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SUMMARY 

Spatial learning requires remembering and choosing paths to goals. Hippocampal place cells 

replay spatial paths during immobility in reverse and forward order, offering a potential 

mechanism. However, how replay mediates both goal-directed learning and memory-guided 

decision making is unclear. We therefore continuously tracked replay in the same hippocampal-

prefrontal ensembles throughout learning of a spatial alternation task. We found that during 

pauses between behavioral trajectories, awake reverse and forward hippocampal replay 

consistently mediated an internal cognitive search of all available past and future possibilities, 

and exhibited opposing learning gradients for prediction of past and future behavioral paths, 

respectively. Coordinated hippocampal-prefrontal replay mediated recall of correct past paths and 

selection of future choices leading to reward based on the hippocampal cognitive search, 

executing spatial working memory rules. Our findings reveal a learning shift from hippocampal 

reverse-replay-based retrospective evaluation to forward-replay-based prospective planning, with 

prefrontal filtering of memory-guided paths for learning and decision-making. 
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INTRODUCTION 

The hippocampus is necessary for formation and retrieval of episodic memories to guide daily 

behavior, including goal-directed spatial learning and navigation (Eichenbaum and Cohen, 2004; 

Squire, 1992). Learning spatial paths and choices that lead to desired goals is critical for foraging 

and survival, and requires animals to remember and plan routes to rewards at distant locations. 

Hippocampal place cells are active in specific spatial locations during active exploration (O'Keefe 

and Nadel, 1978). While this spatial code provides information about current location, spatial 

memories require learning links between sequences of locations that encode specific paths, and 

choices that lead to goals. Interestingly, hippocampal activity exhibits another phenomenon called 

“replay”, which is associated with high frequency sharp-wave ripple (SWR) events prevalent 

during offline periods in sleep and non-exploratory waking states (‘awake replay’) (Buzsáki, 2015; 

Carr et al., 2011; Foster, 2017; Leonard et al., 2015). During replay, temporally compressed 

sequences of place cells reactivate spatial trajectories that span parts of the entire environment 

in either forward or reverse order (Ambrose et al., 2016; Csicsvari et al., 2007; Davidson et al., 

2009; Diba and Buzsáki, 2007; Farooq and Dragoi, 2019; Foster and Wilson, 2006; Gupta et al., 

2010; Ólafsdóttir et al., 2017; Pfeiffer and Foster, 2013; Tang et al., 2017; Xu et al., 2019). Awake 

hippocampal replay, seen prominently during pauses in exploration and consummatory behavior, 

is known to be necessary for spatial learning, especially for spatial working memory tasks (Jadhav 

et al., 2012), and has been proposed to potentially provide neural correlates of various memory 

processes, notably memory consolidation, recall, and decision making (Buzsáki, 2015; Carr et al., 

2011; Foster, 2017; Joo and Frank, 2018; Tang and Jadhav, 2018). 

Evidence from several studies supports a role of awake replay in spatial memory-guided 

behavior (Ambrose et al., 2016; Diba and Buzsáki, 2007; Dupret et al., 2010; Foster and Wilson, 

2006; Gupta et al., 2010; Ólafsdóttir et al., 2017; Papale et al., 2016; Pfeiffer and Foster, 2013; 

Singer et al., 2013; Tang et al., 2017; Vaz et al., 2019; Wu et al., 2017; Xu et al., 2019). Reverse 
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replay is enhanced by reward and novelty (Ambrose et al., 2016; Cheng and Frank, 2008; Foster 

and Wilson, 2006; Singer et al., 2013), leading to suggestions that it could support temporal credit 

assignment for associating sequential spatial experiences that encode paths with resultant 

outcomes (Ambrose et al., 2016; Carr et al., 2011; Foster, 2017; Foster and Knierim, 2012; Haga 

and Fukai, 2018; Mattar and Daw, 2018; Pfeiffer, 2018). On the other hand, replay has also been 

proposed to support memory retrieval for planning upcoming behaviors (Carr et al., 2011; Pfeiffer 

and Foster, 2013; Singer et al., 2013; Wu et al., 2017), with a potential role of forward replay in 

planning (Xu et al., 2019). Despite this evidence and proposed roles (Buzsáki, 2015; Carr et al., 

2011; Foster and Knierim, 2012; Haga and Fukai, 2018; Mattar and Daw, 2018; Pezzulo et al., 

2014; Tang and Jadhav, 2018), how reverse and forward replay mediate both novel spatial 

learning and recall for decision making remains unclear, since this requires monitoring the 

evolution of content of replay events in the same neural populations over the entire duration of 

learning a replay-dependent task with memory-guided choices toward goals. 

Furthermore, goal-directed learning and planning relies on a wider neural network 

including not only the hippocampus, but also regions involved in the evaluation and selection of 

task-relevant memories during retrieval and decision making, notably the prefrontal cortex (PFC) 

(Benchenane et al., 2011; Eichenbaum, 2017; Pezzulo et al., 2014; Redish, 2016; Spellman et 

al., 2015; Tang and Jadhav, 2018; Yu and Frank, 2015). The cognitive processes of learning and 

deliberation are known to require the PFC (Yu and Frank, 2015), and PFC involvement in 

navigation and spatial memory is established in both humans and rodents (Eichenbaum, 2017; 

Epstein et al., 2017). How hippocampal and prefrontal networks together support novel learning 

and planning, especially for replay-dependent working memory tasks, remains an open question 

(Eichenbaum, 2017; Pezzulo et al., 2014; Tang and Jadhav, 2018). SWRs have been shown to 

mediate coordinated hippocampal-prefrontal reactivation of spatial paths (Jadhav et al., 2016; 
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Peyrache et al., 2009; Tang et al., 2017), but whether and how this coordinated reactivation plays 

a role in memory-guided behavior is not known.  

 

RESULTS 

Continuous tracking of forward and reverse replay throughout learning 

In order to address these questions, we used continuous and simultaneous electrophysiological 

monitoring of ensembles of hippocampal-prefrontal neurons in rats learning a novel, replay-

dependent W-track spatial alternation task in a single day (Figure 1; Figures S1 and S2) (Jadhav 

et al., 2012; Maharjan et al., 2018). This task involves continuous alternation between reward 

wells on the three arms of the W-track (Figure 1A), and animals are rewarded upon completion 

of a correct inbound or outbound behavioral sequence according to the following rules: (i) starting 

from either side well, animals have to return to the center well (inbound trajectories 2 and 4), and 

(ii) starting from the center well, animals have to recall the previous inbound trajectory and choose 

the opposite side well from the previously visited side well (outbound trajectories 1 and 3). Animals 

therefore have to learn the sequence of reward-well visits, and choose associated paths leading 

from one well to another (trajectories 1-4, Figure 1A) to obtain reward.  

Both awake replay and functional hippocampal-prefrontal interactions are necessary for 

learning the outbound component of this task, which requires spatial working memory (Jadhav et 

al., 2012; Maharjan et al., 2018). A correct spatial working memory behavioral sequence consists 

of two consecutive trajectories with a transition at the center well (Figure 1Bi), where the past 

path is an inbound trajectory that terminates at the center well, and the future path is an outbound 

trajectory that originates at the center well and proceeds to the opposite side-arm. The outbound, 

spatial working memory component is therefore history-dependent (Jadhav et al., 2012). In 

contrast, the inbound component simply requires implementation of a “return-to-center” rule from 
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each side-well (Figure 1Bii), and this spatial reference memory rule is history-independent. For 

side well transitions, the past path in a correct behavioral sequence is an outbound trajectory 

terminating at the side well, and the future path is an inbound trajectory originating at the side 

well. The past and future paths are thus reversed at the center and side wells (Figure 1B).  

