ms] - - - - 1, 10, 30, 60
Repetition time (TR) [ms] 16.32 2700 (2900)* 16.32 25 1302
Flip angle [◦] 25 180 25 30 90

II. Ground truth segmentation
Method atlas-based active models - - - -
Anatomy femur, femoral cartilage femoral cartilage - - - -
Type mask contour - - - -

III. Experimental results
Image number in series 1 1 2-7 1 1 1 2 1 2-4
Preprocessing

Spatial standardization • • • • • • • • •
Intensity standardization • • - • - • - • -

Segmentation
Find reference 4, 8, 10, 13, 16 - - - - - - - -
Intersubject • - - • - • - - -
Longitudinal - - - - • - - - -
Multimodal - • - - - - - • -

Segmentation quality
Dice coefficient • • - • • - - - -

Analysis
Morphology •◦ •◦ - •◦ •◦ • - • -
Relaxation - •◦ - - • •

Table 2: Datasets used to evaluate pyKNEEr. I. Acquisition parameters: Parameters of the protocols used to acquire the images.
Images of OAI1-DESS, OAI2-BL, and OAI2-FU were acquired with the same DESS protocol, consisting of 2 echos, although only
their average was available (�). Images of one subject of the dataset OAI1 had different slice spacing and thickness (?). Data queries
to obtain acquisition parameters are in a Jupyter notebook (/). The original identification numbers (IDs) of the OAI images are
in a Jupyter notebook used as a metafile (�). II. Ground truth segmentation: The datasets OAI1 and OAI2 have ground truth
segmentations. They differ for computational method, segmented anatomy, and label type. III. Experimental results: Details of the
steps in pyKNEEr for each dataset. Full circle (•) indicates processing of the dataset, while empty circle (◦) indicates processing of
ground truth segmentations. The numbers in "Find reference" indicated the ID of the seed images used in the convergence study.
Links are to the executed notebooks on GitHub.

3.2 Results

We preprocessed, segmented, and analyzed all the dataset using different options in pyKNEEr, according
to dataset characteristics and availability of ground truth segmentation () (Table 2-III).
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Figure 4: Results for the datasets OAI1-DESS (red), OAI1-T2 (green), OAI2-BL (cyan), and OAI2-FU (purple). (a) Violin plots
describing the distribution of the DSC within each dataset. The dots represent DSC values spread around the y-axis to avoid visu-
alization overlap. (b-d) Correlation between measurements derived from ground truth segmentations and pyKNEEr’s segmentations,
i.e. cartilage thickness (b), cartilage volume (c), and T2 maps (d).  /

Preprocessing. We executed spatial preprocessing for all images of the datasets and intensity prepro-
cessing only for the images directly involved in segmentation.

Finding reference. We selected the reference mask from the dataset OAI1-DESS because of the availability
of ground truth segmentations of the femur. We picked 5 images as initial reference for our parallel
investigation using a python random function (random seed = 4 /). For all the studies, we found the
reference as the subject whose vector field distance to the average vector field was the minimum (subject
ID = 9).

Segmenting intersubject, longitudinal, and multimodal images. We segmented images from OAI1-DESS,
OAI2-BL, and inHouse-DESS as new subjects. Segmentation failure were 1 for OAI1-DESS (ID = 6 /),
3 for OAI2-BL (IDs = 6,24,31 /), and none inHouse-DESS (/). We excluded the failed registrations
from the following analysis of segmentation quality, cartilage morphology, and cartilage relaxometry. We
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segmented the first acquisition of OAI1-T2 images (/) and inHouse-CQ images (/) using the multimodal
option in pyKNEER, and OAI2-FU images (/) using the longitudinal option.

Segmentation quality. We evaluated segmentation quality for the datasets OAI1 and OAI2 because they
had ground truth segmentations of femoral cartilage. The Dice similarity coefficients were 0.86 ± 0.02
(mean ± standard deviation) for OAI1-DESS, 0.76± 0.04 for OAI1-T2, 0.73± 0.04 for OAI2-BL, and 0.72±
0.04 for OAI2-FU (Fig. 4a) (/).

Morphology. We calculated cartilage thickness and volume for all datasets, including ground truth
segmentations. We computed correlations of cartilage thickness calculated from pyKNEEr’s segmentation
and ground truth segmentation, and we found that Pearson coefficients were 0.958 for OAI1-DESS, 0.668
for OAI1-T2, 0.654 for OAI2-BL, and 0.667 for OAI2-FU (Fig 4b). Similarly, we computed correlations for
cartilage volume, and we found that Pearson coefficients were 0.983 for OAI1-DESS, 0.847 for OAI1-T2,
0.891 for OAI2-BL, and 0.885 for OAI2-FU (Fig 4c) (/).

