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Predicting late-onset Alzheimer’s disease from
genomic data using deep neural networks

Javier de Velasco Oriol, Edgar E. Vallejo, Karol Estrada and The Alzheimer’s Disease Neuroimaging
Initiative*

Abstract—Alzheimer’s disease (AD) is the leading form of dementia. Over 25 million cases have been estimated worldwide and this
number is predicted to increase two-fold every 20 years. Even though there is a variety of clinical markers available for the diagnosis of
AD, the accurate and timely diagnosis of this disease remains elusive. Recently, over a dozen of genetic variants predisposing to the
disease have been identified by genome-wide association studies. However, these genetic variants only explain a small fraction of the
estimated genetic component of the disease. Therefore, useful predictions of AD from genetic data could not rely on these markers
exclusively as they are not sufficiently informative predictors. In this study, we propose the use of deep neural networks for the
prediction of late-onset Alzheimer’s disease from a large number of genetic variants. Experimental results indicate that the proposed
model holds promise to produce useful predictions for clinical diagnosis of AD.

Index Terms—Alzheimer’s disease, neural networks, deep learning, genome-wide association studies.
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1 INTRODUCTION

Alzheimer’s disease (AD) is a degenerative brain disease
characterized by the loss of cognitive abilities such as mem-
ory, reasoning, language and behavior. In most cases, AD
ultimately leads to death.

Late-onset Alzheimer’s disease (LOAD) is the most com-
mon form of dementia (60% – 80% cases). It occurs more
often in people age 60 and older. There is no known ultimate
cause of LOAD. In addition, there is no effective therapeutic
treatment for the disease. However, it is likely that LOAD
is a complex disease which etiology is driven by both
environmental and genetic components [3].

There is no single effective clinical test for LOAD. Cur-
rently, a confirmatory diagnosis of the disease is exclusively
available from pathological postmortem examinations [24].
However, there is a collection of tests that are considered
useful predictors for the clinical diagnosis of LOAD, such
as MRI and PET images, cognitive tests, cerebrospinal and
blood biomarkers, and genetic markers, among others [17].

Unfortunately, the majority of these clinical markers are
strongly correlated with the progression of this disease,
meaning that they would typically be more informative at
later stages of the disease or are very expensive to perform
on large population screens. We need better clinical tests
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that are capable to provide accurate predictions for the
early diagnosis of LOAD. In effect, we expect experimental
therapeutic and palliative interventions to be more effective
at earlier stages of the disease [23].

A promising alternative for the prediction of LOAD
is through genetic testing. For example, specific alleles
of Apolipoprotein E (APOE) have been implicated as the
largest genetic risk factors for LOAD. However, the use of
the APOE4 in clinical practice has been controversial. For
example, even though the odds ratio of this genetic marker
has been estimated at over 3, in practice, only 1 of 4 patients
with this allele progresses to the disease.

Recent advances on genome technologies have enabled
the identification of several genetic variants that are associ-
ated with complex diseases [19] [18]. However, the complete
understanding of the genetic architecture of most complex
diseases has remained elusive [22]. Advances in this area
hold the potential to contribute to the identification of novel
drug targets for LOAD [11] [12].

The genetic component of LOAD has been estimated to
be 79%. However, recent studies on the heritability of LOAD
have estimated that common genetic variants identified by
genome-wide association studies (GWAS) are only capable
to explain 33% of the phenotypic variance, meaning that
over 40% of the genetic component remains unexplained
[21].

Recent studies have been postulated a collection of theo-
ries that should be capable to explain the missing heritability
of complex diseases [19] [6]. These theories include: (1) a
more comprehensive collection of genes with low effect
sizes associated with the disease; the existence of gene-
gene interactions –epistatic effects; and gene-environmental
interactions, among others.

In this research, we propose to explore the hypothesis
on the existence of multiple genes with low effect sizes
contributing to the risk of developing LOAD. To test this hy-
pothesis we propose to conduct computational experiments
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on the construction of deep learning predictive models
using large collections of genetic markers that are capable
to predict LOAD from this data.

Deep learning (DL) are machine learning models that
are becoming increasingly popular in solving a variety
of problems in medicine [7]. In recent years, DL models
have shown excellent results on the examination of clinical
images, approaching human level performance [10]. In this
work, we propose to explore the use of dense deep neural
networks (DDNN) models for predicting complex disease
from genetic data.