Animals were tasked with learning the W-maze rules in eight behavioral sessions (epochs 

1-8, denoted as E1-8, 15-20 mins per session) in a single experimental day, interleaved with rest 

sessions in a sleep box (Figure S2; see STAR Methods) (Maharjan et al., 2018; Tang et al., 

2017). We used custom-built 32 tetrode microdrive arrays to continuously and simultaneously 

record activity from dorsal CA1 place cells and medial prefrontal cortex (PFC, pre-limbic and 

anterior cingulate cortical regions) in six rats over the course of learning the task (see STAR 

Methods; recording locations in all animals indicated in Figures S1A-S1C; number of cells 

recorded in each animal shown in Figures S1D-S1G and Table S1). Activity was monitored with 

the high temporal resolution of electrophysiological recordings from the same stable CA1 (n = 

216) and PFC (n = 154) ensembles throughout the duration of the entire experiment (5.5-6.5 

hours; Figures S1D-S1G shows isolation and stability parameters for all neurons recorded). All 

six animals exhibited rapid learning over the course of the 8 behavioral sessions (learning curves 

shown in Figure S2, see STAR Methods), and the same CA1-PFC ensembles were continuously 

monitored for each animal over the 8 learning sessions. This experimental design thus enabled 

investigation of CA1 and coherent CA1-PFC replay dynamics using the same ensembles, starting 

from initial acquisition of the task and through later performance at above-chance levels.  

CA1 place cells exhibited spatial and direction selectivity, and formed unique sequential 

representations of different trajectories during learning (Figures 1C-1H). Figure 1C shows 

responses of all recorded CA1 place cells for the 4 trajectories of the task, and for each of the 8 

behavioral sessions (sorted by order of place field peaks). Notably, place cell encoding of spatial 

locations enabled highly accurate decoding of animal position during running on trajectories 
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across all sessions (Figures 1D-1F). Second, comparison of the respective outbound-inbound 

trajectory pairs (1 vs. 2, and 3 vs. 4 in Figure 1A) confirmed previous reports that CA1 place cells 

were directionally selective starting with the first session on the novel track (Foster and Wilson, 

2006), and direction selectivity significantly improved over experience from sessions 1-8 (Figures 

1G and 1H) (Navratilova et al., 2012; Xu et al., 2019). Place-field templates of the 4 trajectories 

were thus significantly distinguishable for all epochs, despite a small fraction of bidirectional cells 

(26.8 ± 12.4%, mean ± SD; see Table S1 for the number of bidirectional cells in each animal).  

For each animal, the 4 behavioral trajectories thus had unique template place-cell 

sequence representations from stably recorded ensembles starting from the first behavior 

session, enabling unambiguous detection and continuous tracking of forward and reverse 

hippocampal replay events (Figures 1C-1H). To investigate the content of replay over learning, 

we used established methods to detect SWRs and candidate replay events during immobility 

periods at reward wells, and used Bayesian decoding to identify CA1 sequential replay events, 

with each event distinctly determined as forward or reverse replay of one of the four trajectories 

(see STAR Methods). Examples of forward and reverse replay sequences, corresponding to 

different stages in learning and detected from the same hippocampal population in one animal, 

are shown in Figures 2A-2F (additional examples in Figure S3). Each example shows place-cell 

activity during a SWR candidate event, templates for all 4 trajectories (linearized place fields of 

cells sorted by their peak locations on the detected replay trajectory), and Bayesian reconstruction 

of the animal’s trajectory, with the strength of replay and statistical significance based on time-

shuffled data indicated. During immobility periods at reward-well transitions between trajectories 

where the animals stopped in order to receive reward (immobility time: 10.3 ± 5.7 sec in mean ± 

SD; Figure 2G), multiple SWRs and replay candidate events were prevalent (Figures 2H and 2I; 

immobility periods with ≥ 2 events, 85.7%, 1313 out of 1533 trials for SWRs; 53.4%, 818 out 1533 
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trials for replay candidate events). Further, there was no overall bias toward reverse or forward 

replay of any particular trajectory type (Figures 2J and 2K).  

 

Reverse replay of possible past paths, forward replay of available future paths 

In order to examine the relationship between replay content and behavioral choices, we focused 

our analyses on immobility periods during the trajectory switching phase at reward wells. 

Examples of correct behavioral sequences comprising two consecutive trajectories are illustrated 

for transitions at a side well (Figures 3A-3C) and the center well (Figures 3D-3F), respectively. 

The side-well transition consists of an outbound past trajectory (RUN1, center-to-left), followed 

by an inbound future trajectory (RUN2, left-to-center), with the unique directional place-cell 

trajectory sequences for RUN1 and RUN2 depicted in the sorted CA1 place-cell activity (Figure 

3A). Three replay events occurred during this transition at the side reward well, identified as two 

reverse replay events of the past trajectory (RUN1), and one forward replay event of the future 

trajectory (RUN2) (Figure 3B; templates for all trajectories 1-4 in Figure 3C), in an inter-mixed 

order of occurrence (reverse-forward-reverse). The center-well transition example consists of an 

inbound past trajectory (RUN1, left-to-center), followed by an outbound future trajectory (RUN2, 

center-to-right) (Figure 3D). Place-cell trajectory sequences for RUN2 and the alternative inbound 

past trajectory (RUN1-alt, right-to-center) are depicted in the sorted CA1 place cell activity (Figure 

3D; templates for all trajectories 1-4 in Figure 3F). Interestingly, the four detected replay events 

at the center well comprised of three forward replay events of the future taken path, and one 

reverse replay event of the alternative inbound past path, not the actual past path taken by the 

animal (Figure 3E; note that at the center well, the two inbound trajectories represent the two 

possible past paths, and the two outbound trajectories represent the two possible future paths, 

with past and future paths reversed at the side wells). The behaviorally actualized path by the 

animal is denoted as the ‘taken’ path, and the alternative path is denoted as the ‘not-taken’ path. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2019. ; https://doi.org/10.1101/632042doi: bioRxiv preprint 

https://doi.org/10.1101/632042
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 
 

Figures 3G-3I show three additional examples for side and center wells, with decoded replay 

paths depicted on the track (see STAR Methods; further examples during different learning 

stages in Figure S4). Replay events in the side well example (Figure 3G) again reactivate the 

animal’s taken past and future path in the reverse and forward order, respectively, whereas at the 

center well (Figures 3H and 3I), the replay events reactivate the alternative (not-taken) future 

(Figure 3H) and alternative (not-taken) past (Figure 3I) paths, but still maintain the forward and 

reverse order, respectively. 

We quantified this relationship of forward and reverse replay content at center and side 

reward wells to ongoing behavioral trajectory sequences during correct trials. Similar to examples 

in Figure 3, there was a strong and consistent prevalence of reverse replay of the two possible 

past choices (actual taken and alternative past paths to reward well), and forward replay of the 

two possible future choices (actual taken and alternative future paths from reward well), 

associated with the respective reward well location (Figures 3J and 3K; Figure S5). At the center 

well, this manifested as reverse replay of inbound trajectories (possible past paths; 

reverse/forward events, 324/91, p < 1e-4, z-test for proportions), and forward replay of outbound 

trajectories (possible future paths; reverse/forward events, 116/202, p < 1e-4, z-test for 

proportions), which was reversed at the side wells (reverse/forward events for outbound 

trajectories: 267/115, reverse/forward events for inbound trajectories: 101/272, ps < 1e-4, z-tests 

for proportions; session-by-session comparison in Figure 3J). This effect was consistent across 

all six animals (Figure 3K), and persisted across all behavioral sessions during different stages 

in learning (Figure 3L). 

Reverse replay of past paths and forward replay of future paths persisted when we 

included only significantly unidirectional CA1 cells to rule out any unintended bias due to 

bidirectional cells (Figure S5A). We also examined if there was a tendency for reverse and 

forward replay to occur at the beginning and end of immobility periods, respectively (i.e., at the 
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end of previous trajectory and just prior to the upcoming trajectory respectively), as previously 

reported on linear tracks (Diba and Buzsáki, 2007). No such bias was apparent, similar to recent 

reports (Ambrose et al., 2016), and reverse replay of past paths and forward replay of future paths 

continued in an inter-mixed order throughout the immobility periods (Figures S5B and S5C). We 

did, however, find that replay rate was significantly higher during ‘disengaged’ periods during the 

middle periods of reward-well transitions, compared to ‘engaged’ periods near the beginning and 

end of reward-well transitions (Ólafsdóttir et al., 2017) (Figures S5D-S5F). Finally, we also 

confirmed that this effect was not a result of bias in the distribution of place fields or decoded 

replay positions (Figures S5G-S5I). In fact, the distribution of decoded positions during replay 

events again revealed the over-representation of past path positions in reverse replay and future 

path positions in forward replay (Figures S5H and S5I).  

