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Tweet 

A suite of independent Python packages for downloading, parsing, warehousing, and converting multi-modal and              
multi-scale biological databases to Biological Expression Language 

Abstract 
Background: The integration of heterogeneous, multiscale, and multimodal knowledge and data has become a              
common prerequisite for joint analysis to unravel the mechanisms and aetiologies of complex diseases. Because of                
its unique ability to capture this variety, Biological Expression Language (BEL) is well suited to be further used as a                    
platform for semantic integration and harmonization in networks and systems biology. 
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Results: We have developed numerous independent packages capable of downloading, structuring, and serializing             
various biological data sources to BEL. Each Bio2BEL package is implemented in the Python programming               
language and distributed through GitHub (https://github.com/bio2bel) and PyPI. 

Conclusions: The philosophy of Bio2BEL encourages reproducibility, accessibility, and democratization of           
biological databases. We present several applications of Bio2BEL packages including their ability to support the               
curation of pathway mappings, integration of pathway databases, and machine learning applications. 

1. Background 

The integration of heterogeneous, multi-scale, and multi-modal biomedical data has become a cornerstone of              
modern computational investigation of the mechanisms and aetiologies underlying complex diseases (Iyappan et al. ,              
2014; van Dam et al. 2014; Wanichthanarak et al. , 2015; Himmelstein et al., 2017; Fan et al. , 2019). An overarching                    
strategy was proposed by Davidson et al. more than two decades ago that outlined the transformation of data into a                    
common model, semantic alignment of related objects, integration of schemata, and federation of data (Davidson et                
al. , 1995). However, integration remains a challenging task that requires the identification and deep understanding               
of biological data sources and their respective formats, conversion, harmonization, and unification. 

Initial interest in the semantic web and linked open data along with the adoption of RDF (Resource Description                  
Framework ) in the biomedical community led to the Bio2RDF project, in which pipelines for converting and                1

serializing several biological data sources to RDF were developed (Belleau et al. , 2008). Several updates have been                 
issued since its deployment such as the inclusion of chemical information systems (Chen et al. , 2010). Further, it has                   
also influenced in and has been adopted by subsequent projects such as Open PHACTS (Williams et al. , 2012).                  
While RDF is highly expressive and each of these projects have developed and enforced well-defined schemata, the                 
format is often not well-suited for downstream analyses and must first be queried with languages like SPARQL                 
(SPARQL Query Language for RDF ) and subsequently be transformed into appropriate formats with             2

general-purpose programming languages. Alternatives to RDF/SPARQL such as property graphs (e.g., Neo4j ,            3

OrientDB ) are comparable (Alocci et al. , 2015) but also necessitate similar post-processing.  4

Conversely, there have been several biologically meaningful integration efforts (e.g., STRING; Warde-Farley,            
et al. 2010, GeneMANIA; Szklarczyk et al. , 2015, GeneCards; Stelzer et al. , 2016). However, most suffer from a                  
lack of defined schemata or standardized data format that impede biological database interoperability. As              
interoperability itself is a multifaceted concept, we would like to highlight three of its facets: first, data sources                  
should refer to named entities using high-quality, publicly accessible terminologies as prescribed by the Minimal               
Information Requested in the Annotation of Biochemical Models standard (Laibe and Le Novère, 2007). Second,               
data sources should additionally denote the ontological classes of named entities (e.g., gene, transcript, protein,               
pathway, disease) along with their reference using controlled vocabularies such as the Systems Biology Ontology               
(Courtot et al. , 2011). Some identifiers, such as those for genes, are often used to refer not only to the physical                     
region of DNA within the genome, but also the corresponding RNA transcript(s) or protein product(s).               
Unfortunately, many biological databases do not explicitly distinguish between these entity classes. For example, the               
STRING database lists gene-centric homology relationships, transcript-centric co-expression relationships, and          
protein-centric protein-protein interactions using gene-centric nomenclature. While it may be possible to identify the              
classes of entities based on their incident relationships, doing so requires specific knowledge of the database                
including the semantics of its relationships. Third, resources should, at a minimum, map their relationships to                

1 https://www.w3.org/RDF 
2 https://www.w3.org/TR/rdf-sparql-query 
3 https://neo4j.com 
4 https://orientdb.com 
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controlled vocabularies such as the Relation Ontology , or further use standardized data formats with defined               5

semantics (e.g., PSI MI-TAB ) to minimize both the interpretation and implementation effort when combining them               6

with other resources. 