We conducted a series of experiments on the use of
deep neural networks for predicting late-onset Alzheimer’s
disease using whole genome data from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) project. Experimental
results indicate that classification performance of ∼ 65% of
area under the ROC curve (AUC) can be achieved with
the proposed model. Further, the experiments reported here
suggest that an increasing number of genetic variants hold
the potential to contribute to improve the predictive capabil-
ities of the proposed model providing that sufficiently large
datasets are available.

2 MATERIALS AND METHODS

2.1 Data set

Data used in the preparation of this article were ob-
tained from the Alzheimers Disease NeuroimagingInitia-
tive (ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial magnetic reso-
nance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychologi-
cal assessment can be combined to measure the progression
of mild cognitive impairment (MCI) and early Alzheimers
disease (AD).

The ADNI dataset individuals have multiple possible
diagnosis: Cognitively Normal (CN), Early and Late Mild
Cognitive Impairment (eMCI, lMCI) and Alzheimer’s Dis-
ease (AD) .The ADNI Study is divided in three different
studies so far: ADNI 1, ADNI GO and ADNI 2. The ADNI 1
study consisted of 200 CN, 400 MCI and 200 AD individuals.
ADNI GO extended this with 200 eMCI individuals and 500
rollovers from ADNI 1. Finally, ADNI 2 integrated those
rollovers with 150 CN, 150 eMCI, 150 lMCI, and 200 AD
additional individuals.

In our case the subset of data to be utilized are the
Whole-Genome Sequence (WGS) samples for 812 individ-
uals available on the ADNI database. These WGS were
sampled on an Illumina Omni 2.5M chipset and containing
2,379,855 Single Nucleotide Polymorphisms(SNPs). Due to
the varying nature of MCI and the uncertainty of whether
the patient will progress to Alzheimer’s Disease the classifi-
cation is strictly binary and as such the only samples taken
for the binary classification are those that have a CN or AD
diagnosis.

Additionally, the results from the International Ge-
nomics of Alzheimer’s Project [15] were also used to do
feature selection, guide the learning process of the algorithm

and to obtain the value for augmenting the data set arti-
ficially. The International Genomics of Alzheimer’s Project
(IGAP) is a large two-stage study based upon genome-wide
association studies (GWAS) on individuals of European
ancestry. In stage 1, IGAP used genotyped and imputed
data on 7,055,881 single nucleotide polymorphisms (SNPs)
to meta-analyse four previously-published GWAS datasets
consisting of 17,008 Alzheimer’s disease cases and 37,154
controls (The European Alzheimer’s disease Initiative EADI
the Alzheimer Disease Genetics Consortium ADGC The
Cohorts for Heart and Aging Research in Genomic Epi-
demiology consortium CHARGE The Genetic and Envi-
ronmental Risk in AD consortium GERAD). In stage 2,
11,632 SNPs were genotyped and tested for association
in an independent set of 8,572 Alzheimer’s disease cases
and 11,312 controls. Finally, a meta-analysis was performed
combining results from stages 1 & 2.

Most of the individuals with WGS that form part of the
ADNI 1 and ADNI GO studies were also included as part
of the IGAP GWAS meta-analysis, while the new individ-
uals in the ADNI 2 study are completely independent of
the IGAP. As such some experiments make the distinction
between those two groups in the ADNI dataset.

2.2 Tools and Software

The software used to read the Variant Call Format data
of the WGS and convert it to the more compact format of
Binary Pedigree Files (BED) PLINK [20] [25] was used, as
well as for the quality control pipeline. The code was im-
plemented in Python 3.5, using Tensorflow [1] for the GPU
backend and Keras [4] for the deep learning framework,
to access the Binary Pedigree Files from python the library
PyPlink [16] was used.