Relaxometry. Before calculating relaxometry maps for OAI1-T2, we rigidly registered the images with
shortest TE to the image with longest TE. Similarly, before calculating T1ρ maps for inHouse-CQ, we
rigidly registered the images with shortest TSL to the image with longest TSL. Then, we calculated T2
maps for OAI-T2 images extracting values in pyKNEEr’s masks (/) and ground truth masks (/), and
we compared them, obtaining a Pearson’s coefficient of 0.513 (/). Finally, we computed relaxometry
maps using exponential fitting for inHouse-CQ (/) and EPG modeling for inHouse-DESS (/) to show
feasibility of the methods.

4 Discussion

To test possible reproducible workflows with pyKNEEr, we ran experiments with three different datasets.
Image preprocessing was successful in all cases, while image segmentation failed in 4 cases. Average
DSC were 0.81 for dataset OAI1 and 0.73 for dataset OAI2, which are in the range of published values
(Fig. 5). Discrepancies of DSC between OAI1 and OAI2 can be due to the different characteristics of
ground truth segmentations. OAI1 ground truth segmentations were created using an atlas-based method
with DSC = 0.88 [64] (see "TamezPena (2012)" in Fig. 5), whereas OAI2 ground truth segmentations
were created using an active appearance model with DSC = 0.78 [67] (see "Vincent (2011)" in Fig. 5).
In addition, to calculate DSC we transformed OAI2 ground truth segmentations from contours to vol-
umetric masks, potentially adding discretization error. Quality of segmentation had a direct impact on
morphology and relaxometry analysis. Pearson’s coefficient was higher for cartilage volume than cartilage
thickness, suggesting higher preservation of volume, and it was low for T2 relaxation times, suggesting
higher dependency on segmentation quality for intensity-based measurements. Finally, regression lines
show that measurements from pyKNEEr segmentation overestimated small thicknesses and underestimated
large volumes and T2 values (Fig. 4). Despite its modest performance, we implemented atlas-based seg-
mentation because it has the advantage to provide byproducts for further analysis. Image correspondences
established during the registration step can be used for intersubject and longitudinal comparison of carti-
lage thickness and relaxation times, and voxel-based morphometry and relaxometry [47].
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Figure 5: Performances of the segmentation module of pyKNEEr, compared with 24 studies in literature that report it. Full dots rep-
resents studies where DSCs were calculated on the whole mask, whereas empty dots represent studies where DSCs were calculated
in specific parts of the cartilage, e.g. the weight-bearing area [24].  / .

We designed pyKNEEr to facilitate transparent research on femoral knee analysis from MR images. Tra-
ditionally, medical image analysis workflows are in ITK, VTK, and Qt, requiring advanced computational
skills in C++ to build, run, and extend code. We wrote pyKNEEr in python because of its ease of use,
compatibility with various operating systems, and extensive computing support through packages and
open code. As a consequence, pyKNEEr can be easily installed as a package in the python environment
and does not require advanced programming skills. In addition, we used Jupyter notebooks as a user-
interface because of their ease of use, literate computing approach [40], versatility for publications, and
sharing among researchers. In pyKNEEr, Jupyter notebooks can be simply downloaded from our GitHub
repository (�) to a local folder. Researchers have to input an image list and optionally set a few variables,
and after automatic execution of the notebook, they directly obtain visualizations, graphs, and tables for
further analysis. In addition, researchers can link the executed notebook directly to papers (similarly to Ta-
ble 2) and thus create an interactive publication with reproducible analysis. In the medical image analysis
community, other examples of combined use of python and Jupyter notebooks are mainly for educational
and general research purpose (e.g SimpleITK notebooks [77]), while usage of python as a programming
language is rapidly gaining popularity in neuroimaging (e.g. Nipype [20]).

Several extensions of pyKNEEr could be imagined, due to the modularity of its structure. In the seg-
mentation module, the current notebook implementing atlas-based segmentation (segmentation.ipynb)
could be substituted by notebooks with hybrid machine or deep learning algorithms, which can provide
higher DSC [1] (Fig.5). In the morphology module (morphology.ipynb), the code structure already in-
cludes a flag (thickness_algo) to integrate additional algorithms for cartilage thickness, such as surface
normal vectors, local thickness, and potential field lines [38]. Finally, new notebooks could be added to
the workflow to segment and analyze more knee tissues, such as tibial cartilage, patellar cartilage, and the
menisci. Extensions will require a limited amount of effort because of the popularity and ease of python,
the free availability of a large number of programming packages, and the flexibility of Jupyter notebooks
[77]. In addition, standardized file format and computational environment will facilitate comparison of
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findings and performances of new algorithms.
In conclusion, we have presented pyKNEEr, an image analysis workflow for open and reproducible

research on femoral knee cartilage. We validated pyKNEEr with three experiments, where we tested pre-
processing, segmentation, and analysis. Through our validation test, we presented a possible modality
of conducting open and reproducible research with pyKNEEr. Finally, in our paper we provide links to
executed notebooks and executable environments for computational reproducibility of our results and
analysis.
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