OmniPath (Türei et al ., 2016) began to address these facets when it combined several signaling pathway and                 
transcriptional regulation databases. It achieved interoperability between several databases by normalizing the            
identifiers and relationships between entities from several databases describing the same phenomena (e.g.,             
microRNA-target interactions, protein-protein interactions, etc.) and creating a unified network. However, because it             
did not use a standard format or schema as mentioned in the third facet for interoperability, OmniPath itself cannot                   
readily be directly integrated with other biological data sources. Pathway Commons (Cerami et al., 2011) addressed                
this concern when combining several molecular pathway and interaction databases by translating the source              
databases into the BioPAX standard (Demir et al. , 2010) using automated pipelines. However, it suffers from low                 
granularity and low recovery of information from some of its primary biological data sources which may be due to                   
prioritization of software development time, data usage restrictions, or shortcomings in the BioPAX standard. While               
BioPAX is well-suited for representing biological reactions and transformations, it is limited in its ability to                
represent correlative and associative relationships across multi-scale biology (e.g., at the levels of processes,              
phenotypes, and clinical observations). 

As an alternative, we propose the use of Biological Expression Language (BEL; Slater, 2014) as an integration                 
schema in order to overcome the limits faced by previous efforts and to simultaneously address all three facets of                   
interoperability. BEL has begun to prove itself as a robust format in the curation and integration of previously                  
isolated biological data sources of high granular information on genetic variation (Naz et al. , 2016), epigenetics (Irin                 
et al. , 2015), chemogenomics (Emon et al. , 2017), and clinical biomarkers (Iyappan et al. , 2017). Its syntax and                  
semantics are also appropriate for representing, for example, disease-disease similarities, disease-protein           
associations, chemical space networks, genome-wide association studies, and phenome-wide association studies.  

With the same focus on reproducibility as Bio2RDF, OmniPath, and Pathway Commons as well as deference to                 
software maintainability and the ease of development and inclusion of new biological data sources, we have                
developed a growing list of Bio2BEL packages, each capable of downloading, structuring, and serializing various               
biological data sources to BEL (Table 2 ). Each can be found in the Bio2BEL GitHub organization                
(https://github.com/bio2bel) as an independent open-source Python package that can readily be installed with pip.              
We have also developed and freely provided a framework (https://github.com/bio2bel/bio2bel) in the Python             
programming language to enable code reuse and the fast generation of additional Bio2BEL packages. Notably, the                
list of Bio2BEL packages includes one for OmniPath as a proof of concept that authors of other resources can                   
implement their own Bio2BEL packages. In this article, we present the philosophy and implementation of Bio2BEL                
packages, a summary of past and future Bio2BEL packages, and finally, several case studies including the utility of                  
Bio2BEL packages during curation of pathway mappings, in the analysis of cancer genome data, and for machine                 
learning applications. 

2. Implementation 
Bio2BEL comprises numerous independent open-source Python packages that each enable reproducible access to a              
given biological data source (Figure 1 ). Each Bio2BEL package contains five components: 1) a definition of the                 
source database or knowledge base, 2) an automated downloader for the data, 3) a parser for the data, 4) a storage                     

5 http://obofoundry.org/ontology/ro 
6 https://psicquic.github.io/PSIMITAB.html 
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and querying system for the data, and 5) a protocol for serializing the data to BEL (Figure 2 ). In this section, we                      
outline the components of a Bio2BEL package and their implementation details. 

 

Figure 1: Though their main focus is on generating BEL documents, some Bio2BEL repositories have secondary                
goals of generating the BEL namespace and annotation files necessary to support manual curation. Most rely on                 
primary databases, but the Bio2BEL framework also includes functions for generating them from standard Open               
Biomedical Ontology documents, or through the EBI Ontology Lookup Service (Cote et al ., 2006). Logos adapted                
from http://obofoundry.org, https://www.ebi.ac.uk/ols , and https://openbel.org. 

