
A Fast and Flexible Algorithm for Solving the Lasso in
Large-scale and Ultrahigh-dimensional Problems

Junyang Qian1, Wenfei Du1, Yosuke Tanigawa2, Matthew Aguirre2,
Robert Tibshirani1,2, Manuel A. Rivas2, and Trevor Hastie∗1,2

1Department of Statistics, Stanford University
2Department of Biomedical Data Science, Stanford University

Abstract

Since its first proposal in statistics (Tibshirani, 1996), the lasso has been an effective method
for simultaneous variable selection and estimation. A number of packages have been developed
to solve the lasso efficiently. However as large datasets become more prevalent, many algorithms
are constrained by efficiency or memory bounds. In this paper, we propose a meta algorithm
batch screening iterative lasso (BASIL) that can take advantage of any existing lasso solver
and build a scalable lasso solution for large datasets. We also introduce snpnet, an R package
that implements the proposed algorithm on top of glmnet (Friedman et al., 2010a) for large-
scale single nucleotide polymorphism (SNP) datasets that are widely studied in genetics. We
demonstrate results on a large genotype-phenotype dataset from the UK Biobank, where we
achieve state-of-the-art heritability estimation on quantitative and qualitative traits including
height, body mass index, asthma and high cholesterol.

1 Introduction
The past two decades have witnessed rapid growth in the amount of data available to us. Many
areas such as genomics, neuroscience, economics and Internet services are producing big datasets
that have high dimension, large sample size, or both. A variety of statistical methods and computing
tools have been developed to accommodate this change. See, for example, Friedman et al. (2009);
Efron and Hastie (2016); Dean and Ghemawat (2008); Zaharia et al. (2010); Abadi et al. (2016)
and the references therein for more details.

1.1 Variable selection via the lasso
In high-dimensional regression problems, we have a large number of predictors, and it is likely
that only a subset of them have a relationship with the response and will be useful for prediction.
Identifying such a subset is desirable for both scientific interests and the ability to predict outcomes
in the future.

∗Corresponding author: hastie@stanford.edu

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

The lasso (Tibshirani, 1996) is a widely used and effective method for simultaneous estimation
and variable selection. Given a continuous response y ∈ Rn and a model matrix X ∈ Rn×p, it
solves the following regularized regression problem 1

β̂(λ) = argmin
β∈Rp

1
2n‖y −Xβ‖

2
2 + λ‖β‖1, (1)

where ‖x‖q = (
∑n
i=1 |xi|q)

1/q is the vector `q norm of x ∈ Rn and λ ≥ 0 is the tuning parameter.
The `1 penalty on β allows for selection as well as estimation. One typically finds an entire lasso
solution path by solving (1) over a grid of λ values λ1 ≥ λ2 · · · ≥ λL and chooses the best λ
by cross-validation or by predictive performance on an independent validation set. In R (R Core
Team, 2017), several packages, including glmnet (Friedman et al., 2010a) and ncvreg (Breheny
and Huang, 2011), provide efficient procedures to obtain the solution path of (1) for the Gaussian
model, and for other generalized linear models with the residual sum of squared replaced by the
negative log-likelihood of the corresponding model. Among them, glmnet, equipped with highly
optimized Fortran subroutines, is widely considered the fastest off-the-shelf lasso solver. It can, for
example, fit a sequence of 100 logistic regression models on a sparse dataset with 54 million samples
and 7 million predictors within only 2 hours (Hastie, 2015).

1.2 Computational challenges in large-scale problems
The packages mentioned above assume that the dataset or at least its sparse representation can be
fully loaded in memory and that the intermediate computational results can all be stored in memory
as well. In the case of big data, this can be a real bottleneck. For instance, genotype data commonly
used for genome-wide association studies (GWAS) provide a class of ultrahigh-dimensional examples
where the number of predictors can easily be in the millions. Researchers used to deal with wide
data in such studies, where the number of variables was large but the sample size was fairly limited.
We were still able to conduct somewhat sophisticated statistical analyses in memory and within a
reasonable amount of time, though many of the analyses were actually limited to univariate methods
identifying significant SNPs associated with a phenotype. However, recent studies have collected
genetic and disease information from very large cohorts. For example, the UK Biobank genotypes
and phenotypes dataset (Bycroft et al., 2018) contains about 500,000 individuals and more than
800,000 genotyped SNP measurements per person. This provides unprecedented opportunities to
explore more comprehensive genotypic relationships with phenotypes of interest. For polygenic
traits such as height and body mass index, specific variants discovered by GWAS only explain
a small proportion of the estimated heritability (Visscher et al., 2017). While GWAS with larger
sample size have been used to detect more SNPs or rare variants, this extended data also allows us to
optimize a prediction problem. Using the lasso, in particular, we can obtain estimates of heritability
while also selecting associated SNPs. However, building a multivariate prediction model on a large-
scale dataset poses a great computational challenge. Fortunately, each bi-allelic SNP value can be
represented by only two bits and a tailored compression scheme can be designed to alleviate the
storage burden. In fact, the PLINK library (Chang et al., 2015) stores such SNP datasets in a
binary format, and implements a number of fast data processing operations and classical statistical
procedures directly for that format. However, most general-purpose statistical packages including

1Normally there is an unpenalized intercept in the model, but for simplicity we leave it out, or we may assume
that both X and y have been centered with mean 0.

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

those for the lasso assume the data are in the normal double-precision format. If every SNP value is
converted to a 32-bit double-precision number, the SNP matrix alone will take up almost a terabyte
of storage, and the intermediate computational results will require even more. This highlights the
need for efficient and memory-friendly lasso algorithms designed for large datasets.

1.3 A screening-based solution
In this paper, we propose an efficient and scalable meta algorithm for the lasso called Batch Screen-
ing Iterative Lasso (BASIL) that is applicable to larger-than-RAM datasets. It can be built on top
of any existing mature package with minimal effort and solve the entire lasso solution path. As
the name suggests, it is done in an iterative fashion on an adaptively screened subset of variables.
Although it works repeatedly on subsets of variables, our procedure guarantee that the solution is
not an approximation, but is exact within numerical precision as if we were solving the full lasso
problem on all variables. At each iteration, we exploit an efficient, parallelizable screening opera-
tion to significantly reduce the problem to a manageable size, solve the resulting much smaller lasso
problem, and then assemble and validate the full solution through another efficient, parallelizable
step. In particular, the Karush-Kuhn-Tucker (KKT) condition (Boyd and Vandenberghe, 2004) is
checked for the full solution after combining the solution of the smaller problem and the assumed
solution (often 0’s) for the left-out variables. For the lasso, the KKT condition states that β̂ ∈ Rp
is a solution to (1) if for all 1 ≤ j ≤ p,2

(1/n)
∣∣∣x>j (y −Xβ̂)

∣∣∣{= λ, if β̂j 6= 0,
< λ, if β̂j = 0.

(2)

The KKT condition allows us to adopt a general strategy: fit the lasso only on a subset of variables
assuming the rest having coefficients 0, and then combine into the full solution once the second
condition in (2) is verified for the left-out variables. Moreover, with repeated application of this
strategy, we are able to obtain an iterative procedure to compute the entire lasso solution path
across different λ values.

The screening is inspired by the strong rules proposed in Tibshirani et al. (2012): assume
β̂(λk−1) is the lasso solution in (1) at λk−1, then the jth predictor is discarded at λk if

|x>j (y −Xβ̂(λk−1))| < λk − (λk−1 − λk). (3)

The key idea is that the inner product above is almost “non-expansive” in terms of λ and as a result
the KKT condition suggests that the discarded variables would have coefficient 0 at λk. However
it is not a guarantee. The strong rules can fail, though failures occur rarely when p > n. In any
case, the KKT condition is checked to ensure the exact solution is found. These authors propose an
iterative algorithm based on this idea for solving the entire path that is already built into glmnet.
At each λ, the lasso is fit on variables that survive the strong rule and the KKT condition is checked
after each fit to safely set the coefficients of the weak variables to zero. Our algorithm proceeds in
a similar way but is designed to efficiently handle datasets that are too big to fit into the memory.
Considering the fact that screening and KKT check are costly in the sense of disk Input/Output
(I/O) operations, we solve a series of models per iteration, trying to reduce the total number

2Strictly speaking, some variables may have “=” sign even when their coefficients are 0. They are probably in a
transition state from zero to nonzero or the other way on the solution path.

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

0 10 20 30 40

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Iteration 1

Lambda Index

C
oe

ffi
ci

en
ts

0 10 20 30 40

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Iteration 2

Lambda Index

C
oe

ffi
ci

en
ts

0 10 20 30 40

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Iteration 3

Lambda Index

C
oe

ffi
ci

en
ts

0 10 20 30 40

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Iteration 4

Lambda Index

C
oe

ffi
ci

en
ts

completed fit
new valid fit
new invalid fit

Figure 1: The lasso coefficient profile that shows the progression of the BASIL algorithm. The previously
finished part of the path is colored grey, the newly completed and verified is in green, and the part that is
newly computed but failed the verification is colored red.

of expensive disk read operations. At each iteration, we roll out the solution path progressively,
which is illustrated in Figure 1 and will be detailed in the next section. In addition, we propose
optimization specific for the SNP data in the UK Biobank studies to speed up the procedure.

1.4 Outline of the paper
The rest of the paper is organized as follows.

• Section 2 describes the proposed batch screening iterative lasso (BASIL) algorithm for the
Gaussian family in detail and its extension to other problems such as logistic regression.

• Section 3 discusses related methods and packages for solving large-scale lasso problems.

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

• In Section 4, we present an analysis of the UK Biobank data using our implementation of
the proposed algorithm. To our best knowledge, this is the first whole-genome multi-SNP-
phenotype association analysis at a biobank-scale dataset, which gives improved heritability
estimates for the traits concerned.

• In Section 5, we close the paper with a discussion of possible variations of the algorithm and
future work.

2 Methods and algorithms
For convenience, we introduce some notation. Let Ω = {1, 2, . . . , p} be the universe of variable
indices. For 1 ≤ ` ≤ L, let β̂(λ`) be the lasso solution at λ = λ`, and A(λ`) = {1 ≤ j ≤ p :
β̂j(λ`) 6= 0} be the active set. When X is a matrix, we use XS to represent the submatrix including
only columns indexed by S. Similarly when β is a vector, βS represents the subvector including
only elements indexed by S. Given any two vectors a, b ∈ Rn, the dot product or inner product
can be written as a>b = 〈a, b〉 =

∑n
i=1 aibi. We use predictors, features, variables and variants

interchangeably.

