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Key Message 1	
 2	
 3	
The StGBSSI gene was successfully and precisely edited in the tetraploid potato using gene 
and base editing strategies, leading to plants with impaired amylose biosynthesis. 
 
 
Abstract 
 
Genome editing has recently become a method of choice for basic research and functional 4	

genomics, and holds great potential for molecular plant breeding applications. The powerful 5	

CRISPR-Cas9 system that typically produces double-strand DNA breaks is mainly used to 6	

generate knockout mutants. Recently, the development of base editors has broadened the 7	

scope of genome editing, allowing precise and efficient nucleotide substitutions. In this study, 8	

we produced mutants in two cultivated elite cultivars of the tetraploid potato (Solanum 9	

tuberosum) using stable or transient expression of the CRISPR-Cas9 components to knockout 10	

the amylose-producing StGBSSI gene. We set up a rapid, highly sensitive and cost-effective 11	

screening strategy based on high-resolution melting analysis followed by direct Sanger 12	

sequencing and trace chromatogram analysis. Most mutations consisted of small indels, but 13	

unwanted insertions of plasmid DNA were also observed. We successfully created tetra-14	

allelic mutants with impaired amylose biosynthesis, confirming the loss-of-function of the 15	

StGBSSI protein. The second main objective of this work was to demonstrate the proof of 16	

concept of CRISPR-Cas9 base editing in the tetraploid potato by targeting two loci encoding 17	

catalytic motifs of the StGBSSI enzyme. Using a cytidine base editor (CBE), we efficiently 18	

and precisely induced DNA substitutions in the KTGGL-encoding locus, leading to discrete 19	

variation in the amino acid sequence and generating a loss-of-function allele. The successful 20	

application of base editing in the tetraploid potato opens up new avenues for genome 21	

engineering in this species. 22	

 
 
 23	

 24	

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 5, 2019. ; https://doi.org/10.1101/628107doi: bioRxiv preprint 

https://doi.org/10.1101/628107
http://creativecommons.org/licenses/by-nc-nd/4.0/


3	
	

 
 
Introduction 25	
 26	

Most staple crops are harvested for their starch-storing organs, such as cereal grains, 27	

tubers and storage roots. They are mainly cultivated as food or feed for humans or livestock, 28	

but there is also an increasing demand of renewable resources for non-food applications 29	

(Zeeman et al. 2010). Originating from Latin America, potato (Solanum tuberosum) 30	

constitutes one of the most important crops for human consumption owing to its starch-rich 31	

tubers.  32	
In higher plants, photosynthetic cells produce transitory starch in chloroplasts and also 33	

export sucrose to heterotrophic organs, where it is converted to starch for long-term storage in 34	

amyloplasts (Lemoine et al. 2013). Starch is an insoluble glucan composed of two polymers 35	

of glucose, the ratio of which strongly determines its physiochemical properties. Amylose is a 36	

nearly linear glucose polymer with α-1,4-linked residues, whereas amylopectin is made up of 37	

α-1,4-linked chains with α-1,6-linkages at branch points, conferring crystallinity to the starch 38	

granule. In higher plants, starch biosynthesis is mainly mediated by four classes of enzymes: 39	

ADP-glucose pyrophosphorylases, starch synthases (SSs), starch branching enzymes (SBEs) 40	

and starch debranching enzymes (SDBEs) (Zeeman et al. 2010). Starch synthases isoforms 41	

SSI, SSII, SSIII govern the elongation of the chains of amylopectin. SSIV is involved in 42	

starch initiation; the role of SSV and SSVI is still unclear (Helle et al. 2018; Roldan et al. 43	

2007). In addition, granule-bound starch synthase (GBSS) binds to the starch granule and 44	

mediates amylose biosynthesis (Ball et al. 1998; Rongine De Fekete et al. 1960).  45	

Amylose determines many physicochemical properties of starch, namely its pasting 46	

temperature and viscosity (Bull et al. 2018; Park et al. 2007). Therefore, modifying potato 47	

starch composition by decreasing the amylose (or amylopectin) content may be useful for 48	

industrial applications. For example, modulating GBSSI function directly in planta can lead 49	

to the reduction of post-harvest treatments (Sonnewald and Kossmann 2013). In most dicot 50	

species, such as potato, the GBSSI protein is encoded by a single nuclear locus (Cheng et al. 51	

2012). This monogenic control has facilitated the production of amylose-free potato varieties 52	

through mutational breeding (Hovenkamp-Hermelink et al. 1987; Muth et al. 2008). In some 53	

studies, transgenic approaches have been used to silence the GBSSI gene through antisense 54	

(Kuipers et al. 1994; Visser et al. 1991) or RNAi technologies (Andersson et al. 2003). 55	

Although the genetically modified potato Amflora (BASF) has been commercialized for two 56	

years, to date the development of such transgenic crops for commercial purposes has been 57	
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limited in the European Union, mainly due to regulatory policies (Zeeman et al. 2010). 58	

In the past years, genome editing techniques have received much attention due to their 59	

powerful applications in model plants and crops. These techniques rely on the precise 60	

introduction of DNA double-strand breaks (DSBs) in the plant genome through a variety of 61	

techniques (Ma et al. 2016). DSBs are readily recognized by the cell and repaired either 62	

through non-homologous end joining (NHEJ) or homologous recombination (HR), the former 63	

being the main pathway for the repair of DSBs in somatic cells (Puchta 2005). Contrary to 64	

HR, NHEJ is error-prone and may lead to random small insertions or deletions (indels) at the 65	

cut site. Since 2012, tremendous breakthroughs have been made using clustered regularly 66	

interspaced short palindromic repeats (CRISPR)-associated nuclease Cas9 systems (Sternberg 67	

et al. 2016). When expressed in eukaryotic cells, CRISPR-Cas9 systems fulfil their function 68	

by forming a complex made up of a single-guide RNA molecule (sgRNA) and the Cas9 69	

nuclease (Jinek et al. 2012). The latter recognizes a protospacer adjacent motif (PAM), mainly 70	

NGG in the case of Streptococcus pyogenes Cas9 (SpCas9), which is found just downstream 71	

of the target sequence. Recognition of the PAM likely destabilizes the adjacent double-72	

stranded DNA, allowing base pairing between a 17-21 bp target-dependent sequence from the 73	

sgRNA and its matching target DNA sequence (Anders et al. 2014; Bortesi and Fischer 2015). 74	

The Cas9 nuclease eventually induces DSB in DNA about 3 bp upstream of the PAM 75	

sequence. Error-prone NHEJ may lead to small indels, potentially resulting in frameshift 76	

mutations (Soyars et al. 2018). A truncated and/or non-functional protein will be translated, 77	

possibly triggering the nonsense-mediated decay (NMD) pathway that leads to mRNA 78	

degradation (Pauwels et al. 2018; Popp and Maquat 2016).  79	

The CRISPR-Cas9 system has been successfully developed in potato in the past few 80	

years (Hameed et al. 2018). For example, the StIAA2 and the StALS genes have been 81	

efficiently targeted in a double haploid cultivar and/or a tetraploid potato using 82	