2.1. Components of a Bio2BEL Package 

As this section outlines the core components and philosophy of a Bio2BEL package, it illustrates the tasks and                  
thought process of a scientific software developer as they implement a new Bio2BEL package. 

 

Figure 2: A graphical overview of the sequentially ordered components of a Bio2BEL package. These components                
correspond to the philosophy that reproducibility and accessibility can ultimately lead to the democratization of the                
usage of prior biological knowledge. 

1. Definition of Data. The first step in generating a Bio2BEL package is to understand the source data. This                   
requires determining if the data are publicly accessible, if they are versioned (and how the location changes with                  
versions), and if they are available under a permissive license. Bio2BEL packages do not contain data themselves                 
and only refer to the locations of the original data sources. For those that are versioned, providers commonly                  
generate symlinks to the most recent version (e.g., InterPro; ftp://ftp.ebi.ac.uk/pub/databases/interpro). These           
characteristics help minimize licensing issues while enabling the resulting packages to update their content without               
changing code. Then, the developer implements custom code that makes the appropriate interpretations to convert               
the source data to BEL. Below, three types of data that can be readily integrated in BEL are described along with                     
accompanying Table 1 . 

Data Source Data Source Example BEL statement(s) Description 
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Type 

Taxonomies, 
Hierarchies, and 
Ontologies 

MeSH path(X) isA path(Y) Pathology X is a subtype of pathology Y 

Taxonomies, 
Hierarchies, and 
Ontologies 

Complex Portal p(X) partOf complex(Y) Protein X is a member of complex Y. 

Taxonomies, 
Hierarchies, and 
Ontologies 

GO bp(X) partOf bp(Y) Biological process X is a sub-process of Y. 

Tabular and Relational 
Data 

PubChem, 
ChEMBL 

a(X) directlyDecreases act(p(Y),   

ma(kin)) 

Compound X inhibits kinase Y. 

Tabular and Relational 
Data 

ADEPTUS path(X) positiveCorrelation r(Y) 

path(X) negativeCorrelation r(Y) 

path(X) causeNoChange r(Y) 

Gene Y has been observed to either be 
up-regulated, down-regulated, or unregulated in 
patients with pathology X 

Graphs Menche et al. path(X) association path(Y) Pathology X is statically similar to pathology Y 
on the basis of gene overlap as defined by 
Menche et al.  (2015). 

Table 1 . Example BEL statements generated by several different types of data sources 

I. Taxonomies, Hierarchies, and Ontologies 

The Medical Subject Headings (MeSH; Rogers, 1963) multi-hierarchy can be converted to BEL by generating an                
isA relationship between each MeSH descriptor and all of its corresponding parents in the associated MeSH tree.                 
Nomenclatures like the Complex Portal (Meldal et al ., (2015) also define partOf relations between protein               
complexes and their substituents. The multi-hierarchy in Gene Ontology (GO; Carbon et al. , 2017) can be converted                 
similarly, which contains both isA  relations and partOf  relations. 

II. Tabular and Relational Data 

Enzyme inhibitors from ChEMBL and PubChem can be encoded like a(X) directlyDecreases act(p(Y), ma(kin)) , and               
disease-specific differential gene expression can be encoded like path(X) positiveCorrelation r(Y) or path(X)             
negativeCorrelation r(Y), or path(X) causeNoChange r(Y) depending on whether the gene's expression is             
up-regulated, down-regulated, or not regulated, respectively. Further, BEL relationships can be extended include             
metadata (i.e., annotations) describing their quantitative aspects. For example, IC50, EC50, or other kinetic assay               
measurements as well as provenance and biological contextual information (e.g., original publication, cell line, assay               
type) can be included with the enzyme inhibition relationships from ChEMBL. Similarly, the log2 fold change and                 
p-values can be included with relationships about differential gene expression. 

