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Method comparison with ADNI Split
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Fig. 2. Method comparison using the Split ADNI dataset Analysis of
the performance in terms of ROC AUC Score of the different classifi-
cation methods when increasing the number of SNPs used as inputs,
training the model on the ADNI1 and ADNI GO samples and testing it in
the IGAP-independent ADNI 2 Samples.

respectively) Figure 7 and 8 can be analyzed to see how the
performance increase is substantial.

Fig. 3. Impact of the subset size on the prediction Analysis of the effect
in the ROC AUC Score done by increasing the number of samples used
for the 5-fold CV in the simulated dataset using the different classification
methods.

Fig. 4. Method Comparison with Simulated Dataset Comparison
between the ROC AUC Score obtained using the different classification
methods. The X axis firstly describes an increase of the number of SNPS
used for classification, and afterwards an increase in the size of the
simulation dataset

The results from the previous simulation show that the
use of more samples should benefit the prediction in the
Alzheimer’s task. Thus we generated the artificially aug-
mented data set for training purposes and used the ADNI
data set as our test set. In this case the increase in the number
of samples did not directly mean a better performance and
a higher use of SNPs, as we can see once we start using over
100 SNPs the performance on the ADNI subset tends to de-
cay. Plus, the increase in size of the training data set also did

Fig. 5. Method comparison with 500 Individuals Comparison of the
ROC AUC Score from 5-fold CV using different classification methods
while increasing the number of SNPs given a simulation dataset with
500 Individuals

Fig. 6. Method comparison with 10000 Individuals Comparison of the
ROC AUC Score from 5-fold CV using different classification methods
while increasing the number of SNPs given a simulation dataset with
10,000 Individuals

not mean constant increases as in the previous scenario. We
can see that the use of more SNPs coupled with a decent size
of artificially-augmented samples gives the best results on
the ROC Score, which shows that both of these factors have
a role to play in the prediction. The convolutional dropout
network did have some issues when using too much SNPs
and dropped to a classification, and in general the simpler
models such as Random Forest and Support Vector Machine
performed better. This shows that there is only so much that
can be accomplished with data augmentation, and that the
disease might actually be focused on a smaller number of
uncorrelated genes as supposed in the simulation. Figures 7
and 8 illustrate these results.

Fig. 7. Impact of the augmentation size on the prediction Analysis
of the effect in the ROC AUC Score done by increasing the number of
data-augmentation samples used for the training segment validated on
the complete ADNI Dataset using the different classification methods.

Further restrictions were imposed on the data set used
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Fig. 8. Method Comparison with ADNI Dataset Comparison between
the ROC AUC Score obtained using the different classification methods.
The X axis firstly describes an increase of the number of SNPS used for
classification, and afterwards an increase in the data-augmentation size
validated on the complete ADNI dataset

for testing, as some of the ADNI samples were also taken
into account for the IGAP study. Thus we restricted the
testing to those individuals who did not participate in the
IGAP study. For this case we can see in Figures 9 and 10
that due to the small sample size and the class imbalance
the results are lower as the previous data set. Specifically
they tend to show good results using few amounts of SNPs
(APOE4 mainly) and the increase in sample size used to
train does not represent an increase in the prediction capa-
bility. This gives us the impression that the learning models
either do not generalize correctly, or the few individuals
from the unbalanced data set do not correspond to the
genetic markers learned from the IGAP-based simulation.
Comparing these results with the ones obtained from the
ADNI split the results are in average better for the data
augmentation process than from the standard.
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Fig. 9. Impact of the augmentation size in IGAP-Independent Subset
Analysis of the effect in the ROC AUC Score done by increasing the
number of data-augmentation samples used for the training segment
validated on the IGAP-Independent subset using the different classifica-
tion methods.