2.3 Quality Control Pipeline

When handling genetic data specific care must be taken to
pre-process it by using different Quality Control method-
ologies, as there are some intrinsic factors in genetics that
can cause methodological errors or inconsistencies between
results which do not normally factor in other types of
datasets. These factors can be related to the Samples, to
the Markers or to the Batch effects.The pipeline described
by Turner et al [26] describes some of the most common
characteristics that need to be analyzed and filtered:

• Chromosomal anomalies
• Sex anomalies
• Related Samples
• Population Stratification
• Sample Call Rates
• Marker Call Rates
• Minor Allele frequency (MAF)
• HapMap Concordance
• Hardy-Weinberg Equilibrium
• Linkage Disequilibrium
• Plate measurement effects

We followed this pipeline with some adjustments. We
did not perform the first two analysis as we are not con-
cerned with the sex of the individuals and thus we are
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discarding the 23th chromosome. The next step was do-
ing the sample analysis. We performed some pre-quality
controls on the data (marker call rate, sample call rate and
MAF) and then performing Identity-By-Descent calculations
to identify those individuals that were family with an IBD
sharing of more than 0.25. 8 different individuals were
found to be related, and thus were added to the list to be
removed. Doing a quick analysis of the IDs and the ADNI
reference information we found there were no individuals
from populations different from ”White” in the 808 samples
for the WGS ,this was confirmed using Principal Component
Analysis and finding no severe outliers. Due to the nature of
the binary classification problem at the pre-processing stage
we removed all the individuals which were assigned an
EMCI, LMCI or SMC diagnosis. Considering these 3 sample
filters the dataset was reduced from 808 samples to 471.

Once reduced in samples the next step was to do the call
rate and MAF filtering. We begin with a dataset consisting
of 471 samples with 42,908,833 variants. We performed the
Sample call rate filtering with the default value of 90, which
revealed that no sample were to be removed. Afterwards
the Marker call rate filtering was done using a value of
99, thus removing all snps with a lower call rate than 99
and obtaining 38,517,541 markers remaining. Then the MAF
was calculated and all snps with a MAF of ¡0.01 were
also removed. 8,968,581 markers were left after the MAF
thresholding.

The next step was to perform the Hardy-Weinberg Equi-
librium test using a significance value of 0.05 to remove all
markers with a higher value, obtaining 8,498,435 remaining
markers. The last step is to perform an LD-based clumping
on the data set before the pruning but without the corre-
lated individuals. The IGAP results are then used as the
association study from which to obtain the p-values for the
LD-based Clump,which is then run with a p-value of 0.001
and r2 of 0.05 to obtain a list of the 1,884 best index SNP
candidates which is the one that will be utilized to guide the
learning procedure. The deep learning algorithms will then
analyze subsets of the most significant SNPs, thus perform-
ing a more strict significance filtering later on. The HapMap
concordance and the plate measurement effects were not
taken into account.The first as we wanted to maximize the
markers obtained from the IGAP study within the clump
and the second primarily because the ADNI study already
incorporates quality controls within the device procedure.

2.4 Neural Network Architecture

We present the general architecture of the Neural Network
as well as the chosen parameters used in this research:
The activation function for the neuron layers proposed is
the Rectified Linear Unit ”ReLU” as the gradient will be
efficiently propagated and the activation of units will be
small, splitting decision making across the network. Weight
Dropout of 30% per Dense layer is also used to avoid
the vanishing gradient problem and to avoid over-fitting.
Additionally, each Dense layer is initialized using a He Nor-
mal initialization and regularized using L2 with a factor of
0.000001 Regarding the model optimization, Cross-Entropy
Loss is our chosen function for minimizing the error on the
training data, and the Adam default model is used as the

optimizer. Additional Normalization as well as Gaussian
Noise layers are also added to generalize the model after
the first two layers.

Our Neural Network architecture is designed as follows:

• Input: SNPs obtained from QC Pipeline
• Dense with neurons equal to the number of inputs

SNPs*, ReLU as activation, L2 Regularization and He
Initialization

• Batch Normalization, Dropout Layer with 30% of
inputs to drop,Gaussian Noise with 0.3 as Standard
Deviation

• Dense Layer with 1024 outputs, ReLU as activation,
L2 Regularization and He Initialization

• Batch Normalization, Dropout Layer with 30% of
inputs to drop

• Dense Layer with 512 outputs, ReLU as activation,
L2 Regularization and He Initialization

• Batch Normalization, Dropout Layer with 30% of
inputs to drop

• Dense Layer with 256 outputs, ReLU as activation,
L2 Regularization and He Initialization

• Batch Normalization, Dropout Layer with 30% of
inputs to drop

• Dense Layer with 64 outputs, ReLU as activation, L2
Regularization and He Initialization

• Dense with 2 outputs, sigmoid activation
• Output: Prediction probability for Alzheimer’s Dis-

ease

The Convolutional network structure has two different
variants, where both use 1-dimensional convolutional filters
with size 5, and uses the Same padding technique to handle
edges. One version uses Dropout while a different version
utilizes Batch Normalization:

• Input: SNPs obtained from QC Pipeline
• 1-Dimensional Convolution with neurons equal to

the number of inputs SNPs*, ReLU as activation
• Dropout Layer with 20% of inputs to drop or Batch

Normalization
• 1-Dimensional Convolution with neurons equal to

the number of inputs SNPs*, ReLU as activation
• Dropout Layer with 20% of inputs to drop or Batch

Normalization
• 1-Dimensional Convolution with neurons equal to

the number of inputs SNPs*, ReLU as activation
• Dropout Layer with 20% of inputs to drop or Batch

Normalization
• 1-Dimensional Convolution with neurons equal to

the number of inputs SNPs*, ReLU as activation
• Dropout Layer with 20% of inputs to drop or Batch

Normalization
• Global Max Pooling
• Dense with 2 output, sigmoid activation
• Output: Prediction probability for Alzheimer’s Dis-

ease

Finally, a Support Vector Classifier using a Radial Basis
Function Kernel and a Random Forest with are used to
contrast and compare the different neural networks.
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3 SIMULATION AND DATA AUGMENTATION

One of the traditional requirements for Neural networks
to work is the use of a large amount of samples. Thus
we wanted to consider what would happen if we had a
given complex genetic disease and how the size of the data
set used for training could affect the final results as the
original ADNI data set is small. We began by using the
PLINK simulator to generate a disease roughly distributed
in a complex manner, with 912,053 SNPs, out of which there
were 12,053 genes related to the disease with different Odds
Ratio (A very highly-correlated SNP, some few SNPs with
high-correlation, and many with low correlation). We gen-
erated 200,000 samples and then took 100,000 independent
samples of those obtained to generate a simile of a GWAS
which we could use to guide the feature selection process.
We then took subsets of the remaining 100,000 individuals
with increasing sizes, from 500 individuals up to 10,000
individuals. We then do 5-Fold Cross-Validation splitting
those subsets into training and testing sets.

Furthermore, we took the simulation and extended it.
Based on the assumption that we could be lacking more
subjects to train in a better way the Machine Learning algo-
rithms we decided to augment the existing data with artifi-
cial individuals obtained from a simulation with statistical
characteristics similar to the ones found in the studies.First
we reduced the number of SNPs to the amount we had
present both in the IGAP results which included Odds Ratio
as well as in the WGS. We then applied a clump as above
without using any p-value filtering to obtain those SNPs in
Linkage Equilibrium (As the simulator generates samples
where all SNPs are in Linkage Equilibrium). The odds
ratio associated to the disease were then obtained from the
IGAP study, while the the allele frequencies were calculated
from the full ADNI WGS (808 individuals, discarding the
individuals related to each other). In this way we generated
artificial data that is similar in terms of allele frequencies to
the one present in the ADNI WGS as well as being similar
with the results of the IGAP study with respect to the odds
ratio of the disease.

Thus we generated with PLINK a set of sample us-
ing these metrics. Different sizes of data sets where used,
having sets of 500, 5000 and 50000 individuals, this with
the objective to validate the impact in the performance
of the machine learning algorithms when using data sets
with an increasing number of samples. The algorithms were
trained exclusively on the artificial data, and were then
tested with 138 individuals from the ADNI WGS data set
which were not present in the IGAP study to ensure no
information leakage was occurring, as well as the complete
471 individuals in the binary classification. The first subset
is split 78% cases and 22 % controls, thus the ROC Score
gives a much clearer view of the classification performance.

3.1 Validation Methodology
The main variable to analyze is the area under the Receiver-
Operating-Characteristic, Area under the Curve (ROC-
AUC) Score. 5-Fold Cross-Validation is used in the data
set to ensure the results are statistically relevant and the
validation does not over fit. This is done both in the direct
case as well as in the simulation of a complex genetic

disease. When testing the IGAP samples for train and the
non-IGAP samples for test it is just done directly without
Cross-Validation. Th For the case where we do the data-
augmentation process we do the training on the different
subsets and then test directly on the 138 individuals of the
ADNI that are unrelated or in the whole subset of the 471
individuals.