III. Graphs 

Wet-laboratory experimentation can be used to generate networks of directly observed phenomena (e.g.,             
protein-protein interaction networks) and indirectly observed phenomena (e.g., gene co-expression networks).           
Graphs are often distributed as tabular data to include additional information about their constituent nodes and edges                 
and there is often overlap with the previous data type describing tabular and relational data. In silico experimentation                  
can also be used to derive edges from experimental data sets or even other graphs. For instance, bipartite graphs can                    
be projected to homogeneous graphs consisting of a single entity and edge type as suggested by Sun et al. (2014).                    
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Menche et al. (2015) used this strategy and computed a homogenous graph of disease-disease associations from a                 
bipartite graph of diseases and their associated genes.  

2. Downloader. The Bio2BEL framework follows a functional programming paradigm to provide an             
abstraction of the acquisition of data over common internet protocols like HTTP, HTTPS, and FTP. With only the                  
URL of the data set as an input, Bio2BEL generates a download function that wraps Python's built-in urllib module                   
and a simple caching mechanism in the local filesystem that avoids unnecessary network usage and duplication of                 
potentially large files. However, some data sources, such as DrugBank (Wishart et al. , 2018), are not available                 
without authentication and cannot make use of this abstraction. In those cases, developers can substitute the standard                 
code provided in the Bio2BEL framework with custom implementations. We have taken this route for several of the                  
packages presented in the Results section of this paper for repositories including DrugBank and MSigDB (Liberzon                
et al. , 2015). 

3. Parser. There are several common file formats used by biological data sources (e.g., CSV, TSV, XML, RDF,                  
JSON, KGML , Stockholm , OBO , OWL ). Data may also (and sometimes only) be accessible through public               7 8 9 10

application programming interfaces (APIs) such as the data from KEGG (Kanehisa et al., 2017), Reactome               
(Fabregat et al. , 2018), and BioThings (Xin et al ., 2016). Alternatively, data may be available through software                 
packages usage such the Affymetrix R package (Gautier et al. , 2004) and HaploReg (Ward and Kellis, 2012). After                  
each Bio2BEL package's downloader generates a local copy of the data, the developer can either use one of the                   
pre-defined parser functions from the Bio2BEL framework or implement a custom parser. For the most simple                
formats (i.e., CSV and TSV), the Bio2BEL framework automatically generates a parser that uses the pandas                
package (McKinney, 2010; https://github.com/pandas-dev/pandas ). Formats like XML, JSON, and Stockholm have           
corresponding parsers built into the Python language or standard biology-focused packages, but the information              
contained within often needs custom logic for restructuring such as in the case of KGML, BioPAX, or PSI MI-XML                  

. The remaining custom formats all require custom parsers and logic. We have already implemented Bio2BEL that                 11

used CSV and TSV data (e.g., InterPro, ExCAPE-DB), XML (e.g., DrugBank), RDF (e.g., WikiPathways), JSON               
and KGML (e.g., KEGG), Stockholm (e.g., miRBase), and OBO and OWL (e.g., GO, DOID). 

In the case of tabular data, the developer has the opportunity to annotate the column headers and their                  
corresponding data types, which are not always included in the data and may be sought from various readme files or                    
by exploring the corresponding website. Further, the contained data might be more useful after normalization or                
augmentation with information from other biological data sources. Because some databases provide identifiers with              
redundant information, such as the duplication of the namespace in the identifier, they must be normalized. For                 
example, each identifier in the Disease Ontology (Schriml et al ., 2018) is prefixed by its namespace, DOID, as can                   
be seen in the Compact URI for the entry for restless legs syndrome, DOID:DOID:0050425. In the corresponding                 
Bio2BEL DOID package, as well as those for others (e.g., HGNC, Gene Ontology) we normalized these identifiers                 
to remove the redundant information. Because the main Entrez Gene database does not contain crucial information                
for genes, such as their chromosomal coordinates in various genomic builds, we augmented the data in the Bio2BEL                  
Entrez package for each gene with information from RefSeq so that the genomic positions and corresponding                
genome build for each gene were readily accessible. Additionally, several databases that reference genes only use                
their HGNC gene symbols and not stable identifiers, and therefore require this additional normalization step. 