The behavioral relevance of this replay content structure was further confirmed by using 

the identity of the reverse and forward replay events to predict the current reward well location 

(i.e. left, center, or right; see STAR Methods), with prediction accuracies that were significantly 

higher than chance-level (Figure 3M). Further, we compared this effect of reverse past replay 

and forward future replay for correct and error working-memory trials that originated from the 

center well, and observed an impairment specifically in forward replay of future paths. There was 

a significant decrease in accuracy of predicting the center well using forward replay during error 

trials compared with correct trials (Figure 3N), since the bias of forward replay for future paths 

was absent in error trials (for error trials, forward replay of future: 45%, p = 0.53; reverse replay 

of past: 68.5%, p = 0.008; z-test for proportions). 

 

Contrasting evolution of reverse and forward replay with learning 

Since reverse and forward replay events consisted of both actual taken and alternative (not-taken) 

past and future paths respectively (Figure 3; Figure S4), we asked if there was any relationship 
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between the behavioral content of replay events and the memory demands at different stages of 

learning for the individual task components. We found that even as behavioral performance 

improved over learning sessions for all animals (Figure 4A), there was no change in the balance 

of overall reverse and forward replay events over the course of learning (Figures 4B-4H). SWR 

rate did not change (Figure 4B), but SWR duration and place cell firing during SWRs significantly 

decreased over the course of learning (Figures 4C and 4D). This corresponded to a decrease in 

replay rate (Figure 4E), although decoded replay length increased with learning (Figure 4F). In 

addition to the decrease in replay rate, as animals became increasingly proficient in the task, 

there was a decrease in immobility periods at reward wells, resulting in an overall reduction in 

number of SWRs and replay events at reward wells (session-by-session distributions in Figure 

S6). However, fraction of reverse and forward replay events of any trajectory type did not change, 

maintaining the balance of reverse and forward replay throughout the course of learning (Figures 

4G and 4H).  

We examined replay content at different learning stages independently at center- and 

side-well transitions, since outbound (center-to-side) and inbound (side-to-center) trajectories 

originating from these reward wells entail distinct memory demands (history-dependent spatial 

working memory demands and history-independent spatial reference rule, respectively) (Jadhav 

et al., 2012). Examples of replay events during early learning in initial sessions (E1-3), and late 

performance in final sessions (E6-8), are shown in Figures 5A-5D and Figure S4 (behavioral 

performance on the outbound, spatial working memory component, 59.9 ± 9.1% for early or novel 

learning, and 83.8 ± 9.6% for late performance in mean ± SD; behavioral performance on the 

inbound memory component, 65.53 ± 28.16% for early or novel learning, and 97.14 ± 0.03% for 

late performance; see STAR Methods and Figure S2 for all behavior). During early learning, 

corresponding to low performance levels, reverse replay events at the side wells preferentially 

reactivated the actual taken past path of the animal, with this bias lost over the course of learning 
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(Figures 5A and 5E); whereas forward replay events at side wells shifted their content from no 

initial bias during early learning to preferential replay of the future taken path during late sessions, 

when animals started performing well above chance levels (Figures 5C and 5E). In contrast, at 

the center well, reverse and forward replay events continued to persistently reactivate, in an 

unbiased manner, both the actual taken and the alternative (not-taken) past and future paths 

respectively, throughout the course of learning (Figures 5B, 5D, and 5F). 

Replay events therefore shifted their content over the course of learning at the side wells, 

which was apparent both in correlations of replay content with behavioral performance, as well 

as the ability of replay to predict behaviorally actualized past and future paths (Figure 5G; overall, 

forward replay events of future taken vs. not-taken paths: 169/387 vs. 103/387, 43.7% vs. 26.7%, 

p < 1e-4; reverse replay events of past taken vs. not-taken paths: 200/376 vs. 67/376, 53.2% vs. 

17.7%, p < 1e-4, z-test for proportions). Reverse replay content was able to accurately predict the 

actual past path of the animal during early stages of learning, but not later performance (Figure 

5G, Left; cross-validated SVM decoders were trained on the number of reverse replay events to 

predict taken paths, see STAR Methods). Forward replay of taken future paths showed significant 

positive correlation with behavioral performance (Figure 5E, Right), with accurate prediction of 

actual future path emerging only after learning during later performance sessions (Figure 5G, 

Right). This change in replay content from reverse replay of past taken path to forward replay of 

future upcoming path of the animal thus underscores a learning shift from retrospective evaluation 

of the completed outbound trajectory terminating in reward, to prospective planning of the future 

inbound trajectory that underlies execution of the reference memory rule.  

In marked contrast, replay events at the center well, marking the transition point of the 

history-dependent spatial working memory behavioral sequence, did not show a preferential bias 

towards actual taken paths, either for reverse replay of past paths (Figure 5F, Left; overall, 

reverse replay events of past taken vs. not-taken paths: 146/439 vs. 177/439, 33.6% vs. 40.3%), 
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or for forward replay of future paths (Figure 5F, Right; overall, forward replay events of future 

taken vs. not-taken paths: 111/293 vs. 91/293, 37.9% vs. 31.6%; p = 0.55, z-test for proportions). 

Reverse replay content did not show correlation with performance and could not predict the actual 

taken past path that terminated at the center well for any learning stage (Figure 5H, Left). 

Similarly, forward replay content was unable to predict the actual taken future path that originated 

at the center well (Figure 5H, Right). Thus, rather than a deterministic role of hippocampal replay 

in representing past and future paths comprising a spatial working-memory sequence, this 

suggests a persistent evaluative role of replay throughout the course of learning and performance. 

Hippocampal replay can therefore underlie a cognitive exploration of possible past and future 

paths (Gupta et al., 2010; Redish, 2016; Singer et al., 2013; Stella et al., 2019) for this history-

dependent spatial working-memory rule, and we hypothesized that selection of behaviorally 

relevant replayed trajectories for this deliberative working memory process (i.e. choosing correct 

future trajectory based on executed past trajectory) occurs in networks outside the hippocampus, 

with the prefrontal cortex a likely candidate (Eichenbaum, 2017; Shin and Jadhav, 2016; Spellman 

et al., 2015; Tang and Jadhav, 2018; Yu and Frank, 2015).  

 

Coordinated hippocampal-prefrontal replay selects past-future trajectory sequences 

We therefore examined the relationship of coherent hippocampal-prefrontal (CA1-PFC) replay of 

spatial paths to ongoing behavioral trajectories (Tang et al., 2017). Similar to CA1 (Figure 1), 

PFC neurons exhibited spatially and directionally selective firing, with PFC ensembles forming 

unique spatial representations of different trajectories on the maze for all sessions (Figure 6). We 

and others have shown that although PFC neurons have significantly lower spatial specificity and 

multi-peaked fields as compared with CA1 neurons (Jadhav et al., 2016; Tang et al., 2017; Yu et 

al., 2018; Zielinski et al., 2019), PFC ensembles can still represent spatial location with high 

accuracy (Mashhoori et al., 2018; Zielinski et al., 2019). Just as in CA1, spatial- and directional- 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2019. ; https://doi.org/10.1101/632042doi: bioRxiv preprint 

https://doi.org/10.1101/632042
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14 
 

selective firing in PFC was seen across all 8 sessions starting with the first session on the track 

(Figures 6A and 6B). PFC ensembles thus represent unique locations along different trajectories 

on the maze for all sessions - their activity accurately predicted animal position during spatial 

exploration using a Bayesian decoder for individual sessions (Figures 6B-6E) (Tang et al., 2017; 

Zielinski et al., 2019), and ensemble activity exhibited significant directionality for all 8 sessions 

(Figures 6A, 6B and 6F).  

