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Abstract 

Genome-wide association studies have led to the development of polygenic score (PS) predictors that 

explain increasing proportions of the variance in human complex traits. In parallel, progress in 

preimplantation genetic testing now allows genome-wide genotyping of embryos generated via in vitro 

fertilization (IVF). Jointly, these developments suggest the possibility of screening embryos for polygenic 

traits such as height or cognitive function. There are clear ethical, legal, and societal concerns regarding 

such a procedure, but these cannot be properly discussed in the absence of data on the expected 

outcomes of screening. Here, we use theory, simulations, and real data to evaluate the potential gain of 

PS-based embryo selection, defined as the expected difference in trait value between the top-scoring 

embryo and an average, unselected embryo. We observe that the gain increases very slowly with the 

number of embryos, but more rapidly with increased variance explained by the PS. Given currently 

available polygenic predictors and typical IVF yields, the average gain due to selection would be ≈2.5cm 

if selecting for height, and ≈2.5 IQ (intelligence quotient) points if selecting for cognitive function. These 

mean values are accompanied by wide confidence intervals; in real data drawn from nuclear families 

with up to 20 offspring each, we observe that the offspring with the highest PS for height was the tallest 

only in 25% of the families. We discuss prospects and limitations of PS-based embryo selection for the 

foreseeable future. 

Introduction 

The use of biotechnology to influence the genetic composition of human embryos in the absence of 

specific disease risk raises many ethical concerns, and the recent live births resulting from human 

embryonic CRISPR editing has heightened global attention to these issues [1,2]. Currently, the most 

practical approach to genetic “enhancement” of embryos is preimplantation genetic screening of IVF 

embryos. Preimplantation genetic diagnosis and screening [3] have been utilized for years to avoid 

implantation of embryos harboring monogenic disease-causing alleles or aneuploidies. Recently, it also 

became technically feasible to generate accurate genome-wide genotypes from single-cell input [4]. This 

development, coupled to recent progress in complex traits genetics, made it possible to genetically 

screen embryos for polygenic traits, and has raised the prospect of “designer babies” [5]. 

Perhaps the most controversial potential application of polygenic embryo selection would be selection 

for intelligence, especially given the abhorrent history of the early-20th century eugenics movement [6]. 

While most ethicists are deeply troubled by such prospects, at least one prominent scholar has 

suggested that there is an ethical obligation for parents to “select the best children” [7]. In our view, any 

discussion of the ethics of embryo selection must be informed by quantification of the expected utility 

of polygenic selection, either as of today, or as reasonably projected into the future. In this report, we 

thus utilize statistical and empirical methods to evaluate the potential effects of human embryo 

selection for polygenic traits.  

Polygenic scores (PS) are derived from large-scale genome-wide association studies (GWAS) of complex 

traits, which can be quantitative (such as intelligence or height) or categorical (such as disease status, in 

which case they are often referred to as ‘polygenic risk scores’) [8]. A PS is the count of effect alleles in 

an individual’s genome, weighted by each allele’s strength of association with the trait of interest in an 

independent GWAS [9]. The predictive power of a PS is usually represented by 𝑟ps
2 , or the proportion of 

variance of the quantitative trait explained by the PS. To date, the largest GWAS of intelligence [10,11] 
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has demonstrated a relatively modest out-of-sample 𝑟ps
2  (≈5%), despite large sample sizes (n≈300,000 

individuals). By contrast, recent large-scale GWASs of height have attained 𝑟ps
2  of approximately 25%, 

while demonstrating a highly polygenic genetic architecture similar to intelligence [12]. Consequently, in 

the present report, we analyze height in addition to cognitive function, which also allows us to exploit 

several datasets in which height data, but not intelligence data, are available.  

PSs are typically evaluated on a cohort basis, and are not used to differentiate one individual from 

another (although a recent report has demonstrated that, for an extraordinarily tall NBA player, the PS 

for height was >4 standard deviations above the population mean [13]). In order for polygenic embryo 

selection to hold potential utility (independent of ethical considerations), PSs must provide sufficient 

predictive power to differentiate between embryos within the restricted range of genetic variance 

available in a single family, and with a finite number of embryos. Two reports utilizing only mathematical 

modeling have suggested that substantial effect sizes for embryonic selection are possible [14,15]. But 

to our knowledge, despite the widespread application of polygenic scores to complex traits and 

precision medicine in the research literature [16], no published studies have empirically examined the 

possibilities and limitations of a polygenic approach to embryo selection.   

We consider here embryo selection in the context of a hypothetical IVF cycle. Our quantity of interest is 

the difference between the predicted value of the selected trait (i.e., height or intelligence) when the 

embryo with the highest PS is selected, compared with the value of the average embryo (i.e., the mean 

across embryos). We term this difference the gain, and we further differentiate between the predicted 

gain, as determined by the PS, and the realized gain, as observed in the fully-grown offspring. Because 

no study can be performed in actual embryos, we utilize three sources of data: 1) a quantitative genetic 

model; 2) simulated embryo genomes generated using realistic parameters from existing genotyped 

datasets of adults with known phenotypic values; and 3) a unique pedigree dataset of nuclear families 

with large numbers of offspring (10 on average), now fully-grown adults, with available genotype and 

phenotype data. In our simulated data, we examine the gain as a function of varying predictive strengths 

(𝑟ps
2 ) of the PS, as well as of the number of embryos (𝑛) available; these results were compared against a 

theoretical model derived for average gain. Although a typical IVF cycle may produce 3-8 viable embryos 

(median=5; [17]), we examine the gain across a broad range of values of 𝑛, given the possibility of future 

advances in IVF technology. Particular emphasis is placed on 𝑛 = 10, representing a plausible upper 

bound within the foreseeable future. 

Results 

We first developed a simple quantitative genetic model for the expected gain. The model assumes a 

polygenic additive trait with no assortative mating, and hence no correlation between the scores of 

SNPs between homologous chromosomes or chromosomes of spouses. We recognize that statistically 

significant assortative mating has been demonstrated for genetic variants associated with polygenic 

traits such as height and educational attainment [18]; however, the overall magnitude of this effect 

accounts for <5% of the variance in spousal phenotype [19,20]. Assortative mating would tend to reduce 

the efficacy of embryo selection due to reduced variance available from which to select, and thus our 

results described below represent an upper bound on the potential gain. 

We assumed a couple has generated 𝑛 embryos, and computed the distribution of the polygenic scores 

of the 𝑛 embryos for a trait with phenotypic variance 𝜎𝑧
2, of which a proportion 𝑟ps

2  is explained by the 
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PS. The set of 𝑛 polygenic scores can be modeled as having a multivariate zero mean normal distribution 

with all variances equal to 𝜎𝑧
2𝑟ps

2  and all covariances equal to 
1

2
𝜎𝑧

2𝑟ps
2 . The gain is formally defined as the 

difference between the maximal and average PSs among the 𝑛 embryos. Based on properties of 

multivariate normal distributions, the mean gain can be shown to be approximately (for details see the 

Supplementary Note) 

(1) 𝐸[𝑔𝑎𝑖𝑛] ∝ 𝜎𝑧𝑟ps√log 𝑛, 

where the coefficient of proportion is ≈0.77. A more accurate formula based on extreme value theory 

can also be derived (Supplementary Note Eq. (35)). Most notably for our purposes, the mean gain 

increases with the square root of the variance explained (or linearly with the correlation coefficient 

between the PS and the trait), but the effect of 𝑛 is considerably attenuated, as denoted by the square 

root and log transformation in Eq. (1). 