7 https://www.kegg.jp/kegg/xml/ 
8 http://sonnhammer.sbc.su.se/Stockholm.html 
9 https://owlcollab.github.io/oboformat/doc/GO.format.obo-1_4.html 
10 https://www.w3.org/OWL/ 
11 http://psidev.info/mif 
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4. Storage. Though this step may be considered optional after parsing the data, it is helpful for future reuse to                    
choose a database type and develop a schema with which the data can be stored. Often, relational databases that can                    
be queried with SQL are an appropriate choice. The Bio2BEL framework provides a full harness for generating an                  
object-relational mapping (ORM) using the SQLAlchemy (https://www.sqlalchemy.org) Python package that          
handles generation of the SQL schema and storage of the data in a SQL database. Corresponding entity-relation                 
diagrams can be found in the supplementary data repository at          
https://github.com/bio2bel/bio2bel-manuscript-supplement. While all Bio2BEL packages have, until now, used SQL          
databases with the SQLAlchemy ORM, there exists alternatives such as graph databases built on RDF or property                 
graphs like Neo4J or OrientDB with a corresponding object-graph mapper that have been successfully employed in                
downstream applications using biological knowledge graphs (Himmelstein et al. , 2017; Saqi et al. , 2018). 

5. Serializer. The final aspect of a Bio2BEL package is either to serialize the parsed data as BEL or to export                     
the accompanying database as BEL. Entities in the SQL database that correspond to nodes and edges in BEL graphs                   
can be converted by extending their respective ORM classes with Python functions using the internal               
domain-specific language provided by PyBEL (Hoyt et al. , 2018a). It can then be output in several formats provided                  
by PyBEL and its growing ecosystem of plugins as well as it shields Bio2BEL packages from changes to the BEL                    
language. Additionally, some Bio2BEL packages wrap standard nomenclature resources such as HGNC (Yates et              
al., 2017) and are able to generate BEL namespace files that are a necessary in both manual and automated curation                    
of content in BEL (Figure 2 ). This step is deeply connected with the prior step related to the definition of the data. 

2.2. Implementation Details 

The Bio2BEL framework and Bio2BEL packages are implemented in Python with accessibility and readability in               
mind. The framework provides an abstract class bio2bel.Manager whose functionality all Bio2BEL packages must              
completely implement. Using these definitions, the framework automatically generates a uniform command line             
interface (CLI) that includes functions for populating the database, clearing the database, reloading data from the                
source, generating a web application with a view over the contents of the database, and serializing to BEL. 

The Bio2BEL framework and Bio2BEL packages use flake8 (https://github.com/PyCQA/flake8) to enforce           
code quality, a setup.cfg file to describe the package, setuptools (https://github.com/pypa/setuptools ) to build             
distributions, pyroma (https://github.com/regebro/pyroma) to enforce package metadata standards, sphinx         
(https://github.com/sphinx-doc/sphinx) to build documentation, Read the Docs (https://readthedocs.org) to host          
documentation, pytest (https://github.com/pytest-dev/pytest) as a testing framework, coverage        
(https://github.com/nedbat/coveragepy) and Codecov (https://codecov.io) to monitor testing coverage, and Travis-CI          
(https://travis-ci.com) as a continuous integration service. Further, we provide a template for Cookiecutter             
(https://github.com/audreyr/cookiecutter) at https://github.com/bio2bel/bio2bel-cookiecutter such that the structure       
of new packages can be quickly generated containing all of the configuration for each of these tools. 

2.3. Implications of the Bio2BEL Philosophy 

Because all Bio2BEL packages are uniform in their implementation and CLI usage, it is trivial to provide a                  
Dockerfile and Docker-Compose configuration for quick deployments. In the future, we plan to automatically              
generate RESTful APIs, which may be more useful to deploy internally than to use publicly available ones due to                   
constraints like rate-limits. Because all Bio2BEL packages are independent, they avoid two major problems of               
monolithic codebases: they are more robust to breakages or failures in a single package and they can be installed as                    
needed, which is pertinent as the data sources become larger, more heterogeneous, and more complex. 

