The functional reach of the hippocampal memory system to the oculomotor system

3 Abbreviated title: Hippocampal Responses Reach Oculomotor Regions

- 4 Jennifer D. Ryan^{1,2*}, Kelly Shen^{1*}, Arber Kacollja¹, Heather Tian¹, John Griffiths¹, Gleb
- 5 Bezgin³, Anthony R. McIntosh^{1,2}
- 6 ¹Rotman Research Institute, Baycrest, Toronto, Ontario, M6A2E1
- 7 ²Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3
- 8 ³Montreal Neurological Institute, McGill University, Montreal, Quebec, QC H3A 2B4
- 9 * equal contribution
- 10 Corresponding Authors:
- 11 Jennifer D. Ryan, PhD
- 12 Rotman Research Institute
- 13 Baycrest
- 14 3560 Bathurst St.
- 15 Toronto, ON M6A2E1
- 16 Email: jryan@research.baycrest.org
- 17 Kelly Shen, PhD
- 18 Rotman Research Institute
- 19 Baycrest
- 20 3560 Bathurst St.
- 21 Toronto, ON M6A2E1
- 22 Email: <u>kshen@research.baycrest.org</u>
- 23 Number of Pages: 42
- 24 Number of Figures: 3
- 25 Number of Tables: 9
- 26 Multimedia: N/A
- 27 Number of Words Abstract: 246
- 28 Number of Words Introduction: 634
- 29 Number of Words Discussion: 1497
- 30 Conflicts of Interest: The authors declare no competing financial interests.
- 31 Acknowledgments: The authors wish to thank R. Shayna Rosenbaum for her helpful
- 32 comments on a previous version of this manuscript. This work was funded by a grant
- 33 from Natural Sciences and Engineering Research Council of Canada to J.D.R.

34

Abstract

35	Visual exploration is related to activity in the hippocampus (HC) and/or extended medial
36	temporal lobe system (MTL), is influenced by stored memories, and is altered in amnesic
37	cases. An extensive set of polysynaptic connections exist between the HC and
38	oculomotor system; however, it is not known if HC responses ultimately influence neural
39	activity in the oculomotor system, and the timing by which such neural modulation could
40	occur. We conducted simulations of the functional interactions between the two systems
41	in the macaque brain by leveraging The Virtual Brain, a software platform for
42	connectome-based modelling. Stimulation of CA1, pre-subiculum, and MTL cortices
43	each resulted in observable responses in oculomotor regions, including the frontal eye
44	fields (FEF), within the time of a fixation (<200ms). Stimulation of the subiculum and
45	para-subiculum resulted in slower responses to FEF (400+ms), and CA3 stimulation did
46	not reach FEF. Activity indicative of feedback from oculomotor regions was observed in
47	cortical regions (areas 5, 7a, posterior cingulate) known for representing spatial frames of
48	reference. Modeled lesions to the entorhinal, parahippocampal, and perirhinal cortices
49	each slowed the dissipation of HC signal to oculomotor regions, whereas HC lesions
50	generally did not affect the rapid MTL activity propagation (<100ms) to oculomotor
51	regions. These findings provide novel evidence that information represented by the
52	HC/MTL activity may influence the oculomotor system during the time of a gaze
53	fixation. HC lesions may result in an increased rate of visual exploration due to the
54	remaining, and relatively faster, signal from MTL regions.

Ľ	Ľ
J	J

Significance Statement

56	No major account of oculomotor (eye movement) guidance considers the influence of the
57	hippocampus (HC) and broader medial temporal lobe (MTL) system, yet it is clear that
58	information is exchanged between the two systems. Prior experience influences current
59	viewing, and cases of amnesia due to compromised HC/MTL function show specific
60	alterations in viewing behaviour. Using computational modeling, we show that
61	stimulation of subregions of the HC, and of the MTL, rapidly results in observable
62	responses in oculomotor control regions, and that HC/MTL lesions alter signal
63	propagation. These findings suggest that information from memory may readily guide
64	visual exploration, and calls for a reconsideration of the neural circuitry involved in
65	oculomotor guidance.

1	7
n	1

87

Introduction

68 Memory influences ongoing active exploration of the visual environment (see Hannula et 69 al., 2010, for review). For instance, more viewing is directed to novel versus previously 70 viewed items (Fantz, 1964; Fagan, 1970), and more viewing is directed to areas that have 71 been altered from a prior viewing (Ryan et al., 2000; Smith, Hopkins, & Squire, 2006). 72 Amnesic cases who have severe memory impairments due to compromised function of 73 the hippocampus (HC) and/or broader medial temporal lobe (MTL) show changes in their 74 viewing behavior compared to neurologically-intact cases (Ryan et al., 2000; Hannula et 75 al., 2007; Warren et al., 2010; Chau et al., 2011; Olsen et al., 2015). Similar findings 76 have been observed in older adults who have suspected HC/MTL compromise (Ryan et 77 al., 2007), and certain viewing patterns have been shown to track with entorhinal cortex 78 (ERC) volumes (Yeung et al., 2017). Visual exploration predicts HC activity during 79 encoding (Liu et al., 2018), and, conversely, HC/MTL activity predicts ongoing visual 80 exploration that is indicative of memory retrieval (Hannula & Ranganath, 2009; Ryals et 81 al., 2015). The relationship between visual sampling and HC activity is weakened in 82 aging, presumably due to decline in HC structure or function (Liu et al., 2018). Such 83 evidence collectively demonstrates that HC/MTL function is related to oculomotor 84 behavior. The indirect implication of these studies is that the HC must influence neural 85 activity in the oculomotor system. 86 Studies in non-human primates have shown that HC/MTL activity is linked to

88 (Killian, Jutras, & Buffalo, 2012), while HC/MTL activity is modulated by saccades

oculomotor behavior. The activity of grid cells in the ERC are tied to eye position

89 (Sobotka, Nowicka, & Ringo, 1997) and fixations (Hoffman et al., 2013; 2013; Leonard

