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Abstract:  
 
The human proteome is a major source of therapeutic targets. Recent genetic association 

analyses of the plasma proteome enable systematic evaluation of the causal consequences 

of variation in protein levels. Here, we estimated the effects of 1002 proteins on 225 

phenotypes using two-sample Mendelian randomization (MR) and colocalization. Of 413 

associations supported by evidence from MR, 139 (34%) were not supported by results of 

colocalization analyses, suggesting that genetic confounding may be widespread in naive 

phenome-wide association studies of proteins. Combining MR and colocalization evidence in 

cis-only analyses, we identified 105 putatively causal effects between 64 proteins and 51 

downstream phenotypes (www.epigraphdb.org/pqtl). Evaluation of historic data from 268 

drug development programmes showed that target-indication pairs with MR and 

colocalization support were considerably more likely to succeed, evidencing the value of this 

approach in identifying and prioritising potential therapeutic targets. 
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Despite increasing investment in research and development (R&D) in the pharmaceutical 

industry 
1
, the rate of success for novel drugs continues to fall 

2
. Lower success rates make 

new therapeutics more expensive, reducing availability and increasing healthcare costs. 

Indeed, only one in ten targets taken into clinical trials reaches approval 
2
, with many 

showing lack of efficacy (~50%) or adverse safety profiles (~25%) in late stage clinical trials 

after many years of development 
3,4

. For some diseases such as Alzheimer’s disease, the 

failure rates are even higher 
5
.  

 

To reduce the costs of drug development, approaches to prioritize target-indication pairs 

that are more likely to be successful at an early stage are much needed. It has previously 

been shown that genetic associations of phenotypes at loci similar to target-encoding genes 

of indications increase the likelihood of targets being efficacious 
6
. Thus, systematically 

evaluating the genetic evidence in support of potential target-indication pairs is a potential 

strategy to prioritise development programmes. However, whilst systematic genetic studies 

have evaluated the putative causal role of both methylome and transcriptome on diseases 
7
 

8
, no systematic causal inference study has yet been conducted to evaluate the role of the 

proteome in disease.  

 

Plasma proteins play key roles in a range of biological processes, are frequently 

dysregulated in disease, and represent a major source of druggable targets 
9
 
10

 
11

. Recently 

published genome-wide association studies (GWAS) of plasma protein levels have identified 

3606 conditionally independent single nucleotide polymorphisms (SNPs) associated with 

2656 proteins (‘protein quantitative trait loci’, pQTLs) in more than 1000 participants 
12 13 14 

15 16
.
 
While conventional randomized controlled trials are time-consuming and costly, these 

genetic associations offer the potential to systematically test the causal effects of a large 

number of potential drug targets on the human disease phenome through Mendelian 

randomization (MR) 
17

. In essence, MR exploits the random allocation of genetic variants at 

conception and their associations with disease risk factors to uncover causal relationships 

between human phenotypes 
18, and has been described in detail previously 

19
 
20

.  

 

Here, we pool and cross-validate pQTLs from five recently published GWASs and 

systematically evaluate the causal effects of 968 plasma proteins on the human disease 

phenome, including 153 diseases and 72 risk factors available in the MR-Base database 
21

. 

Results of all analyses are available in an open online database (www.epigraphdb.org/pqtl), 

with graphical and programmatic interfaces to enable rapid and systematic queries. 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2019. ; https://doi.org/10.1101/627398doi: bioRxiv preprint 

https://doi.org/10.1101/627398
http://creativecommons.org/licenses/by-nd/4.0/


  
 

3 
 

Results 

 
Characterising genetic instruments for protein levels 
Figure 1A summarises the genetic instrument selection and validation process, with 

expanded detail in Supplementary Figure 1. We curated 3606 SNPs associated with 2656 

proteins from five studies 
12 13 14 15 16

. After removing proteins and SNPs in the major 

histocompatibility complex (MHC) region and performing strict LD clumping we retained 

2113 pQTLs associated with 1699 proteins (Online Method: Instruments selection; 

instruments listed in Supplementary Table 1). We then conducted a validation process in 

which we categorised the instruments into three tiers based on their utility for MR analysis 

(Online Methods: Instrument validation, Supplementary Figure 2 and 3). In summary we 

curated 1064 pQTLs for 955 proteins with highest relative level of reliability (tier 1, 

Supplementary Table 1), 62 pQTLs which exhibited effect heterogeneity across studies 

(where we could test it), indicating uncertainty in the reliability of one or all pQTLs (tier 2, 

Supplementary Table 2), and 987 non-specific pQTLs that were associated with more than 

five proteins (tier 3, Supplementary Table 1). Amongst the tier 1 pQTLs, 738 (69.4%) were 

acting in cis (within 500kb of the protein coding gene) and 326 were trans-acting. 66 

proteins were influenced by both cis and one or more trans SNPs (Supplementary Table 3), 

and 149 proteins had more than one conditionally independent cis instrument
12

, involving 

368 cis SNPs (Supplementary Table 4). 

 
Estimated effects of plasma proteins on human phenotypes  
We undertook two-sample MR to systematically evaluate evidence for causal effects of 

1002 plasma proteins (with tier 1 and tier 2 instruments) on 153 diseases and 72 risk factors 

(Supplementary Table 5, Online Methods). As cis-pQTLs were considered to have a higher 

biological prior for a direct and specific impact of the SNP upon the protein (compared to 

trans pQTLs), we grouped the MR analyses based on whether the instruments were acting in 

cis or trans. Genetically predicted associations between protein levels and other phenotypes 

may indicate causality (the protein causally influences the phenotype); reverse causality 

(genetic liability to an outcome influences the protein level); linkage disequilibrium between 

leading SNPs within protein and human phenotypes, or horizontal pleiotropy (the protein-

phenotype association is not mediated by the target protein, but the dual associations are 

as a result of two distinct biological phenomena) (Supplementary Figure 4). To address 

these alternative explanations we conducted a set of sensitivity analyses designed to 

increase confidence in the MR association reflecting a causal effect of the protein on the 

phenotype: colocalization analysis 
22

 to investigate whether the genetic associations with 

both protein and phenotype shared the same causal variants; tests of reverse causality 

using bi-directional MR 
23 and MR Steiger filtering 24 25; and heterogeneity analyses for 

proteins with multiple instruments 
26

 (Figure 1B). In general, we observed 413 protein-trait 

associations with MR evidence using either cis or trans instruments. For these associations, 

274 (66.3%) also showed evidence of colocalization, suggesting that one third of the MR 

findings could be driven by genetic confounding by LD between pQTLs and other causal 

SNPs. 