Further, Bio2BEL packages can be generated by any group, and registered with the Bio2BEL framework using                
Python entry points (https://packaging.python.org/specifications/entry-points ) that can be defined in the installation           
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configuration. While the Cookiecutter template allows new developers to quickly generate a package with the               
correct format, a full tutorial for implementing a uniform Bio2BEL package can be found at               
https://bio2bel.readthedocs.io/en/latest/tutorial.html. 

3. Results 
After describing the Bio2BEL framework and the requirements for implementing new Bio2BEL packages, we              
present a list of the independent Bio2BEL packages that we have already implemented in Table 2 . We note that                   
several of the data sources have already been included in other meta-databases like Pathway Commons and                
Bio2RDF, but we have chosen to implement the Bio2BEL packages using the source data rather than deriving                 
results from these databases to provide a complementary resource for those familiar with and interested in using                 
BEL. This choice also reduces dependencies on other projects that may not be maintained and protects against data                  
loss during multiple conversions. 

While there are thousands of high quality databases available, including a high percentage that do not fit into the                   
schemata defined by Pathway Commons, Bio2RDF, or other meta-databases that are more appropriate for BEL, we                
have prioritized them as they become have become relevant for our specific use-cases, but also are open to                  
suggestions via the issue tracker on https://github.com/bio2bel/bio2bel/issues . Below, we present four of these use              
cases. 

Name Description Terms Relations 

adeptus Disease-specific differential gene expression  4,943 

chebi Chemical multi-hierarchy 138,863  

compath Pathway-pathway equivalences and hierarchies  1,795 

ddr Disease-disease relationships  2,997 

drugbank Drug-target interactions 11,292 25,199 

entrez Genes and orthologies 388,986  

excape Chemical-target interactions  70,850,163 

expasy Enzyme classification and membership 6,718 243,914 

famplex Protein family and complex hierarchy  4,462 

flybase Drosophila gene nomenclature and orthologies 245,565  

go Biological process multi-hierarchy 45,018 92,905 

hgnc Human gene nomenclature and orthologies to mouse and rat 42,741 38,360 

hgncgenefamily Human gene-gene family memberships 1,157 23,881 

hippie Protein-protein physical interactions  340,629 

homologene Gene ortholog group memberships 30,492 131,558 

hsdn Disease-symptom associations  10,246 

interpro Protein-family and protein-domain memberships 36,524 34,611 

kegg Protein-pathway memberships 330 30,346 

mgi Mouse genome nomenclature 300,499  

mirbase MicroRNA nomenclature 38,589  

mirtarbase miRNA-target interactions  366,110 

msig Gene-gene set memberships 17,810 2,443,391 
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pfam Protein-protein family and protein family-clan memberships 17,929  

phewascatalog Gene-disease relationships  364,667 

phosphosite Post-translational modifications  553,716 

reactome Protein-pathway and chemical-pathway memberships 23,621 137,768 

rgd Rat gene nomenclature 44,970  

sider Drugs' side effects and indications  339,742 

wikipathways Protein-pathway memberships 513 22,115 

Table 2 . A non-exhaustive list of biological data sources already available as Bio2BEL packages 

3.1. Mapping Concepts Between Pathway Databases with ComPath 

Pathway databases have become one of the most frequently used biological data sources in the interpretation of                 
high-throughput -omics experiments. Connecting pathway knowledge across the hundreds of databases developed in             
recent decades would not only provide a more comprehensive overview of the underlying biology they represent,                
but would also enable performing identical analyses on different databases. However, integrative approaches which              
combine databases lack the equivalence mappings between similar concepts and qualifiers that are necessary to               
compare between analyses run using one or another database. There are several reasons that explain the lack of                  
mappings between databases, such as the absence of a common pathway nomenclature, differences in databases'               
scopes, and the lack of clear pathway boundary definitions. Furthermore, generating high quality mappings requires               
a significant amount of manual effort since curators must individually investigate each pair of pathways and assess                 
whether the pair comprises related or similar pathways occurring in the same biological context. 