 shown that there is an extensive set of polysynaptic pathways spanning extrastriate, posterior parietal, and prefrontal regions that may mediate the exchange of information between the oculomotor and memory systems (Shen, Bezgin, Selvam, McIntosh & Ryan 2016). Prior work has speculated as to which regions of the brain may be important for transmitting information between the HC and oculomotor systems (e.g., Meister and Buffalo, 2017; Micie et al., 2010), but such discussions were limited to regions examined in isolation without considering the large and complex contribution of recurrent connections to the functional dynamics of large-scale brain networks. This limits our ability to examine a crucial question: is HC/MTL activity able to influence activity in the oculomotor system? In order to impact ongoing visual exploration, HC/MTL activity would likely need to resolve in the oculomotor system within the time of an average duration of a gaze fixation (~ 250-400 ms; Henderson, Nuthmann, Luke, 2013). To examine the extent to which HC/MTL activity could influence activity in the oculomotor system, we leveraged a computational modeling and neuroinformatics platform, The Virtual Brain (TVB; thevirtualbrain.org) in combination with a macaque large-scale network. HC subregions and MTL cortices were each stimulated separately within the connectome-based model and the dissipation of activity through pre-identified cortical anatomical pathways (Shen et al., 2016) was observed (Spiegler et al 2016). Critically, we examined whether activity culminated in responses in key regions within 	90	et al., 2015). How HC/MTL activity traverses the brain to influence the oculomotor
 shown that there is an extensive set of polysynaptic pathways spanning extrastriate, posterior parietal, and prefrontal regions that may mediate the exchange of information between the oculomotor and memory systems (Shen, Bezgin, Selvam, McIntosh & Ryan 2016). Prior work has speculated as to which regions of the brain may be important for transmitting information between the HC and oculomotor systems (e.g., Meister and Buffalo, 2017; Micie et al., 2010), but such discussions were limited to regions examined in isolation without considering the large and complex contribution of recurrent connections to the functional dynamics of large-scale brain networks. This limits our ability to examine a crucial question: is HC/MTL activity able to influence activity in the oculomotor system? In order to impact ongoing visual exploration, HC/MTL activity would likely need to resolve in the oculomotor system within the time of an average duration of a gaze fixation (~ 250-400 ms; Henderson, Nuthmann, Luke, 2013). To examine the extent to which HC/MTL activity could influence activity in the oculomotor system, we leveraged a computational modeling and neuroinformatics platform, The Virtual Brain (TVB; thevirtualbrain.org) in combination with a macaque large-scale network. HC subregions and MTL cortices were each stimulated separately within the connectome-based model and the dissipation of activity through pre-identified cortical anatomical pathways (Shen et al., 2016) was observed (Spiegler et al 2016). Critically, we examined whether activity culminated in responses in key regions within 	91	system has not been shown to date. There are no known direct connections in the non-
 posterior parietal, and prefrontal regions that may mediate the exchange of information between the oculomotor and memory systems (Shen, Bezgin, Selvam, McIntosh & Ryan 2016). Prior work has speculated as to which regions of the brain may be important for transmitting information between the HC and oculomotor systems (e.g., Meister and Buffalo, 2017; Micic et al., 2010), but such discussions were limited to regions examined in isolation without considering the large and complex contribution of recurrent connections to the functional dynamics of large-scale brain networks. This limits our ability to examine a crucial question: is HC/MTL activity able to influence activity in the oculomotor system? In order to impact ongoing visual exploration, HC/MTL activity would likely need to resolve in the oculomotor system within the time of an average duration of a gaze fixation (~ 250-400 ms; Henderson, Nuthmann, Luke, 2013). To examine the extent to which HC/MTL activity could influence activity in the oculomotor system, we leveraged a computational modeling and neuroinformatics platform, The Virtual Brain (TVB; thevirtualbrain.org) in combination with a macaque large-scale network. HC subregions and MTL cortices were each stimulated separately within the connectome-based model and the dissipation of activity through pre-identified cortical anatomical pathways (Shen et al., 2016) was observed (Spiegler et al 2016). Critically, we examined whether activity culminated in responses in key regions within 	92	human primate between hippocampal subfields and the oculomotor system. Yet, we have
 between the oculomotor and memory systems (Shen, Bezgin, Selvam, McIntosh & Ryan 2016). Prior work has speculated as to which regions of the brain may be important for transmitting information between the HC and oculomotor systems (e.g., Meister and Buffalo, 2017; Micic et al., 2010), but such discussions were limited to regions examined in isolation without considering the large and complex contribution of recurrent connections to the functional dynamics of large-scale brain networks. This limits our ability to examine a crucial question: is HC/MTL activity able to influence activity in the oculomotor system? In order to impact ongoing visual exploration, HC/MTL activity would likely need to resolve in the oculomotor system within the time of an average duration of a gaze fixation (~ 250-400 ms; Henderson, Nuthmann, Luke, 2013). To examine the extent to which HC/MTL activity could influence activity in the oculomotor system, we leveraged a computational modeling and neuroinformatics platform, The Virtual Brain (TVB; thevirtualbrain.org) in combination with a macaque large-scale network. HC subregions and MTL cortices were each stimulated separately within the connectome-based model and the dissipation of activity through pre-identified cortical anatomical pathways (Shen et al., 2016) was observed (Spiegler et al 2016). Critically, we examined whether activity culminated in responses in key regions within 	93	shown that there is an extensive set of polysynaptic pathways spanning extrastriate,
 2016). Prior work has speculated as to which regions of the brain may be important for transmitting information between the HC and oculomotor systems (e.g., Meister and Buffalo, 2017; Micic et al., 2010), but such discussions were limited to regions examined in isolation without considering the large and complex contribution of recurrent connections to the functional dynamics of large-scale brain networks. This limits our ability to examine a crucial question: is HC/MTL activity able to influence activity in the oculomotor system? In order to impact ongoing visual exploration, HC/MTL activity would likely need to resolve in the oculomotor system within the time of an average duration of a gaze fixation (~ 250-400 ms; Henderson, Nuthmann, Luke, 2013). To examine the extent to which HC/MTL activity could influence activity in the oculomotor system, we leveraged a computational modeling and neuroinformatics platform, The Virtual Brain (TVB; thevirtualbrain.org) in combination with a macaque large-scale network. HC subregions and MTL cortices were each stimulated separately within the connectome-based model and the dissipation of activity through pre-identified cortical anatomical pathways (Shen et al., 2016) was observed (Spiegler et al 2016). Critically, we examined whether activity culminated in responses in key regions within 	94	posterior parietal, and prefrontal regions that may mediate the exchange of information
 transmitting information between the HC and oculomotor systems (e.g., Meister and Buffalo, 2017; Micic et al., 2010), but such discussions were limited to regions examined in isolation without considering the large and complex contribution of recurrent connections to the functional dynamics of large-scale brain networks. This limits our ability to examine a crucial question: is HC/MTL activity able to influence activity in the oculomotor system? In order to impact ongoing visual exploration, HC/MTL activity would likely need to resolve in the oculomotor system within the time of an average duration of a gaze fixation (~ 250-400 ms; Henderson, Nuthmann, Luke, 2013). To examine the extent to which HC/MTL activity could influence activity in the oculomotor system, we leveraged a computational modeling and neuroinformatics platform, The Virtual Brain (TVB; thevirtualbrain.org) in combination with a macaque large-scale network. HC subregions and MTL cortices were each stimulated separately within the connectome-based model and the dissipation of activity through pre-identified cortical anatomical pathways (Shen et al., 2016) was observed (Spiegler et al 2016). Critically, we examined whether activity culminated in responses in key regions within 	95	between the oculomotor and memory systems (Shen, Bezgin, Selvam, McIntosh & Ryan,
 Buffalo, 2017; Micic et al., 2010), but such discussions were limited to regions examined in isolation without considering the large and complex contribution of recurrent connections to the functional dynamics of large-scale brain networks. This limits our ability to examine a crucial question: is HC/MTL activity able to influence activity in the oculomotor system? In order to impact ongoing visual exploration, HC/MTL activity would likely need to resolve in the oculomotor system within the time of an average duration of a gaze fixation (~ 250-400 ms; Henderson, Nuthmann, Luke, 2013). To examine the extent to which HC/MTL activity could influence activity in the oculomotor system, we leveraged a computational modeling and neuroinformatics platform, The Virtual Brain (TVB; thevirtualbrain.org) in combination with a macaque large-scale network. HC subregions and MTL cortices were each stimulated separately within the connectome-based model and the dissipation of activity through pre-identified cortical anatomical pathways (Shen et al., 2016) was observed (Spiegler et al 2016). Critically, we examined whether activity culminated in responses in key regions within 	96	2016). Prior work has speculated as to which regions of the brain may be important for
 in isolation without considering the large and complex contribution of recurrent connections to the functional dynamics of large-scale brain networks. This limits our ability to examine a crucial question: is HC/MTL activity able to influence activity in the oculomotor system? In order to impact ongoing visual exploration, HC/MTL activity would likely need to resolve in the oculomotor system within the time of an average duration of a gaze fixation (~ 250-400 ms; Henderson, Nuthmann, Luke, 2013). To examine the extent to which HC/MTL activity could influence activity in the oculomotor system, we leveraged a computational modeling and neuroinformatics platform, The Virtual Brain (TVB; thevirtualbrain.org) in combination with a macaque large-scale network. HC subregions and MTL cortices were each stimulated separately within the connectome-based model and the dissipation of activity through pre-identified cortical anatomical pathways (Shen et al., 2016) was observed (Spiegler et al 2016). Critically, we examined whether activity culminated in responses in key regions within 	97	transmitting information between the HC and oculomotor systems (e.g., Meister and
 connections to the functional dynamics of large-scale brain networks. This limits our ability to examine a crucial question: is HC/MTL activity able to influence activity in the oculomotor system? In order to impact ongoing visual exploration, HC/MTL activity would likely need to resolve in the oculomotor system within the time of an average duration of a gaze fixation (~ 250-400 ms; Henderson, Nuthmann, Luke, 2013). To examine the extent to which HC/MTL activity could influence activity in the oculomotor system, we leveraged a computational modeling and neuroinformatics platform, The Virtual Brain (TVB; thevirtualbrain.org) in combination with a macaque large-scale network. HC subregions and MTL cortices were each stimulated separately within the connectome-based model and the dissipation of activity through pre-identified cortical anatomical pathways (Shen et al., 2016) was observed (Spiegler et al 2016). Critically, we examined whether activity culminated in responses in key regions within 	98	Buffalo, 2017; Micic et al., 2010), but such discussions were limited to regions examined
 ability to examine a crucial question: is HC/MTL activity able to influence activity in the oculomotor system? In order to impact ongoing visual exploration, HC/MTL activity would likely need to resolve in the oculomotor system within the time of an average duration of a gaze fixation (~ 250-400 ms; Henderson, Nuthmann, Luke, 2013). To examine the extent to which HC/MTL activity could influence activity in the oculomotor system, we leveraged a computational modeling and neuroinformatics platform, The Virtual Brain (TVB; thevirtualbrain.org) in combination with a macaque large-scale network. HC subregions and MTL cortices were each stimulated separately within the connectome-based model and the dissipation of activity through pre-identified cortical anatomical pathways (Shen et al., 2016) was observed (Spiegler et al 2016). Critically, we examined whether activity culminated in responses in key regions within 	99	in isolation without considering the large and complex contribution of recurrent
 oculomotor system? In order to impact ongoing visual exploration, HC/MTL activity would likely need to resolve in the oculomotor system within the time of an average duration of a gaze fixation (~ 250-400 ms; Henderson, Nuthmann, Luke, 2013). To examine the extent to which HC/MTL activity could influence activity in the oculomotor system, we leveraged a computational modeling and neuroinformatics platform, The Virtual Brain (TVB; thevirtualbrain.org) in combination with a macaque large-scale network. HC subregions and MTL cortices were each stimulated separately within the connectome-based model and the dissipation of activity through pre-identified cortical anatomical pathways (Shen et al., 2016) was observed (Spiegler et al 2016). Critically, we examined whether activity culminated in responses in key regions within 	100	connections to the functional dynamics of large-scale brain networks. This limits our
 would likely need to resolve in the oculomotor system within the time of an average duration of a gaze fixation (~ 250-400 ms; Henderson, Nuthmann, Luke, 2013). To examine the extent to which HC/MTL activity could influence activity in the oculomotor system, we leveraged a computational modeling and neuroinformatics platform, The Virtual Brain (TVB; thevirtualbrain.org) in combination with a macaque large-scale network. HC subregions and MTL cortices were each stimulated separately within the connectome-based model and the dissipation of activity through pre-identified cortical anatomical pathways (Shen et al., 2016) was observed (Spiegler et al 2016). Critically, we examined whether activity culminated in responses in key regions within 	101	ability to examine a crucial question: is HC/MTL activity able to influence activity in the
 duration of a gaze fixation (~ 250-400 ms; Henderson, Nuthmann, Luke, 2013). To examine the extent to which HC/MTL activity could influence activity in the oculomotor system, we leveraged a computational modeling and neuroinformatics platform, The Virtual Brain (TVB; thevirtualbrain.org) in combination with a macaque large-scale network. HC subregions and MTL cortices were each stimulated separately within the connectome-based model and the dissipation of activity through pre-identified cortical anatomical pathways (Shen et al., 2016) was observed (Spiegler et al 2016). Critically, we examined whether activity culminated in responses in key regions within 	102	oculomotor system? In order to impact ongoing visual exploration, HC/MTL activity
105To examine the extent to which HC/MTL activity could influence activity in the106oculomotor system, we leveraged a computational modeling and neuroinformatics107platform, The Virtual Brain (TVB; thevirtualbrain.org) in combination with a macaque108large-scale network. HC subregions and MTL cortices were each stimulated separately109within the connectome-based model and the dissipation of activity through pre-identified110cortical anatomical pathways (Shen et al., 2016) was observed (Spiegler et al 2016).111Critically, we examined whether activity culminated in responses in key regions within	103	would likely need to resolve in the oculomotor system within the time of an average
 oculomotor system, we leveraged a computational modeling and neuroinformatics platform, The Virtual Brain (TVB; thevirtualbrain.org) in combination with a macaque large-scale network. HC subregions and MTL cortices were each stimulated separately within the connectome-based model and the dissipation of activity through pre-identified cortical anatomical pathways (Shen et al., 2016) was observed (Spiegler et al 2016). Critically, we examined whether activity culminated in responses in key regions within 	104	duration of a gaze fixation (~ 250-400 ms; Henderson, Nuthmann, Luke, 2013).
 platform, The Virtual Brain (TVB; thevirtualbrain.org) in combination with a macaque large-scale network. HC subregions and MTL cortices were each stimulated separately within the connectome-based model and the dissipation of activity through pre-identified cortical anatomical pathways (Shen et al., 2016) was observed (Spiegler et al 2016). Critically, we examined whether activity culminated in responses in key regions within 	105	To examine the extent to which HC/MTL activity could influence activity in the
 large-scale network. HC subregions and MTL cortices were each stimulated separately within the connectome-based model and the dissipation of activity through pre-identified cortical anatomical pathways (Shen et al., 2016) was observed (Spiegler et al 2016). Critically, we examined whether activity culminated in responses in key regions within 	106	oculomotor system, we leveraged a computational modeling and neuroinformatics
 within the connectome-based model and the dissipation of activity through pre-identified cortical anatomical pathways (Shen et al., 2016) was observed (Spiegler et al 2016). Critically, we examined whether activity culminated in responses in key regions within 	107	platform, The Virtual Brain (TVB; thevirtualbrain.org) in combination with a macaque
 cortical anatomical pathways (Shen et al., 2016) was observed (Spiegler et al 2016). Critically, we examined whether activity culminated in responses in key regions within 	108	large-scale network. HC subregions and MTL cortices were each stimulated separately
111 Critically, we examined whether activity culminated in responses in key regions within	109	within the connectome-based model and the dissipation of activity through pre-identified
	110	cortical anatomical pathways (Shen et al., 2016) was observed (Spiegler et al 2016).
	111	Critically, we examined whether activity culminated in responses in key regions within
the oculomotor system that provide motoric (e.g., frontal eye fields, FEF) and cognitive	112	the oculomotor system that provide motoric (e.g., frontal eye fields, FEF) and cognitive