Next, for our simulations, we used genotypic and phenotypic data from two cohorts. The Longevity 

cohort contained 102 couples of Ashkenazi Jewish origin with genome-wide genotypes and information 

on height, drawn from a larger longevity study [21]. The ASPIS cohort [22] contained 919 young Greek 

males with genome-wide genotypes and information on general cognitive function. To simulate 

embryos, we used either actual couples (for the Longevity cohort) or randomly matched couples (for 

both cohorts), and generated 𝑛 = 10 or 50 synthetic offspring per couple based on a standard model of 

recombination (see Methods for details). 

To predict the height or IQ of each embryo, we used polygenic scores based on summary statistics 

derived from recent large-scale GWAS meta-analysis. For height, the most recent meta-analysis 

contained ≈700,000 individuals [12] and did not include the subjects in our test (Longevity) cohort. For 

IQ, we utilized the most recent published meta-analysis [11], from which the COGENT set of cohorts 

(including the ASPIS cohort) had been removed, resulting in a discovery sample size of 𝑛 = 234,569. We 

optimized the polygenic scores with respect to imputation, LD-pruning, and the P-value threshold 

(Methods). Our scores predicted height in the Longevity cohort with 𝑟ps
2 = 24.8% and IQ in the ASPIS 

cohort with 𝑟ps
2 = 4.3%, both within one percentage point of the maximum out-of-sample predictive 

power reported in the original GWAS. Using linear regression of the phenotype (age- and sex-corrected 

for height) on the polygenic scores in each cohort, we predicted the height or IQ of each simulated 

embryo.  

Having calculated the predicted height of each simulated embryo from the Longevity cohort and the 

predicted IQ of each simulated embryo from the ASPIS cohort, we sought to test the predictions of the 

mathematical model in Eq. (1). To examine the relationship between predicted gain and the variance 

accounted for by the PS, we fixed the number of embryos to 𝑛 = 10, and plotted the mean gain for 

height against increasing 𝑟ps
2 . Because polygenic contributions to most complex traits (including height 

and IQ) are evenly distributed throughout the genome [23], we generated PSs that were progressively 

stronger using PSs derived from growing subsets of the 22 autosomes (e.g., chromosome 1 SNPs only, 

chromosome 1 + chromosome 2 SNPs only, etc.). As shown in Figure 1, the average gain reaches ≈3cm 

or ≈3 IQ points when the full genome-wide PS is used (corresponding to ≈0.5 and ≈0.2 standard 

deviations of the trait, respectively). The average gains obtained from varying 𝑟ps
2  are close to the values 

predicted by the theoretical model (Eq. (1)). Our results did not differ when the actual couples are used 

as the source of the simulated embryos (Figure 1, center), compared to couples randomly matched from 
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the Longevity cohort (Figure 1, left), indicating that effects of any assortative mating in this dataset are 

de minimis. 

Figure 1. The mean gain vs the proportion of the variance explained by the PS. Blue dots and the 95% confidence 
intervals represent simulations with 10 embryos per couple. To generate scores with increasing proportions of 
variance explained, we gradually added chromosomes 1 to 22 to the computed PS. The orange line corresponds to 
the theoretical model derived in the Supplementary Note and described in Eq. (1). The 95% confidence interval, 
for each value of 𝑟ps

2 , is based on ±1.96 the standard error of the mean over the simulated families. (A) Gain in 

height for random couples: 500 simulated pairings drawn from the Longevity cohort. (B) Gain in height for actual 
couples: 102 couples from the Longevity cohort. (C) Gain in IQ for random couples: 500 simulated pairings drawn 
from the ASPIS cohort. Results were averaged across couples in all panels. 

The PSs used so far are based on current GWAS results and on a simple LD-pruning and P-value-

thresholding strategy. However, GWASs are expected to increase in size (in particular given the rapid 

growth of the direct to consumer genetic industry [24]), and statistical prediction methods are 

constantly improving [e.g., [25–28]]. Given that the theoretically predicted relationship of gain with 𝑟ps 

was supported by the data in Figure 1, we can forecast the prospects of embryo selection as predictors 

become increasingly accurate. For example, doubling the proportion of explained variance of height 

from ≈25% to 50% is expected to increase the mean gain from ≈3 to ≈4.24cm, with a maximum possible 

gain of ≈5.5cm for 𝑟ps
2 ≈80% (the upper bound of the heritability of the trait, as derived from twin studies; 

[29]). Similarly, quadrupling the variance explained for IQ would lead to a doubling of the gain, to ≈6 IQ 

points (given 𝑛 = 10 embryos). 

Next, we tested the relationship between the gain and the number of embryos, holding 𝑟ps
2  constant. In 

Figure 2, we show the expected gain vs the number of embryos, for up to 50 embryos. Comparison to 

the theoretical model again shows good agreement, with an even better fit demonstrated in 

Supplementary Figure 1 based on a more accurate approximation (Supplementary Note Eq. (35)). Two 

implications are immediately apparent from Figure 2. First, current reproductive technologies are in the 

most sensitive area of the curve. With a typical IVF cycle yielding 5 testable, viable embryos [17], the 

predicted gain is reduced from ≈3 to ≈2.5 (cm or IQ points); below 5 embryos, the gain drops 

precipitously. Second, there is a rather slow increase of the mean gain as the number of embryos 

increases beyond 10. Thus, even with 1000 embryos, the mean gain would be only ≈1.7 times higher 

compared to selection with 10 embryos. Again, no differences were observed between randomly paired 

and actually married couples (panels A and B). The pattern for intelligence was roughly equivalent to 

that observed for height (panel C). 
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Figure 2. The mean gain vs the number of embryos. Blue dots are from simulations, and orange lines are for the 

theoretical prediction (Eq. (1)). All details are as in Figure 1. 

Both of the results above demonstrate the average gain expected under varying levels of 𝑟ps
2  and 𝑛 

across 102 real couples or 500 simulated couples. However, for any given couple, the predicted gain will 

further vary around this mean. The distribution of the gain, when choosing the best out of 10 embryos, 

is shown in Figure 3 for height (for both random and actual couples) and IQ. The gain in height is 

typically between 1-6cm, with a median of 2.88cm for random couples (IQR: 2.34-3.80) and 3.02cm 

(IQR: 2.43-3.84) for actual couples. The gain in IQ was between 1-7 points (IQR: 2.43 - 3.84), with a 

median of 3.02 IQ points. Thus, the predicted gain for a given couple may be somewhat higher or lower 

than suggested by the mean results of our simulations, due to variation across couples and the random 

assortment of SNPs in the offspring. 

Figure 3. The distribution of the predicted gain from embryo selection with 10 embryos per couple. (A) The gain 

in height by simulating 500 random couples from the Longevity cohort. (B) Same as (A), but with actual spouses 

(𝑛 = 102). (C) The gain in IQ by simulating 500 random couples from the ASPIS cohort. Lines are estimated 

densities. 

The variance depicted in Figure 3 represents the variability of the predicted gain across couples, but 

environmental variance leads to additional and substantial variability in the realized gain, as observed in 

the phenotype of the offspring. A simple calculation (Supplementary Note, Section 4.2) shows that 

given a predicted gain, the 95% prediction interval for the (zero-centered) trait value is approximately 

(2) [predicted gain − 1.96𝜎𝑧√1 − 𝑟ps
2 ,  predicted gain + 1.96𝜎𝑧√1 − 𝑟ps

2 ]. 
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Eq. (2) can be compared to a 95% prediction interval of [−1.96𝜎𝑧, 1.96𝜎𝑧] without selection. Currently 

available PSs account for substantially less variance in phenotypic values than expected by the 

heritability, in part due to rare genetic variation not captured by current GWAS [30]. However, 

prediction intervals can be narrowed based on the parental phenotypic values, which are usually known. 