 

Estimating protein effects on human phenotypes using cis pQTLs 
In cis pQTL MR analyses, we identified 105 putatively causal effects of 64 proteins with 51 

phenotypes (Figure 2, Supplementary Table 6, P< 3.5x10
-7

), with evidence of MR and 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2019. ; https://doi.org/10.1101/627398doi: bioRxiv preprint 

https://doi.org/10.1101/627398
http://creativecommons.org/licenses/by-nd/4.0/


  
 

4 
 

colocalization (posterior probability>80%) between the protein- and phenotype-associated 

signals. 10 of the 105 associations showed evidence of colocalization only after conducting 

conditional analysis 
27

 for proteins and human phenotypes in the cis region (Supplementary 

Table 6). For example, Haptoglobin (HP) did not show strong evidence of colocalization on 

LDL cholesterol (colocalization probability ≅ 0; data from GLGC consortium) due to multiple 

association peaks for LDL cholesterol in the HP region (Supplementary Figure 5). After 

applying conditional analysis to LDL cholesterol, we observed strong evidence of 

colocalization (colocalization probability = 0.997).  

 

Evidence of potentially causal effects with colocalization was identified across a range of 

disease categories including anthropometric and respiratory phenotypes as well as 

cardiovascular and autoimmune diseases (Supplementary Table 6; see Supplementary Note 

1 and 2). For example, higher levels of Cerebellin 4 Precursor (CBLN4) showed evidence of 

association with higher body mass. We also identified an association of lower levels of AGT 

with lower diastolic blood pressure, lower levels of ADAM Metallopeptidase Domain 19 

(ADAM19) with lower forced expiratory volume in 1-second and lower Intercellular 

Adhesion Molecule 5 (ICAM5) level with lower risk of Crohn's disease (Supplementary Table 

6).  

 

There was less evidence of colocalization for 75 associations involving 50 proteins and 29 

phenotypes (Supplementary Table 7). Most of these findings provide evidence that the 

genetic signals for protein levels and human phenotypes represent linkage disequilibrium 

(LD) between the pQTL and other SNPs that causally influence the phenotype within the 

region and highlight the importance of colocalization in such MR analyses. We found some 

examples showing modest evidence of colocalization, including some where the probability 

of colocalization were close to our threshold (posterior probability > 80%). In cases that the 

colocalization values were close to our threshold, power may be an issue; for example, the 

association between nephroblastoma Overexpressed (NOV) and fibroblastic disorders 

showed a colocalization probability of 75.6%.  

 

Where pQTL studies identified multiple conditionally independent SNPs, we applied a MR 

model which takes into account the LD structure between conditionally independent SNPs 

in the cis region 
28

 
29

. In this analysis, 21 of the 29 top associations identified using a single 

cis instrument had consistent evidence of association (P value cut off = 3.5x10
-7

) and 

directions of effect using multiple cis instruments (Supplementary Table 8A), which 

enhanced the reliability of these MR findings. Although the heterogeneity analysis 

suggested that 9 of 21 top associations show some evidence of inconsistent SNP effects 

across the multiple cis instruments (Cochrane Q P value < 0.05; Supplementary Table 8A), 

we found that the direction of causal effects across the multiple cis instruments was always 

consistent using either single cis or multiple cis pQTLs as instruments for MR.  

 

An illustration of the value of using multiple cis SNPs is seen in our analysis of 

microseminoprotein beta (MSMB) and prostate cancer risk. Serum levels of MSMB is a 

clinical biomarker of prostate cancer risk, diagnosis and disease monitoring and Sun et al 

reported that a cis pQTL associated with lower MSMB plasma levels is the lead prostate 

cancer susceptibility variant (rs10993994) 
12

, supporting a protective role for MSMB in 

prostate cancer. In our study, we used the same single cis instrument (rs10993994) and 
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confirmed this association in an independent sample from UK Biobank (OR = 0.758, for 

prostate cancer per SD change in MSMB levels, 95%CI= 0.703 to 0.818, P= 7.81 x 10
-13

; 

Supplementary Table 6). We further applied MR using two conditional independent cis 

instruments for MSMB (rs10993994 and rs61847070) and found a similar result (OR= 0.766, 

95%CI= 0.713 to 0.819, P= 4.48x10
-14

; Supplementary Table 8A). Furthermore, bi-directional 

MR suggested little evidence of reverse causality for the genetic liability of prostate cancer 

on MSMB (Supplementary Data 1).  

 

In regions with multiple signals, we performed colocalization analysis of conditionally 

distinct signals of proteins against disease traits. For example, Interleukin 23 Receptor 

(IL23R) levels showed two association peaks within the cis region (Figure 3A showing the 

two conditionally independent cis instruments, rs11581607 and rs3762318 identified by Sun 

et al 12
). MR analyses combining both instruments showed a strong association of IL23R with 

Crohn’s disease (OR= 3.22, OR in Crohn’s disease risk per SD change in IL23R, 95%CI= 2.93 to 

3.53, P=6.93x10
-131

; Supplementary Table 8A). In addition, there were 4 possible 

conditionally independent signals (conditional P value<1x10
-7

) predicted for Crohn’s disease 

in the same region (Figure 3B; Crohn’s disease data from de Lange et al 
30

). After adjusting 

for other distinct signals in the region, we observed colocalized association peaks between 

IL23R and Crohn’s disease for the top IL23R signal (rs11581607) (Figure 3C-D, colocalization 

probability = 99.3%) and observed limited evidence for the second independent IL23R hit 

(rs7528804) (Figure 3E-F; colocalization probability = 62.9%). Given that naïve colocalization 

of the marginal associations in the region showed no evidence of shared signals 

(colocalization probability = 0), this example demonstrates both the complexity of the 

associations in this region and the importance of applying conditional analysis before 

colocalization when multiple distinct signals exist in the region.  

 

In addition, we found 6 associations identified in the ‘single cis’ analysis that had weaker 

associations when analysed with multiple cis instruments (multiple-cis P value > 1x10
-5

), 

representing less reliable MR findings (Supplementary Table 6 and 7), which reflected 

heterogeneity across instruments. However, in many cases multiple cis SNPs resulted in 

increased power and precision of the causal estimates and identified 10 new associations, 

which were not shown in the single cis analysis (Supplementary Table 8B). For example, 

using three conditionally independent cis instruments, we identified a potential novel 

association between higher chymotrypsinogen B1 (CTRB1) levels and lower risk of Crohn's 

disease (odds ratio [OR]= 0.928, for Crohn's disease per SD change in CTRB1 levels, 

95%CI=0.903 to 0.954, P = 1.18 x 10
-7

) (Supplementary Table 8B).  