113	control (e.g., dorsolateral prefrontal cortex, dlPFC; anterior cingulate, ACC) of eye
114	movements (Johnston & Everling 2008). Finally, we observed the extent to which the
115	propagation and timing of such activity was altered following lesions to one or more
116	HC/MTL regions in order to understand the underlying neural dynamics that may result
117	in altered visual exploration in cases of HC/MTL dysfunction, such as in amnesia or
118	aging.
119	
120	Methods
121	Large-scale network dynamics were simulated using TheVirutalBrain software platform.
122	The connectome-based model represented each node of the network as a neural mass, all
123	coupled together according to a structural connectivity matrix which constrains the
124	spatial and temporal interactions of the system (Deco et al 2011; Breakspear 2017).
125	Data
126	A macaque network with 77 nodes of a single hemisphere was defined using the FV91
127	parcellation (Felleman & Van Essen 1991) and its structural connectivity was queried
128	using the CoCoMac database of tract tracing studies (cocomac.g-node.org; Stephan et al
129	2001 Phil Trans Roy Soc B Bakker et al 2012 Frontiers in Neuroinformatics). A review
130	of the extant literature was also performed to ensure the accuracy of anatomical pathways
131	within and across MTL and oculomotor systems (see Shen et al 2016). Self-connections
132	were not included in the connectivity matrix.
133	As CoCoMac only provides categorical weights for connections (i.e., weak,
134	moderate or strong), we ran probabilistic tractography on diffusion-weighted MR
135	imaging data from 10 male adult macaque monkeys (9 Macaca mulatta, 1 Macaca

136	<i>fascicularis</i> , age 5.8 ± 1.9 years) using the FV91 parcellation to estimate the fibre tract
137	capacities and tract lengths between regions. Image acquisition, preprocessing and
138	tractography procedures for this particular dataset have been previously described (Shen
139	et al 2019; Shen et al 2018). Fiber tract capacity estimates (i.e., 'weights') between each
140	ROI pair were computed as the number of streamlines detected between them,
141	normalized by the total number of streamlines that were seeded. Connectivity weight
142	estimates were averaged across animals and applied to the tracer network, keeping only
143	the connections that appear in the tracer network. The resulting structural connectome
144	was therefore directed, as defined by the tracer data, and fully weighted, as estimated
145	from tractography. Tract lengths were also estimated using probabilistic tractography.

146 Node dynamics

147 The dynamics of each node in the macaque network were given by the following generic148 2-dimensional planar oscillator equations:

$$\dot{V}_{i} = \tau (-fV_{i}^{3} + eV_{i}^{2} + gV_{i} + \alpha W_{i} + \xi \sum_{j=1}^{N} w_{ij}V_{j}(t - \Delta_{ij}) + \gamma I$$

$$\dot{W}_{i} = \tau^{-1}(cV_{i}^{2} + bV_{i} - \beta W_{i} + a)$$
149

where the fast variable *V* represents mean subthreshold neural activity (i.e., local field potential) at node *i*, *W* is a slower timescale recovery variable; the differential time constants of *V* vs. *W* are controlled by the time scale separation parameter τ .

153 The local coupling is scaled by g, while the global connectivity scaling factor ξ 154 acts on all incoming connections to each node, which are also weighted individually by 155 the connectivity weights matrix w (as described above). Exogenous stimulation currents 156 of interest in the present study enter the system through the input variable *I*. Transmission 157 between network nodes was constrained according to the conduction delays matrix $\Delta =$ 158 *L/v*, where *L* is a matrix of inter-regional tract lengths and *v* is axonal conduction 159 velocity. As in Spiegler et al. (2016), cubic, quadratic, and linear coefficients for *V* and *W* 160 were set such that the dynamics reduce to a classic Fitzhugh-Nagumo system. Additional 161 model parameters are listed in Table 1. 162 Brain dynamics operate near criticality when at rest (Ghosh et al., 2008). In this

state, the nodes will naturally oscillate with constant magnitude. Setting the local

164 parameter g so that the system operates near criticality will allow the node respond with a

strong amplitude, and a longer lasting oscillation. If far from the critical point, the

amplitude responses will be weak, slow, and fade quickly, and if spreading within a

167 network, the excitation will decay quickly as it travels. Given our network's structure, re-

168 entry points allow a node to be re-stimulated, making the excitation last longer and travel

169 farther through the network (Spiegler et al., 2016). Following Spiegler et al. (2016), we

tuned the model parameters such that the working point of each node was in a critical

171 regime. The system of delay-differential equations shown above were solved numerically

using a Heun Deterministic integration scheme, with step size dt=0.1 ms.

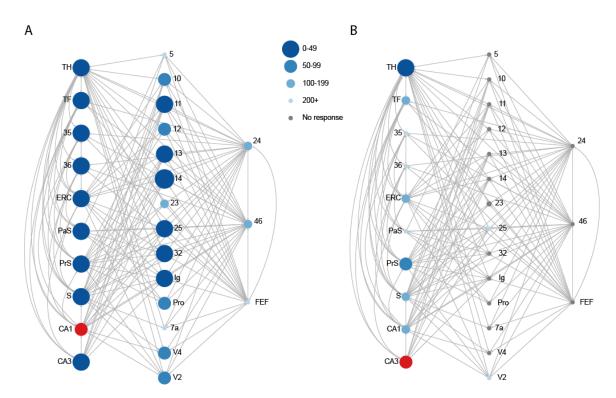
173 Model tuning & stimulation parameters

174 Simulations were run for 7000 ms, with stimulus onset occurring after 5000 ms to allow

175 for settling of the initial transient resulting from randomly specified initial conditions. A

- 176 single pulsed stimulus was used, with duration of 100 ms. To determine when nodes
- 177 became active following stimulation, we first computed the envelope of each node's
- 178 timeseries using a Hilbert transform. Each node's baseline activity was taken as the mean

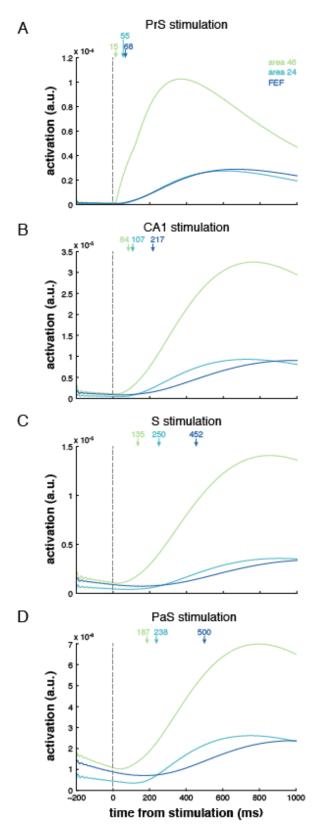
179	amplitude of the envelope in the 200 ms prior to stimulation. The activation threshold of
180	each node was defined as the baseline activity ± 2 std and activation time of each node
181	was taken as the time its envelope amplitude surpassed the activation threshold.
182	To create a biologically realistic model, we stimulated V1 to find activation times
183	of the following areas: V1, V2, V3, V4, middle temporal and medial superior temporal.
184	Conduction velocity (v) was set to 3.0 m/s, and was within the range of conduction
185	velocities estimated in empirical studies of the macaque brain (Girard, Hupé, Bullier,
186	2001; Caminiti et al., 2013). Activation times following V1 stimulation were compared to
187	available empirical data (Schmolensky et al., 1998) and relevant model parameters were
188	adjusted accordingly. Global coupling ξ was set to 0.012. The parameter g was set to -0.1
189	such that the system operated close to the criticality by dampening local excitability.
190	Stimulus weighting (γ) was set to 0.03. Using these model parameters, simulated
191	response times of visual areas following V1 stimulation exhibited a pattern of activations
192	resembling the known hierarchical processing organization of the visual system (V2: 4
193	ms, V3: 4 ms, V4: 8 ms, MT: 9 ms, MSTI: 37 ms, MSTd: 47 ms, FEF: 99 ms).
194	Differences with empirical activation times (e.g., MST and FEF) may be due 1) a lack of
195	subcortical-cortical pathways in our model; and 2) the use of the same conduction
196	velocity for all connections.
197	The same model and stimulation parameters were then used to stimulate the
198	subregions of the hippocampus (CA3, CA1, subiculum, pre-subiculum, para-subiculum),
199	enthorinal cortex (ERC), areas 35 and 36 of the perirhinal cortex (PRC), and areas TF
200	and TH of the parahippocampal cortex (PHC), to look for the activations of nodes whose


201	pathways may serve to mediate the exchange of information between the memory and
202	oculomotor systems (Shen et al., 2016). These nodes of interest included areas V2, V4,
203	7a, granular insular cortex, anterior cingulate cortex, 46, 12, proisocortex, 5, 10, 11,
204	orbitofrontal area 13, orbitofrontal area 14, 23, 25, 32, and 11We further examined
205	whether activation was observed in regions important for oculomotor guidance, including
206	the dorsolateral prefrontal cortex (area 46), anterior cingulate cortex (area 24), and the
207	frontal eye fields.
208	Lesion models
209	Lesions of particular HC and MTL subregions were simulated by removing their afferent
210	and efferent connections to the rest of the network. Stimulations of other HC and MTL
211	sites were repeated on these lesion models.
212	Code availability
213	Simulations were carried out using the command-line (Python) version of
214	TheVirtualBrain (TVB) software package which is available for download at
215	http://thevirtualbrain.org. The customized TVB code for simulations is available upon
216	request.
217	

2	1	ο
7	Τ	Ο

Results

219 HC Subregion Stimulation


- 220 Stimulation of HC subregions CA1, S, PrS, and PaS resulted in observable responses in
- all of the cortical nodes of interest, and within regions 46, 24, and FEF, of the oculomotor
- system (for CA1 example, see Figure 1A). Within our oculomotor regions of interest,
- activity was first observed in area 46, followed by 24, and finally FEF, regardless of HC
- stimulation site. Stimulation of the PrS resulted in the fastest observable responses in
- these oculomotor areas (under 70 ms; Figure 2A). Stimulation of CA1 resulted in rapid
- activity that culminated in oculomotor regions in under 220 ms (Figure 2B). Stimulation
- of either the S or the PaS resolved into area 46 activity by 200 ms, into area 24 by 250
- ms, and finally into FEF by 500 ms (Figure 2C-D). Responses were not observed in the
- 229 majority of the pre-defined cortical hubs following CA3 stimulation, and activity did not
- culminate in observable responses in the oculomotor areas (Figure 1B). See Table 2 for
- activation times for all nodes of interest.