For example, it has long been known that mid-parental height can explain ≈40% of the variance in height 

of the offspring [31], or theoretically ℎ4/2 ≈ 32% [32]. However, these ≈32% of the variance overlap 

with the ≈25% explained by the PS, and the combination of both sources of information can never 

explain more than the heritability. As shown in Figure 4A, even under the extreme scenario where the 

combination of the PS and the parental values explain the entire heritability of height (≈80%), there 

would still be ±5cm interval around any predicted gain due to environmental and stochastic factors. 

Based on either the current PS alone, or based on the parents alone, the interval would be as large as 

±9-10cm. For IQ, the 95% prediction interval would be ±13-19 points in case the entire heritability is 

explained (assuming ℎ2 ∈ [0.6,0.8]), or ±24-27 points based on the parents (Figure 4B). Thus, the 

unexplained variance yields a wide confidence interval around any predicted value for an offspring’s 

height, and therefore a considerable uncertainty in the realized gain that any given couple can expect 

from embryo selection. This would need to be combined with the variability in the predicted gain itself, 

as depicted in Figure 3, thereby substantially attenuating any guarantees for the potential benefit.  

 

Figure 4. The prediction interval width as a function of the proportion of variance explained by the combination 

of parental phenotypes and the PS of the child. If the proportion of variance explained is 𝑝, the half-interval width 

is 1.96𝜎𝑧√1 − 𝑝. (A) The prediction interval for height, assuming 𝜎𝑧 = 6cm. The proportion 𝑝 is unknown, but 

cannot exceed the heritability, which we assume to be ℎ2 ≈ 0.8, and cannot fall under ℎ4/2 ≈ 0.32, which is the 

theoretical variance explained by the mid-parental height. (B) The prediction interval for IQ, assuming 𝜎𝑧 = 15 

points. We assume the heritability is in the range [0.6,0.8], with a minimal variance explained of 0.62/2 = 0.18. 

To demonstrate the implications of the above equations, consider the extreme case in which the 

variance explained by the PS is so large that the contribution from the parents’ phenotypes is negligible 

and Eq. (2) is applicable, with the predicted gain further set to its mean value. For height, with 70% of 

the variance explained and selecting out of 10 embryos, a 95% prediction interval for the height of a 

male child (assuming 175cm for the population average, an SD of 6cm, and a normal distribution) would 

be approximately 180±6cm (i.e., 174-186cm). This is compared to 175±12cm (163-187cm) without 

selection. For IQ (mean 100 and SD 15), with 30% of the variance explained, the 95% prediction interval 

would be approximately 109±25 (84-134), compared to 100±30 (70-130) without selection. Even under 
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this extreme case, the future child has a non-negligible probability (≈0.26, assuming a normal 

distribution) to have an IQ below the population average. 

Finally, to evaluate the utility of embryo selection in a real-world setting, we examined PS for height in a 

unique cohort of 28 large families with up to 20 offspring each (range 3-20; mean=9.6), now grown to 

adulthood. While all these families were the result of traditional means of procreation, we treated the 

offspring data as if all offspring were simultaneously generated embryos available for selection based on 

their PSs. Figure 5A depicts the actual difference in height between the offspring with the highest PS, 

compared to the average height of all the offspring in each family, i.e., the realized gain. (All heights 

were corrected for age and sex). While the observed values average around the mean gain predicted by 

the theory, there was substantial variability in the realized gain. Some families realized a gain of up to 

10cm, while for 5 of the 28 families, choosing the embryo with the highest PS would have resulted in an 

offspring with height below the average (i.e., gain < 0).  

 

Figure 5. Analysis of selection for height in 28 real families with up to 20 adult offspring each. (A) The realized 

gain in each family, defined as the difference between the actual (age- and sex-corrected) height of the offspring 

with the highest PS and the average height of all offspring in the family. The theoretical prediction is based on Eq. 

(1). (B) The actual height (age- and sex-corrected) of all members of all families. The figure demonstrates the effect 
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of the current low-accuracy prediction models, as the tallest-predicted sibling (red squares) is usually not the 

actual-tallest sibling (only 7/28 times). Siblings are depicted as grey dots, and the parents of each family as blue 

triangles. In some families only one parent was available. 

The inherent uncertainty in PS-based selection is also demonstrated in Figure 5B, which displays the 

actual height for each family member. It is notable that the offspring with the highest PS (red squares) is 

the tallest actual offspring in only 7 of the 28 families. Moreover, when repeatedly downsampled to 𝑛 =

7 children, the offspring with the highest PS was the tallest in ≈31.5% of the families, close to the 

theoretical prediction (≈33.4%; Supplementary Note Section 4.4). Across all families, the tallest child 

was on average ≈3.0cm taller than the child with the tallest predicted height, again very close to the 

theoretical prediction (3.1cm; Supplementary Note Section 4.3).  

Discussion 

In this paper, we explored the expected gain in trait value due to selection of human embryos for height 

and IQ. We showed that the average gain, with current predictors and with 5 viable embryos, is around 

≈2.5cm and ≈2.5 IQ points. We predicted and confirmed by simulations that the gain will increase 

linearly with the square root of the variance explained by the predictor, but much more slowly with the 

number of embryos. These results contrast with the only two studies addressing this question to date, 

both of which employed only mathematical modeling; those studies suggested that much larger effect 

sizes were possible with currently available scores and technologies [14], and that increasing the 

number of available embryos would have the largest effect on potential gain [15]. The only empirical 

study comparable to this report was an examination of PS in the prediction of milk yield in dairy cattle 

[33]. In 17 sets of approximately ≈6 tested embryos, the top scoring embryo had an expected gain of 

approximately 5% of the trait value (≈0.35 standard deviations) compared to the average embryo. Since 

the currently available PS for milk yield has comparable 𝑟ps
2  to that for human height, it is reassuring that 

the reported gain is similar to that reported here. 

Given that 𝑟ps
2  holds the strongest effect on potential gain from embryo selection, it is worthwhile to 

consider the potential for increasing 𝑟ps
2  for height and IQ in the foreseeable future. Increasing sample 

sizes of discovery GWASs is the most straightforward means of increasing 𝑟ps
2  [34]. For educational 

attainment, a trait strongly correlated with IQ (𝑟𝑔 ≈ 0.70; [35]), increasing GWAS sample size from 

≈300K [36] to ≈1.1M [37] resulted in a proportional increase in out-of-sample variance explained, from 

3.2% to 11%. However, the variance explained by the predictor is not expected to increase linearly with 

the GWAS sample size [38]. For height, the maximum out-of-sample 𝑟ps
2  only increased from 17% to 

24.6%, despite a near-tripling of discovery GWAS sample size from ≈250K individuals [39] to ≈700K 

individuals [12].  

Second, 𝑟ps
2  can be enhanced by the addition of increasingly rare variation to the discovery GWAS [30], 

especially since negative selection results in larger per-allele effect sizes at the lower end of the 

frequency spectrum [40]. Current imputation panels are limited in their ability to accurately assess 

variants with frequencies below 1%, but will continuously improve as imputation panels increase in size 

and representation of varying populations [41,42]. For example, a recent family-based study [43] has 

demonstrated that more than half of the variation in cognitive ability is attributable to rare variation not 

captured by current GWASs (see also [44]). Importantly, very little of this variation is private to 
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individual families; most could be captured by population-based reference panels of sufficient size to 

accurately impute variants at 0.1% minor allele frequency and greater. 

