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1 Background and model

We assume a couple has generated n embryos, and we would like to select the
optimal embryo with respect to a given polygenic trait. We assume that the
genetic architecture of the trait is infinitesimal, namely that there are numerous
causal variants, uniformly distributed along the genome. Denote the value of
the trait as z, the number of variants as N , the variance of the trait as σ2

z , and
the heritability as h2, and assume the trait has zero mean.

Mathematically, we assume an additive model, where for a given individual,

z =
N∑
i=1

βi(Gi,p +Gi,m) + ε. (1)

In the above equation, Gi,p = gi,p − fi, where gi,p ∈ {0, 1} is the number of
minor alleles at site i on the paternal chromosome and fi is the minor allele
frequency. Gi,m is similarly defined for the maternal chromosome. βi is the
additive effect size per allele.

The polygenic score for the trait is defined as

PS =
N∑
i=1

β̂i(Gi,p +Gi,m), (2)

where the β̂is are the estimated effect sizes. We further assume that the trait
can be modeled as

z = PS + ε. (3)

The error term now represents both the environmental component as well as
unaccounted-for genetic components. The proportion of variance of z explained
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by the polygenic score PS is denoted

r2ps =
Var (PS)

σ2
z

. (4)

rps is also the correlation coefficient between the polygenic score and the trait
value.

Next, we make the following assumptions. First, we assume that there is no
assortative mating. This implies that beyond linkage disequilibrium, there is no
correlation between the contributions to the polygenic score from (i) the two
homologous chromosomes of an individual, at the same locus; (ii) two chromo-
somes of spouses, at the same locus; (iii) two distinct loci, coming from the
same chromosome; and (iv) two distinct loci, coming from either two homolo-
gous chromosomes or from chromosomes of spouses. While assortative mating
was demonstrated for several polygenic traits [1, 2, 3], our empirical data shows
that the implied correlation between polygenic scores of spouses is relatively
small. Specifically, we found that the correlation in the polygenic scores for IQ
between actual spouses was relatively low and did not reach statistical signifi-
cance (r = 0.12, P = 0.25). The correlation for the polygenic scores for height
was similarly low (r = −0.03, P = 0.76). While the correlation may increase
with the increasing predictive power of the scores, our model still serves as a
useful baseline. In particular, since assortative mating is usually positive, our
results form an upper bound for the utility of embryo selection.

Second, to avoid correlation due to linkage disequilibrium (LD), we write
the polygenic score as a sum of M elements, where each element is the score in
a single LD block,

PS =
M∑
i=1

(PSi,p + PSi,m). (5)

Above, PSi,p =
∑
k∈Bi

β̂kGk,p, where Bi is the set of variants in block i, and
similarly for PSi,m. Under the above assumption of no assortative mating, and
assuming no correlation across LD blocks, this implies that for all i 6= j, the
random variables PSi,p, PSi,m, PSj,p, PSj,m are all uncorrelated. Moreover,
PSi,p,PSi,m for any one individual are uncorrelated with PSi,p and PSi,m in the
spouse of that individual, for any block i. The LD blocks can be identified, e.g.,
as in [4].

We further assume that all blocks contribute equally to the variance (al-
though this can be easily relaxed, leading to the same result). Thus, under the
above model, we have

Var (PSi,p) = Var (PSi,m) = σ2
z

r2ps
2M

, (6)

as well as
E (PS) = E (PSi,p) = E (PSi,m) = 0. (7)

Next, we consider the vector PS = (PS1, . . . ,PSn) of polygenic scores for
n embryos together. We assume that the distribution of the polygenic scores,

2

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2019. ; https://doi.org/10.1101/626846doi: bioRxiv preprint 

https://doi.org/10.1101/626846
http://creativecommons.org/licenses/by-nc/4.0/


PS, is normal in each embryo (due to the polygenic nature of most complex
traits [5]), and further that the joint distribution of the polygenic scores over n
embryos is multivariate normal,

PS =
(
PS1, . . . ,PSn

)
∼ MVN(µ,Σ), (8)

where µ = 0n (a column vector of zeros of length n). The diagonal elements
of the covariance matrix Σ are Var

(
PSi
)

= σ2
zr

2
ps for all i = 1, . . . , n. We will

compute the off-diagonal covariances below (Section 2).
We define the gain G due to embryo selection as the difference between

the polygenic score of the best embryo and the average scores of all embryos.
Mathematically,

G = max
(
PS1, . . . ,PSn

)
− PS1 + · · ·PSn

n
. (9)

The gain G is a random variable, with a sample space over all theoretical sets
of n siblings. In the following, we will examine the statistical properties (e.g.,
mean and variance) of the gain as a function of n, σ2

z , and r2ps.
For the mean gain, using Eq. (7),

E (G) = E
(
max

(
PS1, . . . ,PSn

))
. (10)

We derive an approximate formula for the mean gain in Section 3. We then
consider in Section 4 other properties of the gain G, including its variance and
the implications for prediction of the embryo with the actual highest trait value.