232

233	Figure 1. (A) Stimulation of the CA1 (red circle) resulted in observable responses (blue
234	circles) in multiple HC/MTL nodes, intermediary nodes, and in regions governing
235	oculomotor control, including the frontal eye fields (FEF). (B) Stimulation of the CA3
236	(red circle) resulted in observable responses (blue circles) limited to HC/MTL nodes.
237	Very few responses were observed in oculomotor or cortical areas. Size and shade of the
238	circles scale with elapsed time prior to an observed response. Grey lines denote direct
220	etwart will be used in a last one of a four sector of interest the sector in a last in

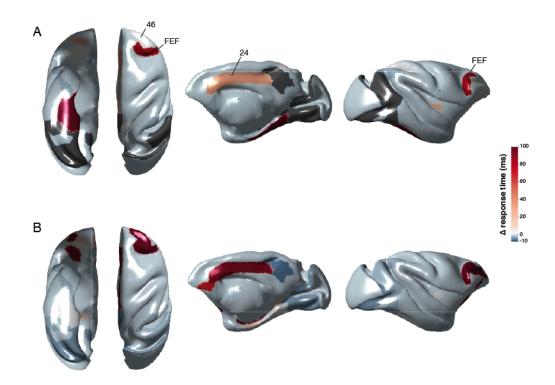
structural connections between nodes. Only regions of interest - those that are involved inthe shortest paths between HC/MTL and oculomotor nodes - are shown.

Figure 2. Response profiles (envelope of region time series) of oculomotor areas following stimulation of PrS (A), CA1 (B), S (C) and PaS (D). Activation is given in arbitrary units (a.u.). The onset of the response for areas 46, 24 and FEF indicated by green, blue and dark blue arrows, respectively.

250 MTL Stimulation

- 251 Stimulation of any of the broader regions within the MTL (ERC, 35, 36, TF, TH) resulted
- in observable responses within oculomotor areas 46, 24, and FEF well under 100ms,
- 253 faster than the responses observed from HC subfield stimulation. Of the MTL regions,
- stimulation of area 35/36 resulted in the earliest responses in areas 46, 24, and FEF
- (within 25 ms). See Table 2 for activation times for all nodes of interest.

256 Cortical Responses


- 257 HC and MTL region stimulation (except for CA3) resulted in signal propagation across
- all of our pre-identified cortical regions of interest. When CA3 was stimulated, cortical
- responses were only observed in areas V2 and 25; no other signal was observed. Notably,
- responses in areas 5 and 7a were generally observed *following* activity from oculomotor
- 261 regions, including FEF, suggestive of a possible feedback response. The exception is S
- stimulation, in which responses in area 5 preceded responses in oculomotor regions by
- 263 ~100 ms. Responses in V4 also followed oculomotor responses; except in cases of CA1,
- 264 TF, and TH stimulation. Likewise, responses in area 23 followed oculomotor responses,
- except in cases of PrS and TH stimulation. See Table 2 for activation times for all nodes
- of interest.

267 Lesion Models: HC subregions

268 Some models of HC and MTL lesions showed an appreciable effect on activation times

- while others did not. Only the results for lesions that affected any activation time by at
- 270 least ± 10 ms are shown. Lesion of CA3 changed neither the pattern nor the timing of
- 271 observable responses following stimulation of each of the other HC/MTL regions (data
- not shown). Lesion of CA1 resulted in a lack of signal to V2, V4, and area 23, and

- slowing of signal from the subicular complex to various regions, including the
- 274 oculomotor regions (Figure 3A; Table 3). Lesion of CA1 also led to small increases in the
- speed of signal following CA3 stimulation to the subicular complex, and from MTL
- regions to TF/TH, and to other regions within the subicular complex (all less than 10 ms).

277

Figure 3. Changes in activation times following HC lesions. Subicular stimulation
following CA1 (A) and ERC (B) lesions. Only nodes of interest are presented on the
brain surface plots. Activation time differences were computed by subtracting the prelesion activation times from the post-lesion ones. Absence of response following a lesion
indicated in grey.

202	Logiang to aith an the Con	DoC mendarood 12	ittle change to sither th	a mattama an timina
283	Lesions to either the S or 1	Pas produced p	illie change to either tr	e ballern or timing

- of responses following stimulation of the other HC/MTL regions (data not shown).
- Lesions to the PrS produced moderate changes (<20 ms) in timing: there was some
- slowing of activity propagation from PaS to some cortical regions, including oculomotor

regions, and some speeding of signal propagation within the HC subfields and to TF/TH(Table 4).

289	A combined lesion to all HC subfields (CA3/CA1/S/PaS/PrS) did not
290	considerably change the pattern of signal propagation from the MTL cortices to
291	oculomotor regions. In cases where speeding/slowing was observed, the timing
292	differences were less than 15 ms, and mostly less than 10ms. Signal from the MTL
293	cortices still culminated within the oculomotor regions well under 50 ms (except for ERC
294	-> FEF at 79 ms) (Table 5).
295	Lesion Models: MTL regions
296	Lesion of the ERC resulted in considerable slowing of observable signal in oculomotor
297	regions (30-340ms) following S (Figure 3B) or PaS stimulation (Table 6). TF and/or TH
298	lesions resulted in slowing (10-400ms) of signal following CA1, S, and PaS stimulation
299	to one or more oculomotor regions, and a lack of response in FEF following PaS
300	stimulation (only the combined TF/TH is shown; Table 7). Area 35 and/or 36 lesions also
301	resulted in slowing (10-90ms) of signal following CA1, S, and PaS stimulation to one or
302	more oculomotor regions, although not as severe as the slowing observed following
303	TF/TH lesions (only the combined 35/36 lesion is shown; Table 8).

304 Other Cortical Lesions

305 In our original stimulations, signals in regions 5, 7a, 23, and V4 were predominantly

306 observed following observable responses in one or more of the oculomotor regions of

307 interest here, suggesting these cortical areas are receiving feedback signals rather than

- 308 primarily serving as hubs to transfer signal from the HC/MTL to the oculomotor regions.
- 309 To explore this in more depth, we did a combined lesion of 5/7a/23/V4 and examined

310	signal propagation. Following this combined cortical lesion, stimulation of each of the
311	HC/MTL regions (except for CA3) continued to result in observable signal in each of the
312	oculomotor regions (Table 9).
313	
314	Discussion
315	A preponderance of evidence has demonstrated a relationship between HC/MTL neural
316	activity and oculomotor behavior (Liu et al., 2017; Leung et al., 2017, 2018; Killian,
317	Potter, Buffalo, 2015; Hannula et al., 2010), but research had not shown the influence of
318	the HC/MTL on oculomotor activity, and the HC/MTL are not considered in most models
319	of oculomotor control (e.g., Itti & Koch 2000; Hamker 2006; but see Belopolsky 2015).
320	The HC is well connected anatomically to the oculomotor system through a set of
321	polysynaptic pathways that span MTL, frontal, parietal, and visual cortices (Shen et al.,
322	2016), but, the existence of anatomical connections does not provide conclusive evidence
323	of functional relevance of specific pathways. Here, we show that propagation of
324	HC/MTL neural activity directly results in neural activity observable in area 24 (ACC)
325	and area 46 (dlPFC), and in the FEF, which are important for the cognitive and motoric
326	control of eye movements, respectively (Johnston & Everling, 2008). Critically, the
327	culmination of neural signal in one or more oculomotor control regions occurred within
328	the time of a typical gaze fixation (~250-400 ms; Henderson, Nuthmann, Luke, 2013;
329	Buswell, 1935): within 200 ms following HC subfield stimulation (except for CA3), and
330	within 100 ms following stimulation of each MTL region. Thus, the underlying neural
331	dynamics of the memory and oculomotor systems allow for representations mediated by

the HC/MTL to guide visual exploration – what is foveated and when – on a moment-to-moment basis.

334	The lack of responses in the FEF following CA3 stimulation is not surprising,
335	given that there are no known direct connections, and fewer polysynaptic pathways,
336	between the CA3 and the oculomotor regions investigated here (Shen et al., 2016). The
337	functional and anatomical differences align well with the purported representational
338	functions of CA3 versus CA1. Foveated information may be bound into detailed memory
339	representations via the auto-associative network of the CA3 (pattern separation; Yassa &
340	Stark, 2011; Norman & O'Reilly, 2003), whereas CA1 would enable the comparison of
341	stored information to the external visual world (pattern completion; Yassa & Stark, 2011;
342	Rolls, 2013).
343	Stimulation of the subiculum and parasubiculum resulted in relatively slower
344	responses observed in each of the oculomotor regions, whereas stimulation of
345	presubiculum resulted in rapid responses observed in the oculomotor regions. The
346	subiculum and parasubiculum may largely provide information that supports the grid cell
347	mapping of the ERC (Tang et al., 2016; Peyrache, Schieferstein, Buzsaki, 2017; Boccara
348	et al., 2010). These regions may then function as a 'pointer' by providing online
349	information of an individual's location in space (Tang et al., 2016). This slowly changing
350	spatial layout may not then require a rapid influence on the oculomotor system, but
351	instead, may allow for the presubiculum, which has cells that are responsive to head
352	direction (Robertson et al., 1999) to precisely locate and foveate visual objects. These
353	functional distinctions are speculative, and remain to be tested.

354 Stimulation of each of the MTL cortices resulted in observable responses in each 355 of the three oculomotor regions considered here that were faster than any of the responses 356 observed following HC subregion stimulation. The MTL cortices are intermediary nodes 357 that may permit the relatively rapid transfer of information from HC to the oculomotor 358 system. The unique representational content supported by each region may influence 359 ongoing visual exploration in a top-down manner. The PRC provides lasting information 360 regarding the features of objects (Graham, Barense & Lee, 2010; Erez, Cusack, Kendall 361 & Barense, 2016), the PHC provides information regarding the broader spatial 362 environment (Alvarado & Bachevalier, 2005; Eichenbaum, Yonelinas, Ranganath, 2007; 363 Sato & Nakamura, 2003), and the ERC may provide information regarding the relative 364 spatial arrangements of features within (Yeung et al., 2017), and among objects within 365 the environment (Buckmaster, Eichenbaum, Amaral, Suzuki & Rapp, 2004; Yeung et al., 366 in press). Signal from the MTL may be used to accurately, and rapidly, prioritize gaze 367 fixations to areas of interest. 368 HC subfield lesions only minimally altered the timing of activity from MTL to 369 oculomotor regions; the relatively rapid propagation of signal from MTL to FEF (< 370 100ms) was preserved. Lesions to MTL regions resulted in slowing of signal from some 371 HC subfields to oculomotor regions. This pattern of results suggests that different 372 patterns of visual exploration (i.e., rate, area) may occur in cases of HC/MTL damage 373 depending on the location of the lesion. Lesions restricted to HC subfields may result in

an increase in the rate of gaze fixations due to the intact, rapid responses from the MTL

to oculomotor regions. This is consistent with prior work in which a developmental

amnesic case with HC subfield volume reductions showed an increase in gaze fixations

377 compared to control participants (Olsen et al., 2015). Similarly, older adults, who had 378 functional changes in the HC, showed increases in visual exploration (Liu et al., 2017). 379 ERC and PHC lesions may slow the use of information regarding the broader, ongoing 380 spatial environment; this could result in the need to continually revisit regions to re-381 establish the relations within and among objects, and with their broader environment, and 382 thus an increased area of visual exploration and/or increase between-object gaze 383 transitions would be observed. Such behavior has been shown by older adults, which may 384 be related to structural and/or functional changes in the ERC (Chan, Kamino, Binns & 385 Rvan, 2012; Leung et al., 2017; 2019). 386 A future question for investigation is how distinct types of representations from 387 the HC/MTL are integrated and prioritized to influence visual exploration, including 388 saccade timing and the ordering of gaze fixations to distinct targets. Alternatively, the 389 functionally distinct representations of the HC/MTL may not actually be integrated 390 within the oculomotor system; rather, each may guide visual exploration at different 391 moments, as time unfolds, as new information in the visual world is sampled, and as task 392 demands are enacted and ultimately met. In either case, multiple memory 'signals' are 393 evident within patterns of gaze fixations, including memory for single stimuli (Althoff & 394 Cohen, 1999; Smith & Squire, 2017), memory for the relative spatial (and non-spatial) 395 relations within (Yeung et al., 2017), and among objects (Ryan et al., 2000; Smith, 396 Hopkins & Squire, 2006; Hannula et al., 2007). Dissociations in these memory signals 397 can be observed within single gaze patterns in neuropsychological cases (Ryan & Cohen, 398 2003).