 

Due to epitope-binding artefacts driven by coding variants, some of the cis instruments 

could be artefactual 
31

, we therefore conducted a sensitivity MR analysis that excluded 123 

Tier 1 cis instruments which are in the coding region. After this additional exclusion, we saw 

no compelling evidence for a large proportion of coding variant-driven pQTL associations 

being artefactual, at least on the basis that a comparable proportion showed strong 

evidence (>80%) of colocalization with an outcome phenotype association (70/164 

compared to 75/180 for those pQTLs not led by coding variants). (Supplementary Table 6 

and 7, filtered by column “VEP”). 
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Using trans-pQTLs as additional instrument sources 
Trans pQTLs are more likely to influence targets though pleiotropic pathways. For example, 

among the 1316 trans instruments we identified from 5 studies 73.5% were associated with 

more than 5 proteins, compared to 1.8 % of cis instruments (Supplementary Table 1). An 

illustration of applying colocalization analysis to identify potential mediators for association 

of Alpha 1-3-N-Acetylgalactosaminyltransferase And Alpha 1-3-Galactosyltransferase (ABO) 

protein on ovarian cancer is shown in Supplementary Note 3. However, trans pQTLs that 

overlap disease associations can highlight previously unsuspected candidate proteins 

through which genetic loci may influence disease risk 
12

, so we did extend MR analyses to 

include trans instruments, where they were associated with fewer than 5 proteins.  

 
First, we aimed to further boost power to identify causal links by combining cis and trans 

instruments for 66 proteins that had both cis and trans pQTLs (noted as cis + trans analysis). 

However, none reached our pre-defined Bonferroni-corrected threshold, although two 

protein-phenotype associations provided some evidence at P<1x10
-5

 (Supplementary table 

9).  
 

Next, we performed trans-only analyses of 293 proteins, and identified 158 associations 

with 44 phenotypes, all with evidence of colocalization (Supplementary Table 10). Some of 

those are consistent with established causal evidence from drug trials. For example, Protein 

C, Inactivator Of Coagulation Factors Va And VIIIa (PROC) is a target for approved drugs, 

such as activated protein C and warfarin, to treat venous thrombosis. There were no pQTLs 

found to be associated with PROC in the cis region (top associated SNP, rs6755028, with P 

value = 1.23x10
-4

; Supplementary Figure 6). However, in MR and colocalization analysis 

using PROC trans pQTL (rs867186), we found a strong association between PROC and deep 

venous thrombosis (DVT) (OR=1.21, OR of DVT risk per SD change in PROC level, 95%CI= 

1.42 to 1.28, P= 1.27x10
-10

; probability of colocalization >0.9). In addition, the 44 

associations involving 25 proteins and 25 phenotypes with less evidence of colocalization 

are listed in Supplementary Table 11. 

 

Estimating protein effects on human phenotypes using pQTLs with heterogeneous 
effects across studies 
 
As we were able to access full genome-wide results (rather than just “top” results) for the 

pQTLs identified in three of the pQTL GWA studies 
12,13,14

, we could check whether the same 

pQTL was observed in other studies. We examined any differences in effect size between 

studies using the pair-wise Z test (where we defined a Z statistic greater than 5 (equal to a P 

value of 0.001) as indicating strong evidence for heterogeneity). Of the 494 pQTLs where we 

could test for heterogeneity across studies, we found that 144 (29.1%) showed evidence of 

difference in effect size across studies (so called Tier 2 instruments). Recognising that lack of 

replication and effect heterogeneity does not preclude at least one of these effects being 

genuine, we performed MR analyses using the most significant SNP across studies and 

report the findings with caution. Some proteins that are targets of approved drugs were 

found in this analysis, such as IL6R (targeted by tocilizumab) on rheumatoid arthritis 
32, and 

CHD, the latter being supported by treatment trials of therapies targeting IL1B 
33

, which is 

upstream of IL6R (Supplementary Table 12).  
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As another test of heterogeneity across studies, where the same protein was measured in 

two or more studies, we performed colocalization analysis of each protein (in one study) 

against the same protein (in another study) for all studies in which we had access to full 

summary results. Of 41 pQTLs where we could test for colocalization of the same protein in 

another pQTL study, we found 25 had little evidence of colocalization, which suggested 

either two different signals within the test region or the protein have pQTL in one study but 

not in the other study. For the first case, since one of the two distinct signals may be a 

genuine pQTL, we therefore performed MR analysis of these 25 pQTLs using instruments 

from each study separately. The findings of this analysis were reported in Supplementary 

Table 13.  

 
Orienting causal direction in protein-disease associations  

 

For potential associations between proteins and phenotypes identified in the previous 

analyses (single cis, cis + trans and trans-only analysis), we undertook two sensitivity 

analyses to eliminate spurious results due to reverse causation — bi-directional MR 
23

 and 

Steiger filtering 
24

 
25

 (details of the difference of the two methods and when to apply them 

can be found in the Online Methods section: Distinguishing causal effects from reverse 

causality). We found no strong evidence of reverse causality for diseases on protein level 

changes, in either bi-directional MR analyses or Steiger filtering. More details of the causal 

direction results can be found in Supplementary Note 4 and Supplementary Data 1.  

 

Drug target prioritisation and repositioning using phenome-wide MR 
 

Recent MR studies highlight the value of hypothesis-free (“phenome-wide”) MR in building a 

comprehensive picture of the causal effects of risk factors on disease outcomes 
8
 
34

 
35

. Given 

that human proteins represent the major source of therapeutic targets, we sought to mine 

our results for targets of molecules already approved as treatments or in ongoing clinical 

development, and which might represent promising candidates for repositioning. We 

compared MR findings for 1002 proteins against 225 phenotypes with historic data on 

clinical trials for target-indication pairs in Citeline’s PharmaProjects. Of 27064 target-

indication pairs that had gone into clinical or pre-clinical development for indications, for 

2024 pairs we had a pQTL for the protein and captured a disease phenotype similar to the 

indication for which the drug had been trialled (or under pre-clinical development). 268 of 

the 2024 pairs were for approved (73) or failed (195) drugs (Supplementary Table 14), 

where the remaining 1756 pairs were for drug under development or for new targets. Of 

the 73 target indication pairs for approved drugs, we observed positive MR and 

colocalization evidence for 8 of them (Supplementary Table 14). Of 195 target indication 

pairs that had failed to gain approval after clinical trials, none of them had MR and 

colocalization evidence. A Fisher’s exact test indicated that protein-phenotype associations 

with MR and colocalization evidence were more likely to be successful drugs (Odds ratio = 

26.4; 95%CI: 4.0 to 580; P value = 4.95x10
-5

) (Table 1). Although we acknowledge the limited 

sample size of the test set, this does support the utility of pQTL MR analyses as a source of 

target identification and validation.  