2.1 Batch Screening Iterative Lasso (BASIL)
We introduce our new iterative algorithm to fit the lasso for ultrahigh-dimensional problems. Recall
that our goal is to compute the exact lasso solution (1) over a sequence of regularization parameters
λ1 > λ2 > · · · > λL ≥ 0. As in glmnet, we often choose L = 100 and λ1 = max1≤j≤p |x>j r(0)|, the
largest λ at which the estimated coefficients start to deviate from zero. Here r(0) = y if we do not
include an intercept term and r(0) = y − ȳ if we do. In general, r(0) is the residual of regressing y
on the unpenalized variables, if any. The other λ’s can be determined, for example, by an equally
spaced array on the log scale. Two key algorithmic components that contribute to the efficiency
of glmnet are warm starts and the strong rules. Warm start provides a good initialization for
solving the lasso at a new λ, while the strong rules temporarily leave out a significant portion of the
variables so that we only need to consider solutions containing the remaining subset of variables.

The BASIL algorithm can be viewed as a batch version of the strong rules. At each iteration
we attempt to find a valid solution for multiple λ values in the path. This reduces disk reads of
the big dataset. In detail, the algorithm progresses in the following way. We start with an empty
strong set S(0) = ∅ and active set A(0) = ∅. In our context, the strong set refers specifically to the
presumably much smaller subset of variables on which the lasso fit is computed at each iteration.
The active set is the subset of variables with nonzero lasso coefficients. Each iteration has three
major steps: screening, fitting and checking.

In the screening step, an updated strong set is found as the candidate for the subsequent fitting.
Suppose that so far (valid) lasso solutions have been found for λ1, . . . , λ` but not for λ`+1. The new
set will be based on the lasso solution at λ`. In particular, we will select the top M variables with
largest absolute inner products |〈xj , y − Xβ̂(λ`)|. They are the variables that are most likely to
be in the lasso model for the next values of λ. In addition, we include the ever-active variables at
λ1, . . . , λ` because they have been “important” variables and might continue to be important at a
later stage. Also, for packages such as glmnet that are designed to compute the solution path from
the beginning, the inclusion of ever-active variables allows the solutions at earlier λ’s but computed
in this iteration to be consistent with those from the previous iterations.

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

In the fitting step, the lasso is fit on an updated strong set for the subsequent λ’s along our
predetermined sequence: λ`+1, . . . , λ`′ . Here `′ is often smaller than L because we do not have to
solve for all of the remaining λ values on this strong set. The full lasso solutions at much smaller
λ’s are very likely to have active variables outside of the current strong set. In other words even if
we were to compute solutions for those very small λ values on the current strong set, they would
probably fail the KKT test. These λ’s are left to later iterations, when the strong set is expanded.

In the checking step, we check if the newly obtained solution on the strong set can be part of
the full solution by computing the KKT condition. Given a solution β̂S ∈ R|S| to the sub-problem,
if we can verify for every left-out variable j that (1/n)|〈xj , y −XS β̂S〉| < λ, we can then safely set
their coefficients to 0. The full lasso solution β̂(λ) ∈ Rp is then assembled by letting β̂S(λ) = β̂S
and β̂Ω\S(λ) = 0.

The three steps above can be applied repeatedly to roll out the complete lasso solution path for
the original problem. However, if our goal is choosing the best model along the path, we can stop
fitting once an optimal model is found evidenced by the performance on a validation set. At a high
level, we run the iterative procedure on the training data, monitor the error on the validation set,
and stop when the model starts to overfit, or in other words, validation error shows a clear upward
trend.

We describe below some extensions that can be incorporated into our procedure. The full version
is given in Algorithm 1.

Relaxed lasso The lasso is known to shrink coefficients to exclude noise variables, but sometimes
such shrinkage can degrade the predictive performance due to its effect on actual signal variables.
Meinshausen (2007) introduces the relaxed lasso to correct for the potential over-shrinkage of the
original lasso estimator. They propose a refitting step on the active set of the lasso solution with
less regularization, while a common way of using it is to fit a standard OLS on the active set. The
active set coefficients are then set to

β̂A,Relax(λ) = argmin
βA∈R|A|

‖y −XAβA‖22,

whereas the coefficients for the inactive set remain at 0. This refitting step can revert some of the
shrinkage bias introduced by the vanilla lasso. It doesn’t always reduce prediction error due to the
accompanied increase in variance when there are many variables in the model or when the signals
are weak. That being said, we can still insert a relaxed lasso step with little effort in our iterative
procedure: once a valid lasso solution is found for a new λ, we may refit with OLS. As we iterate,
we can monitor validation error for the lasso and the relaxed lasso. The relaxed lasso will generally
end up choosing a smaller set of variables than the lasso solution in the optimal model.

Adjustment covariates In some applications such as GWAS, there may be confounding variables
Z ∈ Rn×q that we want to adjust for in the model. Population stratification, defined as the existence
of a systematic ancestry difference in the sample data, is one of the common factors in GWAS that
can lead to spurious discoveries. This can be controlled for by including some leading principal
components of the SNP matrix as variables in the regression (Price et al., 2006). In the presence
of such variables, we instead solve

(α̂(λ), β̂(λ)) = argmin
α∈Rq,β∈Rp

1
2n‖y − Zα−Xβ‖

2
2 + λ‖β‖1. (4)

6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

This variation can be easily handled with small changes in the algorithm. Instead of initializing
the residual with the response y, we set r(0) equal to the residual from the regression of y on the
covariates. In the fitting step, in addition to the variables in the strong set, we include the covariates
but leave their coefficients unpenalized as in (4). Notice that if we want to find relaxed lasso fit
with the presence of adjustment covariates, we need to include those covariates in the OLS as well,
i.e.,

(α̂Relax(λ), β̂A,Relax(λ)) = argmin
α∈Rq,βA∈R|A|

‖y − Zα−XAβA‖22. (5)

Algorithm 1 BASIL for the Gaussian Model
1: Initialization: active set A(0) = ∅, initial residual r(0) (with respect to the intercept or other

unpenalized variables), a short list of initial parameters Λ(0) = {λ1, . . . , λL(0)}.
2: for k = 0 to K do
3: Screening: for each 1 ≤ j ≤ p, compute inner product with current residual c(k)

j = 〈xj , r(k)〉.
Construct the strong set

S(k) = A(k) ∪ E(k)
M ,

where E(k)
M is the set of M variables in Ω \ A(k) with largest |c(k)|.

4: Fitting: for λ ∈ Λ(k), solve the lasso only on the strong set S(k), and find the coefficients
β̂(k)(λ) and the residuals r(k)(λ).

5: Checking: search for the smallest λ such that the KKT conditions are satisfied, i.e.,

λ̄(k) = min
{
λ ∈ Λ(k) : max

j∈Ω\S(k)
(1/n)|x>j r(k)(λ)| < λ

}
.

Let the current active set A(k+1) and residuals r(k+1) defined by the solution at λ̄(k). Define
the next parameter list Λ(k+1) = {λ ∈ Λ(k) : λ < λ̄(k)}. Extend this list if it consists of too
few elements. For λ ∈ Λ(k) \ Λ(k+1), we obtain new valid lasso solutions:

β̂S(k)(λ) = β̂(k)(λ), β̂Ω\S(k)(λ) = 0.

6: (Optional) Relaxed Lasso: for λ ∈ Λ(k) \ Λ(k+1), find the relaxed lasso fit as in (5).
7: (Optional) Early Stopping: exit the iteration when the mean squared prediction error on an

independent validation set starts to increase for validated lasso solutions.
8: end for

2.2 Computational considerations
Screening and checking are the steps where we need to deal with the full dataset. To deal with the
memory bound, we can use memory-mapped I/O. In R, bigmemory (Kane et al., 2013) provides
a convenient implementation for that purpose. That being said, we do not want to rely on that
for intensive computation modules such as cyclic coordinate descent, because frequent visits to the
on-disk data would still be slow. Instead, since the subset of strong variables would be small, we

2If the parameter list did not change from the previous iteration, include more variables (e.g., 2M) with largest
|c(k)|.

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

can afford to bring them to memory and do fast lasso fitting there. We only use the full memory-
mapped dataset in KKT checking and screening. Moreover since checking in the current iteration
can be done together with the screening in the next iteration, effectively only one expensive pass
over the full dataset is needed every iteration.

2.3 Extension to general problems
It is straightforward to extend the algorithm from the Gaussian case to more general problems.
In fact, the only changes we need to make are the screening step and the strong set update step.
Wherever the strong rules can be applied, we have a corresponding version of the iterative algorithm.
In Tibshirani et al. (2012), the general problem is

β̂(λ) = argmin
β∈Rp

f(β) + λ
r∑
j=1

cj‖βj‖pj
, (6)

where f is a convex differentiable function, and for all 1 ≤ j ≤ r, cj ≥ 0, pj ≥ 1, and βj can be a
scalar or vector. The general strong rule discards predictor j if

‖∇jf(β̂(λk−1))‖qj
< cj(2λk − λk−1), (7)

where 1/pj + 1/qj = 1. Hence, our algorithm can adapt and screen by choosing variables with large
values of ‖∇jf(β̂(λk−1))‖qj that are not in the current active set.

Logistic regression In the lasso penalized logistic regression (Friedman et al., 2010b) where the
observed outcome y ∈ {0, 1}n, the convex differential function in (6) is

f(β) = − 1
n

n∑
i=1

(yi log pi + (1− yi) log(1− pi)) .

where pi = 1/(1 + exp(−x>i β)) for all 1 ≤ i ≤ n. The rule in (7) is reduced to

|x>j (y − p̂(λk−1))| < λk − (λk−1 − λk),

where p̂(λk−1) is the predicted probabilities at λ = λk−1. Similar to the Gaussian case, we can still
fit relaxed lasso and allow adjustment covariates in the model to adjust for confounding effect.

Cox’s proportional hazards model In the usual survival analysis framework, for each sample,
in addition to the predictors xi ∈ Rp and the observed time yi, there is an associated right-censoring
indicator δi ∈ {0, 1} such that δi = 0 if failure and δi = 1 if right-censored. Let t1 < t2 < ... < tm
be the increasing list of unique failure times, and j(i) denote the index of the observation failing
at time ti. The Cox’s proportional hazards model (Cox, 1972) assumes the hazard for the ith
individual as hi(t) = h0(t) exp(x>i β) where h0(t) is a shared baseline hazard at time t. We can let
f(β) be the negative log partial likelihood in (6) and screen based on its gradient at the most recent
lasso solution as suggested in (7). In particular,

f(β) = −
m∑
i=1

x>j(i)β − log

∑
j∈Ri

exp(x>j β)

 ,

where Ri is the set of indices j with yj ≥ ti (those at risk at time ti). The implementation is not
provided in our package yet but will be added in the future.