399 Memory may influence visual exploration through multiple routes. Responses 400 emanating from the HC/MTL that ultimately resulted in observable responses in the 401 ACC, dlPFC, and FEF traversed through multiple frontal, visual, and parietal nodes. 402 Cortical responses were also observed *following* responses in the oculomotor regions. 403 Specifically, areas 5, 7a, 23 (posterior cingulate), and V4 may receive feedback from 404 oculomotor regions, rather than serving as hubs that relay information between the 405 HC/MTL and oculomotor systems (Meister & Buffalo, 2016). Area 5 has been implicated 406 in mapping visual and body-centered frames of reference to support visually-guided 407 reaching (Seelke et al., 2012). Cells in area 7a are responsive to eye position and saccades 408 (Bremmer, Distler, Hoffman, 1997). The posterior cingulate is part of the default mode 409 network (Buckner, Andrews-Hanna, Schacter, 2008; see Vincent, Kahn, Van Essen & 410 Buckner, 2010 for a homologous default mode network in primates) that is active during 411 internally directed cognitions. Neurons in V4 of the macaque are known to integrate 412 visual and oculomotor information, and show remapping of space towards that of a 413 saccade target, thereby bridging pre- and post-saccade spatial representations (Neupane, 414 Guitton, Pack, 2016). Information from the HC/MTL may guide gaze selection and 415 execution, and the resulting spatial selections are continually updated throughout cortex 416 to promote ongoing exploration, and feed back into memory. 417 It should be noted that future work remains to examine signal propagation across 418 subcortical-cortical pathways. The present work did not include such pathways because

419 although CoCoMac does contain tracer data regarding the presence/absence of thalamic

connections, it does not provide connection weights, which are critical to constraining the

421 dynamics of the model. We have validated the tractography methodologies used here for

420

422 estimating cortical connection strengths against available tracer data (Shen et al., 2019); 423 however, validated methods for running tractography in subcortical regions in macaques 424 do not currently exist. Nonetheless, a lack of subcortical considerations does not diminish 425 the evidence of the rapid communication between the hippocampal and oculomotor 426 systems via cortical routes, within the time window of a typical gaze fixation. 427 Neuropsychological, neuroimaging, and neurophysiological studies provide 428 important information regarding the representational content that is supported by distinct 429 regions of the brain. A network analysis approach can be instrumental in revealing the 430 broad dynamics by which such representational content governs behavior (Mišić, Goñi, 431 Betzel, Sporns, & McIntosh, 2014; Vlachos, Aertsen, & Kumar, 2012). Memory for 432 objects and their spatial relations provide rapid guidance for gaze prioritization and 433 accurate targeting for foveation. Disruptions to the HC/MTL result in an altered rate and 434 pattern of visual exploration (Olsen et al., 2015; Hannula, Ryan, Warren, 2017), 435 consistent with the dynamics of our lesion models. The present work calls for a 436 reconsideration of the neural architecture that supports oculomotor guidance: the 437 HC/MTL provides information to guide visual exploration across space and time. 438

439	References
440	Aggleton, J.P. (2012). Multiple anatomical systems embedded within the primate medial
441	temporal lobe: Implications for hippocampal function. Neuroscience and
442	Biobehavioral Reviews, 36, 1579-1596.
443	Althoff, R. R., and Cohen, N. J. (1999). Eye-movement based memory effect: a
444	reprocessing effect in face perception. Journal of Experimental Psychology:
445	Learning, Memory, and Cognition, 25, 997–1010.
446	Alvarado, M.C. & Bachevalier, J. (2005). Comparison of the effects of damage to the
447	perirhinal and parahippocampal cortex on transverse patterning and location
448	memory in rhesus macaques. Journal of Neuroscience, 25(6), 1599-1609.
449	Andersen, R.A., Essick, G.K., & Siegel, R.M. (1985). Encoding of spatial location by
450	posterior parietal neurons. Science, 230(4724), 456-458.
451	Belopolsky A. (2015) Common priority map for selection history, reward and emotion in
452	the oculomotor system. Perception 44(8-9), 920-933.
453	Boccara, C.N., Sargolini, F., Thoresen, V.H., Solstad, T., Witter, M.P., Moser, E.I.,
454	Moser, M.B. (2010). Grid cells in pre-and parasubiculum. Nature Neuroscience,
455	13(8), 987-994.
456	Bremmer, F., Distler, C., Hoffman, K.P. (1997). Eye position effects in monkey cortex.
457	II. Pursuit- and fixation-related activity in posterior parietal areas LIP and 7A.
458	Journal of Neurophysiology, 77(2), 962-977.
459	Buckmaster, C.A., Eichenbaum, H., Amaral, D.G., Suzuki, W.A., & Rapp, P.R. (2004).
460	Entorhinal cortex lesions disrupt the relational organization of memory in monkeys.
461	Journal of Neuroscience, 24(44), 9811-9825.

462	Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L. (2008). The brain's default network:
463	anatomy, function, and relevance to disease. Annals of the New York Academy of
464	Sciences, 1124, 1-38.
465	Buswell, G. T. (1935). How people look at pictures. Chicago, IL: University of Chicago
466	Press.
467	Caballero-Bleda, M., Witter, M.P. (1993). Regional and laminar organization of
468	projections from the presubiculum and parasubiculum to the entorhinal cortex: an
469	anterograde tracing study in the rat. Journal of Comparative Neurology, 328(1),
470	115-129.
471	Caminiti, R., Carducci, F., Piervincenzi, C., Battaglia-Mayer, A., Confalone, G., Visco-
472	Comandini, F., Pantano, P., Innocenti, G.M. (2013). Diameter, length, speed, and
473	conduction delay of callosal axons in macaque monkeys and humans: comparing
474	data from histology and magnetic resonance imaging diffusion tractography.
475	Journal of Neuroscience, 33(36), 14501-11.
476	Chau, V.L., Murphy, E.F., Rosenbaum, R.S., Ryan, J.D. & Hoffman, K.L. (2011). A
477	flicker change detection task reveals object-in-scene memory across species.
478	Frontiers in Behavioral Neuroscience, 5:58.
479	Christiansen, K., Dillingham, C.M., Wright, N.F., Saunders, R.C., Vann, S.D., Aggleton,
480	J.P. (2016). Complementary subicular pathways to the anterior thalamic nuclei and
481	mammillary bodies in the rat and macaque monkey brain. European Journal of
482	Neuroscience, 43(8), 1044–1061.
483	Dalton, M.A., & Maguire, E. A. (2017). The pre/parasubiculum: a hippocampal hub for
484	scene-based cognition? Current Opinion in Behavioral Sciences, 17, 34-40.

- 485 Diana, R.A., Yonelinas, A.P., Ranganath, C. (2012). Adaptation to cognitive context and
- 486 item information in the medial temporal lobes. *Neuropsychologia*, *50(13)*, 3062487 3069.
- 488 Eichenbaum, H., Yonelinas, A.P., Ranganath, C. (2007). The medial temporal lobe and
- 489 recognition memory. *Annual Review of Neuroscience, 30,* 123-152.
- Erez, J., Cusack, R., Kendall, W., Barense, M.D. (2016). Conjunctive coding of complex
 object features. *Cerebral Cortex*, *26(5)*, 2271-2282.
- 492 Fagan, J. F. (1970). Memory in the infant. J. Exp. Child. Psychol. 9, 217–226.
- Fantz, R. L. (1964). Visual experience in infants: Decreased attention to familiar patterns
 relative to novel ones. *Science* 146, 668–670.
- 495 Ghosh, A., Rho, Y., McIntosh, A., Kötter, R., Jirsa, V. (2008). Noise during rest enables
- the exploration of the brain's dynamic repertoire. *PLoS Computational Biology*,
- 497 4:e1000196. doi: 10.1371/journal.pcbi.1000196
- 498 Girard, P., Hupé, J.M., Bullier, J. (2001). Feedforward and feedback connections between
- areas of V1 and V2 of the monkey have similar rapid condition velocities. *Journal*
- 500 *of Neurophysiology*, 85(3):1328-31.
- 501 Graham, K.S., Barense, M.D., & Lee, A.C. (2010). Going beyond LTM in the MTL: a
- 502 synthesis of neuropsychological and neuroimaging findings on the role of the
- 503 medial temporal lobe in memory and perception. *Neuropsychologia*, 48(4), 831-
- 504 853.
- Hamker F. (2006) Modeling feature-based attention as an active top-down inference
 process. *BioSystems*, *86(1-3)*, 91-99.

507	Hannula.	D.	Е.,	Rva	n, J.D.	, Tranel	. D. 8	& Cohen	. N.J	(2007)). Ra	pid or	nset rel	lational

- 508 memory effects are evident in eye movement behavior, but not in hippocampal
- amnesia. Journal of Cognitive Neuroscience, 19, 1690-1705.
- 510 Hannula, D. E., and Ranganath, C. (2009). The eyes have it: hippocam pal activity

511 predicts expression of memory in eye movements. *Neuron* 63, 592–599.

- 512 Hannula, D.E., Althoff, R.R., Warren, D.E., Riggs, L., Cohen, N.J. & Ryan, J.D. (2010).
- 513 Worth a glance: using eye movements to investigate the cognitive neuroscience of

514 memory. Frontiers in Human Neuroscience, 4:166.