 

For approved drugs, 8 protein-phenotype associations with robust MR and colocalization 

evidence were established target-indication pairs, including proprotein convertase 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 5, 2019. ; https://doi.org/10.1101/627398doi: bioRxiv preprint 

https://doi.org/10.1101/627398
http://creativecommons.org/licenses/by-nd/4.0/


  
 

8 
 

subtilisin/kexin type 9 (PCSK9) inhibitor (target for evolocumab) for hypercholesterolemia 

and hyperlipidemia, angiotensinogen (AGT) for hypertension, interleukin 6 receptor (IL6R) 

for rheumatoid arthritis, PROC (which is modified by warfarin) for deep venous thrombosis, 

IL12B for psoriatic arthritis and psoriasis and TNF Receptor Superfamily Member 11a 

(TNFRSF11A) for osteoporosis (Supplementary Table 15). We further predicted the 

potential target-mediated repositioning opportunities of a few marketed drugs. For example, 

our phenome-wide MR and colocalization analysis further support the effect of inhibition of 

IL6R as a valid therapeutic strategy for lowering risk of coronary heart disease (monoclonal 

antibody inhibitors of IL6R are already licensed for the treatment of rheumatoid arthritis) 

and tumor necrosis factor receptor superfamily member 11a (TNFRSF11A, also termed 

‘RANK’ which is involved in osteoclast differentiation) for treatment of Paget’s disease 
36

 

(Supplementary Table 16).  

 

We also evaluated drugs in current clinical trials and identified 8 protein-phenotype 

associations with MR and colocalization evidence that corresponded to target-indication 

pairs with therapeutics in clinical trials or in preclinical experiments. Examples include 

lipoprotein(a) (LPA) for blood lipids and angiopoietin like 3 (ANGPTL3) for plasma lipids 

(Supplementary Table 17).  

 

Our results also offer the potential to identify drug repositioning opportunities for drugs 

under investigation within current clinical trials. We identified 40 existing drug targets 

associated with 51 phenotypes other than the primary indication (Supplementary Table 18). 

Our phenome-wide MR analysis suggests that lifelong higher urokinase-type plasminogen 

activator (PLAU) levels are associated with lower inflammatory bowel disease (IBD) risk 

(OR=0.75, 95%CI= 0.69 to 0.83, P= 1.28x10
-9

; Supplementary Figure 7). Urokinase was 

initially developed for use as a thrombolytic in the treatment of acute myocardial infarction 

and ischaemic stroke, and thus a target-mediated adverse effect is an increase in bleeding 

and potential haemorrhage. While our data suggest that urokinase might be protective in 

the aetiology of IBD, a careful risk benefit assessment would be required as part of an 

investigation on whether drugs targeting urokinase might be repurposed for the treatment 

of IBD.  
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Discussion  

MR analysis of molecular phenotypes against disease phenotypes provides a promising 

opportunity to validate or prioritise novel or existing drug targets through prediction of 

efficacy and potential on-target beneficial or adverse side-effects 
37

 
38

 
39

. Our phenome-wide 

MR study of the plasma proteome employed five well-powered pQTL studies to robustly 

identify and validate genetic instruments for thousands of proteins. We used these 

instruments to evaluate the potential effects of modifying protein levels on hundreds of 

complex phenotypes available in MR-Base (www.mrbase.org) 
21 in a hypothesis free 

approach 
17, and confirmed that protein-phenotype associations with both MR and 

colocalization evidence predicted the likelihood of a particular target-indication pair being 

successful than protein-phenotype pairs without such evidence. Collectively, we underline 

the important role for MR combined with colocalization as an evidence source to support 

drug discovery and development.  

 

In particular, we noted the important role of a number of sensitivity analyses following the 

initial MR in order to distinguish causal effects of proteins from associations driven by 

horizontal pleiotropy, genetic confounding through linkage disequilibrium 
20

 and reverse 

causation 
23

 
24

. Of note, of 413 observed associations with MR evidence, only 274 (66.3%) 

showed strong evidence of colocalization, suggesting that at least part of the initial findings 

could be driven by genetic confounding through LD between pQTLs and other disease-causal 

SNPs. Thus, we suggest that investigation of colocalization is vital for improved causal 

inference when conducting the MR analyses of molecular traits (such as DNA methylation, 

gene expression and proteins). One caveat is that reliance on such colocalization may 

underestimate the number of ‘true’ MR findings due to 1) lack of power, e.g. owing to 

limited sample size for the protein and/or phenotype GWASs; and/or, 2) lack of mature 

colocalization pipeline to deal with multiple association peaks in a region, which collectively 

may lead to false negatives on colocalization. Recent MR studies suggested an increased 

precision and power of MR estimates using multiple independent signals from a single gene 

region 
28

 
29

, which aligned with our findings, e.g. the MSMB and prostate cancer association. 

To deal with the challenge of applying colocalization analysis to these regions, we applied 

conditional analysis to GWASs of protein and human phenotypes and used the conditionally 

independent SNP effects for colocalization analysis, which identified further evidence of 

colocalization for 10 additional protein-phenotype associations, further strengthening the 

evidence-base underpinning our claims of causality. It is important to consider applying the 

integrative conditional and colocalization analysis to regions with multiple cis pQTLs, which 

we demonstrated a case of IL23R and Crohn’s disease.  

 

In addition, our study improved upon some previous MR studies of omics 
7
 
8
 by utilising both 

cis and trans instruments. Several of the approaches (single-cis, multi-cis and trans-only) 

yielded informative results. For example, the PROC and deep venous thrombosis example 

using trans pQTLs (see Results) as well as the identification of a potential mediator for the 

well-known effect of ABO on ovarian cancer (see Supplementary Note 3). Trans-pQTL 

findings should be interpreted with more caution unless a link can be drawn between the 

loci and the target protein, or there are a good number of trans pQTLs the estimated effects 

of which show little evidence of heterogeneity. As a well-known example, using a trans 

instrument within IL6R as an instrument to test the association for CRP on cardiovascular 

disease yields incorrect causal interpretation 
37

. 
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In an evaluation of the potential of MR to inform drug target prioritisation, we 

demonstrated that pQTL MR and colocalization evidence for a target-indication pair predicts 

a positive clinical outcome and higher likelihood of approval (OR = 26.4, P value =4.95x10
-5

). 

Applying this approach to drug targets in development, we highlighted 8 examples where 

we predict a successful outcome of ongoing clinical trials. One of the limitations of our 

approach is the lack of comprehensive coverage of genetic data for all outcomes for which 

drugs are in development, as well as in our inability to instrument the entire genome 

through pQTLs. As such, ongoing expansions in the scale and diversity of GWAS will greatly 

enable the vision enabled by the current study, as will availability of summary statistics 

upon publication.  