Agrobacterium-mediated stable transformation (Butler et al. 2015; Butler et al. 2016; Wang et 83	

al. 2015). More recently, the full knockout of the StGBSS gene in the tetraploid potato cultivar 84	

Kuras was obtained using transient expression of CRISPR-Cas9 components in protoplasts, 85	

either as DNA plasmids or as ribonucleoprotein (RNP) complexes (Andersson et al. 2017; 86	

Andersson et al. 2018). 87	

In addition to generating gene knockout through the introduction of indels, CRISPR-88	

Cas9 can precisely replace nucleotides, allowing the study of specific domains within a 89	
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protein or also providing polymorphism within a gene to confer valuable agronomic traits in 90	

elite varieties. Such modifications can be carried out using HR and the insertion of a DNA 91	

template bearing the polymorphism. However, precise and efficient base editing via HR in 92	

plants suffers from low efficiency and the delivery of template DNA is still challenging 93	

(Schindele et al. 2018). A new CRISPR-Cas9-based genome editing system has recently been 94	

developed based on fusing either a cytidine or an adenine deaminase to a Cas9 nickase (nCas9 95	

D10A), leading to a C-to-T or an A-to-G conversion on the edited strand, respectively 96	

(Schindele et al. 2018). The sgRNA directs the nCas9/deaminase fusion to the target locus, 97	

enabling edition on the non-complementary strand. Cytidine or adenine is converted to uracil 98	

or inosine, respectively, without introducing DSBs. Uracil and inosine are then converted 99	

through DNA replication to thymine and guanine, respectively, although C-to-G and C-to-A 100	

conversions have also been reported (Nishida et al. 2016). The edition has been shown to take 101	

place in a 3-8 bp deamination window distal from the PAM on the non-complementary 102	

strand, with some variations according to the base editor (Gaudelli et al. 2017; Kang et al. 103	

2018; Shimatani et al. 2017; Zong et al. 2017). The nCas9 nicks the opposite strand of the 104	

deamination site to direct DNA repair mechanisms to the G-or-T-containing DNA strand 105	

using the edited strand as a template for mismatch repair, thus preserving the edit and 106	

increasing the mutation rate (Nishida et al. 2016). To date, base editors have been 107	

successfully used in some crops, including rice, tomato, wheat, maize, oilseed rape, potato 108	

and watermelon (Hua et al. 2018a; Kang et al. 2018; Li et al. 2018; Shimatani et al. 2017; 109	

Tian et al. 2018; Yan et al. 2018; Zong et al. 2018; Zong et al. 2017). 110	

In this work, we targeted the StGBSSI gene to assay various CRISPR-Cas9 tools using 111	

stable and transient expression in different varieties of the tetraploid potato Solanum 112	

tuberosum. We identified single- and multi-allelic edited plants, and mutations in all four 113	

alleles were observed, resulting in amylose biosynthesis impairment. To induce this 114	

modification, we used protoplast transformation, which can produce non-transgenic plants. 115	

Finally, we assessed the efficiency of the cytidine base editor (CBE) in two loci encoding 116	

catalytic motifs of the StGBSSI enzyme, resulting in precise base conversion and amino-acid 117	

substitution. Our results highlight that CRISPR-Cas9 gene and base editing can be efficiently 118	

developed in a genetically complex and vegetatively propagated crop such as potato to 119	

modify agronomic traits. 120	

 121	
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Materials and methods 122	

Plant material 123	

Potato cultivars Desiree (ZPC, the Netherlands) and Furia (Germicopa, France) were in vitro 124	

propagated in 1X Murashige and Skoog (MS) medium (pH 5.8) including vitamins (Duchefa, 125	

the Netherlands), 0.4 mg/L thiamine hydrochloride (Sigma-Aldrich, USA), 2.5% sucrose and 126	

0.8% agar powder (VWR, USA). Plants were cultivated in a growth chamber at 19°C with a 127	

16:8 h light:dark photoperiod. For the production of in vitro microtubers, plants were placed 128	

in 5 mL of 1X MS culture medium for about one month at 19°C with a 16:8 h light:dark 129	

photoperiod, until depletion of the medium. Then, 4 mL of half-strength MS medium 130	

supplemented with 50 µg/mL coumarin and 4 µg/mL kinetin were added and the plants were 131	

transferred to a dark room at 20°C for about five additional weeks, until microtubers were 132	

sufficiently developed. The production of tubers in soil was carried out by transferring in vitro 133	

plants to a greenhouse. Watering was stopped 2 weeks before the tubers were harvested.  134	

 135	

Target identification 136	

Genomic sequences of the StGBSSI gene (Gene ID from NCBI: 102577459) were obtained 137	

from leaf DNA extracted using the NucleoSpin Plant II kit (Macherey-Nagel, Germany) 138	

according to the manufacturer’s instructions. Primers were designed using Primer3 139	

(Untergasser et al. 2012) and Netprimer (www.premierbiosoft.com/netprimer) from the 140	

reference genome (https://plants.ensembl.org/Solanum_tuberosum/Info/Index), and are listed 141	

in Supplementary Table S1. Amplification was carried out on about 10 ng of DNA using 142	

Invitrogen Platinum SuperFi DNA polymerase (Thermo Fisher Scientific, USA) following the 143	

supplier’s instructions. PCR products were cloned into the pCR4-TOPO TA vector (Thermo 144	

Fisher Scientific, USA) and transformed by heat shock into One Shot™ TOP10 Chemically 145	

Competent E. coli (Thermo Fisher Scientific). Bacteria were grown overnight at 37°C on LB 146	

plates with 50 µg/mL kanamycin and plasmids from randomly selected positive clones were 147	

purified using QIAprep Spin Miniprep kit (QIAGEN, Germany) and Sanger sequenced 148	

(Genoscreen, Lille, France). 149	

Target loci in the StGBSSI gene were selected manually based on their distance from the 150	

KTGGL and PSRFEPCGL motifs, and then analysed using the CRISPOR software 151	
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7	
	

(Haeussler et al. 2016). In this study, four guides were designed upstream of the NGG PAM 152	

and were named sgGBSS1 (5’-GTTGGTCCTTGGAGCAAAAC-3’), sgGBSS2 (5’-153	

TTGTCATTACCCGATGTCCG-3’), sgGBSS3 (5’-GGACTAGGTGATGTTCTTGG-3’) and 154	

sgGBSS4 (5’-CCAAGCAGATTTGAACCTTG-3’). Guide design was performed according 155	

to the predicted efficiency and the off-target potential from the potato reference genome, 156	

selecting guides with no off-target site with less than two mismatches and with no mismatch 157	

in the seed region adjacent to the PAM.  158	

 159	

Vector construction 160	

For the sgGBSS1 and sgGBSS2 targets, guide sequences were respectively placed 161	

downstream a StU6 (Z17301.1) (Guerineau and Waugh 1993) or a StU3 (NW_006239017.1) 162	

promoter (Supplementary Fig. S1) and upstream a sgRNA scaffold previously described 163	

(Shimatani et al. 2017). The constructs were synthesized (Genscript, USA) with Gateway 164	

AttB1 and AttB2 sequences on both sides to perform a BP reaction with the pDONR207 165	

plasmid. For stable transformation using Agrobacterium tumefaciens, the pDONR207-166	

containing the sgGBSS1 construct was LR-recombined with the pDe-Cas9 (Fauser et al. 167	