4 RESULTS

The first analysis done was using the ADNI data set di-
rectly with a varying number of significant SNPs. The SNPs
obtained from the Clump file previously obtained were
used as inputs, with a varying number of SNPs in order
of significance being considered. The ADNI data set is split
in test and training using 5-fold Cross Validation and the
resulting values are shown in Figure 1, where it can be
appreciated the maximum ROC AUC score value a machine
learning method obtained was 0.66 when using around 20
SNPs using the Random Forest method.

To further refine the results, a second experiment is
made where we obtain the resulting ROC AUC score when
selecting only those individuals who appear both in the
ADNI data set and in the IGAP study as training set, while
using the 138 individuals who were not included in the
IGAP as a test set to ensure no information leakage occurs.
We consider this as the Split analysis and the subsets as the
IGAP-Independent case. In this case the resulting ROC AUC
scores can be seen in Figure 2, where the results are more
conservative than before. This could be due to the a-priori
information, the class imbalance or the small sample size.

Fig. 1. Method comparison using the Complete ADNI dataset Anal-
ysis of the performance in terms of ROC AUC Score of the different
classification methods when increasing the number of SNPs used as
inputs, using 5-fold CV with the complete ADNI dataser .The SNPs used
are in a descending order of statistical importance, with lower p-values
as the first SNPs.

The next step taken was to attempt to simulate a disease
and find out the performance of the methods when utilizing
a larger data set. With the simulation we can clearly see
that the use of a higher number of data samples leads to a
much more precise classification as shown in Figure 3. And
more interestingly, the increase in the number of samples
and makes it so that using a higher number of SNPs as input
becomes more valuable. Thus with small data sets it makes
sense to use the highest-rated SNPs, but by introducing
more SNPs in large data sets the results are refined further
and a more precise classification can be achieved. This can
be seen in Figures 4,5 and 6. For a direct contrast between
the performance using two different subsets (500 and 10,000
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Fig. 2. Method comparison using the Split ADNI dataset Analysis of
the performance in terms of ROC AUC Score of the different classifi-
cation methods when increasing the number of SNPs used as inputs,
training the model on the ADNI1 and ADNI GO samples and testing it in
the IGAP-independent ADNI 2 Samples.

respectively) Figure 7 and 8 can be analyzed to see how the
performance increase is substantial.

Fig. 3. Impact of the subset size on the prediction Analysis of the effect
in the ROC AUC Score done by increasing the number of samples used
for the 5-fold CV in the simulated dataset using the different classification
methods.

Fig. 4. Method Comparison with Simulated Dataset Comparison
between the ROC AUC Score obtained using the different classification
methods. The X axis firstly describes an increase of the number of SNPS
used for classification, and afterwards an increase in the size of the
simulation dataset

The results from the previous simulation show that the
use of more samples should benefit the prediction in the
Alzheimer’s task. Thus we generated the artificially aug-
mented data set for training purposes and used the ADNI
data set as our test set. In this case the increase in the number
of samples did not directly mean a better performance and
a higher use of SNPs, as we can see once we start using over
100 SNPs the performance on the ADNI subset tends to de-
cay. Plus, the increase in size of the training data set also did

Fig. 5. Method comparison with 500 Individuals Comparison of the
ROC AUC Score from 5-fold CV using different classification methods
while increasing the number of SNPs given a simulation dataset with
500 Individuals

Fig. 6. Method comparison with 10000 Individuals Comparison of the
ROC AUC Score from 5-fold CV using different classification methods
while increasing the number of SNPs given a simulation dataset with
10,000 Individuals

not mean constant increases as in the previous scenario. We
can see that the use of more SNPs coupled with a decent size
of artificially-augmented samples gives the best results on
the ROC Score, which shows that both of these factors have
a role to play in the prediction. The convolutional dropout
network did have some issues when using too much SNPs
and dropped to a classification, and in general the simpler
models such as Random Forest and Support Vector Machine
performed better. This shows that there is only so much that
can be accomplished with data augmentation, and that the
disease might actually be focused on a smaller number of
uncorrelated genes as supposed in the simulation. Figures 7
and 8 illustrate these results.

Fig. 7. Impact of the augmentation size on the prediction Analysis
of the effect in the ROC AUC Score done by increasing the number of
data-augmentation samples used for the training segment validated on
the complete ADNI Dataset using the different classification methods.