 

An important limitation of this work is that protein levels are known to differ between 

tissues. In this study, we have estimated the role of protein levels measured in plasma on a 

range of complex diseases but are unable to assess the relevance of protein levels in other 

tissue. Whilst expression QTL (eQTL) studies highlight a major proportion of eQTLs being 

shared across tissues 
37

, pQTL studies have not yet been performed as systematically across 

tissues. However, it is encouraging that we identify associations across a range of disease 

categories, including for psychiatric diseases for which we may expect key proteins to 

function primarily in the brain. Another potential limitation is the limited coverage of the 

proteome afforded by current technologies, leaving the possibility of undetected pleiotropy 

of instruments. While cis pQTLs are less likely to be prone to horizontal pleiotropy than 

trans pQTLs, it is well known from study of gene expression that cis variants can influence 

levels of multiple neighbouring genes and hence the same is likely to be true for protein 

levels 
41

. Similarly, future larger GWAS of the plasma proteome are likely to uncover many 

more variant-protein associations, increasing the apparent pleiotropy of many pQTLs. 

 

Conclusion 

In conclusion, this study systematically identified 105 putatively causal effects between the 

plasma proteome and the human phenome using the principles of Mendelian 

randomization and colocalization. These observations support, but do not prove, causality, 

as potential horizontal pleiotropy remains an alternative explanation. Our study provides an 

open resource to prioritise potential new targets on the basis of MR evidence and a valuable 

resource for evaluation of both efficacy and repurposing opportunities by phenome-wide 

evaluation of putative on-target associations.  
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Online methods 
Instrument selection  

pQTLs from five GWAS (Sun et al, Emilsson et al, Suhre et al, Folkersen et al and Yao et al) 
12

 
13 14 15 16

 were used as genetic instruments to estimate the causal effect of plasma protein 

levels on human diseases and other phenotypes (Supplementary Figure 1).  

We used the following criteria to select pQTL instruments:  

• We selected SNPs that were associated with any protein (using a P value ≤5x10
-8

) in 

at least one of the five studies, including both cis and trans pQTLs.  

• Due to the complex LD structure of SNPs within the human Major Histocompatibility 

Complex (MHC) region, we removed SNPs and proteins coded for by genes within 

the MHC region (chr6: from 26Mb to 34Mb).  

• We then conducted linkage disequilibrium (LD) clumping for the instruments with 

the TwoSampleMR R package to identify independent pQTLs for each protein. We 

used r
2
 < 0.001 as the threshold to exclude dependent pQTLs in the cis (or trans) 

gene region. 

 
After instrument selection, we mapped SNPs to genome build GRCh37.p13 coordinates 

(Supplementary Table 1).  The instrument selection process, and the number of instruments 

for proteins at each step in the process, is illustrated in Supplementary Figure 1.   

 

Instrument validation 

For the 2113 instruments we selected in the Instrument selection section, we further 

classified them into three groups (noted as tier 1, tier 2 and tier 3 instruments) using two 

major instrument filtering steps: a pleiotropy test and a consistency test. More details of 

instrument validation, including harmonization of proteins and instruments and statistical 

tests for consistency can be found in Supplementary Note 5. 

 

Test estimating instrument specificity 
Absence of horizontal pleiotropy is one of the core assumptions for MR. This assumes that 

the genetic variant should only be related to the outcome of interest through the 

instrumented exposure. We noted that some SNPs were associated with more than one 

protein. For example, APOE SNP rs7412 is associated with a set of proteins such as ADAM11, 

APBB2 and APOB. We plotted a histogram of the number of proteins each pQTL was 

associated with (Supplementary Figure 8) and considered instruments associated with more 

than 5 proteins as non-specific for any particular protein and highly pleiotropic and assigned 

them as Tier 3 instruments (which were excluded from all analyses). For instruments 

associated with fewer than (or equal to) 5 proteins, we reported the number of proteins 

each of them (and their proxies with LD r
2
>0.5) was associated with to indicate the level of 

pleiotropy.   

 
Consistency test estimating instrument heterogeneity across studies 
We noted some examples where SNPs were reported to be associated with a protein in one 

study but did not reach the genome-wide p-value threshold for statistical significance in 

other studies including the same protein. In these instances, we investigated whether this 

reflected no statistical evidence of association (in which case, this inconsistency may 

indicate potentially artefactual associations) or simply fluctuation of association strength 

with directionally consistent signals in both studies (which would provide supporting 
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evidence for an instrument). Among the 2113 pQTLs selected as instruments, we looked up 

available protein GWAS results (Sun et al, Suhre et al and Folkersen et al with full GWAS 

summary statistics; Yao et al and Emilsson et al with pQTLs only) and found 1062 pQTLs (or 

proxies with r2>0.8) with association information in at least two studies (Supplementary 

Table 19). We then tested the beta-beta correlation using Pearson correlation function in R. 

The results of the beta-beta correlations of SNP effects for each pair of studies and the 

number of SNPs included in each correlation analysis can be found in Supplementary Table 

20. More details of the consistency test can be found in Supplementary Note 5.   

 

We performed two consistency tests on the instruments which were present across studies: 

1) a heterogeneity test using a pair-wise Z statistic to investigate whether there was 

statistical evidence of heterogeneity between effect sizes in different studies (for all pQTL 

studies included in our analysis: 1) effect sizes were always in SD unit; 2) using similar sets of 

covariates). If the Z score was greater than 5 (equal to a P value of 0.001), we considered 

the instrument to have strong evidence of heterogeneity indicating inconsistency of effect 

sizes between studies; 2) the colocalization analysis estimates the posterior probability (PP) 

of the same protein measured in different studies sharing the same causal pQTL within a 

2Mb window around the pQTL with the smallest P value. The default priors of colocalization 

analysis were used here. A lack of evidence (i.e. PP<Z80%) in this analysis would suggest 

that the pQTL reported in the two studies do not share the same causal signals within the 

region, therefore are not consistent between the studies.  The colocalization analysis was 

conducted using the “coloc” R package 
22

. For instruments with SNP association information 

in both Sun et al and Folkersen et al, we were able to conduct colocalization analysis. 

However, due to lack of sufficient SNP coverage it was not possible to conduct colocalization 

analysis to compare the pQTLs from the Emilsson et al, Suhre et al and Yao et al studies. We 

therefore conducted a linkage disequilibrium (LD) check for these pQTLs instead. For 

proteins measured in multiple studies, we estimated the LD between the sentinel variant for 

each pQTL from one study and the top 30 associated SNPs of the other study in the same 

region. For pQTLs that showed only weak LD (r
2
 < 0.8) with any of the top 30 associated 

SNPs in the other study, we considered these pQTLs did not share the same causal SNP in 

the region and therefore had inconsistent instruments.  

 

Instruments showing evidence of high heterogeneity across studies using either the pair-

wise Z test (pair-wise Z > 5) or colocalization analysis (PP<80%), were flagged as Tier 2 

instruments.  