2014) harbouring a nptII resistance cassette. The resulting plasmid was transferred into A. 168	

tumefaciens (C58pMP90) strain by heat shock. For transient expression in protoplasts, the 169	

pDeCas9, pDONR207-sgGBSS1 and pDONR207-sgGBSS2 were purified using the 170	

QIAGEN Plasmid Plus Midi Kit (QIAGEN, Germany), followed by a sodium acetate 171	

precipitation.  172	

For the sgGBSS3 and sgGBSS4 targets, guide sequences were cloned into the 173	

pDicAID_nCas9-PmCDA_NptII_DELLA (Shimatani et al. 2017). To replace the guide 174	

targeting the SlDELLA locus, the plasmid was digested by the FastDigest restriction enzymes 175	

BstXI and SpeI in the presence of Fast Alkaline Phosphatase (Thermo Fischer Scientific, 176	

USA). The sgGBSS3 and sgGBSS4 guide sequences were synthesized (Genscript, USA) 177	

together with a portion of the AtU6 promoter and the sgRNA scaffold, flanked by a BstXI and 178	

a SpeI restriction site. This construct was cloned into the pDONR207 plasmid using a BP 179	

reaction (Gateway) and digested as described above, without the phosphatase treatment. 180	

Guide sequences were then ligated into the digested binary vector using T4 DNA ligase (New 181	

England Biolabs, USA). Reaction mixture was transformed into One Shot™ TOP10 182	
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8	
	

Chemically Competent E. coli (Thermo Fisher Scientific, USA) and bacteria were grown 183	

overnight at 37°C on LB plates containing 100 µg/mL spectinomycin. Plasmids were Sanger 184	

sequenced (Genoscreen, Lille, France) and transferred into A. tumefaciens C58pMP90 strain 185	

by heat shock. 186	

 187	

Agrobacterium-mediated transformation 188	

Stem and petiole explants were cut from the top of 3 to 5 week-old in vitro plants, and placed 189	

overnight in a growth chamber on 1X Murashige and Skoog (MS) medium (pH 5.8) including 190	

vitamins (Duchefa, The Netherlands), 2.5% sucrose, 0.4 mg/L thiamine hydrochloride 191	

(Sigma-Aldrich, USA), 1 mg/L indole-3-acetic acid (Sigma-Aldrich, USA), 1 mg/L zeatin-192	

riboside (Sigma-Aldrich, USA), 1 mg/L gibberellin A3 (Sigma-Aldrich, USA) and 0.7% agar 193	

powder (VWR, USA). A. tumefaciens C58pMP90 strain containing CRISPR-Cas9 plasmids 194	

was grown overnight at 28°C at 250 rpm in LB medium with 50 µg/mL rifampicin, 25 µg/mL 195	

gentamicin and 50 µg/mL spectinomycin. The bacterial optical density (OD) was set to ≈ 0.2 196	

in the MS medium without antibiotics. Potato explants were co-cultured with A. tumefaciens 197	

for 48 h at 25°C in the dark, and were then washed with sterile water and placed on the 198	

culture medium described above, supplemented with 250 µg/mL cefotaxime, 100 µg/mL 199	

timentin® and 50 µg/mL kanamycin. After two weeks, explants were transferred onto a fresh 200	

culture medium with reduced indole-3-acetic acid (0.1 mg/L), and were then maintained by 201	

subculturing every three weeks. Regenerating shoots were transferred to the culture medium 202	

containing 50 mg/L kanamycin and/or tested for the presence of the T-DNA by PCR. 203	

 204	

PEG-mediated protoplast transfection 205	

Protoplasts were isolated from leaves of 3-5 week-old plants propagated in vitro. Plants were 206	

kept in the dark for at least 18 h before the start of the digestion. Protoplast digestion and 207	

isolation were mainly performed as previously described by Yoo et al. (2007) with some 208	

modifications. Digestion was performed overnight in the dark at 25°C using 0.2% cellulase 209	

Onozuka R10 (Yakult Pharmaceutical Industry, Japan) and 0.2% macerozyme R10 (Yakult 210	

Pharmaceutical Industry, Japan), without shaking. The next day, the protoplast solution was 211	

gently shaken at 70 rpm for 30 min to release round protoplasts. The solution was filtered 212	
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9	
	

with a 40 µm cell strainer before the washing steps. Round-bottomed tubes were used during 213	

all the procedure. Transient expression of pDeCas9, pDONR207-sgGBSS1 and/or 214	

pDONR207-sgGBSS2 was performed by a PEG-mediated transfection using 3.6 × 105 215	

protoplasts in 300 µL. A total amount of 10 µg of plasmid DNA was added to the protoplasts, 216	

followed by 300 µL of 25% PEG4000 (Merck, Germany) for 2 min. The transfection solution 217	

was gradually diluted in MaMg medium (0.4 M mannitol, 15 mM MgCl2, pH 5.8) and kept at 218	

4°C for 15 min in the dark. Protoplasts were embedded in 3 mL of alginate solution (Sigma, 219	

USA) as described by Andersson et al. (2017). Plant regeneration was essentially performed 220	

following the protocol described by Masson et al. (1987). 221	

 222	

Detection of mutations 223	

For the detection of CRISPR-Cas9-induced deletions and/or insertions, PCR genotyping was 224	

performed across sgGBSS1 and sgGBSS2 target sequences. Amplification was carried out 225	

using the GoTaq G2 Flexi DNA polymerase (Promega, USA) and the PCR products were run 226	

on a 1.5% agarose gel. 227	

The high-resolution melting (HRM) curve analysis was performed as described in Veillet et 228	

al. (2016). Genomic DNA from leaf tissue was extracted using the NucleoSpin Plant II kit 229	

(Macherey-Nagel) according to the manufacturer’s instructions. Primers were designed to 230	

obtain amplicons of about 100 bp (Supplementary Table S1) and tested for their specificity 231	

and dimer formation on an agarose gel. PCR amplification was carried out in 12 µL volumes 232	

containing 6 µL of High Resolution Melting Master (Roche Applied Science, Germany), 0.24 233	

µL of each 10 µM primer, 1.44 µL of 25 mM MgCl2 solution, and 5-30 ng of genomic DNA. 234	

PCR was performed using 96-well white PCR plates using the LightCycler® 480 II system 235	

(Roche Applied Science, Germany). The amplification started with an initial denaturation step 236	

at 95°C for 5 min, followed by 40 cycles of 95°C for 10 s, 63-59°C for 10 s and 72°C for 10 237	

s. HRM was immediately performed with a denaturation step at 95°C for 1 min followed by 238	

an incubation at 40°C for 1 min. The melting curve was generated over a 65-95°C range, with 239	

a 0.2°C/s increment and 25 acquisitions per °C. Results were analysed with LightCycler® 480 240	

Gene Scanning software (Roche Applied Science, Germany). To detect mutations, all samples 241	

were spiked with 10-20% of wild type DNA. For each mutated plant, a new HRM run was 242	

carried out with and without spiking to identify putative homozygous mutated plants. All 243	
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10	
	

plants with a mutated profile were Sanger sequenced (Genoscreen, Lille, France), as well as 244	

some plants with a wild-type profile to check for the sensitivity of the HRM. Some plants 245	

harbouring both an HRM profile and a Sanger chromatogram of interest were then analysed 246	

by cloning the PCR products into the pCR4-TOPO TA vector (Thermo Fisher Scientific, 247	