Three Bio2BEL packages were implemented for major pathway databases (i.e., KEGG, Reactome, and             
WikiPathways) and extended with tools to support the first curation of mappings between their equivalent and                
hierarchically related pathways during the ComPath project (Domingo-Fernández et al. , 2018). Each were used to               
store and harmonize the data underlying ComPath and its accompanying web curation interface             
(https://compath.scai.fraunhofer.de). Though the databases of the Bio2BEL packages are detached from the            
ComPath web application, they can be used to integrate additional biological data sources into ComPath in the                 
future and also to regularly update their content over time (Wadi et al. , 2016); thus, facilitating the revisitation and                   
reevaluation of the mappings. 

3.2. Harmonizing Pathway Databases into a Common Schema with PathMe 

The most direct and effective approach in addressing issues of interoperability of pathway databases is in the                 
transformation of various database formats into a common schema. Although this approach has been exemplified by                
previously mentioned databases (e.g., OmniPath, Pathway Commons, and graphite ; Sales et al ., 2018), there have               
been several limitations which have impeded a complete harmonization of pathways from distinct biological data               
sources. Specifically, this requires: the harmonization of biological entities to identifiers from a common              
nomenclature (e.g., Entrez Gene or HGNC for human genes, ChEBI or PubChem for chemicals, etc.), the                
normalization of biological relationships, and an underlying format which serves as the unifying schema. However,               
a complete harmonization risks the loss of some information in the transformation process. For instance, pathway                
knowledge representations can span across several scales, such as molecular events, cellular processes, and              
phenotypes, which various formats accommodate for in varying degrees. While existing biological data sources can               
address certain aspects of these steps, addressing all of these steps would enable the complete interoperability of                 
pathway databases. Accordingly, the PathMe software was designed to harmonize pathway databases into BEL as a                
common representation schema with Bio2BEL at its core (Domingo-Fernández et al. , 2019). 
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The selection of BEL lies in its flexibility to incorporate a wide range of biological entities from standardized                  
nomenclatures and their relationships, all on a multi-modal scale. The transformation of various pathway formats               
into BEL through PathMe is facilitated by the Bio2BEL framework by allowing for the automation of the                 
acquisition of the biological data sources which can change frequently. By integrating PathMe and Bio2BEL, any                
number of pathway resources included in the latter can be transformed into BEL. In doing so, users can enrich                   
pathway knowledge by leveraging multiple, equivalent pathway representations from the various biological data             
sources included in Bio2BEL and analyze their own networks alongside canonical pathway ones. In a later                
publication, we plan to demonstrate the utility of combining Bio2BEL packages to produce an integrative pathway                
resource. Similarly to the recent comparison of pathway activity measurement tools by Lim et al . (2018), we will                  
benchmark the performance of each of these resources both individually and combined on functional pathway               
enrichment and classification tasks applied to cancer genome and patient data. 

3.3. Applications of Network Representation Learning with BioKEEN 

The integration of numerous biological databases into a common schema gives rise to large, rich, heterogeneous                
knowledge graphs to which a variety of statistical and machine learning methodologies can be applied. One family                 
of approaches, network representation learning (NRL), has been shown to be useful for clustering, entity               
disambiguation, and link prediction tasks (Nickel et al. , 2016). As new machine learning models are published for                 
accomplishing these tasks, several implementations using the currently popular machine learning frameworks            
TensorFlow (Abadi et al.  2016) and PyTorch (Paszke et al. , 2017) provide reference implementations.  

We developed BioKEEN as an extension to the previously developed NRL package, PyKEEN, to enable it to                 
directly acquire and preprocess BEL knowledge graphs, namely those generated by Bio2BEL (Ali et al ., 2018). One                 
of the original goals of PyKEEN was to democratize NRL methods by facilitating those less familiar with the                  
relevant mathematics and programming backgrounds to apply and evaluate them. We have continued this              
philosophy with BioKEEN to allow scientists to specify the Bio2BEL packages they would like to include in their                  
analysis that are either hosted on PyPI, GitHub, or already installed as custom local packages. The usage of                  
Bio2BEL allows scientists using NRL as a component of a more complex analytical pipeline to have the ability to                   
not only re-run analyses in a reproducible manner, but also make use of the ability to acquire updated data when it                     
becomes available. 