2 The covariance

In order to obtain the joint distribution of
(
PS1, . . . ,PSn

)
, we need to compute

Cov
(
PSA,PSB

)
, the covariance between the polygenic scores of two distinct

embryos (or siblings), which we name A and B. For two individuals A,B with
kinship coefficient Θ, standard quantitative genetics theory gives the covariance
Cov (zA, zB) = 2Θh2, for a quantitative additive trait z with heritability h2

under the infinitesimal model [6]. Specifically, for full siblings, Θ = 1/4, and
thus Cov (zA, zB) = h2/2. For completeness, we derive the corresponding result
here for the polygenic scores PSA and PSB .

Recall that we modeled the polygenic score as PS =
∑M
i=1(PSi,p + PSi,m),

where PSi,p is the score of the ith LD block in the paternal chromosome and
PSi,m is the score from the maternal chromosome. For a pair of siblings and for
a given LD block, their scores come from the same parental chromosome with
probability 1/2, or from different parental chromosome with probability 1/2.
(We ignore the possibility of a recombination event taking place in the middle
of an LD block, because, first, by definition, recombination is depleted within
LD blocks, and second, the distance between crossovers is much greater than
the distance between LD blocks [7].)
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Consider the two homologous chromosomes of the father at block i. Denote
the polygenic score of the first chromosome (say, grandpaternal) as xi,1 and the
score of the second chromosome (say, grandmaternal) as xi,2. Similarly, denote
the polygenic scores of the two maternal chromosomes as yi,1 and yi,2. For
embryo A, denote by pA,i the choice of the paternal chromosome transmitted to
embryo A at block i: pA,i = 1, 2 with equal probability. Similarly, mA,i = 1, 2
denotes the identity of the maternal chromosome transmitted to embryo A at
block i. With the above notation, the polygenic score of embryo A can be
written as:

PSA =
M∑
i=1

(
xi,pA,i

+ yi,mA,i

)
. (11)

Similarly,

PSB =
M∑
i=1

(
xi,pB,i

+ yi,mB,i

)
. (12)

The covariance between the scores of two embryos is

Cov
(
PSA,PSB

)
= Cov

(
M∑
i=1

(
xi,pA,i

+ yi,mA,i

)
,
M∑
i=1

(
xi,pB,i

+ yi,mB,i

))
. (13)

According to the assumptions of Section 1, there is no correlation between the
scores of any two blocks on two chromosomes of spouses, or between distinct
blocks on the same chromosome. Thus,

Cov
(
PSA,PSB

)
= M [Cov (xpA , xpB ) + Cov (ymA

, ymB
)] , (14)

where pA, pB ,mA,mB are the identities of the chromosome transmitted by the
father/mother to embryos A and B at a representative block, and x1, x2, y1, y2
are the scores of the four parental chromosomes in that block. pA, pB ,mA,mB

are independent random variables taking the values 1 or 2 with equal probabil-
ities. To compute the remaining terms, we invoke the law of total covariance,
by conditioning on pA, pB or on mA,mB . For example,

Cov (xpA , xpB ) = E (Cov (xpA , xpB |pA, pB)) + Cov (E (xpA |pA, pB) ,E (xpB |pA, pB)) .
(15)

However, E (xpA |pA, pB) = E (xpB |pA, pB) = 0, and are both in general indepen-
dent of pA or pB . Thus, the second term (covariance of expectations) vanishes.
We can expand the first term as follows,

E (Cov (xpA , xpB |pA, pB)) =
1

4
Cov (x1, x1) +

1

4
Cov (x2, x2)

+
1

4
Cov (x1, x2) +

1

4
Cov (x2, x1) . (16)

Again according to the assumptions of Section 1, there is no correlation between
the scores of blocks from homologous chromosomes. Thus, the two terms in the
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second line vanish. Finally, using Eq. (6),

E (Cov (xpA , xpB |pA, pB)) =
1

4
Var (x1) +

1

4
Var (x2) = σ2

z

r2ps
4M

. (17)

A similar result holds for the maternal scores. Using Eq. (14),

Cov
(
PSA,PSB

)
=

1

2
σ2
zr

2
ps. (18)

We have thus specified the distribution of the polygenic scores of the n
embryos,