- 515 *doi:10.3389/fnhum.2010.00166*.
- 516 Heisz, J.J. & Ryan, J.D. (2011). The effects of prior exposure on face processing in

517 younger and older adults. *Frontiers in Aging Neuroscience, 3:15. doi:*

- 518 *10.3389/fnagi.2011.00015*.
- 519 Henderson, J.M., A. Nuthmann, S.G. Luke (2013). Eye movement control during scene
- viewing: Immediate effects of scene luminance on fixation durations. *Journal of Experimental Psychology: Human Perception and Performance*, *39(2)*, 318–322.
- 522 Hoffman, K. L., Dragan, M. C., Leonard, T. K., Micheli, C., Montefusco-Siegmund, R.,
- 523 & Valiante, T. A. (2013). Saccades during visual exploration align hippocampal 3–

524 8 Hz rhythms in human and non-human primates. *Frontiers in Systems*

- 525 *Neuroscience*, *7*, 43.
- 526 Itti L. & Koch, C. (2000) A saliency-based search mechanism for overt and covert shifts
 527 of visual attention. *Vision Research*, 40(10-12), 1489-1506.
- 528 Johnston, K., & Everling, S. (2008). Neurophysiology and neuroanatomy of reflexive and
- 529 voluntary saccades in non-human primates. *Brain and Cognition, 68,* 271–283.

- 530 Killian, N. J., Jutras, M. J., & Buffalo, E. A. (2012). A map of visual space in the primate
- 531 entorhinal cortex. *Nature, 491,* 761–764.
- 532 Killian, N.J., Potter, S.M., Buffalo, E.A. (2015). Saccade direction encoding in the
- 533 primate entorhinal cortex during visual exploration. *Proceedings of the National*
- 534 *Academy of Sciences USA, 112(51),* 15743-15748.
- 535 Lavenex, P., Lavenex, P.B. & Amaral, D.G. (2004). Nonphosphorylated high-molecular-
- weight neurofilament expression suggests early maturation of the monkey
 subiculum. *Hippocampus*, *14(7)*, 797-801.
- 538 Lavenex, P., Lavenex, P.B. (2013). Building hippocampal circuits to learn and
- remember: insights into the development of human memory. *Behavioral Brain*
- 540 *Research, 254,* 8-21.
- 541 Leonard, T. K., Mikkila, J. M., Eskandar, E. N., Gerrard, J. L., Kaping, D., Patel, S. R., et

al. (2015). Sharp wave ripples during visual exploration in the primate

543 hippocampus. *Journal of Neuroscience*, *35*, 14771–14782.

- 544 Liu, Z-X., Shen, K., Olsen, R.K. & Ryan, J.D. (2017). Visual sampling predicts
- 545 hippocampal activity. *Journal of Neuroscience*, *37(3)*, 599-609.
- 546 Loftus, G. R., & Mackworth, N. H. (1978). Cognitive determinants of fixation location
- 547 during picture viewing. Journal of Experimental Psychology. Human Perception548 and Performance, 4, 565–572.
- 549 Maass, A., Berron, D., Libby, L. A., Ranganath, C., and Duzel, E. (2015). Functional
- subregions of the human entorhinal cortex. *Elife* 4:e06426.

- 551 Meister, M.L.R., Buffalo, E.A. (2016). Getting directions from the hippocampus: The
- neural connection between looking and memory. *Neurobiology of Learning and*
- 553 *Memory, 134,* 135-144.
- 554 Mišić, B., Goñi, J., Betzel, R.F., Sporns, O., & McIntosh, A.R. (2014). A network

555 convergence zone in the hippocampus. *PLoS Computational*

- 556 *Biology*, 10(12):e1003982. doi: 10.1371/journal.pcbi.1003982.
- 557 Morris, R.G., Schenk, F., Tweedie, F., Jarrard, L.E. (1990). Ibotenate lesions of the

558 hippocampus and/or subiculum: dissociating components of allocentric spatial

bearning. European Journal of Neuroscience, 2(12), 1016-1028.

- 560 Naber, P.A., Caballero-Bleda, M., Jorritsma-Byham, B., and Witter, M. P. (1997).
- 561 Parallel input to the hippocampal memory system through peri- and postrhinal
 562 cortices. *Neuroreport*, *8*, 2617–2621.
- 563 Neupane, S., Guitton, D., & Pack, C.C. (2016). Two distinct types of remapping in

primate cortical area V4. *Nature Communications*, Feb 1;7:10402. doi:

- 565 10.1038/ncomms10402.
- 566 Norman, K.A., O'Reilly, R.C. (2003) Modeling hippocampal and neocortical

567 contributions to recognition memory: a complementary-learning-systems approach.
568 *Psychological Review*, *110*, 611–646.

- 569 Olsen, R.K., Sebanayagam, V., Lee, Y., Moscovitch, M., Grady, C.L., Rosenbaum, R.S.
- 570 & Ryan, J.D. (2016). The relationship between eye movements and subsequent
- 571 recognition: Evidence from individual differences and amnesia. *Cortex, 85,* 182-
- 572 193

- 573 Olsen, R.K., Lee, Y., Kube, J., Rosenbaum, R.S., Grady, C., Moscovitch, M. & Ryan,
- 574 J.D. (2015). The role of relational binding in item memory: evidence from face
- 575 recognition in a case of developmental amnesia. *Journal of Neuroscience*, 35(13),
- 576 5342-5350.
- 577 O'Mara, S. (2005). The subiculum: what it does, what it might do, and what
- neuroanatomy has yet to tell us. *Journal of Anatomy*, 207(3):271-82.
- 579 O'Mara, S.M., Commins, S., Anderson, M. & Gigg, J. (2001). The subiculum: a review
- 580 of form, physiology, and function. *Progress in Neurobiology*, 64(2), 129-155.
- 581 Peyrache, A., Schieferstein, N. & Buzsaki, G. (2017). Transformation of the head-
- direction signal into a spatial code. *Nature Communication*, 8(1), 1752.
- Robertson, R.G., Rolls, E.T., Georges-Francois, P., Panzeri, S. (1999). Head direction
 cells in the primate pre-subiculum. *Hippocampus*, *9(3)*, 206-219.
- 585 Rolls, E.T. & O'Mara, S.M. (1995). View-responsive neurons in the primate
- 586 hippocampal complex. *Hippocampus*, 5(5), 409-424.
- 587 Rolls, E.T. (2013). The mechanisms for pattern completion and pattern separation in the
- 588 hippocampus. Frontiers in System Neuroscience, 7:
- 589 74. doi: <u>10.3389/fnsys.2013.00074</u>
- 590 Ryals AJ, Wang JX, Polnaszek KL, Voss JL (2015) Hippocampal contribution to implicit
- 591 configuration memory expressed via eye movements during scene exploration.
- 592 *Hippocampus, 25,* 1028–1041.
- Ryan, J.D., Hannula, D.E., & Cohen, N.J. (2007). The obligatory effects of memory on
 eye movements. *Memory*, 15(5), 508-525.

- 595 Ryan, J.D., Leung, G.L., Turk-Browne, N.B., & Hasher, L. (2007). Assessment of age-
- related changes in inhibition and binding using eye movement monitoring.
- 597 *Psychology and Aging, 22, 239-250.*
- 598 Ryan, J.D. & Cohen, N.J. (2003). Evaluating the neuropsychological dissociation
- evidence for multiple memory systems. *Cognitive, Affective and Behavioral Neuroscience, 3(3),* 168-185.
- Ryan, J.D., Althoff, R.R, Whitlow, S., Cohen, NJ. (2000). Amnesia is a deficit in
 relational memory. *Psychological Science*, 11, 454-461.
- 603 Sato, N. & Nakamura, K. (2003). Visual response properties of neurons in the
- 604 parahippocampal cortex of monkeys. *Journal of Neurophysiology*, *90(2)*, 876-886.
- 605 Saunders, R.C., Mishkin, M., & Aggleton, J.P. (2005). Projections from the entorhinal
- 606 cortex, perirhinal cortex, presubiculum, and parasubiculum to the medial thalamus
- in macaque monkeys: identifying different pathways using disconnection

608 techniques. *Experimental Brain Research*, 167(1), 1-16.

- 609 Schmolesky, M.T., Wang, Y., Hanes, D.P., Thompson, K.G., Leutgeb, S., Schall, J.D.,
- 610 Leventhal A.G. (1998). Signal timing across the macaque visual system. *Journal of*
- 611 *Neurophysiology*, *79(6)*, 3272-8.
- 612 Seelke, A.M.H., Padberg, J.J., Disbrow, E., Purnell, S.M., Recanzone, G., Krubitzer, L.
- 613 (2012). Topographic maps within Brodmann's area 5 of macaque monkeys.
- 614 *Cerebral Cortex, 22(8),* 1834-1850.
- 615 Shen, K., Bezgin, G., Schirner, M., Ritter, P., Everling, S., McIntosh, A.R. (2018) A
- 616 macaque connectome for large-scale network simulations in TheVirtualBrain.
- 617 *bioRxiv* https://doi.org/10.1101/480905.

- 618 Shen, K., Bezgin, G., Selvam, R., McIntosh, A.R. & Ryan, J.D. (2016). An anatomical
- 619 interface between memory and oculomotor systems. *Journal of Cognitive*
- 620 *Neuroscience*, 28(11), 1772-1783.
- 621 Shen, K., Goulas, A., Grayson, D., Eusebio, J., Gati, J.S., Menon, R.S., McIntosh, A.R.,
- 622 Everling, S. (2019). Exploring the limits of network topology estimation using
- 623 diffusion-based tractography and tracer studies in the macaque cortex. *NeuroImage*,
- 624 *191*, 81-92.
- 625 Shibutani, H., Sakata, H., Hyvarinen, J. (1984). Saccade and blinking evoked by
- 626 microstimulation of the posterior parietal association cortex of the monkey.
- 627 *Experimental Brain Research*, 55(1), 1-8.
- 628 Smith, C.N., Hopkins, R.O., Squire, L.R. (2006). Experience-dependent eye movements,
- awareness, and hippocampus-dependent memory. *Journal of Neuroscience*, 26(44),
- 630 11304-11312.
- 631 Smith, C.N. & Squire, L.R. (2017). When eye movements express memory for old and
- 632 new scenes in the absence of awareness and independent of hippocampus. *Learning*633 *and Memory*, *24(2)*, 95-103.
- 634 Snyder, L.H., Grieve, K.L., Brotchie, P. & Andersen, R.A. (1998). Separate body- and

635 world-reference representations of visual space in parietal cortex. *Nature*,

- *394(6696)*, 887-891.
- 637 Spiegler, A., Hansen, E.C., Bernard, C., McIntosh, A.R., Jirsa, V.K. (2016). Selective
- 638 activation of resting-state networks following focal stimulation in a connectome-
- based network model of the human brain. *eNeuro*, 3(5), pii: ENEURO.0068-
- 640 16.2016.