USA) followed by Sanger sequencing. Using the natural polymorphism found in wild-type 248	

Desiree, each sequencing read was paired to a particular allele. 249	

 250	

Inference of CRISPR editing (ICE) analysis 251	

Chromatograms from Sanger sequencing were analysed using the Inference of CRISPR 252	

Editing (ICE) software (Synthego, USA), an open-source and free-to-use web-based tool 253	

(https://ice.synthego.com) (Hsiau et al. 2018).  254	

 255	

Amylose assay  256	

For a visual assay, 20 µL of a half-strength Lugol’s solution (Sigma-Aldrich, USA) was 257	

directly dropped onto the surface of a sliced tuber. 258	

For size-exclusion chromatography analysis of starch polysaccharides, potato starch was 259	

isolated and purified according to Helle et al. (2018). Washed and peeled tubers were cut into 260	

0.5 cm x 0.5 cm pieces and ground in a mortar with 10 mL of ultrapure water. Samples were 261	

then filtered through a nylon net (100 µm mesh) and starch granules were left to sediment. 262	

Starch suspensions were then washed three times prior to size-exclusion chromatography 263	

analysis. Starch polysaccharides were separated on a Sepharose CL-2B column as described 264	

in Delvalle et al. (2005). Briefly, ≈1-2 mg of starch were dissolved in 500 µL of 10 mM 265	

NaOH and loaded on a CL-2B column (0.5 cm x 65 cm). 300 µL fractions were collected at a 266	

flow rate of 12 mL/h prior to measuring the OD and λmax of the iodine-polysaccharide 267	

complexes with the use of a microplate spectrophotometer.  268	

 269	

Structural analysis of the GBSS mutation 270	

Eight GBSS templates were selected using the Modeller 9.18 programme (Webb and Sali 271	
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2016) based on sequence identity (>20%) from Hordeum vulgare (PDB:4HLN), 272	

Saccharomyces cerevisiae (PDB:1YGP), Oryza sativa (PDB:3VUE), Corynebacterium 273	

callunae (PDB:2C4M), Oryctolagus cuniculus (PDB:2GJ4), Streptococcus (PDB:4L22), 274	

Cyanophora paradoxa (PDB:6GNG) and Cyanobacterium sp. (PDB:6GNF). The best model 275	

was chosen using the discrete optimized protein energy (DOPE) method (Shen and Sali 2006) 276	

and/or the GA341 method (John 2003; Melo et al. 2002). The model was optimized using 277	

energy minimization protocols available in Yasara software (Krieger et al. 2009). 278	

 279	

Results 280	

Design of CRISPR-Cas9 targets 281	

In potato, the StGBSSI protein is encoded by a single gene that contains 13 exons (Cheng et 282	

al. 2012). The loci of interest were sequenced in two cultivars, Desiree and Furia, to assess 283	

inter-allelic polymorphism and to design targets (Fig. 1 and Supplementary Fig. S2 and S3). 284	

The locus encoding the catalytic domain KTGGL (amino acids 95 to 99), likely involved in 285	

ADP-glucose binding (Nazarian-Firouzabadi and Visser 2017), was completely conserved in 286	

both cultivars (Fig. 1). Based on these sequences, two different strategies were implemented 287	

to target the StGBSSI gene using CRISPR-Cas9 editing methods. We designed two sgRNAs 288	

in exon 1 and 2, named sgGBSS1 and sgGBSS2 (Fig. 1), to knock out the StGBSSI gene 289	

using the pDeCas9 construct (Fauser et al. 2014). We also designed one sgRNA in exon 1 290	

(sgGBSS3) and another one in exon 10 (sgGBSS4) to target the loci encoding the KTGGL 291	

and the PSRFEPCGL catalytic domains, respectively (Fig. 1), using a CBE. The sgGBSS4 292	

spanned a region of synonymous allelic variation at its 5’ end in one of the four alleles in the 293	

Desiree cultivar (Fig. 1). 294	

 295	

Highly efficient StGBSSI gene knockout using Agrobacterium-based stable 296	

transformation 297	

Our objective was to knockout the StGBSSI gene through the creation of small indels at the 298	

locus encoding the KTGGL domain, targeted by sgGBSS1, following Agrobacterium-299	

mediated transformation. After transformation of Desiree explants, 21 kanamycin-resistant 300	
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transgenic plantlets were regenerated. Mutations were screened using HRM analysis: 15 out 301	

of 21 Desiree transgenic plantlets showed a distinct melting-curve shape, resulting in a 71% 302	

editing efficiency at the sgGBSS1 target (Fig. 2a). Because the frequency of mosaic plants is 303	

often high in primary transformants (Fauser et al. 2014; Pan et al. 2016; Peng et al. 2017), we 304	

cloned PCR amplicons before sequencing to obtain individual sequences. Two primary 305	

transformants were selected, for which 18 independent sequences were analysed. In both 306	

plants, small deletions were detected in the StGBSS targeted site a few bp upstream of the 307	

PAM (Fig. 2b). In some cases, deletions downstream of the PAM were also observed, as 308	

previously reported in potato (Butler et al. 2015; Wang et al. 2015). Mutations were 309	

characterised for four and three alleles for the 17T.701.008 and 17T.701.010 plants, 310	

respectively. Interestingly, several different sequences (up to six) were observed for a single 311	

allele from the same plant, demonstrating that these primary transformants were mosaic (Fig. 312	

2b). Depending on the chimerism level, non-mosaic mutants may be obtained in clonally 313	

propagated progenies. In all cases, the mutation was predicted to induce a frameshift or to 314	

alter the KTGGL domain, likely leading to a loss of function of the encoded protein.  315	

To explore the phenotypic consequences of the targeted mutations, the two mutated plants 316	

were transferred to a greenhouse with a natural photoperiod to produce tubers in soil. We did 317	

not notice any obvious deleterious effects of the mutation to overall plant growth (Fig. 2c). 318	

Tubers were harvested after three months and assessed for their amylose content. First, the 319	

iodine solution was directly dropped onto a tuber slice for a quick qualitative analysis, 320	

staining brown for the two mutated plants but dark-blue for wild-type plants (Fig. 2d), as 321	

expected for starch containing amylose. Starch polysaccharides were then separated by size-322	

exclusion chromatography using a Sepharose CL-2B matrix. Although the amylopectin peak 323	

(high mass fraction) was unaffected in the two mutants compared to Desiree, amylose 324	

accumulation (low mass fraction) was totally abolished or strongly impaired in the 325	

17T.701.008 and 17T.701.010 plants, respectively (Fig. 2d). The residual amylose content in 326	

17T.701.010 may result from the presence of a sufficient amount of cells with unedited alleles 327	

(Fig. 2b). Taken together, these data clearly show that StGBSSI can be efficiently knocked-out 328	

in the tetraploid potato by CRISPR-Cas9, leading to modifications in tuber starch quality. 329	