PS =
(
PS1, . . . ,PSn

)
∼ MVN(µ,Σ), (19)

where µ = 0n and Σ is an n× n covariance matrix with elements

Σ = σ2
zr

2
ps


1 1

2 . . . 1
2

1
2 1 . . . 1

2
. . . . . . . . . . . .
1
2

1
2 . . . 1

 . (20)

3 The mean score of the top-scoring embryo

Define PSmax = max
(
PS1, . . . ,PSn

)
. The mean gain (as defined in Section 1) is

the mean of the score of the top-scoring embryo, E (G) = E (PSmax) (Eq. (10)).
Written more generally, we would like to compute the mean of the max-

imum of n multivariate normal variables, denoted PS =
(
PS1, . . . ,PSn

)
∼

MVN(0n,Σ), where the covariance matrix Σ is defined according to Eq. (20).
We can write the covariance matrix also as Σ = A+B, where

A = σ2
zr

2
ps


1
2 0 . . . 0
0 1

2 . . . 0
. . . . . . . . . . . .
0 0 . . . 1

2

 (21)

and

B = σ2
zr

2
ps


1
2

1
2 . . . 1

2
1
2

1
2 . . . 1

2
. . . . . . . . . . . .
1
2

1
2 . . . 1

2

 (22)

Given this decomposition, we can write the distribution of polygenic scores as
a sum of two independent multivariate normal variables PS = Y +Z, where

Y = (y1, . . . , yn) ∼ MVN(0n,A) (23)

and
Z = (z1, . . . , zn) ∼ MVN(0n,B). (24)
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The covariance matrix A of Y is diagonal, and hence the variables in Y are
independent. Z has a constant covariance matrix B, which means that the
correlation between all variables is 1. Thus, all elements of Z are equal to the
same normal variable with variance given by Eq. (18),

z1 ∼ N
(

0,
1

2
σ2
zr

2
ps

)
and z2 = z3 = · · · = zn = z1. (25)

Since PS = Y +Z, we have

PSmax ≡ max(y1 + z1, . . . , yn + zn)

= max(y1 + z1, . . . , yn + z1)

= max(y1, . . . , yn) + z1. (26)

The expectation of PSmax is

E (PSmax) = E (max(y1, . . . , yn)) + E (z1)

= E (max(y1, . . . , yn)) , (27)

since Z has zero means. Therefore, the mean of the maximum of
(
PS1, . . . ,PSn

)
is the same as the mean of the maximum of n independent normal variables with
variance 1

2σ
2
zr

2
ps each.

For independent normal variables, some results are known for the expecta-
tion of the maximum. For example, in [8] it was shown that ifR = max(x1, . . . , xn),
where xi ∼ N(0, σ2) are independent, then

0.23σ
√

log n ≤ E (R) ≤
√

2σ
√

log n, (28)

and thus for very large n,
E (R) ∝ σ

√
log n. (29)

Numerically, we found the best fit to Eq. (29) (over n from 1 to 50) was when
the coefficient of proportion was ≈ 1.09. In our case, σ2 = 1

2σ
2
zr

2
ps. Noting that

1.09/
√

2 ≈ 0.77, the mean polygenic score of the best embryo, and hence the
mean gain, is

E (G) ≈ 0.77σzrps
√

log n. (30)

Due to its simple functional form, we report Eq. (30) as Eq. (1) of the main
text. However, these bounds are not tight. Based on extreme value theory, we
can reach a more accurate expression. For large n [9, 10], the maximum of n
standard normal variables has an approximate Gumbel distribution with CDF:

F (x) = exp
(
− exp

(
− x− µ

β

))
, (31)

where

µ = Φ−1
(

1− 1

n

)
, (32)
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β =
1

nφ
[
Φ−1

(
1− 1

n

)] , (33)

φ is the PDF of the standard normal distribution, and Φ−1 is the inverse CDF
of the standard normal distribution. The mean of a Gumbel random variable is
µ+ βγ, where γ is the Euler-Mascheroni constant (γ ≈ 0.577).

In our case, all normal variables have standard deviation σ, and thus,

E (R) ≈ σ

[
Φ−1

(
1− 1

n

)
+

γ

nφ
(
Φ−1(1− 1

n )
)] . (34)

Finally, as we have σ2 = 1
2σ

2
zr

2
ps,

E (G) ≈ σz
rps√

2

[
Φ−1

(
1− 1

n

)
+

γ

nφ
(
Φ−1(1− 1

n )
)] . (35)

We found this equation to be more accurate than Eq. (30) (Supplementary
Figure 1).