5 DISCUSSION

Previous research on the early detection of late-onset
Alzheimer’s disease have relied on a variety of clinical
biomarkers for disease prediction [2]. The efficacy of exper-
imental treatments and palliative interventions rely heavily
on the early detection of the disease [5]. Unfortunately,
clinical biomarkers such as beta amyloid and tau proteins
are correlated with disease progression. Therefore, their
usefulness for the early detection of the disease remains
controversial.
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parison between the ROC AUC Score obtained using the different
classification methods. The X axis firstly describes an increase of the
number of SNPS used for classification, and afterwards an increase in
the data-augmentation size validated on the IGAP-Independent subset.
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The etiology of LOAD is likely to be motivated by
both environmental and genetic components. However, the
genetic component seems to a major determinant as the
heritability of the disease has been estimated to be ~
80% [21]. Therefore, genetic testing hold the potential to
provided sufficiently accurate predictions of the disease
using genetic data exclusively. Unfortunately, the genetic
variants with associations with LOAD discovered by GWAS
studies are only capable to explain a fraction of this genetic
component (33%). Therefore, methodologies that account
for this missing heritability are required to achieve better
predictions [9] [8].

In this work, we propose the use of deep neu-
ral networks with dense layers for predicting late-onset
Alzheimer’s disease from genetic data. Our work hypoth-
esis postulated that the used of a large number of genetic
variants would allow us to improve the classification perfor-
mance of the proposed model. We expect the deep learning
model to create hierarchical features with the potential to
account for the missing heritability of the disease.

Experimental results indicate that classification perfor-
mance of ~ 65% AUC can be achieved with the proposed
model. In comparison, the use of the APOE4 gene with our
dataset gives a predictive score of 0.61%  0.65% on the
Cross-Validation and 56% 64% on the Split Validation de-
pending on the method. Most importantly, the experiments
reported here suggest that an increasing number of genetic
variants as predictors hold the potential to contribute to
improve the predictive capabilities of the proposed model
providing that a sufficiently large number of samples are
available.

In the majority of experiments reported here, random
forest produced better results that deep learning models.
However, according to empirical observations on the per-
formance of deep learning models in our experiments, we
expect the latter to outperform the former as more data
becomes available. In general, deep learning models have
shown to scale the performance better than other machine
learning models with increasing amounts of data [13].

LOAD prediction is a challenging problem. In effect, the
etiology and the genetic architecture of the disease remain
unexplained. Moreover, accurate diagnosis of the disease is
still an open problem. Therefore, labeled datasets including
confirmatory diagnosis are not currently available. This data


http://dx.doi.org/10.1101/629402
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint first posted online May. 6, 2019; doi: http://dx.doi.org/10.1101/629402. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license.

would be critical for the construction of accurate predictive
models.

In addition, it is unclear whether or not there are useful
genetic variants that account for the transition from mild
cognitive impairment to LOAD. According to recent studies,
currently available LOAD polygenic scores are not capable
to predict mild cognitive impairment to LOAD progression
[14]. Therefore, alternative models are also required for the
accurate prediction of disease progression.

6 CONCLUSION

This study proposes the use of deep neural networks for
the prediction of late-onset Alzheimer’s disease from a large
collection of genetic variants. Experimental results indicate
that the proposed model holds promise to produce useful
predictions for clinical diagnosis of LOAD.

ACKNOWLEDGMENTS

We thank our colleagues from the Bioinformatics for Clin-
ical Diagnosis Research Program, School of Medicine and
Health Sciences, Tecnologico de Monterrey, for their valu-
able comments on this work. This work was supported by
Tecnologico de Monterrey.