Recognising that lack of replication and effect heterogeneity does not preclude at least one 

of these effects being genuine, we therefore used these instruments separately for the 

follow-up genetic analyses (Supplementary Table 2) and reported the findings with caution. 

We designated instruments passing both pleiotropy and consistency tests as Tier 1 

instruments and used them as primary instruments for the MR analysis.  

 
Identifying cis and trans instruments    
We further split Tier 1 instruments into two groups: 1) cis-acting pQTLs within a 500Kb 

window from each side of the protein coding genes were used for the initial MR analysis 

(defined as the cis-only analysis) 
20

; (2) trans-acting pQTLs outside the 500Kb window of the 

protein coding gene were designated as trans instruments. Whilst trans instruments may be 

more prone to pleiotropy, their inclusion could increase statistical power as well as the 
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scope of downstream sensitivity analyses. (e.g. tests for heterogeneity between 

instruments). Therefore, for the proteins with cis instruments, we also looked for additional 

trans instruments and if these were available, we conducted further MR analyses using both 

sets of instruments (defined as the "cis + trans" analysis).  

For cis instruments, we looked up their predicted consequence via Variant Effect Predictor 
42

 

(VEP: https://www.ensembl.org/info/docs/tools/vep/index.html) hosted by Ensembl. We 

designated coding variants, as epitope-binding artefacts driven by coding variants may yield 

artefactual cis pQTLs 
31

. We also conducted a sensitivity MR analysis that excluded cis 

instruments which are in the coding region to further avoid the potential issue of epitope-

binding artefacts driven by coding variants. 

 

Human phenotype selection  

We obtained effect estimates for the association of the pQTLs with complex human 

phenotypes using GWAS summary statistics which were included in the MR-Base database 

(http://www.mrbase.org). We used the following inclusion criteria to select complex 

phenotypes to be analysed: 

• The GWAS with the greatest expected statistical power (e.g. largest sample size / 

number of cases) when multiple GWAS records of the same disease / risk factor 

were available in MR-Base.  

• GWAS with betas, standard errors and effect alleles for all tested variants (i.e. full 

GWAS summary statistics available) 

Diseases were defined as primary outcomes. Risk factors were defined as secondary 

outcomes. After selection, 153 diseases and 72 risk factors (such as lipids and glucose 

phenotypes) were included as outcomes for the MR analyses (Supplementary Table 5).  

 

Causal inference and sensitivity analyses  

The following sections describe two-sample MR analyses using single or small numbers of 

instruments on 153 diseases and 72 risk factors (Supplementary Table 5). Positive 

associations between genetic instruments and phenotypes may indicate a number of 

potential scenarios: 1) the protein has a causal effect on the phenotype (the scenario of 

causality we wish to identify), 2) that the phenotype has a causal effect on protein (the 

reverse causality scenario), 3) confounding through linkage disequilibrium between pQTLs 

and variants associated with the phenotype (for simplicity we refer to this as the ‘linkage 

disequilibrium scenario’) or 4) that the pQTL shares causal variants with the phenotype, but 

the association of the pQTL with the phenotype is not mediated by the hypothesised protein 

target (the ‘horizontal pleiotropy” scenario)  (see Supplementary Figure 4). Most of the 

current sensitivity analysis methods such as MR Egger regression 
43

 and Weighted Median 
42

 

need a large number of independent instrumental SNPs in order to test for pleiotropy. Due 

to the small number of independent pQTLs available per protein we were therefore unable 

to implement these sensitivity analyses. To identify possible violations of assumptions of MR 

and to distinguish between the aforementioned scenarios, we therefore conducted the 

following sensitivity analyses: colocalization analysis 
22

, tests for heterogeneity between 

instrumental SNPs 26
, bi-directional MR 

23
 and Steiger filtering 

24
 

25
 (Methods section – 

Causal inference and sensitivity analyses) (Figure 1B).  
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Estimating the causal effects of protein levels on human phenotypes using MR 
In the initial MR analysis, proteins were treated as the exposures and 225 complex human 

phenotypes as the outcomes (Supplementary Figure 1 – Estimate putative causal 

relationship). Due to high correlation amongst some of the tested phenotypes (e.g. coronary 

heart disease (CHD) and myocardial infarction), we used the PhenoSpD method 
45

 
46 47

 to 

provide a more appropriate estimate of the number of independent tests. We selected a p-

value threshold of 0.05, corrected for the number of independent tests, as our threshold for 

prioritising MR results for follow up analyses (number of tests= 142,857; P< 3.5x10
-7

). 

 

MR analysis using single locus instruments 

Firstly, the strongest cis pQTL variants for each protein was used as the instrumental 

variable (described as ‘single cis’ analysis). The Wald ratio 
48

 method was used to obtain MR 

effect estimates. In this analysis, the MR effect estimates were sensitive to the particular 

choice of pQTLs, since only the most strongly associated SNPs within each genomic region 

were used as instruments. Burgess et al recently suggested that more precise causal 

estimates can be obtained using multiple genetic variants from a single gene region, even if 

the variants are correlated 
29 28 . Sun et al reported proteins with multiple cis instruments

12
, 

so after quality checking and LD clumping (r
2
<0.6), we used the remaining cis SNPs against 

all 225 phenotypes to further evaluate the MR findings from our initial MR analysis and 

identify potential novel associations (described as ‘multiple cis’ analysis) (Supplementary 

Table 4). A generalised inverse variance weighted (IVW) model considering the LD pattern 

between the multiple cis SNPs was used to estimate the MR effects. In this analysis, weights 

for the contribution of each SNP were obtained using pairwise LD (r
2
) calculations obtained 

from the 1000 Genomes European ancestry reference samples.  

 

MR analysis using multi-locus instruments 

Among the measured proteins reported in Sun et al, 34% had both cis and trans pQTLs and 

30% had only trans pQTLs 
12

. Trans pQTLs that overlap disease association loci can provide 

information about previously unsuspected candidate proteins 
12

. Also, using both cis and 

trans instruments can provide additional accuracy and statistical power to detect causal 

effects 
 49

. Therefore, as well as MR using only cis pQTLs, we also conducted MR on proteins 

with both cis and trans pQTLs (noted as the cis + trans MR analysis) and proteins with only 

trans pQTLs (noted as trans-only analysis). In the cis + trans MR analysis, we tested the 

protein-phenotype associations of 66 proteins with both cis and trans instruments. The IVW 

method 
50

 was used to obtain MR effect estimates. In the trans-only MR analysis, we used 

351 trans instruments for 298 proteins. The IVW method was used when two or more trans 

instruments were included in the analysis, whereas the Wald ratio method was used when 

only one trans instrument was included in the analysis.  