We have previously reported coordinated hippocampal-prefrontal replay during SWRs 

(Jadhav et al., 2016; Tang et al., 2017), and therefore examined the relationship between 

coherent hippocampal-prefrontal replay and behavioral choices. Here, coherent CA1-PFC 

reactivation is defined as a CA1 replay event where the same trajectory is also significantly 

reactivated by CA1-PFC ensembles, detected as ‘reactivation strength’ using a template matching 

method, similar to previous reports (Figure 7; Figures S7 and S8; see STAR Methods; a 

comparison of the template matching method with Bayesian decoding and line-fitting methods is 

detailed in Figure S8, using both model simulations and experimental data) (Girardeau et al., 

2017; Lansink et al., 2009; Peyrache et al., 2009; Tang et al., 2017). Using template spatial maps 

for CA1 and PFC neurons and candidate coherent replay events (≥ 5 PFC and CA1 place cells 

active; Figures 7A-7D), we calculated the ensemble CA1-PFC correlation coefficient during 

running behavior (CRUN) and SWR events (CSWR) for each of the four possible trajectories. The 

reactivation strength of each of these events was measured as the correlation between the 

population matrices, CRUN and CSWR. Illustrative coherent CA1-PFC reactivation events, with both 

forward and reverse CA1 replay, are shown in Figures 7A-7D, with the linearized spatial maps 

of each cell that fired during the SWR replay event (Figures 7Ai-7Di), the activity for a single 

running trial and activity during the replay event (Figures 7Aii-7Dii), the corresponding replayed 

trajectory in CA1 (Figures 7Aiii-7Diii), and the reactivation strength of the coherent CA1-PFC 

replay trajectory (Figures 7Aiv-7Div). Crucially, this enabled us to compare the strength of 
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coherent CA1-PFC replay when CA1 replayed either the behaviorally taken path, or the 

alternative not-taken path as a paired comparison during each event. We found that coherent 

CA1-PFC reactivation was significantly stronger when CA1 replayed the actual taken paths as 

compared with the alternative trajectory, but not when CA1 replayed the not-taken paths (Figure 

7E; effect seen at both center and side wells). Stronger coherent CA1-PFC replay was true for 

both forward CA1 replay of future taken paths, as well as reverse CA1 replay of past taken paths 

(Figure 7F). The degree of coherent CA1-PFC replay (quantified as the fraction of coherent CA1-

PFC replay events) was also higher for taken as compared with not-taken CA1 replay (Figure 

7G). 

Coherent CA1-PFC replay thus mediated selection, through stronger reactivation, for 

actual (i.e., behaviorally instantiated) past and future paths during reverse and forward CA1 

replay, respectively (Figures 4E-4G). This was not a result of any difference in CA1 replay quality 

for taken vs. not-taken paths (Figure S7A). Interestingly, we also observed that stronger coherent 

CA1-PFC replay for future taken paths vs. not-taken paths emerged only during late performance 

stages, when animals performed well above chance-levels (Figure S7C). This suggests 

emergence of prospective planning of correct upcoming choices through coherent CA1-PFC 

replay as animals learn the task.  

Finally, we asked if coherent CA1-PFC replay was related to behavioral performance of 

animals, and indeed found a significant correlation between higher CA1-PFC reactivation and 

working-memory performance (Figures 7H-7J; examples in Figures S7E-S7G). The degree of 

engagement of PFC activity (and not CA1 activity) during SWR replay events, the strength of 

pairwise CA1-PFC reactivation (and not within-CA1 pairwise reactivation), and the magnitude of 

CA1-PFC ensemble reactivation (and not CA1 ensemble reactivation) corresponded to maximal 

outbound behavioral performance across the six animals, suggesting a relationship between CA1-

PFC replay and memory performance (Figures 7H-7J). 
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DISCUSSION 

Our results provide novel insights into the role of replay in spatial memory, and suggest a 

mechanism of coordinated hippocampal-prefrontal replay underlying retrospective evaluation for 

learning in novel environments, and prospective planning for decision making after task 

acquisition to support memory performance. Continuous tracking of replay over the course of 

spatial choice learning revealed that reverse replay mediates retrospective evaluation of possible 

past paths leading to goals, and forward replay mediates prospective planning of available future 

choices toward goals. Crucially, we found dynamic changes in functional roles of replay 

depending on the learning stage, as well as a novel role in mediating spatial working memory 

tasks that requires coherent hippocampal-prefrontal reactivation. The W-track alternation task 

comprises interleaved components of history-independent (return-to-center trajectory) and 

history-dependent (side-to-center followed by center-to-opposite-side trajectory sequence) spatial 

rules. Our results suggest a model (Figure 8) with differing roles of replay in (i) history-dependent 

spatial working-memory tasks which necessarily need coherent hippocampal-prefrontal replay for 

recall of the actual past experience to guide selection of the future choice; and (ii) history-

independent, deterministic spatial rules where the outcome is pre-determined based only on 

current location, similar to previous studies with pre-determined paths between reward wells 

(Ambrose et al., 2016; Diba and Buzsáki, 2007; Foster and Wilson, 2006; Ólafsdóttir et al., 2016, 

2017; Wu et al., 2017). 

At the side wells, replay showed a shift from reverse-replay-based prediction of past path 

during early learning, to forward-replay-based prediction of future path during late performance. 

Reverse and forward hippocampal replay representations of past and future paths are in 

agreement with observations for deterministic spatial trajectories on linear tracks between reward 

wells (Ambrose et al., 2016; Diba and Buzsáki, 2007; Foster and Wilson, 2006), and our results 

establish a learning gradient for the role of reverse and forward replay (Figure 8A). Specifically, 
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for forward replay, our findings indicate that with repeated experience of the same trajectory 

spanning reward wells in the inbound return-to-center reference memory component, prediction 

of future path leading to reward emerges over learning. This forward replay prediction is in 

agreement with previous observations in spatial reference memory tasks (Pfeiffer and Foster, 

2013; Wu et al., 2017; Xu et al., 2019), and emergence of this prediction with learning has been 

hypothesized (Pfeiffer, 2018). Interestingly, disrupting hippocampal replay does not impair 

learning for the inbound component in the W-track task (Jadhav et al., 2012), suggesting that 

despite the prediction ability of forward replay, other mechanisms can potentially support (or 

compensate) learning of deterministic paths leading to goals.  

Reverse replay at side wells mediated retrospection of the past outbound (center-to-side) 

paths leading to reward. This reverse replay prediction occurs at the completion of the spatial 

working memory trajectory, and prediction of the past path leading to reward aligns with a role in 

spatial working memory updates reported in a radial-arm maze task (Xu et al., 2019). Intriguingly, 

we found that this bias toward taken past path is present only during early learning. This indicates 

that reverse replay of goal-directed past paths can play an important role in temporal credit 

assignment during early learning in a novel environment (Foster and Knierim, 2012; Haga and 

Fukai, 2018; Mattar and Daw, 2018; Pfeiffer, 2018), and the loss of bias for taken past path over 

learning supports the hypotheses that this credit assignment function is no longer required after 

acquisition of the task (Foster and Knierim, 2012). Notably, despite the findings of reverse-past-

replay and forward-future-replay, a simple model of latent excitability (Atherton et al., 2015; 

Battaglia et al., 2011; Csicsvari et al., 2007) is insufficient to explain reverse and forward directions 

of replay, since they occur in an inter-mixed order during immobility and not just at beginning and 

end of immobility periods, which has also been reported in a previous study (Ambrose et al., 