Third, statistical approaches to calculating PSs from GWASs are becoming increasingly sophisticated 

[16,45]. Most notably, the application of penalized regression methods to the generation of PSs holds 

the potential for rapid gains in 𝑟ps
2  without requiring any additional data collection in either GWAS 

datasets or imputation reference panels [26,46]. For example, initial evidence suggests that currently 

available datasets might be able to explain up to 50% of the variance in height by using LASSO, and that 

a similar doubling of explained variance is also possible for cognitive phenotypes [27]. Additionally, the 

use of multiple related phenotypes has been demonstrated to enhance the predictive power of PS [47]; 

for example, the combination of educational attainment and intelligence GWAS may permit a doubling 

of cognitive 𝑟ps
2  [48]. Finally, it has recently been suggested that enrichment of certain subcategories of 

functional variation (e.g., coding, conserved, regulatory, and LD-related genomic annotations) in GWAS 

results can be leveraged to further enhance prediction accuracy [49,50]. 

While it is likely that some combination of the above factors will increase the accuracy of PSs in the near 

future, substantial limitations to PSs must also be acknowledged [51]. First, PSs do not account for 

extremely rare Mendelian variants associated with extreme phenotypes such as short stature [52] or 

intellectual disability [53]. More broadly, the lower end of the phenotypic distribution is less well 

predicted from common variant PS than the middle and upper percentiles [54]; this fact limits the utility 

of PSs for “reverse” embryonic selection (i.e., to avoid extreme low values). Second, it is well known that 

PSs lose substantial power, or may even be invalid, when applied across different populations [55–57]. 

Moreover, even within a single population, subtle remaining ethnic and geographic  stratification effects 

may result in inflated estimates of 𝑟ps
2  [58–60], limiting applicability to individual prediction. Third, SNP 

effects may be environmentally sensitive, and may not be consistent across time and place [61].  

Beyond these limitations in PS power and accuracy, several additional constraints on the expected utility 

of embryo selection are notable. First, we did not explicitly model assortative mating, which likely exists 

to some extent for traits such as height and cognitive ability [18,62], and is expected to reduce the 

potential available variance for embryo selection. While there was no detectable effect of assortative 

mating in our Longevity cohort, these subjects represented an older birth cohort, and assortative mating 

on phenotypic traits may be increasing. Second, the number of embryos per IVF cycle is usually less than 

10 [17], and, as can be seen in Figure 2, in this regime the utility drops sharply with a decreasing number 

of embryos. Third, with the increasing age of childbearing, so does the increase in the proportion of 

aneuploid embryos. For example, the proportion of aneuploid embryos is 35% for women aged 35 and 

60% at age 40 [63]. Relatedly, embryos with particularly high polygenic scores are not guaranteed to 

implant and lead to a live birth. While it is theoretically possible to perform multiple IVF cycles to 

generate more embryos, IVF is invasive, involves a substantial discomfort to the prospective mother, 

and requires significant financial means [64] (which would often also mean an older age of the 

prospective parents and fewer viable embryos per cycle). To the best of our knowledge, no upcoming 

technology is expected to significantly increase the number of oocytes extracted per IVF cycle [65,66]. 

While it has been suggested that induced pluripotent stem cells may greatly increase the potential 

number of available embryos [67,68], such technologies are not close to implementation for human 

reproduction. Either way, even with tens of viable embryos, our simulations show that the gain in trait 

value would be relatively small (Figure 2). 
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Perhaps more importantly, we have demonstrated that two sources of variability result in wide 

confidence intervals for the prediction of final observed phenotypic values: 1) the random assortment of 

SNPs will result in variability of the predicted gain around its mean value; and 2) environmental variation 

will produce considerable additional uncertainty around the predicted gain. In our empirical dataset, the 

majority of offspring who were the tallest among their siblings were not those with the highest PS, and a 

substantial fraction of “selected” offspring had lower than average phenotypic values. Regardless of the 

future accuracy of 𝑟ps
2  or the number of available embryos, these uncontrollable sources of variability 

will limit the appeal of selection for any individual couple. 

A final reason for caution over the utility of embryo selection is the widespread pleiotropy across most 

traits [69–71]. For example, IQ is negatively correlated with most psychiatric disorders [72], but is 

positively correlated with autism and anorexia [73]. Therefore, selecting an embryo on the basis of 

higher predicted IQ will increase the risk for autism or anorexia in the offspring. In general, once IVF and 

genotyping/sequencing have been performed, couples may desire to attempt to select for multiple 

phenotypes, as well as for a reduced risk for various diseases. This will in turn lead to smaller gains per 

each individual trait. 

Finally, we note that in this paper we did not consider the prospects, nor the ethics, of “population-

scale” embryo selection for IQ or other traits. While claims were made that population-scale selection 

could lead to a dramatic increase in trait values at the population level [74], we leave a rigorous 

evaluation of this prediction to future studies. Additionally, we do not consider here the ethical, moral, 

and legal underpinnings and consequences of embryo selection [75,76]. We hope that this work will 

promote an open and evidence-based debate of these aspects among the public and policymakers. 

Methods 

Cohorts for simulating offspring 

Longevity 

Our data included 208 individuals from 104 couples who were part of the LonGenity study of longevity 

and aging in Ashkenazi Jews (the “Longevity” cohort). Genotyping was performed using Illumina 

HumanOmniExpress array. Genotyping and QC were previously described [77–80]. The number of SNPs 

was 704,759, with an average missing rate 0.2%. We removed duplicate variants and variants with 

missing rate >1%. Height was available for all individuals except two who were discarded along with 

their spouses. Height was 177±6cm (mean±SD) in males (range 163-191) and 163±6cm in females (range 

147-175). 

ASPIS 

The Athens Study of Psychosis Proneness and Incidence of Schizophrenia [22] (henceforth "ASPIS") 

included 1066 randomly selected young male conscripts aged 18 to 24 years from the Greek Air Force in 

their first two weeks of admission. All participants were free of serious medical conditions. Cognitive 

measures included: Raven Progressive Matrices Test (Raven Matrices; raw score); Continuous 

Performance Task, Identical Pairs version (CPT-IP; d-prime score); Verbal N-Back working memory task 

(Verbal NBack; total accuracy); and Spatial N-Back working memory task (Spatial NBack; total accuracy). 

General cognitive ability scores were generated using the first principal component from a Principal 
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Components Analysis. Genotyping was performed on Affymetrix 6.0 arrays [81–83]. The number of SNPs 

was 487,126, with an average missing rate 0.3%. Out of the 1066 genotyped samples, 147 had their 

cognitive function scores missing and were discarded from the analysis, leaving 919 individuals. We 

transformed the scores to IQ points by scaling the mean to 100 and the standard deviation to 15 (range 

47-140). 

Phasing 

We phased both cohorts (separately) using SHAPEIT2 [84]. Default parameters were used, except for 

using 200 states (to improve precision), and an effective population size of 12k, similar to the value 

suggested for Europeans. The genetic map used was from HapMap [85]. 