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

3 Related methods and packages
There are a number of existing screening rules for solving big lasso problems. Sobel et al. (2009) use
a screened set to scale down the logistic lasso problem and check the KKT condition to validate the
solution. Their focus, however, is on selecting a lasso model of particular size and only the initial
screened set is expanded if the KKT condition is violated. In contrast, we are interested in finding
the whole solution path (before overfitting). We adopt a sequential approach and keep updating
the screened set at each iteration. This allows us to potentially keep the screened set small as we
move along the solution path. Other rules include the SAFE rule (El Ghaoui et al., 2010), Sure
Independence Screening (Fan and Lv, 2008), and the DPP and EDPP rules (Wang et al., 2015).

We expand the discussion on these screening rules a bit. Fan and Lv (2008) exploits marginal
information of correlation to conduct screening but the focus there is not optimization algorithm.
Most of the screening rules mentioned above (except for EDPP) use inner product with the current
residual vector to measure the importance of each predictor at the next λ — those under a threshold
can be ignored. The key difference across those rules is the threshold defined and whether the
resulting discard is safe. If it is safe, one can guarantee that only one iteration is needed for each λ
value, compared with others that would need more rounds if an active variable was falsely discarded.
Though the strong rules rarely make this mistake, safe screening is still a nice feature to have in
single-λ solutions. However, under the batch mode we consider due to the desire of reducing the
number of full passes over the dataset, the advantage of safe threshold may not be as much. In
fact, one way we might be able to leverage the safe rules in the batch mode is to first find out the
set of candidate predictors for the several λ values up to λk we wish to solve in the next iteration
based on the current inner products and the rules’ safe threshold, and then solve the lasso for these
parameters. Since these rules can often be conservative, we would then have strong incentive to
solve for, say, one further λ value λk+1 because if the current screening turns out to be a valid one
as well, we will find one more lasso solution and move one step forward along the λ sequence we
want to solve for. This can potentially save one iteration of the procedure and thus one expensive
pass over the dataset. The only cost there is computing the lasso solution for one more λk+1 and
computing inner products with one more residual vector at λk+1 (to check the KKT condition).
The latter can be done in the same pass as we compute inner products at λk for preparing the
screening in the next iteration, and so no additional pass is needed. Thus under the batch mode,
the property of safe screening may not be as important due to the incentive of aggressive model
fitting. Nevertheless it would be interesting to see in the future EDPP-type batch screening. It
uses inner products with a modification of the residual vector. Our algorithm still focuses of inner
products with the vanilla residual vector.

To address the large-scale lasso problems, several packages have been developed such as biglasso
(Zeng and Breheny, 2017), bigstatsr(Privé et al., 2018), oem (Huling and Qian, 2018) and the
lasso routine from PLINK 1.9 (Chang et al., 2015).

Among them, oem specializes in tall data (big n) and can be very slow when p > n. In many
real data applications including ours, the data can be both large-sample and high-dimensional.
However, we might still be able to use oem for the small lasso subroutine since a large number
of variables have already been excluded. The other packages, biglasso, bigstatsr, PLINK 1.9,
all provide efficient implementations of the pathwise coordinate descent with warm start. PLINK
1.9 is specifically developed for genetic datasets and is widely used in GWAS and research in
population genetics. In bigstatsr, the big spLinReg function adapts from the biglasso function
in biglasso and incorporates a Cross-Model Selection and Averaging (CMSA) procedure, which is

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

a variant of cross-validation that saves computation by directly averaging the results from different
folds instead of retraining the model at the chosen optimal parameter. They both use memory-
mapping to process larger-than-RAM, on-disk datasets as if they were in memory, and based on
that implement coordinate descent with strong rules and warm start.

The main difference between BASIL and the algorithm these packages use is that BASIL tries to
solve a series of models every full scan of the dataset (at checking and screening) and thus effectively
reduce the number of passes over the dataset. This difference may not be significant in small or
moderate-sized problems, but can be critical in big data applications especially when the dataset
cannot be fully loaded into the memory. A full scan of a larger-than-RAM dataset can incur a lot
of swap-in/out between the memory and the disk, and thus a lot of disk I/O operations, which is
known to be orders of magnitude slower than in-memory operations. Thus reducing the number of
full scans can greatly improve the overall performance of the algorithm.

Aside from potential efficiency consideration, all of those packages aforementioned have to re-
implement a variety of features existent in many small-data solutions but for big-data context.
Nevertheless, currently they don’t provide as much functionality as needed in our real-data appli-
cation. First, current implementations of biglasso, bigstatsr and PLINK 1.9 all standardize the
predictors beforehand, but in the application we show in the next section, it is more reasonable
to leave the predictors unstandardized. Also, it can take some effort to convert the data to the
desired format by these packages. This would be a headache if the raw data is in some special
format and one cannot afford to first convert the full dataset into an intermediate format for which
a tool is provided to convert to the desired one by biglasso or bigstatsr. This can happen, for
example, if the raw data is highly compressed in a special format. For the BED binary format we
work with in our application, readRAW big.matrix function from BGData can convert a raw file
to a big.matrix object desired by biglasso, and snp readBed function from bigsnpr allows one
to convert it to FBM object desired by bigstatsr. However, bigsnpr doesn’t take input data that
has any missing values, which are prevalent in an SNP matrix (≈ 70% in our dataset). Although
PLINK 1.9 works directly with the BED binary file, its lasso solver currently only supports the
Gaussian family, and it doesn’t return the full solution path. Instead it returns the solution at the
smallest λ value computed and needs a good heritability estimate as input from the user, which
may not be immediately available.

We summarize the main advantages of the BASIL algorithm:

• Input data flexibility. Our algorithm allows one to deal directly with any data type as
long as the screening and checking steps are implemented, which is often very lightweight
development work like matrix multiplication. This can be important in large-scale applications
especially when the data is stored in a compressed format or a distributed way since then
we would not need to unpack the full data and can conduct KKT check and screening on its
original format. Instead only a small screened subset of the data needs to be converted to the
desired format by the lasso solver in the fitting step.

• Model flexibility. We can easily transfer the modeling flexibility provided by existing
packages to the big data context, such as the options of standardization, sample weights,
lower/upper coefficient limits and other families in generalized linear models provided by
existing packages such as glmnet. This can be useful, for example, when we may not want to
standardize predictors already in the same unit to avoid unintentionally different penalization
of the predictors due to difference in their variance.

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

• Effortless development. The BASIL algorithm allows one to maximally reuse the existing
lasso solutions for small or moderate-sized problems. The main extra work would be an
implementation of batch screening and KKT check with respect to a particular data type.
For example, in the snpnet package, we are able to quickly extend the in-memory glmnet
solution to large-scale, ultrahigh-dimentional SNP data. Moreover, the existing convenient
data interface provided by the BEDMatrix package further facilitates our implementation.

• Computational efficiency. Our design reduces the number of visits to the original data
that sits on the disk, which is crucial to the overall efficiency as disk read can be orders of
magnitude slower than reading from the RAM. The key to achieving this is to bring batches
of promising variables into the main memory, hoping to find the lasso solutions for more than
one λ value each iteration and check the KKT condition for those λ values in one pass of the
entire dataset.

4 Application: UK Biobank
In this section, we describe a real-data application on the UK Biobank that in fact motivates our
development of the BASIL algorithm.

The UK Biobank (Bycroft et al., 2018) is a very large, prospective population-based cohort
study with individuals collected from multiple sites across the United Kingdom. It contains exten-
sive genotypic and phenotypic detail such as genomewide genotyping, questionnaires and physical
measures for a wide range of health-related outcomes for over 500,000 participants, who were aged
40-69 years when recruited in 2006-2010. In this study, we are interested in the relationship be-
tween an individual’s genotype and his/her phenotypic outcome. While GWAS focus on identifying
SNPs that may be marginally associated with the outcome using univariate tests, we would like to
find relevant SNPs in a multivariate prediction model using the lasso. A recent study (Lello et al.,
2018) fits the lasso to a similar subset of the dataset after one-shot univariate p-value screening
and suggests improvement in explaining the variation in the phenotypes. However, the left-out
variants with relatively weak marginal association may still provide additional predictive power in
a multivariate environment. The BASIL algorithm enables us to fit the lasso model at full scale
and gives further improvement in the explained variance over the alternative models considered.

We focused on 337,199 White British unrelated individuals out of the full set of over 500,000 from
the UK Biobank dataset (Bycroft et al., 2018) that satisfy the same set of population stratification
criteria as in DeBoever et al. (2018): (1) self-reported White British ancestry, (2) used to compute
principal components, (3) not marked as outliers for heterozygosity and missing rates, (4) do not
show putative sex chromosome aneuploidy, and (5) have at most 10 putative third-degree relatives.
These criteria are meant to reduce the effect of confoundedness and unreliable observations. Each
individual has up to 805,426 measured variants, and each variant is encoded by one of the four
levels where 0 corresponds to homozygous major alleles, 1 to heterozygous alleles, 2 to homozygous
minor alleles and NA to a missing genotype. In addition, we have available covariates such as age,
sex, and forty pre-computed principal components of the SNP matrix.

There are thousands of measured phenotypes in the dataset. For demonstration purpose, we
analyze four phenotypes that are known to be highly or moderately heritable and polygenic. For
these complex traits, univariate studies may not find SNPs with smaller effects, but the lasso model
may include them and predict the phenotype better. We look at two quantitative traits — standing

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

height and body mass index (BMI) (Tanigawa et al., 2019), and two qualitative traits — asthma
and high cholesterol (HC) (DeBoever et al., 2018).

4.1 Implementation details
In this section, we describe several aspects of the experimental details in our application.

Training/Validation/Test splitting Since the number of observations is large, we can afford
to set aside an independent validation set without resorting to the costly cross-validation to find an
optimal regularization parameter. We also leave out a subset of observations as test set to evaluate
the final model. In particular, we randomly partition the original dataset so that 60% is used for
training, 20% for validation and 20% for test. The lasso solution path is fit on the training set, the
desired regularization selected on the validation set, and the resulting model is evaluated on the
test set.