 

MR analysis software 

The majority of MR analyses (including Wald ratio, IVW, single SNP MR, bi-directional MR, 

MR Steiger filtering and heterogeneity test across multiple instruments) were conducted 

using the MR-Base TwoSampleMR R package (github.com/MRCIEU/TwoSampleMR 
21

). The 

IVW analysis considering LD pattern was conducted using the MendelianRandomization R 

package (https://cran.r-project.org/web/packages/MendelianRandomization/index.html 
51

). 

The MR results were plotted as forest plots and Miami plots using code derived from the 

ggplot2 package in R (https://cran.r-project.org/web/packages/ggplot2/index.html). 
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Distinguishing causal effects from genomic confounding due to linkage disequilibrium 
Results that survived the multiple testing threshold in the MR analysis were evaluated using 

a stringent Bayesian model (colocalization analysis) to estimate the posterior probability (PP) 

of each genomic locus containing a single variant affecting both the protein and the 

phenotype 
22 (Supplementary Figure 1 – Distinguishing causal effects from confounding due 

to linkage disequilibrium). The default priors were used for the analysis. A PP > 80% in this 

analysis would suggest that the two association signals are likely to colocalize within the test 

region. For protein and phenotype GWAS lacking sufficient SNP coverage or missing key 

information (e.g. allele frequency or effect size) in the test region, we conducted a LD check 

for the sentinel variant for each pQTL against the 30 strongest SNPs in the region associated 

with the phenotype as an approximate colocalization analysis. r
2
 of 0.8 between the sentinel 

pQTL variant and any of the 30 strongest SNPs associated with the phenotype was used as 

evidence for approximate colocalization. For all MR top findings, we treated colocalised 

findings (PP>=80%) as “Colocalised” and LD checked findings (r
2
>=0.8) as “LD checked”; 

other findings that did not pass the colocalization or LD check analysis were annotated as 

“Not colocalised”. For findings given a “Not colocalised” flag, we further controlled the 

possible influence of multiple conditionally independent signals within the genomic region. 

A two-step conditional analysis was applied using the GCTA-COJO package 
27

, with genotype 

data from mothers in the Avon Longitudinal Study of Parents and Children (ALSPAC) as the 

LD reference panel 
52,53

 (a description of the ALSPAC cohort can be found in Supplementary 

Note 6). We conducted colocalization analysis using the joint SNP effects for the phenotype 

(e.g. CHD) conditioned on either the top phenotype-associated SNP within 1MB window 

around the sentinel pQTL SNP (noted as “On top hit” in Supplementary Table 6 and 10) or 

on the second strongest phenotype-associated SNP (noted as “On second hit”). For MR 

findings using multiple instruments (e.g. cis + trans analysis), we tested each pQTL with the 

phenotype separately. Only if all pQTLs colocalised with the phenotype at r
2
>=0.8 did we 

treat this finding as colocalised.  

 

Heterogeneity test of MR findings 
For MR analyses using two or more instruments, we conducted heterogeneity tests to 

estimate the variability in the causal estimates obtained for each SNP (i.e. how consistent is 

the causal estimate across all SNPs used as separate instruments) (Supplementary Figure 1 

— Consistency of the causal estimate across all SNPs). The Cochran’s Q test statistic was 

calculated for the IVW analyses, which is expected to be chi-squared distributed with 

number of SNPs minus one degrees of freedom 
26

. Lower heterogeneity suggests a lower 

chance of violations of assumptions in MR estimates, such as the presence of confounding 

through horizontal pleiotropy 
54

. 

 

Distinguishing causal effects for proteins on phenotypes from reverse causality 
With sufficiently large sample sizes, a SNP associated with an outcome through a mediating 

exposure could reach the conventional threshold for statistical significance in both the 

outcome and exposure GWAS, for example lipid on bmd . Therefore, using such thresholds 

to define instruments could lead to situations where the instrumental SNP influences the 

hypothesised exposure via the hypothesised outcome (i.e. the hypothesised outcome 

actually has a causal effect on the hypothesised exposure and not vice versa). In order to 
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mitigate the potential impact of this limitation, we used two approaches to identify 

directions of causality: bi-directional MR and Steiger filtering. 
 

Reverse Mendelian randomization  

For associations between proteins and phenotypes identified in the MR analysis, we applied 

bi-directional MR to evaluate evidence for causal effects in the reverse direction by 

modelling complex phenotypes as our exposure and plasma protein level as our outcome 
23

. 

Instruments for complex phenotypes were selected based on a threshold of P < 5 x 10
-8

 from 

GWAS after LD clumping to identify independent variants. The IVW method was applied to 

estimate the causal effects of phenotypes on proteins where more than one instrument was 

available, otherwise the Wald ratio was used. MR-Egger 
43

 was used as a sensitivity analysis 

to test for potential pleiotropic effects.  

 
Identifying the direction of effects for instruments using Steiger filtering  

Due to lack of sufficient SNP association information (e.g. allele information, effect size, 

standard error) for some pQTL studies, it was not possible to conduct bi-directional MR 

using all proteins as outcomes. Therefore, we conducted Steiger filtering as an alternative 

method to test the directionality of protein-phenotype associations. The Steiger method 
55

 

has been implemented in the TwoSampleMR R package 
21

 to assess directionality of 

instrument-outcome associations 
24 25

. This approach infers the causal direction between 

two phenotypes using a very simple inequality. Given phenotype A causes phenotype B then 

we would expect that:  

 
because cor(gi, B)

2
 = cor(A, B)

2
 * cor(gi, A)

2
, where “cor” denotes correlation, and the vector 

gi is the i
th

 of M SNPs that associated with phenotype A.  

 

The process of choosing valid instruments using Steiger filtering follows these steps: 

1. Select the top findings from all five studies using a p-value threshold of 3.5 x 10
-7 

(which is the Bonferroni P value threshold of the MR analysis). 

2. Classify instruments in each MR analysis based on Steiger filtering:  

• 'TRUE': evidence for causality in the expected direction i.e. protein precedes 

phenotype. 

• 'FALSE': evidence for causality in the reverse direction i.e. phenotype precedes 

protein. Instruments with ‘FALSE’ were removed from the sensitivity analysis.  

• 'NA': no result (due to insufficient summary data from the study to estimate the 

SNP-trait correlation, e.g. missing effect allele frequencies in the outcome data or 

missing numbers of cases and controls for binary phenotypes). 

For disease phenotypes, we estimated the variance explained on the liability scale. Based on 

step 2, we set up a flag (categorical variable) to record the direction of the effects of the 

SNPs using Steiger filtering.  

 
Drug target validation and repositioning  

Approved drug targets have previously been shown to be enriched for gene-phenotype 

associations 
6
. We therefore wished to assess whether approved drug targets were enriched 
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for protein-phenotype associations, as obtained in the present study using MR. We assessed 

the support for approved drug targets among our MR findings using Fisher’s exact test. 