Polygenic score (PS) calculation and phenotype prediction 

Height 

We used summary statistics from [12], a meta-analysis based on [39] and the UK Biobank [86]. Effect 

sizes were available for 2,334,001 SNPs, of which 1,789,210 were missing from the Longevity panel. 

Another 241 variants had mismatching alleles, leaving a total of 544,550 for downstream analyses. 

Scoring of individuals based on the summary statistics was performed in PLINK [87] with the no-mean-

imputation flag. 

Given a PS, we predicted height in a two-step approach. First, the heights of the Longevity individuals 

were regressed (using [88]) against age and sex. Second, the residuals from the first step were regressed 

against their PS (𝑟ps
2 ≈ 0.248, comparable to [12]; Supplementary Figure 2). The regression line from the 

second step was used to predict the height of the simulated offspring. 

To generate the optimal PS, we first determined whether imputation had an effect on prediction 

accuracy. We used IMPUTE2 [89] and The Ashkenazi Genome Consortium reference panel [41]. Imputed 

data was post-processed to include only single nucleotide variants present in the summary statistics and 

with IMPUTE2 INFO-score >0.9. The 𝑟ps
2  for height prediction (using all SNPs) was 0.201, which was 

slightly lower than for the PS generated without imputation, consistent with previous reports [90]. Since 

imputation incurs a significant computational and storage burden, we proceeded with the genotyped 

SNPs only. 

Next, we considered the effect of linkage-disequilibrium (LD) pruning and P-value thresholds. LD-

clumping was performed in PLINK [87] with window size of 250kb and 𝑟2 threshold of 0.1. LD was 

estimated based on 574 genomes from The Ashkenazi Genome Consortium [41], reduced to the 657,179 

SNPs intersecting with the Longevity study. The number of remaining SNPs after LD-clumping was 

93,345. We considered P-value thresholds between 10-7 to 1 in multiples of 10. We then searched for 

the parameter combination giving the maximum 𝑟ps
2  between predicted and actual phenotypes. Without 

LD-pruning, the maximal 𝑟ps
2  was 0.207 (using a P-value cutoff of 0.1). With LD-pruning, the maximal 𝑟ps

2  

was 0.248, using a P-value cutoff of 0.001. Thus, our final score used LD-pruning and P<0.001, and 

included 15,752 SNPs. 

General cognitive function 
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We used summary statistics from [11], based on a meta-analysis of intelligence (excluding the ASPIS 

cohort). Out of total of 9,145,263 SNPs, 468,809 intersected with the ASPIS panel. Following the results 

from height, we did not consider imputation. The optimal LD-clumping threshold and P-value threshold 

were 𝑟2 = 0.3 and 1, respectively, leaving 130,199 SNPs and reaching 𝑟ps
2 = 0.043 (Supplementary 

Figure 2). For improving the accuracy of LD estimation, we considered the entire 1066 genotyped 

individuals, including those without phenotypes. 

We note that other approaches for genetic prediction may have slightly higher predictive power. 

However, an extensive benchmarking of methods and thresholds for trait prediction is beyond the scope 

of this paper. Our quantitative model allows us to approximate the utility of any score, based on its 

proportion of variance explained. 

Simulating embryos 

The Longevity cohort included actual couples, and these were used to simulate offspring (“actual 

matching”). For both the Longevity and the ASPIS cohorts, we also matched parents randomly (“random 

matching”). Given a pair of parents, we simulated offspring (embryos) by specifying the locations of 

crossovers in each parent. Recombination was modeled as a Poisson process, with distances measured 

in cM using the HapMap genetic map. For each parent, we drew the number of crossovers in each 

chromosome from a Poisson distribution with a mean equal to the chromosome length in Morgan. 

Random positions along the chromosome (in cM) represented the locations of the crossovers. We mixed 

the phased paternal and maternal chromosomes of the parent according to the crossovers’ locations, 

and randomly chose one of the resulting sequences as the chromosome transmitted from that parent. 

Note that due to phase switch errors, the paternal and maternal chromosomes are each a mixture of 

both. Nevertheless, phasing is expected to be accurate over short distances (switch error rate around 

1%) [91], thus correctly representing LD blocks. 

We repeated the process to generate either 10 or 50 embryos per couple (whether a true couple or 

randomly matched). The number of couples for random matches was such that the total number of 

embryos was 5000 (Table 1). 

Cohort Phenotype Matching 
Number of 

matches 

Number of offspring 

per couple 

Longevity Height Random 500 10 

Longevity Height Random 100 50 

Longevity Height Actual 102 10 

Longevity Height Actual 102 50 

ASPIS Cognitive ability Random 500 10 

ASPIS Cognitive ability Random 100 50 

Table 1. A list of the sets of simulated embryos. 

To calculate the polygenic scores for the synthetic embryos, we used the same summary statistics as for 

the parents. To predict the phenotype of the embryos, we used the regression model that we have 
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generated from the parents. The predicted phenotype is already in its natural units (cm or IQ points). 

Adding sex- or age-specific mean values was unnecessary, as we considered only the differences 

between embryos attributed to their genetics. 

Real nuclear families 

We used 28 large nuclear Jewish families with an average of 9.6 adult offspring (full-siblings) per family 

who have completed their growth. The families were recruited in Israel and in the US after obtaining IRB 

approvals in both locations. Details on the cohort, measurements, and genotyping appear elsewhere 

[92]. In short, participants signed a consent form and filled a medical questionnaire (to ensure there 

were no medical conditions that could have affected their growth), and their heights were measured 

with four technical repeats at an accuracy of ±0.1cm. All 308 consented participants were genotyped on 

the Affymetrix Axiom Biobank array (≈630,000 SNPs). One from each of six pairs of monozygotic twins 

was excluded. Heights were corrected for age and age2, then standardized to 𝑍-scores in each sex 

separately, then reported as 173.0 + 5.6𝑍cm. 

For predicting height, we used the same set of 15,752 SNPs as used for the Longevity cohort, based on 

P<0.001 and LD 𝑟2 < 0.1. Of these, we used a total of 15,124 SNPs that were present on the array or 

could be imputed from the AJ reference panel [93]. We excluded SNPs homozygous in all participants. 

The weight of each SNP was its effect size [12], zero centered for the cohort, and the score of each 

subject was the weighted sum of the number of carried effect alleles. Scores were standardized into 𝑍-

scores and reported as for the actual heights. 
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Supplementary Figures 

 

Supplementary Figure 1. The mean gain in embryo selection vs the number of embryos 𝒏. All details are the 

same as in Figure 2. The theoretical prediction here is based on extreme value theory, as given in Supplementary 

Note Eq. (35), providing a slightly better fit compared to main text Eq. (1). 

 

Supplementary Figure 2. Height and cognitive ability (IQ) vs their polygenic scores. Results are shown for the 

heights of 204 individuals in the Longevity cohort (A), the heights of 308 individuals from the large nuclear families 

(B), and the IQ of 919 individuals from the ASPIS cohort (C). Also shown are the regression lines, the proportions of 

variance explained, and the P-values. The proportions of variance explained by the polygenic scores are ≈25-27% 

for height and ≈4.3% for IQ. 
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Screening human embryos for polygenic traits has

limited utility

Supplementary Note

May 3, 2019

1 Background and model

We assume a couple has generated n embryos, and we would like to select the
optimal embryo with respect to a given polygenic trait. We assume that the
genetic architecture of the trait is infinitesimal, namely that there are numerous
causal variants, uniformly distributed along the genome. Denote the value of
the trait as z, the number of variants as N , the variance of the trait as σ2

z , and
the heritability as h2, and assume the trait has zero mean.