Adjustment for confounders In genetic studies, spurious associations are often found due to
confounding factors. Among the others, one major source is the so-called population stratification
(Patterson et al., 2006). To adjust for that effect, it is common is to introduce the top principal
components and include them in the regression model. Therefore in the lasso method, we are going
to solve (4) where in addition to the SNP matrix X, we let Z include covariates such as age, sex
and the top 10 PCs left unpenalized.

Missing values Missing values are present in the dataset. As quality control normally done in
genetics, we first discard observations whose phenotypic value of interest is not available. We further
exclude variants whose missing rate is greater than 10% or the minor allele frequency (MAF) is
less than 0.1%, which results in around 685,000 SNPs for height. 3 For those remaining variants,
mean imputation is conducted to fill the missing SNP values; that is, the missing values in every
SNP are imputed with the mean observed level of that SNP in the population under study.

Standardization in lasso When it comes to the lasso fitting, there are some subtleties that can
affect its variable selection and prediction performance. One of them is variable standardization. It
is often a step done without much thought to deal with heterogeneity in variables so that they are
treated fairly in the objective. However in our studies, standardization may create some undesired
effect. To see this, notice that all the SNPs can only take values in 0, 1, 2 and NA — they are
already on the same scale by nature. As we know, standardization would use the current standard
deviation of each predictor as the divisor to equalize the variance across all predictors in the lasso
fitting that follows. In this case, standardization would unintentionally inflate the magnitude of
rare variants and give them an advantage in the selection process since their coefficients effectively
receive less penalty after standardization. In Figure 2, we can see the distribution of standard
deviation across all variants in our dataset. Hence, to avoid potential spurious findings, we choose
not to standardize the variants in the experiments.

3In particulr, 685,362 for height, 685,371 for BMI, 685,357 for asthma and 685,357 for HC. The number varies
because the criteria are evaluated on the subset of individuals whose phenotypic value is observed (after excluding
the missing ones), which can be different across different phenotypes.

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

Histogram of SNP Standard Deviation

SD

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
0

40
00

0
60

00
0

80
00

0

Figure 2: Histogram of the standard deviations of the SNPs. They are computed after mean imputation
of the missing values because they would be the exact standardization factors to be used if the lasso were
applied with variable standardization on the mean-imputed SNP matrix.

SNP-specific optimization On the computational side, we use several techniques to speed up
the computation. First, the KKT check can be easily parallelized by splitting on the features when
multi-core machines are available. The speedup of this part is immediate and (slightly less than)
proportional to the number of cores available. Second, specific to the application, we exploit the
fact that there are only 4 levels for each SNP value and design a faster inner product routine to
replace normal float number multiplication in the KKT check step. In fact, given any SNP vector
x ∈ {0, 1, 2, µ}n where µ is the imputed value for the missing ones, we can write the dot product
with a vector r ∈ Rn as

x>r =
n∑
i=1

xiri = 1 ·
∑
i:xi=1

ri + 2 ·
∑
i:xi=2

ri + µ ·
∑
i:xi=µ

ri.

We see that the terms corresponding to 0 SNP value can be ignored because they don’t contribute
to the final result. This will significantly reduce the number of arithmetic operations needed to
compute the inner product with rare variants. Further, we only need to set up 3 registers, each
for one SNP value accumulating the corresponding terms in r. A series of multiplications is then
converted to summations. In our UK Biobank studies, although the SNP matrix is not sparse
enough to exploit sparse matrix representation, it still has around 70% 0’s. We conduct a small
experiment to compare the time needed to compute X>R, where X ∈ {0, 1, 2, 3}n×p, R ∈ Rp×k.
The proportions for the levels in X are about 70%, 10%, 10%, 10%, similar to the distribution of
SNP levels in our study, and R resembles the residual matrix when checking the KKT condition.
The number of residual vectors is k = 20. The mean time over 100 repetitions is shown in Table 1.

We implement the procedure with all the optimizations in an R package called snpnet, which is
currently available at https://github.com/junyangq/snpnet. It assumes BED file format (Chang

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://github.com/junyangq/snpnet
https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

Multiplication Method n = 200, p = 800 n = 2000, p = 8000
Standard 3.20 306.01

SNP-Optimized 1.32 130.21

Table 1: Timing performance (milliseconds) on multiplication of SNP matrix and residual matrix. The
methods are all implemented in C++ and run on a Macbook with 2.9 GHz Intel Core i7 and 8 GB 1600
MHz DDR3.

R Package Elapsed Time (minutes)
bigstatsr (Privé et al., 2018) 2.93 + 56.80

biglasso(Zeng and Breheny, 2017) 4.55 + 54.27
PLINK (Chang et al., 2015) 53.52

snpnet 44.79

Table 2: Timing comparison on a synthetic dataset of size n = 50, 000 and p = 100, 000. The time for
bigstatsr and biglasso has two components: one for the conversion to the desired data type and the other
for the actual computation. The experiments are all run with 16 cores and 64 GB memory.

et al., 2015) of the SNP matrix, fits the lasso solution path and allows early stopping if a validation
dataset is provided. In order to achieve better efficiency, we suggest using snpnet together with
glmnetPlus, a warm-started version of glmnet, which is currently available at https://github.
com/junyangq/glmnetPlus. It allows one to provide a good initialization of the coefficients to fit
part of the solution path instead of always starting from the all-zero solution by glmnet.

Timing performance Lastly, we are going to provide some timing comparison with existing
packages. As mentioned in previous sections, those packages provide different functionalities and
have different restrictions on the dataset. For example, most of them (biglasso, bigstatsr) assume
that there are no missing values, or the missing ones have already been imputed. In bigsnpr, for
example, we shouldn’t have SNPs with 0 MAF either. Some packages always standardize the
variants before fitting the lasso. To provide a common playground, we create a synthetic dataset
with no missing values, and follow a standardized lasso procedure in the fitting stage, simply to
test the computation. The dataset has 50,000 samples and 100,000 variables, and each takes value
in the SNP range, i.e., in 0, 1, or 2. We fit the first 50 lasso solutions along a prefix λ sequence
that contains 100 initial λ values (like early stopping for most phenotypes). The total time spent
is displayed in Table 2. We uses 128GB memory and 16 cores for the computation.

From the table, we see that snpnet is at about 20% faster than other packages concerned. The
numbers before the “+” sign are the time spent on converting the raw data to the required data
format by those packages. The second numbers are time spent on actual computation.

It is important to note though that the performance relies not only on the algorithm, but also
heavily on the implementations. The other packages in comparison all have their major computation
done with C++ or Fortran. Ours, for the purpose of meta algorithm where users can easily integrate
with any lasso solver in R, still has a significant portion (the iterations) in R and multiple rounds of
cross-language communication. That can degrade the timing performance to some degree. If there
is further pursuit of speed performance, there is still space for improvement by more designated
implementation.

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://github.com/junyangq/glmnetPlus
https://github.com/junyangq/glmnetPlus
https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

4.2 Evaluation
Goodness of fit For quantitative response, a common measure for goodness-of-fit is R2. For any
given linear estimator β̂ and data (y,X),

R2 = 1− ‖y −Xβ̂‖
2

‖y − ȳ‖2
.

We evaluate this criteria for all the training, validation and test datasets. For dichotomous response,
misclassification error could be used but it would also depend on the calibration. Instead the receiver
operating characteristic (ROC) curve provides more information and illustrates the tradeoff between
true positive and false positive rates under different thresholds. The AUC computes the area under
the ROC curve — a larger value indicates a generally better classifier. We will evaluate AUCs on
the training, validation and test sets.

Heritability In genetic studies, one of the central questions is whether the variation in a trait is
due to genetic factors, environmental factors, or interaction of both. Heritability provides a measure
that quantifies the contribution of the genetic component. Different models for heritability include
twin studies (Polderman et al., 2015) and linear mixed models (Patterson and Thompson, 1971;
Yang et al., 2010, 2011). There is a distinction between narrow-sense and broad-sense heritability.
The former is defined as the proportion of total phenotypic variance in a population that is due to
variation in additive genetic factors and the latter is the proportion due to variation in total genetic
factors including interactions between genes (Visscher et al., 2008). We assume an additive linear
model and use R2 on the test set to measure narrow-sense heritability for quantitative traits; in
fact, such test R2 provides a lower bound of the true narrow-sense heritability and we would like
to achieve as tight a bound as possible. For binary traits, there are methods that use latent factors
to define heritability (Lee et al., 2011). However this is not the focus of the paper, and we will only
compare heritability estimation for quantitative traits.

4.3 Other methods
We compare the performance of the lasso with related methods to have a sense of the contribution
of different components. Starting from the baseline, we fit a linear model that includes only age
and sex (Model 1 in the tables below), and then one that includes additionally the top 10 principal
components (Model 2). These are the adjustment covariates used in our main lasso fitting and we
use these two models to highlight the contribution of the SNP information on top of that contained
in age, sex and the top 10 PCs. In addition, the strongest univariate model is also evaluated (Model
3). This includes adjustment covariates together with a single SNP that is most correlated with
the outcome after adjusted for the covariates.

We also compare with a univariate method that has some multivariate flavor (Mode 4 and 5).
We select a subset of the K most marginally significant variants (after adjusting for the covariates),
and use their univariate coefficients to form a linear combination as the new variable. An OLS
is then fit on the new variable together with the adjustment variables. It is similar to a one-step
partial least squares (Wold, 1975) with p-value based truncation. We take K = 10, 000 and 100, 000
in the experiments.

In addition, we compare with a hierarchical sequence of linear models where each is fit on a
subset of the most significant SNPs. In particular, the `-th model selects ` × 1000 SNPs with the

15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

smallest univariate p-values, and a multivariate linear or logistic regression is fit on those variants
jointly. The sequence of models are evaluated on the validation set, and the one with the smallest
validation error is chosen. We call this method Sequential LR for convenience in the following result
part (Model 6).

4.4 Results
We present results of the lasso and related methods for quantitative traits including standing height
and BMI, and for qualitative traits including asthma and high cholesterol. A comparison of the
univariate p-values and the lasso coefficients for all these traits is showed in the form of Manhattan
plots in the Appendix A (Supplementary Figure 13, 14).