2016). Finally, stronger coherent CA1-PFC reactivation was observed for taken past and future 

paths at the side wells, suggesting behavioral mediation by prefrontal reactivation.  
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In contrast, surprisingly, hippocampal replay exclusively underlies a lower-level cognitive 

search role, and not a predictive element, for working memory rules (Figure 8B). At the center 

well, past paths are inbound components (side-to-center), and future paths are outbound 

components (center-to-side), with a past-future trajectory sequence spanning the center well 

transition sub-serving a replay-dependent spatial working memory task (Jadhav et al., 2012). We 

found that hippocampal replay persistently reverse-replayed both possible past choices and 

forward-replayed both available future choices throughout the course of learning and 

performance. The lack of bias toward taken paths is not simply an artifact of possible issues in 

replay detection, as demonstrated by the learning gradient of trajectory prediction for side wells, 

providing an internal control. This is indicative of a priming process for retrospection and 

prospection (Buzsáki, 2015), with hippocampal replay underlying a cognitive exploration of 

possible paths (Gupta et al., 2010; Pfeiffer, 2018; Redish, 2016; Singer et al., 2013; Stella et al., 

2019) that can be utilized by other networks for deliberation and prospective planning (Figure 

8B). For individual hippocampal replay events, coherent hippocampal-prefrontal replay can 

discriminate the behaviorally taken past path and the chosen future path from the alternatives, 

suggesting that it supports recall of the actual past experience and selection of the future choice 

based on the hippocampal evaluative process. Coherent CA1-PFC replay can thus mediate 

planning of correct future trajectory based on the completed past trajectory.  This PFC read-out 

interpretation is supported by a bias toward CA1-leading-PFC directionality during replay (Jadhav 

et al., 2016; Rothschild et al., 2016), which can potentially be tested using selective causal 

perturbation of coherent PFC replay (Shin and Jadhav, 2016; Tang and Jadhav, 2018; Zielinski 

et al., 2017). 

Our results thus suggest a novel role of replay in acquisition and performance of history-

dependent spatial working memory rules. Hippocampal replay of possible choices underlies an 

evaluative process for retrospection and prospection respectively, mediating a cognitive 
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exploration of possible paths, as previously hypothesized (Colgin, 2016; Foster, 2017; Gupta et 

al., 2010; Jadhav et al., 2012; Redish, 2016; Singer et al., 2013; Stella et al., 2019), that can be 

utilized by other networks for reinforcement learning and prospective planning. Coherent CA1-

PFC replay distinguishes behaviorally taken past and future paths during the spatial working 

memory sequence, supporting a key role of PFC in trajectory choice selection for spatial working 

memory (Jadhav et al., 2012; Spellman et al., 2015; Tang and Jadhav, 2018; Yu and Frank, 

2015). We hypothesize that coherent replay of the future planned path can influence the 

behavioral time-scale, choice-selective activity (Fujisawa et al., 2008; Guise and Shapiro, 2017; 

Ito et al., 2015; Zielinski et al., 2019) that is seen in these networks as animals execute the chosen 

future action and run toward reward. It is important to point out that our experimental design 

enabled a rapid learning time-scale, and it is possible that this replay pattern is not seen in 

repeatedly trained tasks, when other habitual systems can contribute to learning and performance 

(Kim and Frank, 2009; Packard and McGaugh, 1996). 

This model of hippocampal cognitive exploration for selection and filtering by prefrontal 

(and possibly other) networks has implications for neural mechanisms of model-based learning 

and planning, possibly for spatial as well as non-spatial memories (Daw et al., 2005; Doll et al., 

2012; Miller et al., 2017; Pezzulo et al., 2014; Redish, 2016; Smittenaar et al., 2013; Vikbladh et 

al., 2019). In the W-track task, multiple paths leading to and from the center well underlie a non-

Markovian structure (Mattar and Daw, 2018), and the spatial working-memory component of the 

task requires animals to integrate across space and time to learn sequences of past and future 

trajectory choices that lead to reward. Hippocampal replay events consistently provide a cognitive 

exploration of past and future choices via reverse and forward replay, a process that can be 

influenced or read-out by inputs and outputs from other regions (Gomperts et al., 2015; Ji and 

Wilson, 2007; Pfeiffer, 2018; Tang and Jadhav, 2018; Yamamoto and Tonegawa, 2017). We 

suggest that replay in the awake state represents an internal cognitive state that engages a broad, 
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multi-region network, similar to a default network mode (Buckner, 2010; Logothetis et al., 2012), 

to support ongoing learning, prospection, and imagination.  
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FIGURES 

 

Figure 1. Hippocampal place-cell sequences distinctly code different behavioral trajectories during learning of a 

W-maze spatial memory task 

(A) W-maze spatial alternation task design, depicting the correct behavioral sequence of outbound (blue) and inbound (teal) 

trajectories (labelled 1-4) for reward. Right-left labelled according to animal direction. 

(B) Past and future trajectories during transitions at reward wells in the W-maze task. (i) Two possible correct behavioral 

sequences at the center well, with inbound and outbound trajectories representing possible past and future paths, 

respectively. A behavioral sequence of inbound past path and outbound future path to the opposite side-arm comprises a 

history-dependent spatial working memory rule. (ii) One correct behavioral sequence for each side well (left or right well). 
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Note that compared to the center well, the past and future paths at side wells are reversed as outbound and inbound 

trajectories, respectively. The inbound return-to-center future path originating at the side well comprises a history-

independent spatial memory rule. 

(C) Place fields of all CA1 place cells (n = 216) recorded from 6 rats continuously across 8 learning sessions (or epochs; 

denoted as E1-8). The fields for trajectories 1 and 2, sorted according to peak positions on trajectory 1 or 2, are shown on 

the top two rows. The bottom two rows are for trajectories 3 and 4. 

(D-F) Position reconstruction based on CA1 ensemble spiking during active running behavior on trajectories (> 5 cm/s). (D) 

Example confusion matrices (estimated vs. true position) for all place-cell reconstruction. Values along diagonal show 

correspondence between estimated and true position. (E) illustrative estimated position probabilities based on Bayesian 

decoding of spike trains during running on different trajectories, using data from a single animal for individual sessions. 

Cyan line: actual animal trajectory. (F) Cumulative CA1 decoding errors across all animals (n = 6 rats). Dashed lines: 

individual animals; Red line: all animals; Solid black line: the example animal shown in (D). Median error of all sessions 

noted on top as (median ± SEM). 

(G and H) Directional selectivity of place cells across different learning sessions. (G) Directionality index (DI) of place cells 

across learning sessions. Note the significant overall increase of DIs in the population from the first to the last sessions (red 

and blue bars above indicate significant difference from the first session, p < 0.05, Friedman tests with Dunn’s post hoc). 

Error bars: SEM. (H) Similarity of the place-cell population in two running directions was computed using the population 

vector overlap (PVO). Dashed grey lines: 95% CIs of the shuffled distributions (by randomly permuting running directions) 

from each animal. Thin blue and red lines: actual PVO from individual animals on right (i.e., trajectories 1 vs. 2) and left (i.e., 

trajectories 3 vs. 4) trajectories, respectively. Thick lines and error bars: means and SEM. Note that the similarity of the 

place-field templates in two running directions decreased across sessions as expected from the increase in the DIs, but 

distinct templates for each direction are apparent as early as the first session (p’s < 0.0001 compared to the shuffled data 

for individual rats, permutation tests) (Foster, 2017; Foster and Wilson, 2006).  

See also Figures S1 and S2, and Table S1.  
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Figure 2. Continuous tracking of forward and reverse replay throughout learning 

(A-F) Six examples of forward and reverse replay of behavioral trajectories in different learning sessions using continuously 

tracked CA1 ensembles in one animal. (i) Left: Place-cell activity during a SWR, with ripple-filtered LFP (150-250 Hz) from 

one tetrode shown on top (black line). Right: Corresponding linearized place fields on trajectories 1 to 4 sorted by their peak 

locations on the replay trajectory (red). (ii) Bayesian reconstruction of the decoded behavioral trajectories with the replay 

quality (r) and p-value based on time-shuffled data denoted on top. Cyan lines: the linear fit maximizing the likelihood along 

the replay trajectory. Color bars: posterior probability. See also Figure S3 for additional replay examples. 
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(G-I) Distributions of (G) animals’ immobility times at reward wells, (H) the number of SWRs, and (I) candidate events (open 

bars) and replay events (solid bars) detected in immobility periods per choice (i.e., per transition). Only correct trials are 

shown. The vertical dashed lines on the histograms represent the mean values (Immobility time: 10.3 ± 5.7 sec; SWRs: 7.3 

± 5.5 events; Candidate events: 2.3 ± 2.4 events; replay events: 0.9 ± 1.2 events; data are presented in mean ± SD).  