Mathematically, we assume an additive model, where for a given individual,

z =
N∑
i=1

βi(Gi,p +Gi,m) + ε. (1)

In the above equation, Gi,p = gi,p − fi, where gi,p ∈ {0, 1} is the number of
minor alleles at site i on the paternal chromosome and fi is the minor allele
frequency. Gi,m is similarly defined for the maternal chromosome. βi is the
additive effect size per allele.

The polygenic score for the trait is defined as

PS =
N∑
i=1

β̂i(Gi,p +Gi,m), (2)

where the β̂is are the estimated effect sizes. We further assume that the trait
can be modeled as

z = PS + ε. (3)

The error term now represents both the environmental component as well as
unaccounted-for genetic components. The proportion of variance of z explained

1
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by the polygenic score PS is denoted

r2ps =
Var (PS)

σ2
z

. (4)

rps is also the correlation coefficient between the polygenic score and the trait
value.

Next, we make the following assumptions. First, we assume that there is no
assortative mating. This implies that beyond linkage disequilibrium, there is no
correlation between the contributions to the polygenic score from (i) the two
homologous chromosomes of an individual, at the same locus; (ii) two chromo-
somes of spouses, at the same locus; (iii) two distinct loci, coming from the
same chromosome; and (iv) two distinct loci, coming from either two homolo-
gous chromosomes or from chromosomes of spouses. While assortative mating
was demonstrated for several polygenic traits [1, 2, 3], our empirical data shows
that the implied correlation between polygenic scores of spouses is relatively
small. Specifically, we found that the correlation in the polygenic scores for IQ
between actual spouses was relatively low and did not reach statistical signifi-
cance (r = 0.12, P = 0.25). The correlation for the polygenic scores for height
was similarly low (r = −0.03, P = 0.76). While the correlation may increase
with the increasing predictive power of the scores, our model still serves as a
useful baseline. In particular, since assortative mating is usually positive, our
results form an upper bound for the utility of embryo selection.

Second, to avoid correlation due to linkage disequilibrium (LD), we write
the polygenic score as a sum of M elements, where each element is the score in
a single LD block,

PS =
M∑
i=1

(PSi,p + PSi,m). (5)

Above, PSi,p =
∑
k∈Bi

β̂kGk,p, where Bi is the set of variants in block i, and
similarly for PSi,m. Under the above assumption of no assortative mating, and
assuming no correlation across LD blocks, this implies that for all i 6= j, the
random variables PSi,p, PSi,m, PSj,p, PSj,m are all uncorrelated. Moreover,
PSi,p,PSi,m for any one individual are uncorrelated with PSi,p and PSi,m in the
spouse of that individual, for any block i. The LD blocks can be identified, e.g.,
as in [4].

We further assume that all blocks contribute equally to the variance (al-
though this can be easily relaxed, leading to the same result). Thus, under the
above model, we have

Var (PSi,p) = Var (PSi,m) = σ2
z

r2ps
2M

, (6)

as well as
E (PS) = E (PSi,p) = E (PSi,m) = 0. (7)

Next, we consider the vector PS = (PS1, . . . ,PSn) of polygenic scores for
n embryos together. We assume that the distribution of the polygenic scores,

2
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PS, is normal in each embryo (due to the polygenic nature of most complex
traits [5]), and further that the joint distribution of the polygenic scores over n
embryos is multivariate normal,

PS =
(
PS1, . . . ,PSn

)
∼ MVN(µ,Σ), (8)

where µ = 0n (a column vector of zeros of length n). The diagonal elements
of the covariance matrix Σ are Var

(
PSi
)

= σ2
zr

2
ps for all i = 1, . . . , n. We will

compute the off-diagonal covariances below (Section 2).
We define the gain G due to embryo selection as the difference between

the polygenic score of the best embryo and the average scores of all embryos.
Mathematically,

G = max
(
PS1, . . . ,PSn

)
− PS1 + · · ·PSn

n
. (9)

The gain G is a random variable, with a sample space over all theoretical sets
of n siblings. In the following, we will examine the statistical properties (e.g.,
mean and variance) of the gain as a function of n, σ2

z , and r2ps.
For the mean gain, using Eq. (7),

E (G) = E
(
max

(
PS1, . . . ,PSn

))
. (10)

We derive an approximate formula for the mean gain in Section 3. We then
consider in Section 4 other properties of the gain G, including its variance and
the implications for prediction of the embryo with the actual highest trait value.

2 The covariance

In order to obtain the joint distribution of
(
PS1, . . . ,PSn

)
, we need to compute

Cov
(
PSA,PSB

)
, the covariance between the polygenic scores of two distinct

embryos (or siblings), which we name A and B. For two individuals A,B with
kinship coefficient Θ, standard quantitative genetics theory gives the covariance
Cov (zA, zB) = 2Θh2, for a quantitative additive trait z with heritability h2

under the infinitesimal model [6]. Specifically, for full siblings, Θ = 1/4, and
thus Cov (zA, zB) = h2/2. For completeness, we derive the corresponding result
here for the polygenic scores PSA and PSB .

Recall that we modeled the polygenic score as PS =
∑M
i=1(PSi,p + PSi,m),

where PSi,p is the score of the ith LD block in the paternal chromosome and
PSi,m is the score from the maternal chromosome. For a pair of siblings and for
a given LD block, their scores come from the same parental chromosome with
probability 1/2, or from different parental chromosome with probability 1/2.
(We ignore the possibility of a recombination event taking place in the middle
of an LD block, because, first, by definition, recombination is depleted within
LD blocks, and second, the distance between crossovers is much greater than
the distance between LD blocks [7].)

3
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Consider the two homologous chromosomes of the father at block i. Denote
the polygenic score of the first chromosome (say, grandpaternal) as xi,1 and the
score of the second chromosome (say, grandmaternal) as xi,2. Similarly, denote
the polygenic scores of the two maternal chromosomes as yi,1 and yi,2. For
embryo A, denote by pA,i the choice of the paternal chromosome transmitted to
embryo A at block i: pA,i = 1, 2 with equal probability. Similarly, mA,i = 1, 2
denotes the identity of the maternal chromosome transmitted to embryo A at
block i. With the above notation, the polygenic score of embryo A can be
written as:

PSA =
M∑
i=1

(
xi,pA,i

+ yi,mA,i

)
. (11)

Similarly,

PSB =
M∑
i=1

(
xi,pB,i

+ yi,mB,i

)
. (12)

The covariance between the scores of two embryos is

Cov
(
PSA,PSB

)
= Cov

(
M∑
i=1

(
xi,pA,i

+ yi,mA,i

)
,
M∑
i=1

(
xi,pB,i

+ yi,mB,i

))
. (13)

According to the assumptions of Section 1, there is no correlation between the
scores of any two blocks on two chromosomes of spouses, or between distinct
blocks on the same chromosome. Thus,

Cov
(
PSA,PSB

)
= M [Cov (xpA , xpB ) + Cov (ymA

, ymB
)] , (14)

where pA, pB ,mA,mB are the identities of the chromosome transmitted by the
father/mother to embryos A and B at a representative block, and x1, x2, y1, y2
are the scores of the four parental chromosomes in that block. pA, pB ,mA,mB

are independent random variables taking the values 1 or 2 with equal probabil-
ities. To compute the remaining terms, we invoke the law of total covariance,
by conditioning on pA, pB or on mA,mB . For example,