4 Additional calculations

4.1 The variance of the score of the top-scoring embryo

Extreme value theory can also provide an expression for the variance of the top
score. From Eq. (26),

Var (PSmax) = Var (max(y1, . . . , yn)) + Var (z1) , (36)

where Var (z1) = 1
2σ

2
zr

2
ps. The variance of a Gumbel variable is known to be

π2β2/6. Thus,

Var (max(y1, . . . , yn)) =
1

2
σ2
zr

2
ps ×

π2

6
(
nφ
[
Φ−1

(
1− 1

n

)])2 , (37)

and

Var (PSmax) =
1

2
σ2
zr

2
ps

{
1 +

π2

6
(
nφ
[
Φ−1

(
1− 1

n

)])2
}
. (38)

Eq. (38) is the variance of the best polygenic scores among the n embryos.
However, it does not provide us the variance of the gain G. To compute the
variance of the gain, we would need to compute the covariance between the
maximum score and the other scores, which we leave to future work.

4.2 A prediction interval for the phenotype

We have so far predicted the mean value of the score of the top-scoring embryo
(Eq. (30)). However, even for a given polygenic score of the best embryo, the
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actual value of the trait may differ considerably. Denote the value of the trait
of the top-scoring embryo as

zmax = PSmax + ε. (39)

Following Section 1, ε has zero mean and variance

Var (ε) = σ2
z

(
1− r2ps

)
. (40)

Thus, given its polygenic score PSmax, the remaining variance in trait value for
the top-scoring embryo is Var (zmax|PSmax) = σ2

z

(
1− r2ps

)
. Assuming a normal

distribution for ε, a 95% prediction interval for the actual value of the trait will
be approximately[

PSmax − 1.96σz

√
1− r2ps,PSmax + 1.96σz

√
1− r2ps

]
. (41)

Eq. (41) is Eq. (2) in the main text. The above prediction interval is centered
around PSmax, which is assumed to be known. When it is unknown, a reasonable
approximation for the center of the prediction interval may be zmp+E(G), where
zmp is the mid-parental trait value (i.e., the average of the (sex-adjusted) trait
between the two parents). Theoretically, this approximation should break down
for the most extreme tails of parental phenotypes, because the gain must be
smaller in these cases. However, our simulations (Supplementary Note Figure
1) suggest that in a realistic setting, the gain does not significantly depend on
the mid-parental trait value.

In a näıve calculation for no selection, we assume no information is available
regarding the embryo, and thus, the 95% prediction interval would be

[−1.96σz, 1.96σz] , (42)

as for any normal variable with zero mean and variance σ2
z . However, the

phenotype can be predicted based on the mid-parental trait value. Denote
the trait of an offspring as zo. A well-known result in quantitative genetics
is that the slope of the regression of zo on zmp is equal to the heritability h2

[6]. The correlation coefficient is the product of the slope and the ratio of

the standard deviations, r = h2
σmp

σo
. But σ2

o = σ2
z and σ2

mp =
σ2
z

2 . Thus,

r = h2 σz/
√
2

σz
= h2
√
2
. The proportion of variance explained is r2 = h4

2 (see also,

e.g., [11]), and the remaining variance is σ2
z

(
1− h4

2

)
. Thus, a more realistic

95% prediction interval for the case of no selection would be[
zmp − 1.96σz

√
1− h4

2
, zmp + 1.96σz

√
1− h4

2

]
. (43)

In theory, having both the mid-parental value and the offspring’s PGS may
lead to a more accurate prediction, with a narrower prediction interval, even
for the case of selection. Prediction in this setting is in general non-trivial, and
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Figure 1: The gain in embryo selection vs the mid-parental trait value. The
height was corrected for sex and age. The height residuals or the IQ points were
then averaged between the two parents. (A) Random mating for height. (B)
Actual couples for height. (C) Random mating for IQ. The gain was calculated
over n = 10 embryos. The correlation coefficient and its associated P-value are
shown at the top of each panel.

more so here since the embryo is non-random but rather selected for its high
polygenic score. The combination of both the polygenic score and the mid-
parental value cannot explain more variance than implicated by the heritability.
Thus, the proportion of variance explained by all of the available data (PS and

parents’ trait value) can be anything within the range
[
max

(
r2ps,

h4

2

)
, h2
]
, i.e.,

it is at least the best of the two predictors, but no higher than the heritability.
At present, the variance explained by the mid-parental trait value is about

the same as that explained by the PS for height, but much higher than that
explained by the PS for many other traits, including cognitive ability. In the
future, the variance explained by the PS may substantially exceed that explained
by the parents. In our main text examples, we consider predictors explaining
70% of the variance in height and 30% of the variance in cognitive ability —
these are much larger proportions compared to those explained by the mid-

parental height or IQ: h4

2 ≈ 0.32 for height (assuming h2 ≈ 0.8) and h4

2 ≈ 0.18
for IQ (assuming h2 ≈ 0.6). In these extreme cases, the prediction interval in
Eq. (41) probably cannot be made substantially narrower.