4.4.1 Quantitative Traits

Standing Height Height is a polygenic and heritable trait that has been studied for a long time.
It has been used as a model for other quantitative traits, since it is easy to measure reliably. From
twin and sibling studies, the narrow sense heritability is estimated to be 70-80% (Silventoinen et al.,
2003; Visscher et al., 2006, 2010). Recent estimates controlling for shared environmental factors
present in twin studies calculate heritability at 0.69 (Zaitlen et al., 2013; Hemani et al., 2013). A
linear based model with common SNPs explains 45% of the variance (Yang et al., 2010) and a model
including imputed variants explains 56% of the variance, almost matching the estimated heritability
(Yang et al., 2015). So far, GWAS studies have discovered 697 associated variants that explain one
fifth of the heritability (Lango Allen et al., 2010; Wood et al., 2014). Recently, a large sample study
was able to identify more variants with low frequencies that are associated with height (Marouli
et al., 2017). Using lasso with the larger UK Biobank dataset allows both a better estimate of the
proportion of variance that can be explained by genomic predictors and simultaneous selection of
SNPs that may be associated. We obtain R2 values that are close to the estimated heritability. The
results are summarized in Table 3. The associated R2 curves for the lasso and the relaxed lasso are
shown in Figure 3. The residuals of the optimal lasso prediction are plotted in Figure 4.

Model Form R2
train R2

val R2
test Size

(1) Age + Sex 0.5300 0.5260 0.5288 2
(2) Age + Sex + 10 PCs 0.5344 0.5304 0.5336 12
(3) Strong Single SNP 0.5364 0.5323 0.5355 13
(4) 10K Combined 0.5482 0.5408 0.5444 10,012
(5) 100K Combined 0.5833 0.5515 0.5551 100,012
(6) Sequential LR 0.7416 0.6596 0.6601 17,012
(7) Lasso 0.8304 0.6992 0.6999 47,673
(8) Relaxed Lasso 0.7789 0.6718 0.6727 13,395

Table 3: R2 values for height. For sequential LR, lasso and relaxed lasso, the chosen model is based on
maximum R2 on the validation set. Model (3) to (8) each includes Model (2) plus their own specification
as stated in the Form column.

A large number (47,673) of SNPs need to be selected in order to achieve the optimal R2
test =

0.6992 for the lasso. Comparatively, the relaxed lasso sacrifices some predictive performance by
including a much smaller subset of variables (13,395). Past the optimal point, the additional

16

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

0 20 40 60 80

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

Lambda Index

R
2

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
● ● ●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ● ● ●
● ●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

●

●

●

●

Lasso (train)
Lasso (val)
ReLasso (train)
ReLasso (val)

15 36 91 24
5

59
9

14
13

32
09

68
88

13
39

5

22
80

3

34
75

4

47
67

3

Figure 3: R2 plot for height. The top axis shows the number of active variables in the model.

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

140

160

180

200

140 160 180 200
Predicted Height (cm)

A
ct

ua
l H

ei
gh

t (
cm

)

0

2500

5000

7500

10000

−20 −10 0 10 20 30
Residual (cm)

F
re

qu
en

cy

Figure 4: Left: actual height versus predicted height on 5000 random samples from the test set. The
correlation between actual height and predicted height is 0.9416. Right: histogram of the lasso residuals
for height. Standard deviation of the residual is 5.05 (cm).

variance introduced by refitting such large models may be larger than the reduction in bias. The
large models confirm the extreme polygenicity of standing height.

17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

Method R2
val R2

test Cortest Cortest−{age, sex}
Lasso 69.92% 69.99% 0.8366 0.4079

Prescreened lasso 69.40% 69.56% 0.8340 0.4025

Table 4: Comparison of prediction results on height with the model trained following the same procedure as
ours except for an additional prescreening step as done in Lello et al. (2018). In addition to R2, correlation
between the fitted values and actual values is computed. We also compute an adjusted correlation between
the residual after regressing age and sex out from the prediction and the residual after regressing age and
sex out from the true response, both on the test set.

In comparison to the other models, the lasso performs significantly better in terms of R2
test

than all univariate methods, and outperforms multivariate methods based on univariate p-value
ordering. That demonstrates the value of simultaneous variable selection and estimation from a
multivariate perspective, and enables us to predict height to within 10 cm about 95% of the time
based only on SNP information (together with age and sex). We also notice that the sequential
linear regression approach does a good job, whose performance gets close to that of the relaxed
lasso. It is straightforward and easy to implement using existing softwares such as PLINK (Chang
et al., 2015).

Recently Lello et al. (2018) apply a lasso based method to predict height and other phenotypes
on the UK Biobank. Instead of fitting on all QC-satisfied SNPs (as stated in Section 4.1), they
pre-screen 50K or 100K most significant SNPs in terms of p-value and apply lasso on that set only.
In addition, although both datasets come from the same UK Biobank, the subset of individuals
they used is larger than ours. While we restrict the analysis to the unrelated individuals who have
self-reported white British ancestry, they look at Europeans including British, Irish and Any Other
White. For a fair comparison, we follow their procedure (pre-screening 100K SNPs) but run on our
subset of the dataset. The results are shown in Table 4. We see that the improvement of the full
lasso over the prescreened lasso is around 0.5% in the absolute sense, and 2.7% relatively if we are
concerned about the gain over the baseline method consisting only of age, sex and the top 10 PCs.
We would like to point out though that any improvement in the estimate close to the heritability
bound becomes harder. In fact, based on twin studies on an Australian population, Macgregor
et al. (2006) reported the narrow-sense heritability of human height to be approximately 0.8, and
on a slightly different subset of the UK Biobank, Ge et al. (2017) reported 0.685. Those studies
suggest we might already get close to the upper bound defined by narrow-sense heritability.

Further, we compare the full lasso coefficients and the univariate p-values from GWAS in Fig-
ure 5. The vertical grey dotted line indicates the top 100K cutoff in terms of p-value.

We see although a general decreasing trend appears in the magnitude of the lasso coefficients
with respect to increasing p-values (decreasing − log10(p)), there are a number of spikes even in the
large p-value region which is considered marginally insignificant. This shows that variants beyond
the strongest univariate ones contribute to prediction.

Body Mass Index (BMI) BMI is another polygenic trait that is commonly studied. Like height,
it is heritable and easily measured. It is also a trait of interest, since obesity is a risk factor for
diseases such as type 2 diabetes and cardiovasclar disease. Recent studies estimate heritability at
0.42 (Zaitlen et al., 2013; Hemani et al., 2013) and 27% of the variance can be explained using a
genomic model (Yang et al., 2015). We expect the heritability to be lower than that for height,
since intuitively speaking, one component of the body mass, weight, should heavily depend on

18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

0 100 200 300 400 500

0
1

2
3

4
5

Index

−
lo

g 1
0(

p)

La
ss

o
C

oe
ffi

ci
en

t

GWAS
Lasso

Figure 5: Comparison of the lasso coefficients and univariate p-values for height. The index on the
horizontal axis represents the SNPs sorted by their univariate p-values. The red curve associated with
the left vertical axis shows the − log10 of the univariate p-values. The blue bars associated with the right
vertical axis show the corresponding lasso coefficients for each (sorted) SNP. The horizontal dotted lines in
gray identifies lasso coefficients of ±0.05. The vertical one represents the 100K cutoff used in Lello et al.
(2018).

environmental factors, for example, individual’s lifestyle. From GWAS studies, 97 associated loci
have been identified, but they only account for 2.7% of the variance (Speliotes et al., 2010; Locke
et al., 2015). Although the estimates of heritability are not precise, there may be more missing
heritability for BMI than for height. We also find lower R2 values using the lasso. The results are
summarized in Table 5. The R2 curves for the lasso and the relaxed lasso are shown in Figure 6.
From the table, we see that more than 26,000 variants are selected by the lasso to attain an R2

greater than 10%. In constrast, the relaxed lasso and the sequential linear regression use around
one-tenths of the variables, and end up with degraded predictive performance both at around 5%.
From Figure 7, we see further evidence that the actual BMI is of high variability and hard to
predict with the lasso model — the correlation between the predicted value and the actual value
is 0.3256. From the residual histogram on the right, we also see the distribution is skewed to the
right, suggesting a number of exceedingly high observed values than the ones predicted by the
model. Nevertheless, we are able to predict BMI within 9 kg/m2 about 95% of the time.

4.4.2 Qualitative Traits

Asthma Asthma is a common respiratory disease characterized by inflammation of airways in
the lungs and difficulty breathing. It is another complex, polygenic trait that is associated with

19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

Model Form R2
train R2

val R2
test Size

(1) Age + Sex 0.0092 0.0089 0.0083 2
(2) Age + Sex + 10 PCs 0.0104 0.0103 0.0099 12
(3) (2) + Single SNP 0.0134 0.0128 0.0124 13
(4) (2) + 10K Combined 0.0384 0.0195 0.0210 10,012
(5) (2) + 100K Combined 0.1307 0.0064 0.0093 100,012
(6) Sequential LR 0.0865 0.0385 0.0395 2,012
(7) Lasso 0.3196 0.1017 0.1052 26,060
(8) Relaxed Lasso 0.1609 0.0504 0.0537 2,585

Table 5: R2 values for BMI. For lasso and relaxed lasso, the chosen model is based on maximum R2 on
the validation set. Model (3) to (8) each includes Model (2) plus their own specification as stated in the
Form column.

0 10 20 30 40 50 60 70

0.
00

0.
05

0.
10

0.
15

0.
20

Lambda Index

R
2

● ●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ● ● ●
●

●
●

● ●
●

●
● ● ●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ● ●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

Lasso (train)
Lasso (test)
ReLasso (train)
ReLasso (test)

13 13 15 24 50 10
9

30
8

93
4

25
85

58
77

10
90

1

17
69

8

26
06

0

34
01

7

Figure 6: R2 plot for BMI. The top axis shows the number of active variables in the model.

both genetic and environmental factors. Our results are summarized in Table 6. The AUC curves
for the lasso and the relaxed lasso are shown in Figure 8. In addition, for each test sample, we
compute the percentile of its predicted score/probability among the entire test cohort, and create
box plots of such percentiles separately for the control group and the case group. We see on the left
of Figure 9 that there is a significant overlap between the box plots of the two groups, suggesting
that asthma is difficult to predict. This can also be seen from the AUC value and the ROC curve
in Figure 12. That being said, the multivariate lasso still does much better than the baseline model
and the strongest univariate model. On the right of Figure 9, we stratify the prediction percentile

20

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

● ●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●
●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

20

30

40

50

60

25 30
Predicted BMI (kg/m2)

A
ct

ua
l B

M
I (

kg
/m

2)

0

3000

6000

9000

−10 0 10 20 30
Residual (kg/m2)

F
re

qu
en

cy

Figure 7: Left: actual BMI versus predicted BMI on 5000 random samples from the test set. The
correlation between actual BMI and predicted BMI is 0.3256. Right: residuals of lasso prediction for BMI.
Standard deviation of the residual is 4.51 kg/m2.