Cov (xpA , xpB ) = E (Cov (xpA , xpB |pA, pB)) + Cov (E (xpA |pA, pB) ,E (xpB |pA, pB)) .
(15)

However, E (xpA |pA, pB) = E (xpB |pA, pB) = 0, and are both in general indepen-
dent of pA or pB . Thus, the second term (covariance of expectations) vanishes.
We can expand the first term as follows,

E (Cov (xpA , xpB |pA, pB)) =
1

4
Cov (x1, x1) +

1

4
Cov (x2, x2)

+
1

4
Cov (x1, x2) +

1

4
Cov (x2, x1) . (16)

Again according to the assumptions of Section 1, there is no correlation between
the scores of blocks from homologous chromosomes. Thus, the two terms in the

4
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second line vanish. Finally, using Eq. (6),

E (Cov (xpA , xpB |pA, pB)) =
1

4
Var (x1) +

1

4
Var (x2) = σ2

z

r2ps
4M

. (17)

A similar result holds for the maternal scores. Using Eq. (14),

Cov
(
PSA,PSB

)
=

1

2
σ2
zr

2
ps. (18)

We have thus specified the distribution of the polygenic scores of the n
embryos,

PS =
(
PS1, . . . ,PSn

)
∼ MVN(µ,Σ), (19)

where µ = 0n and Σ is an n× n covariance matrix with elements

Σ = σ2
zr

2
ps


1 1

2 . . . 1
2

1
2 1 . . . 1

2
. . . . . . . . . . . .
1
2

1
2 . . . 1

 . (20)

3 The mean score of the top-scoring embryo

Define PSmax = max
(
PS1, . . . ,PSn

)
. The mean gain (as defined in Section 1) is

the mean of the score of the top-scoring embryo, E (G) = E (PSmax) (Eq. (10)).
Written more generally, we would like to compute the mean of the max-

imum of n multivariate normal variables, denoted PS =
(
PS1, . . . ,PSn

)
∼

MVN(0n,Σ), where the covariance matrix Σ is defined according to Eq. (20).
We can write the covariance matrix also as Σ = A+B, where

A = σ2
zr

2
ps


1
2 0 . . . 0
0 1

2 . . . 0
. . . . . . . . . . . .
0 0 . . . 1

2

 (21)

and

B = σ2
zr

2
ps


1
2

1
2 . . . 1

2
1
2

1
2 . . . 1

2
. . . . . . . . . . . .
1
2

1
2 . . . 1

2

 (22)

Given this decomposition, we can write the distribution of polygenic scores as
a sum of two independent multivariate normal variables PS = Y +Z, where

Y = (y1, . . . , yn) ∼ MVN(0n,A) (23)

and
Z = (z1, . . . , zn) ∼ MVN(0n,B). (24)

5
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The covariance matrix A of Y is diagonal, and hence the variables in Y are
independent. Z has a constant covariance matrix B, which means that the
correlation between all variables is 1. Thus, all elements of Z are equal to the
same normal variable with variance given by Eq. (18),

z1 ∼ N
(

0,
1

2
σ2
zr

2
ps

)
and z2 = z3 = · · · = zn = z1. (25)

Since PS = Y +Z, we have

PSmax ≡ max(y1 + z1, . . . , yn + zn)

= max(y1 + z1, . . . , yn + z1)

= max(y1, . . . , yn) + z1. (26)

The expectation of PSmax is

E (PSmax) = E (max(y1, . . . , yn)) + E (z1)

= E (max(y1, . . . , yn)) , (27)

since Z has zero means. Therefore, the mean of the maximum of
(
PS1, . . . ,PSn

)
is the same as the mean of the maximum of n independent normal variables with
variance 1

2σ
2
zr

2
ps each.

For independent normal variables, some results are known for the expecta-
tion of the maximum. For example, in [8] it was shown that ifR = max(x1, . . . , xn),
where xi ∼ N(0, σ2) are independent, then

0.23σ
√

log n ≤ E (R) ≤
√

2σ
√

log n, (28)

and thus for very large n,
E (R) ∝ σ

√
log n. (29)

Numerically, we found the best fit to Eq. (29) (over n from 1 to 50) was when
the coefficient of proportion was ≈ 1.09. In our case, σ2 = 1

2σ
2
zr

2
ps. Noting that

1.09/
√

2 ≈ 0.77, the mean polygenic score of the best embryo, and hence the
mean gain, is

E (G) ≈ 0.77σzrps
√

log n. (30)

Due to its simple functional form, we report Eq. (30) as Eq. (1) of the main
text. However, these bounds are not tight. Based on extreme value theory, we
can reach a more accurate expression. For large n [9, 10], the maximum of n
standard normal variables has an approximate Gumbel distribution with CDF:

F (x) = exp
(
− exp

(
− x− µ

β

))
, (31)

where

µ = Φ−1
(

1− 1

n

)
, (32)
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β =
1

nφ
[
Φ−1

(
1− 1

n

)] , (33)

φ is the PDF of the standard normal distribution, and Φ−1 is the inverse CDF
of the standard normal distribution. The mean of a Gumbel random variable is
µ+ βγ, where γ is the Euler-Mascheroni constant (γ ≈ 0.577).

In our case, all normal variables have standard deviation σ, and thus,

E (R) ≈ σ

[
Φ−1

(
1− 1

n

)
+

γ

nφ
(
Φ−1(1− 1

n )
)] . (34)

Finally, as we have σ2 = 1
2σ

2
zr

2
ps,

E (G) ≈ σz
rps√

2

[
Φ−1

(
1− 1

n

)
+

γ

nφ
(
Φ−1(1− 1

n )
)] . (35)

We found this equation to be more accurate than Eq. (30) (Supplementary
Figure 1).

4 Additional calculations

4.1 The variance of the score of the top-scoring embryo

Extreme value theory can also provide an expression for the variance of the top
score. From Eq. (26),

Var (PSmax) = Var (max(y1, . . . , yn)) + Var (z1) , (36)

where Var (z1) = 1
2σ

2
zr

2
ps. The variance of a Gumbel variable is known to be

π2β2/6. Thus,

Var (max(y1, . . . , yn)) =
1

2
σ2
zr

2
ps ×

π2

6
(
nφ
[
Φ−1

(
1− 1

n

)])2 , (37)

and

Var (PSmax) =
1

2
σ2
zr

2
ps

{
1 +

π2

6
(
nφ
[
Φ−1

(
1− 1

n

)])2
}
. (38)

Eq. (38) is the variance of the best polygenic scores among the n embryos.
However, it does not provide us the variance of the gain G. To compute the
variance of the gain, we would need to compute the covariance between the
maximum score and the other scores, which we leave to future work.

4.2 A prediction interval for the phenotype

We have so far predicted the mean value of the score of the top-scoring embryo
(Eq. (30)). However, even for a given polygenic score of the best embryo, the
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actual value of the trait may differ considerably. Denote the value of the trait
of the top-scoring embryo as

zmax = PSmax + ε. (39)

Following Section 1, ε has zero mean and variance

Var (ε) = σ2
z

(
1− r2ps

)
. (40)

Thus, given its polygenic score PSmax, the remaining variance in trait value for
the top-scoring embryo is Var (zmax|PSmax) = σ2

z

(
1− r2ps

)
. Assuming a normal

distribution for ε, a 95% prediction interval for the actual value of the trait will
be approximately[

PSmax − 1.96σz

√
1− r2ps,PSmax + 1.96σz

√
1− r2ps

]
. (41)

Eq. (41) is Eq. (2) in the main text. The above prediction interval is centered
around PSmax, which is assumed to be known. When it is unknown, a reasonable
approximation for the center of the prediction interval may be zmp+E(G), where
zmp is the mid-parental trait value (i.e., the average of the (sex-adjusted) trait
between the two parents). Theoretically, this approximation should break down
for the most extreme tails of parental phenotypes, because the gain must be
smaller in these cases. However, our simulations (Supplementary Note Figure
1) suggest that in a realistic setting, the gain does not significantly depend on
the mid-parental trait value.