(J and K) (J) Number and (K) percentage of forward and reverse replay events of different trajectory types. Each dot 

represents a session, summing over all 6 animals (sessions 1 and 2 were combined). Error bars: mean ± SEM. Note that 

the number of replay events was similar across different trajectory types (F(7, 42) = 3.062 and p = 0.053 for J, F(7, 42) = 

2.227 and p = 0.12 for K, respectively; repeated measures ANOVA). 
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Figure 3. Reverse replay of possible past paths, forward replay of possible future paths 

(A-F) Illustration of past and future trajectories replayed by reverse and forward place-cell sequences at reward wells. 

(A-C) Example of side reward well transitions. (A) CA1 neural activity during a correct outbound-inbound sequence (RUN1 

to RUN2), with replay events at the left side well. From top to bottom, the behavioral sequence (blue and teal lines represent 
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the past and future taken paths, RUN1 and RUN2; grey segment denotes the immobility period at reward well), animal 

speed, broadband and ripple-filtered LFPs from one CA1 tetrode, raster plot of 20 place cells ordered by the positions of 

their place-field peaks (red ticks; overlaid blue line indicates linearized position of the animal). CA1 exhibits theta oscillatory 

activity (8-10 Hz; blue shading on LFP) during running, and large amplitude SWRs during immobility at the reward well, 

coincident with synchronous activity of place cells (indicated by arrowheads and shadings in the raster plot). Five 

synchronous events were seen, with 3 events detected as significant replay sequences (yellow shading). (B) Expanded 

view of the 3 replay events from (A), identified as forward replay of RUN2 (future) and reverse replay of RUN1 (past). (Bi-

Biii) Each column shows the Bayesian reconstruction of the animal’s trajectory during replay (top), ripple-filtered LFP 

(middle), and spike raster of place cells sorted as in (A) (bottom; raster corresponding to the replay trajectory is in red). (C) 

Linearized fields of the place cells in (A) for trajectories 1 to 4 sorted by their peak locations on (Ci) RUN1 and (Cii) RUN2. 

(D-F) Example of center reward well transitions. (D) CA1 neural activity during a correct inbound-outbound sequence (RUN1 

to RUN2), with replay events at the center well. RUN1-Alt: alternative past trajectory to center well. (E) All four replay events 

during the center-well transition, identified as forward replay of RUN2 (future) and reverse replay of RUN1-Alt (alternative 

past). (F) Linearized fields of the place cells in (D). Data are presented as in (A-C). 

(G) Replay events during an example transition at the left side well. (i) Behavioral sequences for the side-well transition. (ii) 

All replay events (n = 2; Event 1 and Event 2) during the transition at the side well. Top left: Bayesian reconstruction of the 

replay trajectory. Colored points overlaid on the replay trajectory (black arrowhead line) indicate the Bayesian-decoded 

positions, with the color denoting relative time within the replay event (early in red, and late in yellow). Top right: Bayesian 

reconstruction of the decoded behavioral trajectories. Cyan lines: the linear fit maximizing the likelihood along the replay 

trajectory. Bottom: ripple-filtered LFP and the sequential spiking of place cells during the SWR. (iii) Linearized fields of the 

place cells active during the Event 1 (left) and Event 2 (right) on trajectories 1 to 4 sorted by their peak locations on the 

replay trajectory (red). 

(H and I) Replay events during two example transitions at the center well. Data are presented as in (G). See also Figure 

S4 for additional replay examples. 

(J) At the center well, inbound trajectories (past paths) and outbound trajectories (future paths) were preferentially replayed 

in a reverse and forward order, respectively. At the side wells, outbound trajectories (past) and inbound trajectories (future) 

were preferentially replayed in a reverse and forward order, respectively. ****p < 1e-4, session-by-session rank-sum paired 

test. Error bars: SEM.  
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(K) The bias in (J) is consistent in each rat (circles; n = 6).  

(L) The bias in (J) at the center (left) and side (right) wells appeared similarly across 8 behavioral sessions (denoted as E1-

8). n.s.: non-significant (Center well: main effect of group, p = 0.52 and 0.44 for inbound and outbound, respectively; Side 

wells: main effect of group, p = 0.30 and 0.59 for inbound and outbound, respectively; Kruskal-Wallis tests). ****p < 1e-4, 

session-by-session rank-sum paired test.  

(M) Patterns of forward and reverse replay discriminate different goal-locations (n = 3 wells). The prediction accuracy of 

classifying wells is shown based on the number of either forward or reverse replay events for different trajectories at the 

wells. The cross-validated decoder using SVM is significantly better than chance (error bars) defined by permutation tests 

(****p < 0.0001).  

(N) The prediction accuracy of incorrect trials is significantly lower than that of correct trials for forward replay events, but 

not reverse replay events at the center well. Error bars indicate 95% confidence intervals based on bootstrapped data 

(Correct trials were randomly subsampled 1,000 times to match the number of incorrect trials; n.s., p = 0.06; **p = 0.01). 

See also Figures S4 and S5. 
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Figure 4. Dynamics of SWR replay properties over the course of learning 

(A) Task performance, showing proportion correct of outbound trajectories per session for all animals (n = 6 rats).  

(B) Total SWR rate did not change across sessions (p = 0. 28 and F(6, 30) = 1.44, repeated measures ANOVA). 

(C) Duration of SWR events decreased over learning (Kruskal-Wallis test, p < 1e-4; ***p = 0.0003, ****p < 1e-4, Dunn’s post 

hoc). Error bars: SEM. 

(D) Percentage of place cells active per SWR was significantly decreased across sessions (****p < 0.0001, Kruskal-Wallis 

test; **p = 0.0016, ****p < 0.0001, Dunn’s post hoc tests). 
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(E) Replay rate decreased over learning (p = 0.0005, F(6, 30) = 14.21, repeated measures ANOVA; **p = 0.003, Tukey’s 

post hoc tests).  

(F) Decoded length of replay trajectories increased over learning (Kruskal-Wallis test, p = 0.0004; ***p = 0.0001, *p = 0.039, 

Dunn’s post hoc). Error bars: SEM.  

(G) Percentage of reverse replay out of all replay events did not change across sessions (p = 0.12, F(6, 30) = 2.370, 

repeated measures ANOVA).  

Dashed lines in (A, B, E, G): individual animals. Solid line and error bars: mean and SEMs. 

(H) Number of forward and reverse replay events of the 4 behavioral trajectory types across 8 learning sessions (E1-8) (i.e., 

center-to-right, C-to-R; center-to-left, C-to-L; right-to-center, R-to-C; left-to-center, L-to-C). The trajectory types are color-

coded with red arrowheads indicating 50% level for forward and reverse replay. Note that the fraction of reverse and forward 

replay events of any trajectory types remained similar across 8 learning sessions. 

See also Figure S6. 
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Figure 5. Contrasting evolution of reverse and forward replay during the course of learning 

(A and B) Example reverse replay events during early learning at (F) the side well and (G) the center well. Data are 

presented as in Figure 3. 
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(C and D) Example forward replay events during late performance at (H) the side well and (I) the center well. See also 

Figure S4 for additional replay examples. 

(E and F) Relationship between task performance and fraction of reverse replay of past taken paths (left), or forward replay 

of future taken paths (right) at (E) the side wells and (F) the center well. Each dot represents one session from a subject. 

Note the significant negative correlation for reverse replay (r = -0.57, p < 0.0001) and positive correlation for forward replay 

(r = 0.28, p = 0.035; permutation tests) at the side wells, but not the center well (r = 0.08, p = 0.64 for reverse replay; r = 

0.22, p = 0.09 for forward replay).  