4.3 The mean difference between the top-ranked trait and
the trait of the best embryo

In the main text, we analyzed real large nuclear families. When reduced to
n = 7 children per family, we found that the average height difference between
the tallest child and the child with the best PS was 3.0cm. To determine the
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expectation based on our quantitative model, consider n siblings, whose PSs are
modeled as a multivariate normal variable,(

PS1, . . . ,PSn
)
∼ MVN (0n,Σ) , (44)

where Σ is defined in Eq. (20). We assume that the phenotypes, z1, . . . , zn, can
be modeled as

z = (z1, . . . , zn) = G+E, (45)

where G ∼ MVN (0n,Σg) and E ∼ MVN (0n,Σe), with

Σg = σ2
zh

2


1 1

2 . . . 1
2

1
2 1 . . . 1

2
. . . . . . . . . . . .
1
2

1
2 . . . 1

 (46)

and

Σe = σ2
z

(
1− h2

)
1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1

 . (47)

In the matrix Σg, the off-diagonal elements are 1/2 due to the covariance be-
tween sibs, as in Section 2. We assume no covariance between the environmental
components. Thus, in total, (z1, . . . , zn) ∼ MVN (0n,Σz), where

Σz = σ2
z


1 h2

2 . . . h2

2
h2

2 1 . . . h2

2
. . . . . . . . . . . .
h2

2
h2

2 . . . 1

 . (48)

As we have shown in Section 3, because the covariance terms are all equal,
the mean of the maximum of the phenotypes (z) is equal to the mean of the
maximum of n independent normal variables, each with zero mean and variance
σ2
z(1−h2/2). Denote by E (R) the mean of the maximum of n standard normal

variables (e.g., as we calculated in Eq. (34)). Denote the maximum phenotype
across the sibs as zm. Since the identity of this sib is not known at the time
of selection, the phenotype of the selected embryo, zmax, may be lower, and we
have (using Eq. (39)),

E (zm − zmax) = E (zm)− E (zmax)

= σz

√
1− h2

2
E (R)− E (PSmax)

= σz

√
1− h2

2
E (R)− σz

rps√
2

E (R)

= σzE (R)

(√
1− h2

2
−
√
r2ps
2

)
. (49)
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We obtained E (R) exactly based on numerical integration, substituted σz =
5.6cm, h2 = 0.8, and r2ps = 0.27, and obtained E (zm − zmax) = 3.1cm, very
similar to the observed value.

4.4 The probability of the top-ranked embryo to have the
top-ranked trait

When reduced to n = 7 children per family, we found in the real data that on
average, in ≈ 31.5% of the families the child whose PS was ranked first was
also ranked first in actual height. To determine the expectation based on our
quantitative model, consider again n siblings. Recall that their phenotypes,
z = (z1, . . . , zn), are modeled as

z = PS + ε, (50)

as in Eq. (39). The polygenic scores are as defined above (Eq. (44)). For the
error term, we have ε ∼ MVN (0n,Σε), and

Σε = σ2
z


1− r2ps

h2−r2ps
2 . . .

h2−r2ps
2

h2−r2ps
2 1− r2ps . . .

h2−r2ps
2

. . . . . . . . . . . .
h2−r2ps

2

h2−r2ps
2 . . . 1− r2ps

 (51)

To explain the above equation, each εi has variance σ2
z

(
1− r2ps

)
. However, here

the εi’s must be correlated because they model not only the environment but
also the genetic component not modeled by the PGS. The off-diagonal entries

in the covariance matrix of the phenotypes z are equal to σ2
z
h2

2 from Eq. (48).
Assuming independence between PS and ε, these entries are equal to the sum

of the off-diagonal entries in the covariance matrix of PS, σ2
z
r2ps
2 (Eq. (18)), and

the off-diagonal entries in the covariance matrix of ε. Thus, the latter must be

σ2
z
h2−r2ps

2 .
We simulated values for PS and ε, assuming n = 7, h2 = 0.8, and r2ps = 0.27,

as in the real family data, and then calculated the phenotypes according to
Eq. (50). (The value of σz does not change the relative ranks, and can be
set to any value.) We found that in ≈ 33.4% of the simulations, the sibling
top-ranked for the score (PS) was also top-ranked for the phenotype (z), in a
reasonable agreement with the empirical results. An analytic approximation to
this probability can also be derived based on Eq. (14) in [12].
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