In a näıve calculation for no selection, we assume no information is available
regarding the embryo, and thus, the 95% prediction interval would be

[−1.96σz, 1.96σz] , (42)

as for any normal variable with zero mean and variance σ2
z . However, the

phenotype can be predicted based on the mid-parental trait value. Denote
the trait of an offspring as zo. A well-known result in quantitative genetics
is that the slope of the regression of zo on zmp is equal to the heritability h2

[6]. The correlation coefficient is the product of the slope and the ratio of

the standard deviations, r = h2
σmp

σo
. But σ2

o = σ2
z and σ2

mp =
σ2
z

2 . Thus,

r = h2 σz/
√
2

σz
= h2
√
2
. The proportion of variance explained is r2 = h4

2 (see also,

e.g., [11]), and the remaining variance is σ2
z

(
1− h4

2

)
. Thus, a more realistic

95% prediction interval for the case of no selection would be[
zmp − 1.96σz

√
1− h4

2
, zmp + 1.96σz

√
1− h4

2

]
. (43)

In theory, having both the mid-parental value and the offspring’s PGS may
lead to a more accurate prediction, with a narrower prediction interval, even
for the case of selection. Prediction in this setting is in general non-trivial, and
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Figure 1: The gain in embryo selection vs the mid-parental trait value. The
height was corrected for sex and age. The height residuals or the IQ points were
then averaged between the two parents. (A) Random mating for height. (B)
Actual couples for height. (C) Random mating for IQ. The gain was calculated
over n = 10 embryos. The correlation coefficient and its associated P-value are
shown at the top of each panel.

more so here since the embryo is non-random but rather selected for its high
polygenic score. The combination of both the polygenic score and the mid-
parental value cannot explain more variance than implicated by the heritability.
Thus, the proportion of variance explained by all of the available data (PS and

parents’ trait value) can be anything within the range
[
max

(
r2ps,

h4

2

)
, h2
]
, i.e.,

it is at least the best of the two predictors, but no higher than the heritability.
At present, the variance explained by the mid-parental trait value is about

the same as that explained by the PS for height, but much higher than that
explained by the PS for many other traits, including cognitive ability. In the
future, the variance explained by the PS may substantially exceed that explained
by the parents. In our main text examples, we consider predictors explaining
70% of the variance in height and 30% of the variance in cognitive ability —
these are much larger proportions compared to those explained by the mid-

parental height or IQ: h4

2 ≈ 0.32 for height (assuming h2 ≈ 0.8) and h4

2 ≈ 0.18
for IQ (assuming h2 ≈ 0.6). In these extreme cases, the prediction interval in
Eq. (41) probably cannot be made substantially narrower.

4.3 The mean difference between the top-ranked trait and
the trait of the best embryo

In the main text, we analyzed real large nuclear families. When reduced to
n = 7 children per family, we found that the average height difference between
the tallest child and the child with the best PS was 3.0cm. To determine the
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expectation based on our quantitative model, consider n siblings, whose PSs are
modeled as a multivariate normal variable,(

PS1, . . . ,PSn
)
∼ MVN (0n,Σ) , (44)

where Σ is defined in Eq. (20). We assume that the phenotypes, z1, . . . , zn, can
be modeled as

z = (z1, . . . , zn) = G+E, (45)

where G ∼ MVN (0n,Σg) and E ∼ MVN (0n,Σe), with

Σg = σ2
zh

2


1 1

2 . . . 1
2

1
2 1 . . . 1

2
. . . . . . . . . . . .
1
2

1
2 . . . 1

 (46)

and

Σe = σ2
z

(
1− h2

)
1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1

 . (47)

In the matrix Σg, the off-diagonal elements are 1/2 due to the covariance be-
tween sibs, as in Section 2. We assume no covariance between the environmental
components. Thus, in total, (z1, . . . , zn) ∼ MVN (0n,Σz), where

Σz = σ2
z


1 h2

2 . . . h2

2
h2

2 1 . . . h2

2
. . . . . . . . . . . .
h2

2
h2

2 . . . 1

 . (48)

As we have shown in Section 3, because the covariance terms are all equal,
the mean of the maximum of the phenotypes (z) is equal to the mean of the
maximum of n independent normal variables, each with zero mean and variance
σ2
z(1−h2/2). Denote by E (R) the mean of the maximum of n standard normal

variables (e.g., as we calculated in Eq. (34)). Denote the maximum phenotype
across the sibs as zm. Since the identity of this sib is not known at the time
of selection, the phenotype of the selected embryo, zmax, may be lower, and we
have (using Eq. (39)),

E (zm − zmax) = E (zm)− E (zmax)

= σz

√
1− h2

2
E (R)− E (PSmax)

= σz

√
1− h2

2
E (R)− σz

rps√
2

E (R)

= σzE (R)

(√
1− h2

2
−
√
r2ps
2

)
. (49)
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We obtained E (R) exactly based on numerical integration, substituted σz =
5.6cm, h2 = 0.8, and r2ps = 0.27, and obtained E (zm − zmax) = 3.1cm, very
similar to the observed value.

4.4 The probability of the top-ranked embryo to have the
top-ranked trait

When reduced to n = 7 children per family, we found in the real data that on
average, in ≈ 31.5% of the families the child whose PS was ranked first was
also ranked first in actual height. To determine the expectation based on our
quantitative model, consider again n siblings. Recall that their phenotypes,
z = (z1, . . . , zn), are modeled as

z = PS + ε, (50)

as in Eq. (39). The polygenic scores are as defined above (Eq. (44)). For the
error term, we have ε ∼ MVN (0n,Σε), and

Σε = σ2
z


1− r2ps

h2−r2ps
2 . . .

h2−r2ps
2

h2−r2ps
2 1− r2ps . . .

h2−r2ps
2

. . . . . . . . . . . .
h2−r2ps

2

h2−r2ps
2 . . . 1− r2ps

 (51)

To explain the above equation, each εi has variance σ2
z

(
1− r2ps

)
. However, here

the εi’s must be correlated because they model not only the environment but
also the genetic component not modeled by the PGS. The off-diagonal entries

in the covariance matrix of the phenotypes z are equal to σ2
z
h2

2 from Eq. (48).
Assuming independence between PS and ε, these entries are equal to the sum

of the off-diagonal entries in the covariance matrix of PS, σ2
z
r2ps
2 (Eq. (18)), and

the off-diagonal entries in the covariance matrix of ε. Thus, the latter must be

σ2
z
h2−r2ps

2 .
We simulated values for PS and ε, assuming n = 7, h2 = 0.8, and r2ps = 0.27,

as in the real family data, and then calculated the phenotypes according to
Eq. (50). (The value of σz does not change the relative ranks, and can be
set to any value.) We found that in ≈ 33.4% of the simulations, the sibling
top-ranked for the score (PS) was also top-ranked for the phenotype (z), in a
reasonable agreement with the empirical results. An analytic approximation to
this probability can also be derived based on Eq. (14) in [12].
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