(G) At the side wells, reverse replay events predict taken past paths during early learning sessions (left), while forward 

replay events predict future taken paths during late performance sessions (right). Cross-validated SVM decoders were 

trained during early, middle and late sessions (sessions 1-3, 4-5, and 6-8, respectively) based on the number of either 

forward or reverse replay events of 4 possible trajectories at the wells during correct trials. Only trials with at least one replay 

event of the given type (forward or reverse) were used (n = 79, 85, and 85 trials for reverse, and n = 87, 95, and 104 trials 

for forward during early, middle and late sessions, respectively). Significant prediction power was only observed during early 

and middle sessions for reverse replay (left; p < 0.0001****, 0.0001**** and 0.43 for early, middle and late sessions, 

respectively), and late sessions for forward replay (right; p = 0.23, 0.35, and 0.003** for early, middle and late sessions, 

respectively).  

(H) Taken paths cannot be predicted from the patterns of replay events at the center well (n = 89, 91, and 118 trials, and p 

= 0.36, 0.08, and 0.68 for reverse replay; n = 72, 71, and 74 trials, and p = 0.38, 0.56, and 0.15 for forward replay during 

early, middle and late sessions, respectively). Red horizontal lines on columns represent chance levels calculated by 

permutation tests. 
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Figure 6. Spatial coding and distinct representations of behavioral trajectories by prefrontal cells 

(A) Spatial maps of all PFC cells (n = 154) recorded from 6 rats continuously across 8 learning sessions (E1-8). Data are 

presented as Figure 1C. Note that patterns between pairs of trajectories reflect path equivalence properties of PFC neurons 

(Yu et al., 2018). 

(B) Spatial maps of all PFC cells (n = 38) recorded from an example animal in the first and last sessions. 
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(C-E) Position reconstruction based on PFC ensemble spiking from the example animal in (B) during active running. (C) 

Confusion matrices (estimated vs. true position). (D) Estimated position probabilities. Cyan line: actual animal trajectory. 

Data are presented as Figures 1D and 1E. (E) Cumulative PFC decoding errors across all animals (n = 6 rats). Dashed 

lines: individual animals; Red line: all animals; Solid black line: the example animal shown in (B-D). Median error of all 

sessions noted on top as (median ± SEM). 

(F) Population vector overlap (PVO) of PFC population activity in two running directions across 8 learning sessions. Data 

are presented as in Figure 1H. Note that the spatial maps of PFC population in two running directions became less similar 

across sessions, but distinct templates for each direction were apparent as early as the first session (p’s < 0.0001 compared 

to the shuffled data for individual rats, permutation tests). 
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Figure 7. Coherent hippocampal-prefrontal (CA1-PFC) reactivation of past and future trajectories 

(A-D) Four examples of coherent CA1-PFC reactivation of future and past taken paths. (i) Linearized CA1-PFC spatial-map 

template with cell IDs on y-axis (left), and the corresponding raster plot during the SWR (right). (ii) Detailed view of CA1-

PFC coordination during RUN and the SWR using example cells. Left (RUN): the spiking pattern from a single running trial 

(ticks) with linearized spatial maps obtained by averaging over all trials (overlaid lines). Right (SWR): spikes (ticks) during 

the SWR, and the response curves (overlaid lines) created by smoothing observed spikes with a Gaussian kernel. 

Arrowheads indicate the peak locations. (ii) CA1 trajectory replay, with data presented as in Figure 5A. Green circle: 

animal’s current position; Black arrowhead line: trajectory taken; Colored dots: decoded CA1-replay path. (iv) Reactivation 

strength, measured as the correlation coefficient of CA1-PFC activity during RUN vs. SWR using template matching, for 

four possible trajectories (trajectory schematic on the bottom; red for CA1-replay path, black for alternative path, blue for 

the other paths). Blue horizontal lines on columns represent 95% confident intervals computed from shuffled data (SWR 

spike time shuffle). Selected PFC cells with highest contribution to the reactivation strength are shown in (iii) for ease of 

presentation, illustrating the synchronized firing pattern for CA1 and PFC cells during RUN, which is reactivated during the 

SWR event.  

(E) Paired comparison of CA1-PFC reactivation strength for CA1-replay of taken vs. alternative path during all CA1 replay 

events at center (Top) and side (Bottom) wells. Note that CA1-PFC reactivation strength is significantly higher for the CA1-

replayed path compared to its alternative, only when this path was the behaviorally taken path at both center (p = 0.032*) 

and side (p = 0.0075**) wells, but not when the CA1-replayed path was the “not-taken” path (p = 0.35 and 0.16 for side and 

center wells, respectively; rank-sum paired tests).  

(F) Stronger CA1-PFC reactivation of taken path compared to not-taken path for both forward and reverse CA1 replay (p = 

0.0058** and 0.10 for forward replay of taken and not-taken, respectively; p = 0.039* and 0.65 for reverse replay of taken 

and not-taken, respectively; rank-sum paired tests).  

(G) The proportion of coherent CA1-PFC reactivation events is significantly higher during CA1 replay of taken vs. not-taken 

trajectories (p = 0.02*, session-by-session rank-sum paired test).  

(H-J) Relationship between animals’ maximal performance level on the outbound, spatial working memory component and 

(H) activation ratio of CA1 (Top) and PFC (Bottom) cells during SWR synchronous events, (I) reactivation strength of CA1-

CA1 (Top) and CA1-PFC (Bottom) cell pairs (open circle indicates the example animal shown in Figure S7G), and (J) 

reactivation strength of CA1 (Top) and CA1-PFC (Bottom) populations (see STAR Methods). Each dot represents an 
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animal. Behavioral performance showed significant correlation with PFC activation ratio, CA1-PFC pairwise, and ensemble 

reactivation strength, but not for CA1-only parameters.  

See also Figures S7 and S8. 
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Figure 8. Schematic: hippocampal-prefrontal replay mediates retrospection and prospection for learning and 

planning in spatial memory-guided tasks 

(A) The role of hippocampal-prefrontal replay in learning history-independent, deterministic spatial rules. (Ai) At the side-

wells, past paths are outbound components (center-to-side), and future paths are inbound components (side-to-center). 

(Aii-Aiii) Hippocampal replay showed a shift from reverse-replay-based prediction of taken past path during early learning, 

to forward-replay-based prediction of taken future path during late performance, along with (Aiv) stronger coherent CA1-

PFC reactivation of taken paths. 

(B) The role of hippocampal-prefrontal replay in learning history-dependent spatial working-memory rules. (Bi) At the center 

well, past paths are inbound components (side-to-center), and future paths are outbound components (center-to-side), with 

a past-future trajectory sequence spanning the center well transition sub-serving a replay-dependent spatial working 

memory task (Jadhav et al., 2012). (Bii) Hippocampal replay persistently reverse-replayed both past choices and forward-

replayed both future choices at the center well (Biii) throughout the course of learning and performance. (Biv) For each CA1 

replay event, coherent CA1-PFC replay discriminates the behaviorally taken past path and the chosen future path from the 

alternatives, and can mediate planning of correct future trajectory based on the completed past trajectory.  
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STAR★METHODS 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Chemicals 
Cresyl Violet Acros Organics Cat#: AC229630050 
Formaldehyde Fisher Cat#: 50-00-

0,67561,7732-18-5 
Isoflurane Patterson Veterinary Cat#: 07-806-3204 
Ketamine Patterson Veterinary Cat#: 07-803-6637 
Xylazine Patterson Veterinary Cat#: 07-808-1947 
Atropine Patterson Veterinary Cat#: 07-869-6061 
Bupivacaine Patterson Veterinary Cat#: 07-890-4881 
Beuthanasia-D Patterson Veterinary Cat#: 07-807-3963 
Sucrose Sigma-Aldrich Cat#: S8501-5KG 
Experimental Models: Organisms/Strains  
Rat: Long Evans Charles River Cat#: Crl:LE 006; 

RRID: 
RGD_2308852 

Software and Algorithms 
MATLAB 2017a Mathworks, MA RRID: SCR_001622 
Trodes SpikeGadgets http://www.spikegad

gets.com 
Matclust Mattias P. Karlsson https://www.mathwor

ks.com/matlabcentra
l/fileexchange/39663
-matclust, V1.7 

Libsvm Chang and Lin 2011 https://www.csie.ntu.
edu.tw/~cjlin/libsvm/, 
V3.12 

Prism 8 GraphPad Software RRID: SCR_002798 
Other 
128 Channel electrophysiology data acquisition 
system 

SpikeGadgets http://www.spikegad
gets.com 

12.7 μm NiCr tetrode wire Sandvik Cat#: PX000004 
 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources should be directed to and will be fulfilled by the Lead 

Contact, Dr. Shantanu P. Jadhav (shantanu@brandeis.edu). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 
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All procedures were approved by the Institutional Animal Care and Use Committee at the Brandeis 

University and conformed to US National Institutes of Health guidelines. Six adult male Long-Evans rats 

(450-550 g, 4-6 months) were used in this study. Animals were individually housed and kept on a 12-hr 

regular light/dark cycle. 