 330	

Successful gene editing in regenerated potato plants using protoplast transfection 331	
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Agrobacterium-based gene editing is associated with the integration of the Cas9-harbouring 332	

transgene. To generate transgene-free edited plants through transient expression of CRISPR 333	

components, Desiree protoplasts were transfected using plasmid DNA. In this case, we 334	

simultaneously applied two sgRNAs (sgGBSS1 and sgGBSS2) on opposite DNA strands and 335	

spaced 135 bp apart, aiming at generating larger deletions. Four months after transfection, 444 336	

plantlets were regenerated and their DNA was extracted from leaf samples.  337	

Despite the use of the two sgRNAs, only 2 regenerated plants out of 269 (0.7%) showed a 338	

PCR band shift consistent with the expected deletion for at least one allele (Fig. 3a). This 339	

result indicates that simultaneous cutting by both guides is low. However, 6 out of 269 plants 340	

(2.2%) were detected with a clear insertion in the targeted region (Fig. 3a). We also analysed 341	

the 17T.716.146 plant, which displayed no wild-type alleles, but both smaller and larger band 342	

shifts in the targeted locus. The locus was cloned and sequenced, revealing the expected 343	

deletion of 142 bp as well as two insertions of 116 bp and 211 bp, originating from the 344	

plasmids used in the experiment (data not shown). This is similar to previous observations 345	

made in potato (Andersson et al. 2017). In line with the absence of the wild-type StGBSSI 346	

allele, the amylopectin content was not affected in soil-grown tubers from 17T.716.146 plants 347	

(no growth penalties observed), and amylose accumulation was completely abolished (Fig. 348	

3b). This result confirms the loss of function of the StGBSSI gene in 17T.716.146 plants.  349	

Due to the low efficiency of inducing large deletions using the two-guide strategy, we first 350	

used HRM analysis to detect small indels at the sgGBSS1-cutting site: 38 plants out of 444 351	

(8.6%) were identified as differing from Desiree at the StGBSSI locus (Fig. 3a). For these 38 352	

plants, the expected polymorphism was assessed by simultaneously sequencing the four loci 353	

by direct Sanger sequencing. The resulting sequences were analysed with ICE software, 354	

which determines the rate of CRISPR-Cas9 editing at a specific locus, allowing us to 355	

reconstruct the mutated alleles. Most of the mutations consisted of small indels (-23 to +1 bp) 356	

leading to frameshifts or amino-acid deletions (Fig. 3a). The region targeted by sgGBSS2 357	

could not be similarly analysed because the high natural polymorphism downstream the target 358	

prevented us from designing suitable HRM primers (Supplementary Fig. S4). 359	

In a tetraploid species, one single allele is sufficient to produce amylose (Andersson et al. 360	

2017). Using ICE software, the mutants can be theoretically classified in four categories in a 361	

tetraploid species like potato: ICE 25% (one allele likely to be mutated), ICE 50% (2 alleles 362	

likely mutated), ICE 75% (3 alleles likely mutated) and ICE 100% (4 alleles likely mutated). 363	
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We therefore screened the 38 StGBSSI mutant plants to identify plants with all four alleles 364	

mutated. As a control, we cloned and sequenced 10 individual amplicons from the 17.716.302 365	

plant, which displayed a 21% ICE score: in agreement with this score, only one allele was 366	

modified, associated with a 8 bp deletion. Accordingly, tubers from this plant were not 367	

affected in amylose accumulation (Fig. 3c). Most of the confirmed edited plants were 368	

similarly mutated in a single allele (29 plants, 77%), but we focused on three plants (9%) 369	

mutated at all four alleles (Fig. 3a and Supplementary Fig. S5), including the aforementioned 370	

17T.716.146 plant, identified as knocked-out. For the two putative tetra-allelic mutants 371	

(17T.716.439 and 17T.716.542), we also cloned and sequenced the sgGBSS1 target locus. No 372	

wild-type sequence could be detected among the 20 sequencing reads obtained for each plant. 373	

The mutations identified were in accordance with those predicted by the ICE software, with 5, 374	

4 and 1 bp deletions for 17T.716.439, and 7, 5 and 4 bp deletions for 17T.716.542 (Fig. 3c 375	

and Supplementary Fig. S5). We detected two different mutations for the same allele in 376	

17T.716.439 and 17T.716.542, indicating that these mutants may be mosaic (Fig. 3c). 377	

Surprisingly, in both plants, sequences corresponding to only three different natural allelic 378	

variants could be detected, and the A2 and A1 alleles were not detected in 17T.716.439 and 379	

17T.716.542, respectively (Fig. 3c). One possible explanation may be a very large insert in 380	

the cutting site of one allele, preventing PCR detection. Alternatively, a change in 381	

chromosome number/structure due to somaclonal variation, which is common during plant 382	

regeneration from protoplasts (Fossi et al. 2019), potentially explaining the stunted growth of 383	

these two plants. The rapid amylose assay performed on an in vitro microtuber from 384	

17T.716.542 indicates that this mutant was strongly impaired in amylose biosynthesis (Fig. 385	

3c).  386	

To assess the effectiveness of the protoplast strategy, we then wanted to ensure that no foreign 387	

DNA was inserted elsewhere in the plant genome. We performed PCR on the mutated plants 388	

with four couples of primers matching the CRISPR/Cas9 plasmids. Interestingly, although we 389	

did not observe any amplification for most of the plants (32 plants, 84%), four of them (11%) 390	

had integrated at least one large plasmid fragment (>350 bp) (Supplementary Fig. S6). This 391	

was confirmed by the sequencing of some of the amplicons. Two of the plants that harboured 392	

the nptII amplicon successfully grew on a medium containing kanamycin, confirming the 393	

presence of a functional nptII resistance cassette (Supplementary Fig. S7). We postulate that 394	

at least some of these insertions may result from random integration into the genome, 395	

although we cannot exclude the insertion of a very large fragment into the target site 396	
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(preventing PCR amplification) or into an off-target site. 397	

To summarize, the two-guide strategy did not improve the efficiency of mutagenesis, but we 398	

were able to edit and knockout the StGBBSI gene in regenerated plantlets by transiently 399	

expressing CRISPR-Cas9 components into potato protoplasts. In comparison with the 400	

Agrobacterium-mediated knockout approach, we were able to regenerate plants without large 401	

insertions of T-DNA fragments, although foreign DNA insertions could be detected in a 402	

subset of plants. However, smaller insertions may be present as part of the substantial 403	

chromosomic reshuffling caused by protoplast regeneration(Fossi et al. 2019). Finally, a high 404	

number of regenerated plants displayed stunted growth (20 to 40%), confirming the major 405	

drawback of protoplast-based regeneration. 406	

As a direct application of our work on Desiree, a cultivar commonly used in laboratories for 407	

many years, we targeted the StGBSSI gene through protoplast transfection in the Furia 408	

cultivar, a recently registered starch potato. We applied a single-guide approach with 409	

sgGBSS1 only and, four months after transfection, we detected 42 out of 259 regenerated 410	

plants (16%) as mutated at this locus using HRM (Fig. 4a). In total, eight plants (19% of the 411	

mutants) were identified by Sanger sequencing as potential tetra-allelic mutants (Fig. 4b, c). 412	