Model Form AUCtrain AUCval AUCtest Size
(1) Age + Sex 0.5293 0.5297 0.5320 2
(2) Age + Sex + 10 PCs 0.5342 0.5344 0.5367 12
(3) (2) + Single SNP 0.5463 0.5476 0.5454 13
(4) (2) + 10K Combined 0.5783 0.5580 0.5531 10,012
(5) (2) + 100K Combined 0.6884 0.5644 0.5580 100,012
(6) Sequential LR 0.6601 0.5883 0.5884 2,012
(7) Lasso 0.7692 0.6159 0.6126 5,936
(8) Relaxed Lasso 0.6747 0.5988 0.5955 621

Table 6: AUC values for asthma. For lasso and relaxed lasso, the chosen model is based on maximum
AUC on the validation set. Model (3) to (8) each includes Model (2) plus their own specification as stated
in the Form column.

into 10 bins, and compute the overall prevalence within each bin. We observe a clear upward trend
that provides further evidence that we manage to capture some genetic signal there.

High Cholesterol High cholesterol is characterized by high amounts of cholesterol present in the
blood and is a risk factor for cardiovascular disease. It is highly heritable and may be polygenic.
Our results are summarized in Table 7. The AUC curves for the lasso and the relaxed lasso are
shown in Figure 10. Similarly the ROC curve for the best lasso model is shown in Figure 12, and
box plots for the two groups and a stratified prevalence plot are shown in Figure 11. We see that the
distributions of predictions made on non-HC individuals and on HC individuals are clearly different
from each other, suggesting good classification results. That is reflected in the AUC measure listed
in the table. Nevertheless, it is not much better than the result of the base model including only

21

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

0 10 20 30 40 50

0.
50

0.
55

0.
60

0.
65

0.
70

Lambda Index

A
U

C

●
●

● ● ● ●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

●
● ● ●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ●

●

● ● ● ● ●

● ● ●

●

●

●

●

● ● ●
● ●

●

● ●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ●

●

●
●

●

● ●
● ●

●

●

● ●
●

● ●

● ●
●

●

●
●

●
● ●

● ● ●

●
●

● ● ●
● ●

● ●
●

● ● ●

●

●

●

●

Lasso (train)
Lasso (test)
ReLasso (train)
ReLasso (test)

13 13 14 17 24 27 35 48 70 96 17
5

36
4

80
6

18
15

35
19

59
36

Figure 8: AUC plot for asthma. The top axis shows the number of active variables in the model.

0

25

50

75

100

Control Case
Asthma

P
re

di
ct

io
n

pe
rc

en
til

e

●

●
●

●
●

●

●

●

●

●

0.10

0.12

0.14

0.16

0.18

5 15 25 35 45 55 65 75 85 95
Prediction percentile

P
re

va
le

nc
e

Figure 9: Results for asthma based on the best lasso model. Left: box plot of the percentile of the linear
prediction score among cases versus controls. Right: the stratified prevalence across different percentile
bins based on the predicted scores by the optimal lasso.

covariates age and sex.

5 Summary and discussion

22

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

Model Form AUCtrain AUCval AUCtest Size
(1) Age + Sex 0.6918 0.6952 0.6883 2
(2) Age + Sex + 10 PCs 0.6927 0.6959 0.6889 12
(3) (2) + Single SNP 0.6963 6982 0.6921 13
(4) (2) + 10K Combined 0.7402 0.6956 0.6880 10,012
(5) (2) + 100K Combined 0.8518 0.6607 0.6547 100,012
(6) Sequential LR 0.7540 0.7167 0.7137 1,012
(7) Lasso 0.7832 0.7259 0.7191 1,371
(8) Relaxed Lasso 0.7273 0.7220 0.7166 239

Table 7: AUC values for high cholesterol. For lasso and relaxed lasso, the chosen model is based on
maximum AUC on the validation set. Model (3) to (8) each includes Model (2) plus their own specification
as stated in the Form column.

0 10 20 30 40 50

0.
68

0.
70

0.
72

0.
74

0.
76

0.
78

0.
80

Lambda Index

A
U

C

● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ●

●
●

●

● ● ● ● ● ●

●

● ●

●
● ●

●
●

● ● ● ● ●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

● ●

● ● ●

● ●
● ● ● ● ●

● ● ●
● ● ●

●
● ●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

Lasso (train)
Lasso (test)
ReLasso (train)
ReLasso (test)

14 18 32 35 34 34 43 68 11
3

20
8

32
5

48
1

71
7

96
0

12
70

15
52

Figure 10: AUC plot for high cholesterol. The top axis shows the number of active variables in the model.

In this paper, we propose a novel batch screening iterative lasso (BASIL) algorithm to fit the full
lasso solution path for very large and high-dimensional datasets. It can be used, among the others,
for Gaussian linear model, logistic regression and Cox regression. It enjoys the advantages of high
efficiency, flexibility and easy implementation. For SNP data as in our applications, we develop an
R package snpnet that incorporates SNP-specific optimizations and are able to process datasets of
wide interest from the UK Biobank.

Our numerical studies demonstrate that the iterative procedure effectively reduces a big-n-big-
p lasso problem into one that is manageable by in-memory computation. In each iteration, we

23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

●●●●●●●●0

25

50

75

100

Control Case
High cholesterol

P
re

di
ct

io
n

pe
rc

en
til

e

●

●
●

●

●
●

●

●

●

●

0.0

0.1

0.2

0.3

5 15 25 35 45 55 65 75 85 95
Prediction percentile

P
re

va
le

nc
e

Figure 11: Results for high cholesterol based on the best lasso model. Left: box plot of the percentile
of the linear prediction score among cases versus controls. Right: the stratified prevalence across different
percentile bins based on the predicted scores by the optimal lasso.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 12: ROC curves. Left: asthma. Right: high cholesterol.

are able to use parallel computing when applying screening rules to filter out a large number of
variables. After screening, we are left with only a small subset of data on which we are able to
conduct intensive computation like cyclical coordinate descent all in memory. For the subproblem,
we can use existing fast procedures for small or moderate-size lasso problems. Thus, our method
allows easy reuse of previous software with lightweight development effort.

When a large number of variables is needed in the optimal predictive model, it may still require
either large memory or long computation time to solve the smaller subproblem. In that case, we
may consider more scalable and parallelizable methods like proximal gradient descent (Parikh and
Boyd, 2014) or dual averaging (Xiao, 2010; Duchi et al., 2012). One may think why don’t we
directly use these methods for the original full problem? First, the ultra high dimension makes
the evaluation of gradients, even on mini-batch very expensive. Second, it can take a lot more
steps for such first-order methods to converge to a good objective value. Moreover, the speed of
convergence depends on the choice of other parameters such as step size and additional constants
in dual averaging. For those reasons, we still prefer the tuning-free and fast coordinate descent

24

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

methods when the subproblem is manageable.

Acknowledgement
We thank Balasubramanian Narasimhan for helpful discussion on the package development, Ken-
neth Tay, the members of the Rivas lab for insightful feedback. J.Q. is partially supported by the
Two Sigma Graduate Fellowship. Y.T. is supported by Funai Overseas Scholarship from Funai
Foundation for Information Technology and the Stanford University School of Medicine.

M.A.R. is supported by Stanford University and a National Institute of Health center for Multi
and Trans-ethnic Mapping of Mendelian and Complex Diseases grant (5U01 HG009080). This work
was supported by National Human Genome Research Institute (NHGRI) of the National Institutes
of Health (NIH) under awards R01HG010140. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the National Institutes of Health.

R.T was partially supported by NIH grant 5R01 EB001988-16 and NSF grant 19 DMS1208164.
T.H. was partially supported by grant DMS-1407548 from the National Science Foundation, and

grant 5R01 EB 001988-21 from the National Institutes of Health.
This research has been conducted using the UK Biobank Resource under application number

24983. We thank all the participants in the study. The primary and processed data used to
generate the analyses presented here are available in the UK Biobank access management system
(https://amsportal.ukbiobank.ac.uk/) for application 24983, ”Generating effective therapeutic
hypotheses from genomic and hospital linkage data” (http://www.ukbiobank.ac.uk/wp-content/
uploads/2017/06/24983-Dr-Manuel-Rivas.pdf), and the results are displayed in the Global
Biobank Engine (https://biobankengine.stanford.edu).

Some of the computing for this project was performed on the Sherlock cluster. We would like
to thank Stanford University and the Stanford Research Computing Center for providing compu-
tational resources and support that contributed to these research results.

References
Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society. Series B (Methodological), 58(1):267–288, 1996. ISSN 00359246. URL http://www.
jstor.org/stable/2346178.

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized linear
models via coordinate descent, 2010a. ISSN 1548-7660. URL https://www.jstatsoft.org/
v033/i01.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, 2nd Edition. Springer series in statistics. Springer-
Verlag, 2009. doi: 10.1007/978-0-387-84858-7.

Bradley Efron and Trevor Hastie. Computer Age Statistical Inference: Algorithms, Evidence, and
Data Science, volume 5. Cambridge University Press, 2016.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, January 2008. ISSN 0001-0782. doi: 10.1145/1327452.1327492.
URL http://doi.acm.org/10.1145/1327452.1327492.

25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://amsportal.ukbiobank.ac.uk/
http://www.ukbiobank.ac.uk/wp-content/uploads/2017/06/24983-Dr-Manuel-Rivas.pdf
http://www.ukbiobank.ac.uk/wp-content/uploads/2017/06/24983-Dr-Manuel-Rivas.pdf
https://biobankengine.stanford.edu
http://www.jstor.org/stable/2346178
http://www.jstor.org/stable/2346178
https://www.jstatsoft.org/v033/i01
https://www.jstatsoft.org/v033/i01
http://doi.acm.org/10.1145/1327452.1327492
https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. Spark:
Cluster computing with working sets. In Proceedings of the 2Nd USENIX Conference on Hot
Topics in Cloud Computing, HotCloud’10, pages 10–10, Berkeley, CA, USA, 2010. USENIX
Association. URL http://dl.acm.org/citation.cfm?id=1863103.1863113.

Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A system for large-
scale machine learning. In Proceedings of the 12th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’16, pages 265–283, Berkeley, CA, USA, 2016. USENIX Associa-
tion. ISBN 978-1-931971-33-1. URL http://dl.acm.org/citation.cfm?id=3026877.3026899.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2017. URL https://www.R-project.org/.