Data collection and sharing for this project was funded
by the Alzheimer’s Disease Neuroimaging Initiative(ADNI)
(National Institutes of Health Grant U01 AG024904) and
DOD ADNI (Department of Defense award number
W81XWH-12-2-0012). ADNI is funded by the National In-
stitute on Aging, the National Institute of Biomedical Imag-
ing and Bioengineering, and through generous contribu-
tions from the following: AbbVie, Alzheimers Association;
Alzheimers Drug Discovery Foundation; Araclon Biotech;
BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company;
CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals,
Inc.; Eli Lilly and Company; Eurolmmun; F. Hoffmann-
La Roche Ltd and its affiliated company Genentech, Inc.;
Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer
Immunotherapy Research & Development, LLC.; Johnson
& Johnson Pharmaceutical Research & Development LLC;
Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diag-
nostics, LLC.; NeuroRx Research; Neurotrack Technologies;
Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal
Imaging; Servier; Takeda Pharmaceutical Company; and
Transition Therapeutics. The Canadian Institutes of Health
Research is providing funds to support ADNI clinical
sites in Canada. Private sector contributions are facilitated
by the Foundation for the National Institutes of Health
(www.fnih.org). The grantee organization is the Northern
California Institute for Research and Education, and the
study is coordinated by the Alzheimers Therapeutic Re-
search Institute at the University of Southern California.
ADNI data are disseminated by the Laboratory for Neuro
Imaging at the University of Southern California.

We thank the International Genomics of Alzheimer’s
Project IGAP) for providing summary results data for these
analyses. The investigators within IGAP contributed to the
design and implementation of IGAP and/or provided data
but did not participate in analysis or writing of this report.
IGAP was made possible by the generous participation of

7

the control subjects, the patients, and their families. The
iSelect chips was funded by the French National Founda-
tion on Alzheimer’s disease and related disorders. EADI
was supported by the LABEX (laboratory of excellence
program investment for the future) DISTALZ grant, In-
serm, Institut Pasteur de Lille, Universit de Lille 2 and the
Lille University Hospital. GERAD was supported by the
Medical Research Council (Grant n 503480), Alzheimer’s
Research UK (Grant n 503176), the Wellcome Trust (Grant
n 082604/2/07/Z) and German Federal Ministry of Educa-
tion and Research (BMBF): Competence Network Dementia
(CND) grant n 01GI0102, 01GI0711, 01GI0420. CHARGE
was partly supported by the NIH/NIA grant R01 AG033193
and the NIA AG081220 and AGES contract N01AG12100,
the NHLBI grant R01 HL105756, the Icelandic Heart As-
sociation, and the Erasmus Medical Center and Erasmus
University. ADGC was supported by the NIH/NIA grants:
U01 AG032984, U24 AG021886, U01 AGO016976, and the
Alzheimer’s Association grant ADGC10196728.

REFERENCES

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, lan Goodfellow, An-
drew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

[2] Athanasios Alexiou, Vasileios D. Mantzavinos, Nigel H. Greig,
and Mohammad A. Kamal. A bayesian model for the prediction
and early diagnosis of alzheimer’s disease. Frontiers in Aging
Neuroscience, 9:77, 2017.

[3] M. Panpalli Ates, Y. Karaman, S. Guntekin, and M. A. Ergun. Anal-
ysis of genetics and risk factors of alzheimers disease. Neuroscience,
325:124 — 131, 2016.

[4] Frangois Chollet et al. Keras. https:/ /keras.io, 2015.

[5] Carole Dufouil and M Maria Glymour. Prediction to prevention in
alzheimer’s disease and dementia. The Lancet Neurology, 17(5):388—
389, 2018/06/14 2018.

[6] Evan E. Eichler, Jonathan Flint, Greg Gibson, Augustine Kong,
Suzanne M. Leal, Jason H. Moore, and Joseph H. Nadeau. Missing
heritability and strategies for finding the underlying causes of
complex disease. Nature Reviews Genetics, 11:446 EP —, 06 2010.

[7] Evan E. Eichler, Jonathan Flint, Greg Gibson, Augustine Kong,
Suzanne M. Leal, Jason H. Moore, and Joseph H. Nadeau. Missing
heritability and strategies for finding the underlying causes of
complex disease. Nature Reviews Genetics, 11:446 EP —, 06 2010.

[8] Valentina Escott-Price, Maryam Shoai, Richard Pither, Julie
Williams, and John Hardy. Polygenic score prediction captures
nearly all common genetic risk for alzheimer’s disease. Neurobiol-
ogy of Aging, 49:214.e7-214.e11, 2017.