This suggests that our strategy can be readily developed in other cultivars for plant molecular 413	

breeding, but with the same potential drawbacks of somaclonal variation and residual foreign 414	

DNA integration (data not shown). 415	

 416	

Precise and efficient base editing using a CRISPR-Cas9 cytidine deaminase fusion 417	

Recently, substitution of nucleotides without DSBs has been successfully carried out on 418	

plants using base editing tools. Here, we used a cytidine base editor (Shimatani et al. 2017) to 419	

target two loci encoding catalytic domains of the StGBSSI enzyme. One suitable guide 420	

sequence in each target locus was designed, named sgGBSS3 (targeting the KTGGL encoding 421	

locus) and sgGBSS4 (targeting the PSRFEPCGL encoding locus) (Fig. 1). We carried out two 422	

independent Agrobacterium-mediated explant transformations in Desiree, leading to the 423	

regeneration of 48 and 15 transgenic plants targeting sgGBSS3 and sgGBSS4 sequences, 424	

respectively. HRM analysis suggests that both sgGBSS3- and sgGBSS4-targeted sites were 425	

efficiently mutated with 43 out of 48 transgenic plants and 13 out of 15 transgenic plants 426	

edited, respectively. Direct Sanger sequencing confirmed these results, demonstrating a very 427	
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high mutation efficiency, close to 90% (Fig. 5a).  428	

The sgGBSS4-targeted site had been selected to assess the edition efficiency of three closely 429	

located Cs in the edition window (C-20, C-19 and C-15, counting from the PAM). Sanger 430	

sequencing showed that these 3 Cs can be substituted with a T, and to a lesser extent with a G 431	

or an A, but strikingly indels were very frequently found (77%), mainly in the edition window 432	

(data not shown). Moreover, we confirmed that, consistent with the presence of a mismatch 433	

with one allele at the distal end of the guide (Fig. 1), complete editing of the four alleles could 434	

not be characterized in the sgGBSS4 target zone.  435	

For the sgGBSS3-targeted site, Sanger sequencing revealed that only C-17 in the editing 436	

window was most frequently substituted with a G or a T, and to a much lesser extent with an 437	

A (Fig 5a-b). In all edited plants, we observed a C-17-to-G-17 substitution, while a C-17-to-T-17 438	

transition occurred in 30 mutated plants (70%) (Fig. 5a and Supplementary Fig. S8). C-17-to-439	

A-17 conversion was detected in only four plants (9%). Among the 43 mutants, indels were 440	

observed in nine plants (21%), with an initiation site mainly located in the vicinity of the C-17 441	

(Supplementary Fig. S8). As expected, we did not observe base substitution at positions 442	

surrounding the edition window. In particular, we identified a perfect C-17-to-G-17 conversion 443	

in two plants (18T.511.039 and 18T.511.073) (Fig. 5a-b). Interestingly, the complete 444	

homozygous conversion of the target base hinders detection by HRM, a fact that can be 445	

circumvented by the addition of a small amount of wild-type DNA into the samples (spiking) 446	

to clearly alter the melting shape (Fig. 5b). The cloning and sequencing of the targeted region 447	

in both plants confirmed that these plants were tetra-allelic for the mutation and non-mosaic 448	

(Fig. 5b). This C-17-to-G-17 base substitution leads to the replacement of the leucine (L) by a 449	

valine (V) in the KTGGL motif, potentially leading to a loss of function of the protein. The 450	

StGBSSI 3D protein structure was modelled based on available 3D structures (see Methods) 451	

and the mutated residue L99V was reported on the GBSSI 3D model (Fig 5c). It is located 452	

within an α-helix and is likely to impair its structure, subsequently leading to abnormal 453	

GBSSI protein folding and/or impacting the glucose binding. The amylose assay on in vitro 454	

microtubers supports this assumption, because amylose accumulation was totally impaired in 455	

the two base-edited plants compared with wild-type Desiree (Fig. 5d), indicating that the 456	

leucine residue in the KTGGL is essential for StGBSSI catalytic activity. 457	

 458	
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Discussion 459	

Gene editing using CRISPR-Cas9 is efficient in elite cultivars of tetraploid potato 460	

Our work demonstrates that the delivery of CRISPR-Cas9 components either through stably 461	

integrated transgene(s) or transient expression of plasmids can efficiently induce targeted 462	

mutations into the StGBSSI gene in elite cultivars of the tetraploid potato. Using 463	

Agrobacterium-mediated transformation, we successfully obtained, in the first generation, 464	

tetra-allelic mutants with impaired amylose biosynthesis, confirming the loss of function of 465	

the StGBSSI enzyme (Fig. 2). For fundamental research purposes, the persistence of the 466	

transgene(s) may not be a problem because Tang et al. (2018) showed that the continued 467	

presence of CRISPR-Cas9 reagents in rice does not cause off-target mutations if sgRNAs are 468	

rigorously designed.   469	

In sexually propagated species, the stably integrated transgene can be eliminated through 470	

Mendelian segregation, generating transgene-free lines (Ricroch et al. 2017). However, the 471	

segregation of the transgene is not feasible in the vegetatively propagated cultivated potato, 472	

because selfing would change the cultivar characteristics of this highly heterozygous species. 473	

Thus, regenerated mutants lacking unwanted insertion of foreign DNA are of utmost interest, 474	

especially for commercial applications. With this goal, we used the transient expression of 475	

CRISPR-Cas9 plasmids to generate transgene-free knockout mutants. While we conducted 476	

these experiments, two studies were published showing how the StGBSSI gene can be 477	

knocked-out in plantlets regenerated from protoplasts of the Kuras cultivar, using both 478	

plasmid DNA and RNPs, respectively (Andersson et al. 2017; Andersson et al. 2018). Our 479	

results are consistent with these findings, extending them to other cultivars and using different 480	

transfection and screening strategies. Although being less efficient than Agrobacterium-481	

mediated stable transformation, we demonstrated that PEG-mediated transformation of 482	

Desiree and Furia protoplasts is efficient for the generation of tetra-allelic edited plants at a 483	

reasonable rate (8 to 19% of all mutated plants), producing plants impaired in amylose 484	

biosynthesis. 485	

At the same time, our work highlights caveats associated with genome editing approaches in 486	

the highly heterozygous tetraploid potato. Rigorous analysis of the target locus must be 487	

carried out to avoid polymorphism that will impair tetra-allelic editing (as shown here for 488	

sgGBSS4) or genotyping (as exemplified here by the locus downstream from sgGBSS2). 489	
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Similarly, we confirm here that a dual sgRNA approach on opposite DNA strands does not 490	

necessarily lead to an efficient deletion rate of a large segment of the gene, probably because 491	

the cutting efficiencies at the two sgRNA-targeted sites are not similar. For an efficient and 492	

cost-effective screening of mutants, we present a streamlined approach with an HRM analysis 493	

followed by direct Sanger sequencing of positive plants and accompanied by sequence 494	

analysis mediated by the ICE algorithm. 495	

During the protoplast transfection process, the delivery of CRISPR-Cas9 components through 496	

plasmids may result in the insertion of degraded DNA fragments into the target sequence 497	