Patrick Breheny and Jian Huang. Coordinate descent algorithms for nonconvex penalized regression,
with applications to biological feature selection. The Annals of Applied Statistics, 5(1):232–253,
03 2011. doi: 10.1214/10-AOAS388. URL https://doi.org/10.1214/10-AOAS388.

Trevor Hastie. Statistical learning with big data. Presentation at Data Science at Stanford Seminar,
2015.

Clare Bycroft, Colin Freeman, Desislava Petkova, Gavin Band, Lloyd T. Elliott, Kevin Sharp,
Allan Motyer, Damjan Vukcevic, Olivier Delaneau, Jared O?Connell, Adrian Cortes, Samantha
Welsh, Alan Young, Mark Effingham, Gil McVean, Stephen Leslie, Naomi Allen, Peter Donnelly,
and Jonathan Marchini. The uk biobank resource with deep phenotyping and genomic data.
Nature, 562(7726):203–209, 2018. ISSN 1476-4687. doi: 10.1038/s41586-018-0579-z. URL https:
//doi.org/10.1038/s41586-018-0579-z.

Peter M. Visscher, Naomi R. Wray, Qian Zhang, Pamela Sklar, Mark I. McCarthy, Matthew A.
Brown, and Jian Yang. 10 years of gwas discovery: Biology, function, and translation. The
American Journal of Human Genetics, 101(1):5–22, 2017. ISSN 0002-9297. doi: 10.1016/j.ajhg.
2017.06.005. URL https://doi.org/10.1016/j.ajhg.2017.06.005.

Christopher C Chang, Carson C Chow, Laurent CAM Tellier, Shashaank Vattikuti, Shaun M
Purcell, and James J Lee. Second-generation PLINK: rising to the challenge of larger and richer
datasets. GigaScience, 4(1), 02 2015. ISSN 2047-217X. doi: 10.1186/s13742-015-0047-8. URL
https://doi.org/10.1186/s13742-015-0047-8.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge university press, 2004.

Robert Tibshirani, Jacob Bien, Jerome Friedman, Trevor Hastie, Noah Simon, Jonathan Taylor,
and Ryan J. Tibshirani. Strong rules for discarding predictors in lasso-type problems. Journal
of the Royal Statistical Society. Series B (Statistical Methodology), 74(2):245–266, 2012. ISSN
13697412, 14679868. URL http://www.jstor.org/stable/41430939.

Nicolai Meinshausen. Relaxed lasso. Computational Statistics & Data Analysis, 52(1):374 – 393,
2007. ISSN 0167-9473. doi: https://doi.org/10.1016/j.csda.2006.12.019. URL http://www.
sciencedirect.com/science/article/pii/S0167947306004956.

26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=3026877.3026899
https://www.R-project.org/
https://doi.org/10.1214/10-AOAS388
https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1016/j.ajhg.2017.06.005
https://doi.org/10.1186/s13742-015-0047-8
http://www.jstor.org/stable/41430939
http://www.sciencedirect.com/science/article/pii/S0167947306004956
http://www.sciencedirect.com/science/article/pii/S0167947306004956
https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

Alkes L. Price, Nick J. Patterson, Robert M. Plenge, Michael E. Weinblatt, Nancy A. Shadick, and
David Reich. Principal components analysis corrects for stratification in genome-wide association
studies. Nature Genetics, 38:904, 2006. doi: 10.1038/ng1847. URL https://doi.org/10.1038/
ng1847.

Michael J. Kane, John Emerson, and Stephen Weston. Scalable strategies for computing with
massive data. Journal of Statistical Software, 55(14):1–19, 2013. URL http://www.jstatsoft.
org/v55/i14/.

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, Articles, 33(1):1–22, 2010b. ISSN
1548-7660. doi: 10.18637/jss.v033.i01. URL https://www.jstatsoft.org/v033/i01.

D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society. Series B
(Methodological), 34(2):187–220, 1972. ISSN 00359246. URL http://www.jstor.org/stable/
2985181.

Eric Sobel, Kenneth Lange, Tong Tong Wu, Trevor Hastie, and Yi Fang Chen. Genome-Wide
Association Analysis by Lasso Penalized Logistic Regression. Bioinformatics, 25(6):714–721, 01
2009. ISSN 1367-4803. doi: 10.1093/bioinformatics/btp041. URL https://doi.org/10.1093/
bioinformatics/btp041.

Laurent El Ghaoui, Vivian Viallon, and Tarek Rabbani. Safe feature elimination for the lasso and
sparse supervised learning problems. arXiv preprint arXiv:1009.4219, 2010.

Jianqing Fan and Jinchi Lv. Sure independence screening for ultrahigh dimensional feature space.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(5):849–911, 2008.
doi: 10.1111/j.1467-9868.2008.00674.x. URL https://rss.onlinelibrary.wiley.com/doi/
abs/10.1111/j.1467-9868.2008.00674.x.

Jie Wang, Peter Wonka, and Jieping Ye. Lasso screening rules via dual polytope projection. Jour-
nal of Machine Learning Research, 16:1063–1101, 2015. URL http://jmlr.org/papers/v16/
wang15a.html.

Yaohui Zeng and Patrick Breheny. The biglasso package: A memory-and computation-efficient
solver for lasso model fitting with big data in R. arXiv preprint arXiv:1701.05936, 2017.

Florian Privé, Michael G B Blum, Hugues Aschard, and Andrey Ziyatdinov. Efficient Analysis of
Large-Scale Genome-Wide Data with Two R packages: bigstatsr and bigsnpr. Bioinformatics,
34(16):2781–2787, 03 2018. ISSN 1367-4803. doi: 10.1093/bioinformatics/bty185.

Jared D Huling and Peter ZG Qian. Fast penalized regression and cross validation for tall data
with the oem package. arXiv preprint arXiv:1801.09661, 2018.

Louis Lello, Steven G. Avery, Laurent Tellier, Ana I. Vazquez, Gustavo de los Campos, and Stephen
D. H. Hsu. Accurate genomic prediction of human height. Genetics, 210(2):477–497, 2018. ISSN
0016-6731. doi: 10.1534/genetics.118.301267. URL http://www.genetics.org/content/210/
2/477.

27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1038/ng1847
https://doi.org/10.1038/ng1847
http://www.jstatsoft.org/v55/i14/
http://www.jstatsoft.org/v55/i14/
https://www.jstatsoft.org/v033/i01
http://www.jstor.org/stable/2985181
http://www.jstor.org/stable/2985181
https://doi.org/10.1093/bioinformatics/btp041
https://doi.org/10.1093/bioinformatics/btp041
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2008.00674.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2008.00674.x
http://jmlr.org/papers/v16/wang15a.html
http://jmlr.org/papers/v16/wang15a.html
http://www.genetics.org/content/210/2/477
http://www.genetics.org/content/210/2/477
https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

Christopher DeBoever, Yosuke Tanigawa, Malene E. Lindholm, Greg McInnes, Adam Lavertu,
Erik Ingelsson, Chris Chang, Euan A. Ashley, Carlos D. Bustamante, Mark J. Daly, and
Manuel A. Rivas. Medical relevance of protein-truncating variants across 337,205 individuals
in the uk biobank study. Nature Communications, 9(1):1612, 2018. ISSN 2041-1723. doi:
10.1038/s41467-018-03910-9. URL https://doi.org/10.1038/s41467-018-03910-9.

Yosuke Tanigawa, Jiehan Li, Johanne Marie Justesen, Heiko Horn, Matthew Aguirre, Christopher
DeBoever, Chris Chang, Balasubramanian Narasimhan, Kasper Lage, Trevor Hastie, Chong Yon
Park, Gill Bejerano, Erik Ingelsson, and Manuel A. Rivas. Components of genetic associations
across 2,138 phenotypes in the uk biobank highlight novel adipocyte biology. bioRxiv, 2019. doi:
10.1101/442715. URL https://www.biorxiv.org/content/early/2019/03/19/442715.

Nick Patterson, Alkes L Price, and David Reich. Population structure and eigenanalysis. PLOS
Genetics, 2(12):1–20, 12 2006. doi: 10.1371/journal.pgen.0020190. URL https://doi.org/10.
1371/journal.pgen.0020190.

Tinca J. C. Polderman, Beben Benyamin, Christiaan A. de Leeuw, Patrick F. Sullivan, Arjen van
Bochoven, Peter M. Visscher, and Danielle Posthuma. Meta-analysis of the heritability of human
traits based on fifty years of twin studies. Nature Genetics, 47:702, 2015. doi: 10.1038/ng.3285.
URL https://doi.org/10.1038/ng.3285.

H. D. Patterson and R. Thompson. Recovery of inter-block information when block sizes are un-
equal. Biometrika, 58(3):545–554, 1971. ISSN 00063444. URL http://www.jstor.org/stable/
2334389.

Jian Yang, Beben Benyamin, Brian P. McEvoy, Scott Gordon, Anjali K. Henders, Dale R. Nyholt,
Pamela A. Madden, Andrew C. Heath, Nicholas G. Martin, Grant W. Montgomery, Michael E.
Goddard, and Peter M. Visscher. Common snps explain a large proportion of the heritability for
human height. Nature Genetics, 42:565, 2010. doi: 10.1038/ng.608. URL https://doi.org/10.
1038/ng.608.

Jian Yang, S. Hong Lee, Michael E. Goddard, and Peter M. Visscher. Gcta: A tool for genome-wide
complex trait analysis. The American Journal of Human Genetics, 88(1):76–82, 2011. ISSN 0002-
9297. doi: 10.1016/j.ajhg.2010.11.011. URL https://doi.org/10.1016/j.ajhg.2010.11.011.

Peter M. Visscher, William G. Hill, and Naomi R. Wray. Heritability in the genomics era ? concepts
and misconceptions. Nature Reviews Genetics, 9:255, 2008. doi: 10.1038/nrg2322. URL https:
//doi.org/10.1038/nrg2322.

SangăHong Lee, NaomiăR Wray, MichaelăE Goddard, and PeterăM Visscher. Estimating missing
heritability for disease from genome-wide association studies. The American Journal of Human
Genetics, 88(3):294–305, 2011. ISSN 0002-9297. doi: 10.1016/j.ajhg.2011.02.002. URL https:
//doi.org/10.1016/j.ajhg.2011.02.002.