[9] Valentina Escott-Price, Rebecca Sims, Christian Bannister, Denise
Harold, Maria Vronskaya, Elisa Majounie, Nandini Badarinarayan,
GERAD/PERADES, IGAP consortia, Kevin Morgan, Peter Pass-
more, Clive Holmes, John Powell, Carol Brayne, Michael Gill,
Simon Mead, Alison Goate, Carlos Cruchaga, Jean-Charles Lam-
bert, Cornelia van Duijn, Wolfgang Maier, Alfredo Ramirez, Peter
Holmans, Lesley Jones, John Hardy, Sudha Seshadri, Gerard D.
Schellenberg, Philippe Amouyel, and Julie Williams. Common
polygenic variation enhances risk prediction for alzheimers dis-
ease. Brain, 138(12):3673-3684, 2015.

[10] Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M.
Swetter, Helen M. Blau, and Sebastian Thrun. Dermatologist-level
classification of skin cancer with deep neural networks. Nature,
542:115 EP —, 01 2017.


http://dx.doi.org/10.1101/629402
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint first posted online May. 6, 2019; doi: http://dx.doi.org/10.1101/629402. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license.

(11]

[12]

[13]

[14]

(15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

Karol Estrada. Translating Human Genetics into Novel Drug Targets,
pages 277-290. Springer New York, New York, NY, 2018.

Yun Freudenberg-Hua, Wentian Li, and Peter Davies. The role of
genetics in advancing precision medicine for alzheimers diseasea
narrative review. Frontiers in Medicine, 5:108, 2018.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learn-
ing. MIT Press, 2016. http:/ /www.deeplearningbook.org.

A Lacour, A Espinosa, E Louwersheimer, S Heilmann,
I Hernandez, S Wolfsgruber, V Ferndndez, H Wagner, M Rosende-
Roca, A Mauleén, S Moreno-Grau, L Vargas, Y A L Pijnenburg,
T Koene, O Rodriguez-Gémez, G Ortega, S Ruiz, H Holstege,
O Sotolongo-Grau, ] Kornhuber, O Peters, L Frolich, M Hiill,
E Riither, ] Wiltfang, M Scherer, S Riedel-Heller, M Alegret, M M
Nothen, P Scheltens, M Wagner, L Térraga, F Jessen, M Boada,
W Maier, W M van der Flier, T Becker, A Ramirez, and A Ruiz.
Genome-wide significant risk factors for alzheimer’s disease: role
in progression to dementia due to alzheimer’s disease among
subjects with mild cognitive impairment. Molecular Psychiatry,
22:153 EP —, 03 2016.

Jean-Charles Lambert, Carla A. Ibrahim-Verbaas, Denise Harold,
and et al. Meta-analysis of 74,046 individuals identifies 11 new
susceptibility loci for alzheimer&#39;s disease. Nature Genetics,
45:1452 EP —, Oct 2013.

Louis-Philippe Lemieux Perreauls.

https:/ /lemieuxl.github.io/pyplink/pyplink.html, 2015.
Jin Li, Qiushi Zhang, Feng Chen, Xianglian Meng, Wenjie Liu,
Dandan Chen, Jingwen Yan, Sungeun Kim, Lei Wang, Weixing
Feng, Andrew ]. Saykin, Hong Liang, and Li Shen. Genome-wide
association and interaction studies of csf t-tau/a42 ratio in adni
cohort. Neurobiology of Aging, 57:247.e1 — 247.e8, 2017.

Jacqueline MacArthur, Emily Bowler, Maria Cerezo, Laurent Gil,
Peggy Hall, Emma Hastings, Heather Junkins, Aoife McMa-
hon, Annalisa Milano, Joannella Morales, Zoe May Pendlington,
Danielle Welter, Tony Burdett, Lucia Hindorff, Paul Flicek, Fiona
Cunningham, and Helen Parkinson. The new nhgri-ebi catalog
of published genome-wide association studies (gwas catalog).
Nucleic Acids Research, 45(D1):D896-D901, 2017.