(Salomon and Puchta 1998), but also into random sites (Kim et al. 2017; Liang et al. 2017). 498	

Accordingly, we found that a substantial rate of mutants harboured insertions in the target 499	

sequence, which may originate from plasmid DNA and/or host genome. These results 500	

corroborate previous studies using transient transfection in potato protoplasts, revealing a high 501	

rate of DNA insertions (Andersson et al. 2018; Clasen et al. 2016). Moreover, the 502	

unpredictable insert sequence can impair the detection of foreign DNA insertions into the 503	

plant genome, likely underestimating the rate of random and unwanted insertions. Whole-504	

genome sequencing of the mutated line(s) may be an exhaustive - and expensive - option, as 505	

done in tomato (Nekrasov et al. (2017) and in rice (Tang et al. (2018). Another strategy for 506	

CRISPR-Cas9 expression relies on the use of CRISPR-Cas9 ribonucleoproteins (RNP). This 507	

method has been successfully developed in some plant species, including potato, completely 508	

avoiding the risk of foreign DNA insertion(s) into the host genome (Andersson et al. 2018; 509	

Liang et al. 2017; Woo et al. 2015). Recently, Chen et al. (2018) developed a method using an 510	

Agrobacterium-mediated transient CRISPR-Cas9 gene expression system to generate 511	

transgene-free mutants without the need for sexual segregation, which holds great potential 512	

for vegetatively propagated crops. Furthermore, we developed a strategy for the production of 513	

T-DNA free edited plants using the Agrobacterium-mediated delivery of a CBE, opening up 514	

new perspectives for genome engineering, especially in vegetatively propagated species like 515	

potato (Veillet et al. 2019). The use of nanomaterials for CRISPR components delivery also 516	

holds great promises for genome editing without foreign DNA integration (Demirer et al. 517	

2019). These promising strategies, which directly generate transgene-free edited plants 518	

without the need for transgene segregation, may provide science-based evidences for 519	

decision-makers and may also help to reduce public concerns about gene edited crops.  520	

Somaclonal variation in regenerated plantlets from protoplasts or Agrobacterium 521	

transformation constitutes another bottleneck for an efficient gene editing strategy, especially 522	
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for commercial purposes. For example, this type of variation can result in changes in the 523	

number of chromosomes from polyploidy to aneuploidy, chromosome rearrangements and 524	

DNA base deletions and substitutions (Krishna et al. 2016). In our conditions, we observed a 525	

substantial rate of plants with stunted growth or abnormal development, which may be due to 526	

somaclonal/epigenetic variation (Fossi et al. 2019). Collectively, our results suggest that many 527	

regenerated plants need to be screened to isolate clean edited plants suitable for commercial 528	

purposes. Therefore, the improvement of the transformation/regeneration method is crucial to 529	

obtain a higher ratio of tetra-allelic mutants. 530	

 531	

CRISPR-Cas9 cytidine deaminase fusion precisely and efficiently edits targeted bases 532	

Base editing using CBE has been recently developed in some plant species, allowing the 533	

precise modification of cytidine residues in a small edition window. In this study, we 534	

successfully applied CBE to the tetraploid potato using Agrobacterium-mediated 535	

transformation. We obtained a high rate of edited plants for the two targeted-sites, close to 536	

90% of the transgenic plants. By targeting the active site KTGGL, we achieved a perfect C-17-537	

to-G-17 substitution in all the alleles of two independent plants, leading to a L99V substitution 538	

in this motif. This amino acid change, which is predicted to alter the function of StGBSSI, 539	

effectively led to amylose biosynthesis impairment. Although this mutation resulted in a loss-540	

of-function allele, such precise genome editing approach is very likely to help create new 541	

allelic variants with potentially modified activity. This is a promising result for the 542	

characterization of specific protein motifs in potato, but also for crop improvements through 543	

the production of gain-of-function mutants, for example exhibiting resistance to plant 544	

pathogens at no yield loss (Bastet et al. 2019). Based on our results, we suggest that further 545	

studies are needed to draw up the guidelines for designing more efficient sequence guides. 546	

One such avenue to explore is whether C-rich regions are likely to be associated with indels, 547	

which should be avoided for precise gene editing. Similarly, instead of the expected C-to-T 548	

mutation, C-to-G/-A conversion may be attractive for the diversity of amino-acid 549	

substitutions, but unwanted in some cases. To avoid such undesired products due to uracil 550	

excision and downstream repair systems, the addition of a uracil DNA glycosylase inhibitor 551	

protein (UGI) to the construct is a promising approach, because this strategy has been shown 552	

to result in a majority of C-to-T conversions and a reduced rate of indel formation (Nishida et 553	

al. 2016). Furthermore, the recent application of base editing in potato using a fusion of 554	
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human APOBEC3A, nCas9 and UGI demonstrated that C-to-T conversion is efficiently 555	

mediated in a 17 bp edition window, independently of the sequence context and with a very 556	

low frequency of indels or undesired edits (Zong et al. 2018). 557	

Base editing technology will benefit from the expanding base editing toolbox. In particular, 558	

an adenine base editor (ABE) has been developed, mediating clean A-to-G substitutions 559	

(Schindele et al. 2018). Together with CBEs, this new ABE opens up further possibilities for 560	

fine-tuning allele variation. Nevertheless, a recent study pointed out that CBEs, but not ABEs, 561	

can generate genome-wide off-target mutations (Jin et al. 2019), highlighting the need for an 562	

optimization of CBEs and/or the use of delivery methods reducing the expression of CRISPR 563	

components to a few days. Finally, CRISPR-based base editing requires the presence of a 564	

PAM sequence that places the target base(s) within a small base-editing window. This 565	

requirement limits the number of sites that can be targeted in plant genomes, as experienced 566	

in our work for the loci encoding catalytic domains of the StGBSSI. To overcome this 567	

limitation, the commonly used SpCas9 nickase can be replaced by Cas9 orthologues from 568	

other bacterial and archeal species that display alternative PAM compatibilities. For example, 569	

SpCas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus have been 570	

successfully used for gene editing in Arabidopsis (Steinert et al. 2015). Furthermore, (Hua et 571	

al. 2018b) developed new CBEs and ABEs with engineered SpCas9 and SaCas9 nickase 572	

variants that considerably expand the targetable sites in the rice genome. Great efforts have 573	

been made recently in engineering expanded PAM SpCas9 variants (xCas9 and Cas9-NG) 574	

with broadened PAM compatibility in mammalian and plant cells (Endo et al. 2018; Hu et al. 575	

2018; Nishimasu et al. 2018; Wang et al. 2018), opening new exciting avenues for base 576	

editing. 577	

 578	

Conclusion 579	

Our present work confirms that the StGBSSI gene can be successfully targeted and altered in 580	

elite potato cultivars using gene and base editing systems. Therefore, the StGBSSI appears to 581	

be a very good - and economically feasible - gene model to assess genome editing in potato, 582	

as well as its potential future technological improvements. Furthermore, these results can be 583	

transferred to other starch-producing crops: the targeted mutagenesis of GBSS was recently 584	

shown to be efficient in modifying amylose content in cassava (Bull et al. 2018). With the 585	
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extraordinarily rapid development of genome editing tools in both animals and plants, 586	

researchers are now able to efficiently characterize genes underlying important agronomic 587	

traits directly into crops, at the base-pair level. Along with the development of plant 588	

transformation and regeneration processes, there is no doubt that genome editing will have a 589	

tremendous impact on basic research and on molecular crop improvement. 590	
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 624	