Along with our previous publication, we provided several demonstrations including the prediction of novel              
protein-protein interactions using a model trained with the BioKEEN package for the Human Integrated              
Protein-Protein Interaction rEference (HIPPIE; Alanis-Lobato et al. , 2017), the prediction of pathway mappings             
using ComPath, and the prediction of disease-symptom associations using the Bio2BEL package for the HSDN               
(Zhou et al. , 2014) provided by Himmelstein et al. (2017) with Rephetio (https://het.io). Later, we plan to apply                  
BioKEEN to combinations of Bio2BEL repositories to support other biologically relevant link prediction tasks such               
as drug repositioning. 

3.4. Interoperability with Other Projects 

The Integrated Network and Dynamical Reasoning Assembler (INDRA; Gyori et al. , 2017) integrates several              
databases including those covering physical interactions (e.g., BioGrid; Chatr-Aryamontri et al. , 2017), signaling             
(e.g., SIGNOR; Perfetto et al . 2016), curated drug targets (e.g., HMS LINCS small molecule target relationship                
database; http://lincs.hms.harvard.edu), and experimental drug affinities (e.g., Target Affinity Spectrum; Moret et            
al., 2018) in order to support generation of dynamical models. Following the recent development of a converter                 
between BEL and INDRA (Hoyt et al. , 2019), these biological data sources can be indirectly made available as                  
BEL, and all Bio2BEL packages can be integrated in INDRA. 
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Similarly, we are collaborating with the researchers developing OmniPath to structure their data acquisition              
pipelines as a Bio2BEL package, which is currently under development. Notably, OmniPath encompasses several              
biological data sources related to protein-protein interactions, transcriptional regulation, post-translational          
modifications, ligand-receptor interactions, and protein complexes, and others. This resource is complementary to             
content already available through Bio2BEL, providing a more comprehensive integration of the extensive publicly              
available biological data sources. 

4. Conclusions 

While the development of Bio2BEL has addressed the lack of defined schemata, data standardization, annotation of                
entities with classes, and application of controlled vocabularies to relations in numerous biological databases by               
converting them to BEL, several considerations remain. The approaches taken by Bio2RDF, Pathway Commons,              
and now Bio2BEL can be categorized as data warehousing . An alternative strategy, data federation , attempts to                
combine disparate biological data sources using SPARQL endpoints (e.g., DisGeNet-RDF (Queralt-Rosinach et al. ,             
2016), UniProt (Redaschi et al. , 2009), EBI (Jupp et al. , 2014)), RESTful APIs (e.g., BioServices (Cokelaer et al. ,                  
2013), BioThings, Orange Bioinformatics (Curk et al. , 2005)), and more recently, GraphQL (https://graphql.org).             
Bio2BEL does not directly address data federation, but other aspects of the BEL ecosystem such as BEL Commons                  
(Hoyt et al. , 2018b) have exposed RESTful APIs for manipulating BEL that might also be useful for GraphQL.                  
However, the several attempts , , at converting BEL to RDF have suffered from relatively low adoption; and                12 13 14

while a conversion to RDF enables querying with SPARQL, BEL lacks a dedicated query language that can                 
leverage the rich aspects of its statements beyond their subjects, predicates, and objects.  

Finally, it remains that like any format, consumers of BEL must make their own transformations appropriate for                 
their scientific applications. We are not discouraged by this fact, and believe that Bio2BEL is a step towards                  
enabling more computational scientists easy access to a larger portion of the wealth of available structured biological                 
knowledge resources. 

5. Availability and requirements 

Project Name : Bio2BEL 

Project Home Page : https://github.com/bio2bel 

Operating System(s): Platform independent 

Programming Language : Python 3 

License : MIT License 

Declarations 
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12 https://wiki.openbel.org/display/OBP/BEL+RDF+Model 
13 https://github.com/OpenBEL/bel2rdf 
14 https://github.com/cthoyt/cx-rdf  
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