Further restrictions were imposed on the data set used
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Fig. 8. Method Comparison with ADNI Dataset Comparison between
the ROC AUC Score obtained using the different classification methods.
The X axis firstly describes an increase of the number of SNPS used for
classification, and afterwards an increase in the data-augmentation size
validated on the complete ADNI dataset

for testing, as some of the ADNI samples were also taken
into account for the IGAP study. Thus we restricted the
testing to those individuals who did not participate in the
IGAP study. For this case we can see in Figures 9 and 10
that due to the small sample size and the class imbalance
the results are lower as the previous data set. Specifically
they tend to show good results using few amounts of SNPs
(APOE4 mainly) and the increase in sample size used to
train does not represent an increase in the prediction capa-
bility. This gives us the impression that the learning models
either do not generalize correctly, or the few individuals
from the unbalanced data set do not correspond to the
genetic markers learned from the IGAP-based simulation.
Comparing these results with the ones obtained from the
ADNI split the results are in average better for the data
augmentation process than from the standard.

Fig. 9. Impact of the augmentation size in IGAP-Independent Subset
Analysis of the effect in the ROC AUC Score done by increasing the
number of data-augmentation samples used for the training segment
validated on the IGAP-Independent subset using the different classifica-
tion methods.

5 DISCUSSION

Previous research on the early detection of late-onset
Alzheimer’s disease have relied on a variety of clinical
biomarkers for disease prediction [2]. The efficacy of exper-
imental treatments and palliative interventions rely heavily
on the early detection of the disease [5]. Unfortunately,
clinical biomarkers such as beta amyloid and tau proteins
are correlated with disease progression. Therefore, their
usefulness for the early detection of the disease remains
controversial.

Fig. 10. Method Comparison with IGAP-Independent Subset Com-
parison between the ROC AUC Score obtained using the different
classification methods. The X axis firstly describes an increase of the
number of SNPS used for classification, and afterwards an increase in
the data-augmentation size validated on the IGAP-Independent subset.

The etiology of LOAD is likely to be motivated by
both environmental and genetic components. However, the
genetic component seems to a major determinant as the
heritability of the disease has been estimated to be ∼
80% [21]. Therefore, genetic testing hold the potential to
provided sufficiently accurate predictions of the disease
using genetic data exclusively. Unfortunately, the genetic
variants with associations with LOAD discovered by GWAS
studies are only capable to explain a fraction of this genetic
component (33%). Therefore, methodologies that account
for this missing heritability are required to achieve better
predictions [9] [8].

In this work, we propose the use of deep neu-
ral networks with dense layers for predicting late-onset
Alzheimer’s disease from genetic data. Our work hypoth-
esis postulated that the used of a large number of genetic
variants would allow us to improve the classification perfor-
mance of the proposed model. We expect the deep learning
model to create hierarchical features with the potential to
account for the missing heritability of the disease.

Experimental results indicate that classification perfor-
mance of ∼ 65% AUC can be achieved with the proposed
model. In comparison, the use of the APOE4 gene with our
dataset gives a predictive score of 0.61% 0.65% on the
Cross-Validation and 56% 64% on the Split Validation de-
pending on the method. Most importantly, the experiments
reported here suggest that an increasing number of genetic
variants as predictors hold the potential to contribute to
improve the predictive capabilities of the proposed model
providing that a sufficiently large number of samples are
available.

In the majority of experiments reported here, random
forest produced better results that deep learning models.
However, according to empirical observations on the per-
formance of deep learning models in our experiments, we
expect the latter to outperform the former as more data
becomes available. In general, deep learning models have
shown to scale the performance better than other machine
learning models with increasing amounts of data [13].

LOAD prediction is a challenging problem. In effect, the
etiology and the genetic architecture of the disease remain
unexplained. Moreover, accurate diagnosis of the disease is
still an open problem. Therefore, labeled datasets including
confirmatory diagnosis are not currently available. This data
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would be critical for the construction of accurate predictive
models.

In addition, it is unclear whether or not there are useful
genetic variants that account for the transition from mild
cognitive impairment to LOAD. According to recent studies,
currently available LOAD polygenic scores are not capable
to predict mild cognitive impairment to LOAD progression
[14]. Therefore, alternative models are also required for the
accurate prediction of disease progression.

6 CONCLUSION

This study proposes the use of deep neural networks for
the prediction of late-onset Alzheimer’s disease from a large
collection of genetic variants. Experimental results indicate
that the proposed model holds promise to produce useful
predictions for clinical diagnosis of LOAD.
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