 625	
 626	
Figure legends 627	
 628	
Fig. 1 629	
 630	
StGBSSI structure and CRISPR-Cas9 targets. The StGBSSI gene structure is composed of 631	

13 exons (in black) and 12 introns (in grey), with 5’UTR and 3’UTR on both sides (in blue). 632	

The localization and sequences of the four targeted loci used in this study are indicated, as 633	

well as the allelic variation (in green) in the loci encoding the PSRFEPCGL catalytic domain. 634	

The guide sequences (sgGBSS) are depicted in blue and the PAM sequence in red. 635	

Polymorphism between allelic variants is not shown.    636	

 637	

Fig. 2 638	

Generation and identification of CRISPR-Cas9-mediated mutations in primary 639	

transformants of potato cultivar Desiree. (a) High-resolution melting (HRM) analysis of 640	

Agrobacterium-transformed potato plants. Desiree sample was defined as the base curve (blue 641	

line). Non-mutated plants are shown in blue and the mutated ones are shown in different 642	

colours, according to the shape of their melting curve. (b) Alignment of sequencing reads 643	

from StGBSSI target locus of two independent mutated primary transformants with the 644	

sequences from their respective wild-type alleles (named A1/2/3/4, and highlighted in blue). 645	

Natural polymorphism between the four Desiree allelic variants is outside of the represented 646	

window. The length of deletion (-) or insertion (+) is indicated on the right of each read. The 647	

PAM motif is shown in red and the sgGBSS1 target locus in blue. (c) Picture of about 2 648	

month-old potato plants grown in soil in a greenhouse with a natural photoperiod. (d) 649	

Determination of amylose content in tubers harvested from soil-grown potato with a rapid 650	

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 5, 2019. ; https://doi.org/10.1101/628107doi: bioRxiv preprint 

https://doi.org/10.1101/628107
http://creativecommons.org/licenses/by-nc-nd/4.0/


23	
	

iodine test (pictures) and with size-exclusion chromatography (graph). Amylopectin and 651	

amylose peaks are indicated with black arrows. 652	

 653	

Fig. 3 654	

Generation and identification of CRISPR-Cas9-mediated StGBSSI mutations in 655	

regenerated plants from PEG-mediated transfection of potato cultivar Desiree 656	

protoplasts. (a) Genotyping strategies for selecting deletions in StGBSSI. The PCR band shift 657	

assay using primers on both sides of the targeted region (sgGBSS1 and sgGBSS2) is shown in 658	

red, and the HRM analysis at the sgGBSS1-targeted site is given in blue. Exons and introns 659	

are shown in dark and grey, respectively. The frequency of mutated plants was calculated 660	

based on the number of regenerated and analysed plants. The nature of mutations was 661	

determined after Sanger sequencing using both manual analysis and ICE software. Most 662	

plants could be assigned an ICE score (≈ 25, 50, 75 or 100%). (b) Determination of amylose 663	

content in tubers harvested from soil-grown potato plants using a rapid iodine test (pictures) 664	

and with size-exclusion chromatography (graph). Amylopectin and amylose peaks are 665	

indicated with black arrows. (c) Sanger sequencing chromatograms (C in blue, G in dark, A in 666	

green and T in red) and Sanger sequencing reads from a few regenerated plants at the 667	

sgGBSS1-targeted locus. The ICE score and the mutation are indicated in grey. The wild-type 668	

allelic sequences are highlighted in blue (A1/2/3/4). Polymorphism between Desiree allelic 669	

variants is not located within the sequencing window. The length of deletion (-) is indicated 670	

on the right of each read. The PAM motif is shown in red and the sgGBSS1-targeted locus in 671	

blue. Determination of amylose content with a rapid iodine test in tubers harvested from soil-672	

grown (17T.716.302) or from in vitro-propagated (17T.716.542) potatoes is shown on the left 673	

of the chromatogram. 674	

 675	

Fig. 4 676	

Generation and identification of CRISPR-Cas9-mediated StGBSSI mutations in 677	

regenerated plants from PEG-mediated transfection of potato cultivar Furia 678	

protoplasts. (a) High-resolution melting (HRM) analysis of regenerated potato plants. Furia 679	

sample was defined as the base curve (yellow). Mutated plants are shown in different colours, 680	

according to the shape of their melting curve. (b) Summary of the mutation detection strategy. 681	

Frequency of mutated plants was calculated based on the number of regenerated and analysed 682	

plants. The nature of mutations was determined after Sanger sequencing using a manual 683	

analysis and ICE software. Most plants could be assigned an ICE score (≈ 25, 50, 75 or 684	
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100%). (c) Sanger sequencing chromatograms from Furia and two mutated plants at the 685	

sgGBSS1-targeted locus (C in blue, G in dark, A in green and T in red). The ICE score and 686	

the mutation are indicated in grey for each callus. The PAM motif is indicated in red and the 687	

sgGBSS1-targeted locus in blue. 688	

 689	

Fig. 5 690	

Generation and identification of CBE-mediated mutations in primary transformants of 691	

potato cultivar Desiree. (a) Base-editing efficiencies at sgGBSS3 target in primary 692	

transformants. The number of plants harbouring a specific nucleotide conversion is indicated 693	

for C-17. (b) Sanger sequencing results and high-resolution melting (HRM) outputs for two 694	

edited plants at the sgGBSS3 target harbouring a perfect C-17-to-G-17 substitution. The HRM 695	

analysis was performed without or with the addition of a small amount of Desiree DNA in the 696	

samples (spiked). Non-mutated profiles are shown in blue and the mutated ones are shown in 697	

red, according to the shape of the melting curve. The chromatograms are the result of direct 698	

sequencing of all four alleles together. Grey arrows indicate the location of base substitutions. 699	

Sanger reads were aligned with the wild-type allelic sequences (in blue). Natural 700	

polymorphism between Desiree allelic variants is not shown. Base substitutions are 701	

highlighted in yellow. The PAM motif is indicated in red and the sgGBSS3-targeted locus in 702	

blue. Amino-acid residues for all four alleles of the edited plants are indicated below the 703	

Sanger reads. Changes in amino-acid residues are highlighted in red. K: Lysine, T: Threonine, 704	

G: Glycine, L: Leucine, V: Valine, D: Aspartic acid. (c) Localisation of mutated residue in the 705	

3D model of StGBSSI. Overall 3D model of StGBSSI (i), zoom on L99 (ii) and the L99V 706	

mutation (iii). The StGBSSI consists of 24 α-helix (in red) and 19 β-strands (in yellow). L99 707	

is shown in blue (ii). L99 (situated in α-helix5) is mutated in V99 and the clash between the 708	

side chain from V99 and other residues is indicated by a red square (iii). (d) Determination of 709	

amylose content in microtubers harvested from in vitro plants with a rapid iodine test (picture) 710	

and with a size-exclusion chromatography (graph). Amylopectin and amylose peaks are 711	

indicated with black arrows. 712	
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