Target-indication pairs for successful and failed drugs were identified using a manually 

annotated version of PharmaProjects database from Citeline 

(https://pharmaintelligence.informa.com/). The phenotypes used in the MR analyses and 

the indications listed in Citeline’s PharmaProjects were then manually mapped to MeSH 

headings as a common ontology. This allowed us to match the protein-phenotype 

associations with corresponding target-indication pairs. To improve this matching, we 

implemented a similarity matrix, derived from all MeSH headings in the manual mapping, 

and retained matches with a relative similarity greater than 0.7 for our analyses (the 

similarity matrix was described in Nelson et al  
6
). We then conducted Fisher’s exact test to 

compare whether the target-indication pair represented a successful or failed drug against 

whether there was a signal or not for the corresponding protein-phenotype pair among our 

MR findings. For the purposes of this test, a signal was defined as an MR result with a p-

value less than 3.5 x 10
-7

 (which is the Bonferroni P value threshold of the MR analysis) and 

supported by evidence from colocalization analysis. For cells in the 2x2 contingency table 

containing zero(s), we added 1 to each cell so that Fisher’s exact test would return an odds 

ratio for the enrichment analysis. Fisher’s exact test was implemented using the R package 

‘exact2x2’ version 1.6.2 
56

.  

 

Phenome-wide MR has demonstrated the potential to validate, repurpose and predict on-

target side effects of drug targets. Of the protein-phenotype associations that showed 

evidence of colocalization identified in the cis-only, cis+trans, trans-only or MR analyses 

using pQTLs with heterogeneous effects across studies (noted as Tier 2 instruments), we 

first looked up how many proteins with MR evidence were established drug targets in the 

Informa PharmaProjects database. We then looked up how many of the associations were 

established target-indication pairs in the PharmaProjects database. More importantly, we 

predicted the potential adverse effects and repositioning opportunities of all marketed 

drugs and drugs under development using phenome-wide MR. The forest plots illustrating 

phenome-wide MR results were drawn using the R package “ggplot2” 

(https://ggplot2.tidyverse.org/).  

 

Data availability 

The data (GWAS summary statistics) used in the analyses described here are freely 

accessible in the MR-Base platform (www.mrbase.org). All our analysis results for 1684 

proteins against 225 human phenotypes are freely available to browse, query and download 

in EpiGraphDB (http://www.epigraphdb.org/pqtl/). An application programming interface 

(API) documented on the site enables users to programmatically access data from the 

database. 

 

Code availability 

The code used in the Mendelian randomization analyses described here are freely accessible 

in the TwoSampleMR R package via GitHub (https://github.com/MRCIEU/TwoSampleMR). 

Full documentations of the R package were provided 

(https://mrcieu.github.io/TwoSampleMR/). We implemented the colocalization analysis 

using the coloc R package (created by Chris Wallace et al.), which can be downloaded here 

(https://cran.r-project.org/web/packages/coloc/index.html). 
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Table 1. Enrichment analysis comparing target-indication pairs with or without MR and colocalization evidence 

 

 
Mendelian randomization and colocalization evidence 

Target-indication pair approved  

after clinical trials 

YES NO 

YES 8 65 

NO 0 195 

Odds ratio for approval given MR and colocalization evidence compared to not having MR or colocalization 

evidence = 26.39; 95%CI: 3.99 to 580.16; P value = 4.95x10
-5

 

 

Note: The protein-phenotype association pairs were grouped into four categories: 1) pairs with both MR/colocalization and drug trial evidence; 

2) pairs with MR and colocalization evidence but no drug trial evidence; 3) pairs with no strong MR or colocalization evidence but with drug 

trial evidence; and 4) pairs with no strong MR, colocalization or drug trial evidence. The cut-off for MR evidence was p< 3.5x10
-7

; the cut off for 

colocalization evidence was posterior probability > 80%. The drug trial evidence was obtained from PharmaProjects database. A Fisher’s exact 

test was then conducted in this enrichment analysis to test whether the target-indication pair represented a successful or failed drug against a 

signal or not for the corresponding protein-phenotype pair among the MR and colocalization findings. The MR and colocalization analysis 

results involved in this analysis including both Tier 1 and Tier 2 instruments in both cis and trans region. Since the cell representing failed drug 

with positive MR and colocalization evidence was null, we added one to each of the cells to estimate the odds ratio and confidence internal for 

the Fisher’s test. More enrichment analysis results for cis-only and tier 1 instruments can be found in Supplementary Table 21. 
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Figure Legend  
 
Figure 1. Flowchart of instrument selection and validation results, and summary of MR and 

colocalization approach. A. Selection and validation of Instruments. B. Schematic of our MR 

analysis of plasma proteins on human phenotypes (more detailed pipeline shown in 

Supplementary Figure 1) 

 

Figure 2. Miami plot for the cis-only analysis, with circles representing MR results for 

specific proteins. The labels refer to top MR findings with colocalization evidence, with each 

region represented by one label. The colour refers to top MR findings with P<3.09x10
-7

, 

where red refers to immune mediated phenotypes, blue refers to cancer outcomes, purple 

refers to cardiovascular outcomes, green refers to other outcomes and grey refers to 

outcomes that shown less evidence of colocalization. The X-axis is the chromosome and 

position of each MR finding in the cis region. The Y-axis is the -log10 P value of the MR 

findings, MR findings with positive effects are represented by filled circles on the upper side 

of the Miami plot, while MR findings with negative effects are on the lower side of the 

Miami plot.  

 

Figure 3. Regional association plots for IL23R plasma protein level and Crohn’s disease in the 

IL23R region. A. and B. the regional plots of IL23R protein level and Crohn’s disease without 

conditional analysis, Plot B listed the sets of conditional independent signals for Crohn’s 

disease in this region: rs7517847, rs7528924, rs183020189, rs7528804 (a proxy for the 

second IL23R hit rs3762318, r
2
=0.42 in the 1000 Genome Europeans) and rs11209026 (a 

proxy for the top IL23R hit rs11581607, r
2
=1 in the 1000 Genome European), conditional P 

value < 1x10
-7

; C. the regional plot of IL23R with the joint SNP effects conditioned on the 

second hit (rs3762318) for IL23R; D. the regional plot of Crohn’s disease with the joint SNP 

effects adjusted for other independent signals except top IL23R signal rs11581607; E. the 

regional plot of IL23R with the joint SNP effects conditioned on the top hit (rs11581607) for 

IL23R; F. the regional plot of Crohn’s disease with the joint SNP effects adjusted for other 

independent signals except second IL23R signal rs3762318.  
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Figure 1.  
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Figure 2.  
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Figure 3.  
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