641	Sobotka, S., Nowicka, A., & Ringo, J. L. (1997). Activity linked to externally cued
642	saccades in single units recorded from hippocampal, parahippocampal, and
643	inferotemporal areas of macaques. Journal of Neurophysiology, 78, 2156-2163.
644	Suzuki, W. & Amaral, D.G. (1994). Topographic organization of the reciprocal
645	connections between the monkey entorhinal cortex and the perirhinal and
646	parahippocampal cortices. Journal of Neuroscience, 14(3:2), 1856-1877.
647	Tang, Q., Burgalossi, A., Ebbesen, C.L., Sanguinetti-Scheck, J.I., Schmidt, H., Tukker,
648	J.J., Naumann, R., Ray, S., Preston-Ferrer, P., Schmitz, D., Brecht, M. (2016).
649	Functional architecture of the rat parasubiculum. Journal of Neuroscience, 36(7),
650	2289-2301.
651	Voss, J.L., Bridge, D.J., Cohen, N.J., & Walker, J.A. (2017). A closer look at the
652	hippocampus and memory. Trends in Cognitive Sciences, 21(8), 577-588.
653	Warren, D.E., Duff, M.C., Tranel, D. & Cohen, N.J. (2010). Medial temporal lobe
654	damage impairs representation of simple stimuli. Frontiers Human Neuroscience,
655	4, 35.
656	Whitehead, J.C., Li, L., McQuiggan, D.A., Gambino, S.A., Binns, M.A. & Ryan, J.D.
657	(2018). Portable eyetracking-based assessment of memory decline. Journal of
658	Clinical and Experimental Neuropsychology. 2018 Mar 16:1-13. doi:
659	10.1080/13803395.2018.1444737. Electronic publication ahead of print.
660	Witter, M.P. and Amaral, D.G. 2004. Hippocampal formation. In The rat nervous system
661	(ed. G. Paxinos), pp. 635–704. Elsevier Academic Press, San Diego.
662	Witter, M.P., Doan, T.P., Jacobsen, B., Nilssen, E.S., Ohara, S. (2017). Architecture of
663	the entorhinal cortex: a review of entorhinal anatomy in rodents with some

- 664 comparative notes. Frontiers in Systems Neuroscience,
- 665 <u>https://doi.org/10.3389/fnsys.2017.00046</u>
- 666 Vincent, J.L., Kahn, I., Van Essen, D.C., & Buckner, R.L. (2010). Functional
- 667 connectivity of the macaque posterior parahippocampal cortex. *Journal of*
- 668 *Neurophysiology*, *103(2)*, 793-800.
- 669 Vlachos, I., Aertsen, A., & Kumar, A. (2012). Beyond statistical significance:
- 670 implications of network structure of neuronal activity. *PLoS Computational*
- 671 *Biology*, Jan 8(1):e1002311. doi: 10.1371/journal.pcbi.1002311.
- 672 Yassa, M.A., Stark, C.E. (2011) Pattern separation in the hippocampus. *Trends in*
- 673 *Neurosciences, 34,* 515–525.
- 674 Yeung, L-K., Olsen, R.K., Bild-Enkin, H., D'Angelo, M.C., Kacollja, A., McQuiggan,
- D., Keshabyan, A., Ryan, J.D. & Barense, M.D. (2017). Anterolateral entorhinal
- 676 cortex volume predicted by altered intra-item configural processing. *Journal of*
- 677 *Neuroscience, 37(22),* 5527-5538. Available online 4 May 2017. doi:
- 678 10.1523/JNEUROSCI.3664-16.2017.
- 679 Zeidman, P. & Maguire, E.A. (2016). Anterior hippocampus: the anatomy of perception,
- 680 imagination, and episodic memory. *Nature Reviews Neuroscience*, 17(3), 173-182.
- Zola, S.M., Squire, L.R., Teng, E., Stefanacci, L., Buffalo, E.A., & Clark, R.E. (2000).
- Impaired recognition memory in monkeys after damage limited to the hippocampal
- region. Journal of Neuroscience, 20(1), 451-463.

Parameter	Value	Description
d	0.07674	Temporal scale factor
τ	1	Time-scale hierarchy parameter
f	1	Coefficient for fast variable cubic self-feedback term
е	0	Coefficient for fast variable quadratic self-feedback term
g	-0.1	Coefficient of fast variable linear self-feedback term
α	1	Coefficient for linear input term from slow to fast variable
γ	1	Additional scaling parameter for fast variable constant input <i>I</i> and long-range inputs
С	0	Coefficient for quadratic input term from fast variable to slow variable
b	-12.3038	Coefficient for linear input term from fast variable to slow variable
β	0	Coefficient for slow variable linear self-feedback term
а	0	Slow variable constant input term
Ι	0	Fast variable constant input term

684 Table 1. Additional Generic 2D oscillator model parameters

686 Table 2. Activation times (ms) following stimulation of hippocampal subfields and

687 medial temporal lobe regions. Only regions of interest (HC/MTL regions, oculomotor

nodes, and regions that are involved in the shortest paths between HC/MTL and

oculomotor nodes) are shown. S= subiculum, PrS = pre-subiculum, PaS=para-subiculum;

- 690 ERC = entorhinal cortex; 35/36 = perirhinal cortex; TF/TH = parahippocampal cortex. 0
- 691 = stimulation onset; N/A = no response observed.

				S	Stimul	ated N	ode				
		CA3	CA1	S	PrS	PaS	ERC	35	36	TF	ТН
	CA3	0	48	31	37	27	0	21	20	48	1
	CA1	137	0	0	0	46	0	8	2	0	0
	S	115	17	0	26	37	0	16	10	0	0
	PrS	84	23	119	0	25	6	13	11	0	0
	PaS	350	17	96	28	0	50	15	0	0	32
	ERC	169	40	0	4	0	0	0	0	7	13
	35	567	6	21	49	50	0	0	0	9	19
	36	317	1	14	10	6	0	0	0	6	14
	TF	137	0	20	0	44	11	12	6	0	0
	ТН	7	0	29	0	0	20	29	18	0	0
de	7a	N/A	381	202	336	795	256	53	52	103	59
Ň	V4	N/A	76	353	103	244	280	147	142	5	15
Observation Node	V2	215	56	274	48	66	139	16	17	6	0
atic	Ig	N/A	11	63	75	189	11	4	6	21	13
J	Pro	N/A	52	96	12	48	3	1	4	29	20
pse	5	N/A	322	50	92	555	249	129	141	69	64
0	10	N/A	59	24	83	106	12	10	12	81	20
	11	N/A	12	68	74	166	10	7	8	38	48
	12	N/A	96	186	93	285	15	9	10	24	34
	13	N/A	10	18	62	132	8	7	11	19	19
	14	N/A	9	27	57	76	9	9	11	13	20
	23	N/A	165	384	12	231	43	37	52	24	13
	25	435	6	19	35	57	6	11	8	9	12
	32	N/A	38	63	88	89	10	13	14	14	17
	24	N/A	107	250	55	238	24	22	25	22	16
	46	N/A	84	135	15	187	12	9	11	17	23
	FEF	N/A	217	452	68	500	79	19	15	34	71

Table 3. Changes in activation times (ms) following a lesion of CA1 and stimulation

694 of hippocampal subfields and medial temporal lobe regions. Values were determined

by subtracting the intact stimulation times (Table 2) from lesioned activation times, such

696 that slower responses are positive while faster responses are negative. S= subiculum, PrS

697 = pre-subiculum, PaS=para-subiculum; ERC = entorhinal cortex; 35/36 = perirhinal

698 cortex; TF/TH = parahippocampal cortex. θ = stimulation onset; N/A = no response

699 observed.

					Stimu	lated	Node				
		CA3	CA1	S	PrS	PaS	ERC	35	36	TF	ТН
	CA3	0		-4	-2	0	0	0	0	-5	-1
	CA1										
	S	-10		0	-7	-4	0	-1	-1	0	0
	PrS	-4		-3	0	-1	-2	-1	-1	0	0
	PaS	-32		106	-7	0	-8	-1	0	0	-8
	ERC	-3		0	-1	0	0	0	0	-1	-1
	35	N/A		-1	0	0	0	0	0	-1	-3
	36	55		-2	-1	0	0	0	0	-1	-2
	TF	-19		214	0	-9	-3	-2	-1	0	0
	TH	0		327	0	0	-3	-4	-2	0	0
de	7a	N/A		-2	1	-1	-2	-1	-1	-1	0
Observation Node	V4	N/A		N/A	-4	-2	11	-2	-2	-1	-1
no	V2	-3		N/A	-4	-1	-1	0	0	-1	0
atio	Ig	N/A		22	28	4	0	0	0	1	0
erv	Pro	N/A		3	0	1	1	0	0	0	0
pse(5	N/A		1	0	2	0	0	-1	0	0
0	10	N/A		-1	-6	1	0	0	0	-7	-1
	11	N/A		25	11	3	0	0	0	1	-3
	12	N/A		10	-6	3	0	0	1	-2	-2
	13	N/A		1	17	2	0	0	0	0	-1
	14	N/A		0	17	1	0	0	0	0	-1
	23	N/A		N/A	0	0	0	0	0	0	0
	25	63		-2	14	2	0	0	0	0	-1
	32	N/A		0	-4	1	0	0	0	0	0
	24	N/A		33	-1	3	0	0	0	0	0
	46	N/A		1	0	2	0	0	0	-1	-1
	FEF	N/A		84	-3	5	0	0	0	-1	-1

701 Table 4. Changes in activation times (ms) following a lesion of PrS and stimulation

702 of hippocampal subfields and medial temporal lobe regions. Values were determined

by subtracting the intact stimulation times (Table 2) from lesioned activation times, such

that slower responses are positive while faster responses are negative. S= subiculum, PrS

705 = pre-subiculum, PaS=para-subiculum; ERC = entorhinal cortex; 35/36 = perirhinal

706 cortex; TF/TH = parahippocampal cortex. θ = stimulation onset; N/A = no response

707 observed.

					Stimu	lated	Node				
		CA3	CA1	S	PrS	PaS	ERC	35	36	TF	TH
	CA3	0	-3	0		-1	0	0	0	-6	-1
	CA1	-17	0	0		-9	0	-1	-2	0	0
	S	-9	0	0		-3	0	-1	0	0	0
	PrS										
	PaS	-20	1	-3		0	-4	0	0	0	-8
	ERC	38	-3	0		0	0	0	0	-1	-3
	35	N/A	0	0		0	0	0	0	0	-3
	36	38	0	0		0	0	0	0	-1	-2
	TF	-14	0	1		-7	-2	-1	0	0	0
	ТН	-1	0	-4		0	-4	-5	-2	0	0
de	7a	N/A	-2	0		1	-2	-1	-1	-1	-1
No	V4	N/A	-1	-3		-3	0	-2	-2	0	-1
Observation Node	V2	-4	-1	-4		-2	-1	0	-1	-1	0
atic	Ig	N/A	0	1		2	0	0	0	1	0
J.V.	Pro	N/A	0	1		1	1	0	0	0	0
pse	5	N/A	3	1		12	5	0	-1	0	0
0	10	N/A	-1	0		0	0	0	0	-5	-1
	11	N/A	0	0		2	0	0	0	-2	-5
	12	N/A	0	1		2	0	0	1	-1	-3
	13	N/A	0	0		1	0	0	0	-1	-1
	14	N/A	0	0		1	0	0	0	0	-1
	23	N/A	4	1		5	0	-1	0	0	0
	25	8	1	0		1	0	0	0	1	-1
	32	N/A	0	0		0	0	0	0	0	0
	24	N/A	1	3		3	1	0	0	0	-1
	46	N/A	-1	1		5	0	0	0	-1	-1
	FEF	N/A	0	4		18	0	0	0	0	-4

710 Table 5. Changes in activation times (ms) following a lesion of all hippocampal

711 subfields and stimulation of medial temporal lobe regions. Values were determined by

subtracting the intact stimulation times (Table 2) from lesioned activation times, such that

slower responses are positive while faster responses are negative. S= subiculum, PrS =

- pre-subiculum, PaS=para-subiculum; ERC = entorhinal cortex; 35/36 = perirhinal cortex;
- TF/TH = parahippocampal cortex. θ = stimulation onset; N/A = no response observed.