Teri A. Manolio, Francis S. Collins, Nancy J. Cox, David B.
Goldstein, Lucia A. Hindorff, David J. Hunter, Mark I. McCarthy,
Erin M. Ramos, Lon R. Cardon, Aravinda Chakravarti, Judy H.
Cho, Alan E. Guttmacher, Augustine Kong, Leonid Kruglyak,
Elaine Mardis, Charles N. Rotimi, Montgomery Slatkin, David
Valle, Alice S. Whittemore, Michael Boehnke, Andrew G. Clark,
Evan E. Eichler, Greg Gibson, Jonathan L. Haines, Trudy F. C.
Mackay, Steven A. McCarroll, and Peter M. Visscher. Finding the
missing heritability of complex diseases. Nature, 461:747 EP -, 10
2009.

Shaun Purcell, Benjamin Neale, Katherine Todd-Brown, Lori
Thomas, Manuel A.R. Ferreira, David Bender, Julian Maller,
Pamela Sklar, Paul I W de Bakker, Mark Daly, and Pak C Sham.
Plink: A tool set for whole-genome association and population-
based linkage analyses. American journal of human genetics, 81:559—
75,10 2007.

Neha Raghavan and Giuseppe Tosto. Genetics of alzheimer’s
disease: the importance of polygenic and epistatic components.
Current Neurology and Neuroscience Reports, 17(10):78, 2017.

Perry G. Ridge, Shubhabrata Mukherjee, Paul K. Crane, John
S. K. Kauwe, and Alzheimers Disease Genetics Consortium.
Alzheimers disease: Analyzing the missing heritability. PLOS
ONE, 8(11), 11 2013.

Jeff Sevigny, Ping Chiao, Thierry Bussiére, Paul H. Weinreb, Leslie
Williams, Marcel Maier, Robert Dunstan, Stephen Salloway, Tianle
Chen, Yan Ling, John O’Gorman, Fang Qian, Mahin Arastu, Ming-
wei Li, Sowmya Chollate, Melanie S. Brennan, Omar Quintero-
Monzon, Robert H. Scannevin, H. Moore Arnold, Thomas En-
gber, Kenneth Rhodes, James Ferrero, Yaming Hang, Alvydas
Mikulskis, Jan Grimm, Christoph Hock, Roger M. Nitsch, and
Alfred Sandrock. The antibody aducanumab reduces ab plaques
in alzheimer’s disease. Nature, 537:50 EP —, Aug 2016. Article.
Wen Shao, Dantao Peng, and Xiaomin Wang. Genetics of
alzheimers disease: From pathogenesis to clinical usage. Journal
of Clinical Neuroscience, 45:1 — 8, 2017.
Christopher Chang Shaun Purcell.
genomics.org/plink/1.9/, 2015.
Stephen Turner, Loren L. Armstrong, Yuki Bradford, Christopher
S. Carlsony, Dana C. Crawford, Andrew T. Crenshaw, Mariza
de Andrade, Kimberly F. Doheny, Jonathan L. Haines, Geoffrey

Pyplink.

Plink 1.9. https://cog-

8

Hayes, Galil Jarvik, Lan Jiang, Iftikhar J. Kullo, Rongling Li, Hua
Ling, Teri A. Manolio, Martha M. Matsumoto, Catherine A. Mc-
Carty, Andrew N. McDavid, Daniel B. Mirel, Justin E. Paschall,
Elizabeth W. Pugh, Luke V. Rasmussen, Russell A. Wilke, Rebecca
L. Zuvich, and Marylyn D. Ritchie. Quality control procedures
for genome-wide association studies. Current Protocols in Human
Genetics, (SUPPL.68), 1 2011.


http://dx.doi.org/10.1101/629402
http://creativecommons.org/licenses/by-nc-nd/4.0/