Herman Wold. Soft modelling by latent variables: The non-linear iterative partial least squares
(nipals) approach. Journal of Applied Probability, 12(S1):117?142, 1975. doi: 10.1017/
S0021900200047604.

Karri Silventoinen, Sampo Sammalisto, Markus Perola, Dorret I. Boomsma, Belinda K. Cornes,
Chayna Davis, Leo Dunkel, Marlies de Lange, Jennifer R. Harris, Jacob V.B. Hjelmborg, and

28

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1038/s41467-018-03910-9
https://www.biorxiv.org/content/early/2019/03/19/442715
https://doi.org/10.1371/journal.pgen.0020190
https://doi.org/10.1371/journal.pgen.0020190
https://doi.org/10.1038/ng.3285
http://www.jstor.org/stable/2334389
http://www.jstor.org/stable/2334389
https://doi.org/10.1038/ng.608
https://doi.org/10.1038/ng.608
https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.1038/nrg2322
https://doi.org/10.1038/nrg2322
https://doi.org/10.1016/j.ajhg.2011.02.002
https://doi.org/10.1016/j.ajhg.2011.02.002
https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

et al. Heritability of adult body height: A comparative study of twin cohorts in eight countries.
Twin Research, 6(5):399?408, 2003. doi: 10.1375/twin.6.5.399.

Peter M Visscher, Sarah E Medland, Manuel A. R Ferreira, Katherine I Morley, Gu Zhu, Belinda K
Cornes, Grant W Montgomery, and Nicholas G Martin. Assumption-free estimation of heritability
from genome-wide identity-by-descent sharing between full siblings. PLOS Genetics, 2(3):1–10,
03 2006. doi: 10.1371/journal.pgen.0020041. URL https://doi.org/10.1371/journal.pgen.
0020041.

Peter M. Visscher, Brian McEvoy, and Jian Yang. From galton to gwas: Quantitative genetics of
human height. Genetics Research, 92(5-6):371?379, 2010. doi: 10.1017/S0016672310000571.

Noah Zaitlen, Peter Kraft, Nick Patterson, Bogdan Pasaniuc, Gaurav Bhatia, Samuela Pollack,
and Alkes L. Price. Using extended genealogy to estimate components of heritability for 23
quantitative and dichotomous traits. PLOS Genetics, 9(5):1–11, 05 2013. doi: 10.1371/journal.
pgen.1003520. URL https://doi.org/10.1371/journal.pgen.1003520.

Gibran Hemani, Jian Yang, Anna Vinkhuyzen, JosephăE Powell, Gonneke Willemsen, Jouke-Jan
Hottenga, Abdel Abdellaoui, Massimo Mangino, AnaăM Valdes, SarahăE Medland, PamelaăA
Madden, AndrewăC Heath, AnjaliăK Henders, DaleăR Nyholt, EcoăJ C. deăGeus, PatrikăK E.
Magnusson, Erik Ingelsson, GrantăW Montgomery, TimothyăD Spector, DorretăI Boomsma,
NancyăL Pedersen, NicholasăG Martin, and PeterăM Visscher. Inference of the genetic architec-
ture underlying bmi and height with the use of 20,240 sibling pairs. The American Journal of
Human Genetics, 93(5):865–875, 2013. ISSN 0002-9297. doi: 10.1016/j.ajhg.2013.10.005. URL
https://doi.org/10.1016/j.ajhg.2013.10.005.

Jian Yang, Andrew Bakshi, Zhihong Zhu, Gibran Hemani, Anna A. E. Vinkhuyzen, Sang Hong
Lee, et al. Genetic variance estimation with imputed variants finds negligible missing heritability
for human height and body mass index. Nature Genetics, 47:1114, 2015. doi: 10.1038/ng.3390.
URL https://doi.org/10.1038/ng.3390.

Hana Lango Allen, Karol Estrada, Guillaume Lettre, Sonja I. Berndt, Michael N. Weedon, Fernando
Rivadeneira, et al. Hundreds of variants clustered in genomic loci and biological pathways affect
human height. Nature, 467:832, 2010. doi: 10.1038/nature09410. URL https://doi.org/10.
1038/nature09410.

Andrew R. Wood, Tonu Esko, Jian Yang, Sailaja Vedantam, Tune H. Pers, Stefan Gustafsson,
et al. Defining the role of common variation in the genomic and biological architecture of adult
human height. Nature Genetics, 46:1173, 2014. doi: 10.1038/ng.3097. URL https://doi.org/
10.1038/ng.3097.

Eirini Marouli, Mariaelisa Graff, Carolina Medina-Gomez, Ken Sin Lo, Andrew R. Wood, Troels R.
Kjaer, et al. Rare and low-frequency coding variants alter human adult height. Nature, 542:186,
2017. doi: 10.1038/nature21039. URL https://doi.org/10.1038/nature21039.

Stuart Macgregor, Belinda K. Cornes, Nicholas G. Martin, and Peter M. Visscher. Bias, preci-
sion and heritability of self-reported and clinically measured height in australian twins. Human
Genetics, 120(4):571–580, Nov 2006. ISSN 1432-1203. doi: 10.1007/s00439-006-0240-z. URL
https://doi.org/10.1007/s00439-006-0240-z.

29

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1371/journal.pgen.0020041
https://doi.org/10.1371/journal.pgen.0020041
https://doi.org/10.1371/journal.pgen.1003520
https://doi.org/10.1016/j.ajhg.2013.10.005
https://doi.org/10.1038/ng.3390
https://doi.org/10.1038/nature09410
https://doi.org/10.1038/nature09410
https://doi.org/10.1038/ng.3097
https://doi.org/10.1038/ng.3097
https://doi.org/10.1038/nature21039
https://doi.org/10.1007/s00439-006-0240-z
https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

Tian Ge, Chia-Yen Chen, Benjamin M. Neale, Mert R. Sabuncu, and Jordan W. Smoller. Phenome-
wide heritability analysis of the uk biobank. PLOS Genetics, 13(4):1–21, 04 2017. doi: 10.1371/
journal.pgen.1006711. URL https://doi.org/10.1371/journal.pgen.1006711.

Elizabeth K. Speliotes, Cristen J. Willer, Sonja I. Berndt, Keri L. Monda, Gudmar Thorleifsson,
Anne U. Jackson, et al. Association analyses of 249,796 individuals reveal 18 new loci associated
with body mass index. Nature Genetics, 42:937, 2010. doi: 10.1038/ng.686. URL https:
//doi.org/10.1038/ng.686.

Adam E. Locke, Bratati Kahali, Sonja I. Berndt, Anne E. Justice, Tune H. Pers, Felix R. Day, Corey
Powell, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature,
518:197, 2015. doi: 10.1038/nature14177. URL https://doi.org/10.1038/nature14177.

Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in Optimization, 1
(3):127–239, January 2014. ISSN 2167-3888. doi: 10.1561/2400000003. URL http://dx.doi.
org.stanford.idm.oclc.org/10.1561/2400000003.

Lin Xiao. Dual averaging methods for regularized stochastic learning and online optimization.
Journal of Machine Learning Research, 11(Oct):2543–2596, 2010.

J. C. Duchi, A. Agarwal, and M. J. Wainwright. Dual averaging for distributed optimization:
Convergence analysis and network scaling. IEEE Transactions on Automatic Control, 57(3):
592–606, March 2012. ISSN 0018-9286. doi: 10.1109/TAC.2011.2161027.

Stephen D. Turner. qqman: An R package for visualizing gwas results using q-q and manhattan
plots. Journal of Open Source Software, 3(25):731, 2018. doi: 10.21105/joss.00731.

30

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1371/journal.pgen.1006711
https://doi.org/10.1038/ng.686
https://doi.org/10.1038/ng.686
https://doi.org/10.1038/nature14177
http://dx.doi.org.stanford.idm.oclc.org/10.1561/2400000003
http://dx.doi.org.stanford.idm.oclc.org/10.1561/2400000003
https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

A Manhattan Plots
The Manhattan plots in Figure 13 (generated using the qqman package (Turner, 2018)) show the
magnitude of the univariate p-values and the size of the lasso coefficients for each gene for the
two quantitative traits and two binary traits. The coefficients are plotted for the model with the
optimal R2 value on the validation set. The variants highlighted in red in both plots are those that
have coefficient magnitudes above the 99th percentile of all coefficient magnitudes for the trait.
The horizontal line in the p-value plot is plotted at the genome-wide Bonferroni corrected p-value
threshold 5× 10−8. There are two main points we would like to highlight:

• The lasso manages to capture significant univariate predictors in each genetic region. Due
to possible correlation it does not pick up the variants with similarly small p-values located
nearby.

• Some of the variants with weak univariate signals are also identified and turn out to be crucial
to the predictive performance of the lasso.

For the two qualitative traits plotted in Figure 14, there are fewer p-values above the threshold,
and many of the significant ones are located close to each other. The size of the lasso fit is corre-
spondingly smaller, and the large coefficients pick up the important locations as before. However,
the nonzero coefficients are still spread across the whole genome.

31

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

(a) (b)

(c) (d)

Figure 13: Manhattan plots of the univariate p-values and lasso coefficients for height (a, c) and BMI
(b, d). The vertical axis of the p-value plots shows − log10(p) for each SNP, while the vertical axis of the
coefficient plots shows the magnitude of the coefficients from snpnet. The SNPs with relatively large lasso
coefficients are highlighted in red. The blue horizontal line on the p-value plot represents a reference level
of p = 5 × 10−8.

32

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

(a) (b)

(c) (d)

Figure 14: Manhattan plots of the univariate p-values and lasso coefficients for asthma (a, c) and high
cholesterol (b, d). The vertical axis of the p-value plots shows − log10(p) for each SNP, while the vertical
axis of the coefficient plots shows the magnitude of the coefficients from snpnet. The SNPs with relatively
large lasso coefficients are highlighted in red. The blue horizontal line on the p-value plot represents a
reference level of p = 5 × 10−8.

33

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 7, 2019. ; https://doi.org/10.1101/630079doi: bioRxiv preprint

https://doi.org/10.1101/630079
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Variable selection via the lasso
	Computational challenges in large-scale problems
	A screening-based solution
	Outline of the paper

	Methods and algorithms
	Batch Screening Iterative Lasso (BASIL)
	Computational considerations
	Extension to general problems

	Related methods and packages
	Application: UK Biobank
	Implementation details
	Evaluation
	Other methods
	Results
	Quantitative Traits
	Qualitative Traits

	Summary and discussion
	Manhattan Plots