					Stim	lated	Node				
		CA3	CA1	S	PrS	PaS	ERC	35	36	TF	TH
	CA3										
	CA1										
	S										
	PrS										
	PaS										
	ERC						0	0	0	-3	-4
	35						0	0	0	-1	-5
	36						0	0	0	-2	-3
	TF						-4	-3	-4	0	0
	TH						-6	-7	-4	0	0
de	7a						0	-1	-1	-2	-1
Observation Node	V4						14	-3	-3	-1	-1
n]	V2						-1	0	-1	-1	0
atic	Ig						0	0	0	1	0
irvi	Pro						1	0	0	0	-1
pse	5						14	-1	-2	0	0
0	10						0	0	0	-10	-2
	11						0	0	0	0	-7
	12						0	0	1	-3	-5
	13						0	0	0	-1	-2
	14						0	0	0	0	-2
	23						0	-1	0	0	-1
	25						0	0	0	0	-1
	32						0	0	0	-1	-1
	24						1	0	0	0	-1
	46						0	0	0	-1	-2
	FEF						0	0	0	-2	-5

717 Table 6. Changes in activation times (ms) following a lesion of the ERC and

stimulation of hippocampal subfields and medial temporal lobe regions. Values were

determined by subtracting the intact stimulation times (Table 2) from lesioned activation

times, such that slower responses are positive while faster responses are negative. S=

subiculum, PrS = pre-subiculum, PaS=para-subiculum; ERC = entorhinal cortex; 35/36 =

perirhinal cortex; TF/TH = parahippocampal cortex. θ = stimulation onset; N/A = no

response observed.

		Stimulated Node											
		CA3	CA1	S	PrS	PaS	ERC	35	36	TF	ТН		
	CA3	0	-8	127	-2	6		54	51	-6	-1		
	CA1	-1	0	0	0	0		-1	-2	0	0		
	S	-3	0	0	-2	2		-2	-1	0	0		
	PrS	0	0	14	0	-1		-1	-1	0	0		
	PaS	-3	0	0	0	0		-1	0	0	0		
	ERC												
	35	-22	0	-1	4	34		0	0	-1	-3		
	36	-17	-1	-2	-1	0		0	0	-1	-1		
	TF	-1	0	1	0	-1		-1	0	0	0		
	ТН	0	0	0	0	0		-2	-1	0	0		
de	7a	N/A	-1	-2	0	22		-1	0	0	0		
Observation Node	V4	N/A	0	-3	0	0		0	0	0	0		
n	V2	0	0	-4	0	0		0	0	0	0		
atio	Ig	N/A	0	2	2	28		0	-1	0	0		
βLΛ	Pro	N/A	0	98	0	1		-1	-1	0	0		
pse	5	N/A	0	0	0	1		-2	-4	0	0		
0	10	N/A	-1	-1	4	75		-1	-1	-2	0		
	11	N/A	0	15	2	139		-1	-1	-1	-2		
	12	N/A	-1	107	-2	267		0	0	-1	-1		
	13	N/A	0	1	3	108		0	-1	0	-1		
	14	N/A	0	1	3	104		-1	-1	0	-1		
	23	N/A	0	-5	0	1		-1	-1	0	0		
	25	26	0	-3	0	45		-1	-1	0	-1		
	32	N/A	0	70	20	86		-1	-1	0	0		
	24	N/A	-1	96	-1	29		0	-1	0	-1		
	46	N/A	-2	101	0	64		0	0	0	0		
	FEF	N/A	-3	342	-2	106		-1	0	0	-1		

725 Table 7. Changes in activation times (ms) following a combined lesion of areas TH

and TF and stimulation of hippocampal subfields and medial temporal lobe regions.

727 Values were determined by subtracting the intact stimulation times (Table 2) from

128 lesioned activation times, such that slower responses are positive while faster responses

- are negative. S= subiculum, PrS = pre-subiculum, PaS=para-subiculum; ERC =
- entorhinal cortex; 35/36 = perirhinal cortex; TF/TH = parahippocampal cortex. 0 =
- stimulation onset; N/A = no response observed.

		Stimulated Node											
		CA3	CA1	S	PrS	PaS	ERC	35	36	TF	ТН		
	CA3	0	115	-3	-1	-4	0	0	1				
	CA1	N/A	0	0	0	45	0	-1	-2				
	S	N/A	120	0	17	-5	0	-4	-2				
	PrS	N/A	185	-29	0	101	-6	-3	-2				
	PaS	N/A	23	16	33	0	-16	-4	0				
	ERC	N/A	-7	0	-3	0	0	0	0				
	35	N/A	0	0	-5	1	0	0	0				
	36	N/A	-1	-1	-1	0	0	0	0				
	TF												
	ТН												
de	7a	N/A	N/A	5	N/A	N/A	-4	-2	-2				
Ň	V4	N/A	N/A	N/A	N/A	N/A	67	-7	0				
Observation Node	V2	N/A	N/A	N/A	N/A	N/A	3	-1	-1				
atic	Ig	N/A	1	3	31	142	0	0	0				
) L	Pro	N/A	0	1	0	2	1	0	0				
bse	5	N/A	N/A	2	1	N/A	3	-1	-3				
0	10	N/A	-4	-1	-4	10	0	0	0				
	11	N/A	0	0	-7	4	0	0	0				
	12	N/A	1	1	-5	35	0	0	1				
	13	N/A	0	1	-3	11	0	0	0				
	14	N/A	0	1	-5	3	0	0	0				
	23	N/A	N/A	N/A	0	N/A	-1	-1	0				
	25	N/A	0	0	-1	6	0	0	0				
	32	N/A	-1	0	11	6	0	0	0				
	24	N/A	46	21	3	412	1	1	0				
	46	N/A	7	1	-1	53	0	0	0				
	FEF	N/A	69	35	-5	N/A	1	0	0				

733 Table 8. Changes in activation times (ms) following a combined lesion of areas 35

and 36 and stimulation of hippocampal subfields and medial temporal lobe regions.

735 Values were determined by subtracting the intact stimulation times (Table 2) from

responses are positive while faster responses are positive while faster responses

- are negative. S= subiculum, PrS = pre-subiculum, PaS=para-subiculum; ERC =
- entorhinal cortex; 35/36 = perirhinal cortex; TF/TH = parahippocampal cortex. 0 =
- stimulation onset; N/A = no response observed.

		Stimulated Node											
		CA3	CA1	S	PrS	PaS	ERC	35	36	TF	ТН		
	CA3	0	-5	-3	-1	-2	0			-3	0		
	CA1	-2	0	0	0	-1	0			0	0		
	S	-3	0	0	-1	-1	0			0	0		
	PrS	0	0	-1	0	0	-2			0	0		
	PaS	-22	1	-7	0	0	34			0	0		
	ERC	-19	19	0	-3	0	0			-2	-2		
	35												
	36												
	TF	-1	0	0	0	-1	-1			0	0		
	ТН	0	0	0	0	0	-2			0	0		
de	7a	N/A	15	-2	-1	17	93			0	0		
Observation Node	V4	N/A	1	2	1	2	19			0	0		
	V2	1	0	-5	0	0	81			0	0		
atic	Ig	N/A	0	-4	1	45	-1			0	-1		
IV	Pro	N/A	7	8	0	2	0			1	0		
pse	5	N/A	-1	0	-1	-5	18			0	0		
0	10	N/A	5	0	-3	22	-2			5	-1		
	11	N/A	0	5	1	87	-2			1	-3		
	12	N/A	17	26	-1	158	-3			-2	-2		
	13	N/A	0	1	-1	23	-1			0	-1		
	14	N/A	0	1	-3	13	-1			0	-1		
	23	N/A	0	-3	0	-1	-2			0	0		
	25	125	0	-1	-1	7	-1			1	-1		
	32	N/A	1	3	-4	14	-1			0	0		
	24	N/A	1	6	-1	6	-2			0	-1		
	46	N/A	14	11	0	52	-1			-1	-1		
	FEF	N/A	53	90	-2	83	-3			-2	0		

741 Table 9. Changes in activation times (ms) following a combined lesion of areas V4,

742 7a, 5 and 23 and stimulation of hippocampal subfields and medial temporal lobe

regions. Values were determined by subtracting the intact stimulation times (Table 2)

from lesioned activation times, such that slower responses are positive while faster

responses are negative. S= subiculum, PrS = pre-subiculum, PaS=para-subiculum; ERC =

entorhinal cortex; 35/36 = perirhinal cortex; TF/TH = parahippocampal cortex. 0 =

stimulation onset; N/A = no response observed.

		Stimulated Node											
		CA3	CA1	S	PrS	PaS	ERC	35	36	TF	TH		
	CA3	0	0	0	0	1	0	0	1	1	0		
	CA1	-57	0	0	0	-6	1	-1	1	0	0		
	S	-43	0	0	0	-2	0	-1	0	0	0		
	PrS	-31	-1	-35	0	-2	-1	-3	-2	0	0		
	PaS	-94	0	-4	0	0	-3	-1	0	0	0		
	ERC	43	2	0	0	0	0	0	0	0	0		
	35	N/A	1	2	2	8	0	0	0	1	0		
	36	118	2	1	0	1	0	0	0	0	1		
	TF	-54	0	1	0	-4	-1	-2	0	0	0		
	ТН	-2	0	-3	0	0	-4	-10	-4	0	0		
Observation Node	7a												
	V4												
	V2	-101	-11	-59	-7	-14	-68	-5	-6	-1	0		
	Ig	N/A	0	-4	-2	11	1	1	0	0	-1		
βLΛ	Pro	N/A	2	8	1	8	1	-1	0	4	1		
bse	5												
0	10	N/A	0	0	-2	1	0	0	0	0	0		
	11	N/A	0	1	0	10	0	0	0	3	-1		
	12	N/A	5	12	-1	37	1	0	1	2	1		
	13	N/A	1	1	-1	2	0	0	0	0	0		
	14	N/A	1	0	-2	-2	0	0	0	0	0		
	23												
	25	-57	1	1	0	3	0	0	0	1	0		
	32	N/A	0	-2	-5	-4	0	0	0	0	0		
	24	N/A	-12	-5	11	-24	-2	-1	-2	-2	-2		
	46	N/A	8	24	1	48	1	1	1	2	1		
	FEF	N/A	48	124	7	187	9	2	3	10	6		