 

METHOD DETAILS 

Experimental design 

Prior to training, animals were first habituated to daily handling over several weeks. After habituation, 

animals were food deprived to 85-90% of their ad libitum weight and pre-trained to seek liquid food rewards 

(sweetened evaporated milk) at each end of an elevated linear track by running back and forth as described 

previously (Jadhav et al., 2012). After pre-training on linear-track behaviors and habituation to an elevated, 

opaque sleep box, animals were surgically implanted with a multi-tetrode drive (see Surgical implantation 

and electrophysiology). Following recovery from surgical implantation (~7-8 d), animals were food-deprived 

and again pre-trained on a linear track for at least two days before the W-maze sessions started. During 

the experimental day, animals were introduced to the novel W-maze for the first time during the recording 

sessions, and learned the task rules over 8 behavioral sessions (see below, The W-maze spatial memory 

task). Following the conclusion of the experiments, micro-lesions were made through each electrode tip to 

mark recording locations (Jadhav et al., 2012; Jadhav et al., 2016). After 12-24 hours, animals were 

euthanized (Beuthanasia) and intracardially perfused with 4% formaldehyde using approved procedures. 

Brains were fixed for 24 hours, cryoprotected (30% sucrose in 4% formaldehyde), and stored at 4 °C. The 

recording sites were determined from post hoc Nissl-stained coronal brain sections based on The Rat Brain 

in Stereotaxic Coordinates (Paxinos and Watson, 2004) (Figure S1). 

 

The W-maze spatial memory task 

Animals learned a novel W-maze continuous spatial alternation task within a single day. During this 

experimental day, all animals ran eight 15-20 min sessions on a W-maze interleaved with 20-30 min rest 

sessions in a sleep box (W-maze sessions: 17.9 ± 1.0 mins per session, 8 sessions per rat; rest sessions: 
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23.0 ± 4.9 mins per session, 9 sessions per rat; total recording duration: 6.04 ± 0.37 hrs per rat; mean ± 

SD). The W-maze was novel in the first behavioral session (sleep box was opaque, and the animal had no 

visibility of the W-maze until it was introduced in the first run session), and had dimensions of ~ 80 x 80 cm 

with ~7-cm-wide track sections. Three reward food wells (i.e., right, center and left wells) were located at 

the end of three arms of the W-maze (Figure 1). Calibrated evaporated milk reward was automatically 

delivered in the reward wells triggered by crossing of an infrared beam by the animal’s nose. Rewards were 

delivered according to the following rules (Figure 1A): returning to the center well after visits to either side 

well (inbound trajectories), and choosing the opposite side well from the previously visited side well when 

starting from the center well (outbound trajectories). Incorrect alternations (visiting the same side well in 

consecutive outbound components – outbound error), or incorrect side-to-side well visits (without visiting 

the center arm – inbound error) were not rewarded. Repeated visits to the same well were also not rewarded 

(i.e., turn-around error). Therefore, animals performed four types of trajectories during correct behavioral 

sequences (Figure 1A): center-to-right (C-to-R), right-to-center (R-to-C), center-to-left (C-to-L) and left-to-

center (L-to-C). Among these trajectory types, C-to-R and C-to-L are outbound trajectories, while R-to-C 

and L-to-C are inbound trajectories. When animals paused at one reward well during correct trials, two of 

these four trajectory types represented the immediate past and future paths taken, and the other two 

represented the alternative not-taken paths (Figure 1B). For visualization purposes, the alternative, not-

taken trajectories corresponding to a taken behavioral sequence were selected from the adjacent trials 

(e.g., Figures 3D and 3H). Only behaviorally correct trials were included for replay and reactivation 

analyses, unless otherwise specified (see below, Neural Analyses). At the end of each W-maze session, 

animals were transferred to a black opaque box for rest (~ 30 x 30 cm with a 50-cm high wall). The raw 

performance of the task was calculated as proportion correct (Singer et al., 2013) (Figure 4A) and the 

learning curves were estimated using a state-space model (Jadhav et al., 2012; Smith et al., 2004) (Figure 

S2). Each animal’s performance level (Figures 7H-7J) was measured as the highest performance reached 

on the outbound learning curve (Figure S2). All 6 animals performed > 80% correct in the W-maze task 

toward the end of learning (maximal proportion correct of outbound for individual animals: 91.2 ± 4.1%; 

mean ± SD). 
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Surgical implantation and electrophysiology 

All 6 animals performed > 80% correct in the W-maze task toward the end of learning (maximal proportion 

correct of outbound for individual animals: 91.2 ± 4.1%; mean ± SD). Surgical implantation procedures were 

as previously described (Jadhav et al., 2012; Jadhav et al., 2016; Tang et al., 2017). Animals were 

implanted with a microdrive array containing 30-32 independently moveable tetrodes targeting right dorsal 

hippocampal region CA1 (-3.6 mm AP and 2.2 mm ML) and right PFC (+3.0 mm AP and 0.7 mm ML). On 

the days following surgery, hippocampal tetrodes were gradually advanced to the desired depths with 

characteristic EEG patterns (sharp wave polarity, theta modulation) and neural firing patterns as previously 

described (Jadhav et al., 2012; Jadhav et al., 2016). One tetrode in corpus callosum served as hippocampal 

reference, and another tetrode in overlying cortical regions with no spiking signal served as prefrontal 

reference. A ground (GND) screw installed in skull overlying cerebellum also served as a reference. All 

spiking activity and ripple-filtered LFPs (150-250 Hz; see below) were recorded relative to the local 

reference tetrode. Electrodes were not moved at least 4 hours before and during the recording day. 

Data were collected using a SpikeGadgets data acquisition system (SpikeGadgets LLC) (Tang et 

al., 2017). Spike data were sampled at 30 kHz and bandpass filtered between 600 Hz and 6 kHz. LFPs 

were sampled at 1.5 kHz and bandpass filtered between 0.5 Hz and 400 Hz. The animal’s position and 

running speed were recorded with an overhead color CCD camera (30 fps) and tracked by color LEDs 

affixed to the headstage. 

Spiking activity was continuously monitored during the experimental day for ~6-7 hrs. Single units 

were identified by manual clustering based on peak and trough amplitude, principal components, and spike 

width using custom software (MatClust, M. P. Karlsson) as previously described (Jadhav et al., 2016; Tang 

et al., 2017). Only well isolated neurons with stable spiking waveforms were included (Figure S1). Cluster 

quality was assessed using isolation distance (Schmitzer-Torbert et al., 2005), cluster center-of-mass shift 

(Mallory et al., 2018), and spike-waveform correlation (Li et al., 2017) (Figure S1). Cluster center-of-mass 

shift between two different sessions was calculated as the Mahalanobis distance between the cluster 

centroids of the same single unit from these sessions. The spike-waveform correlation was quantified as 

the correlation coefficient between averaged spike waveforms of the same single unit from two consecutive 
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sessions, and the resulting correlation was Fisher-transformed to make it normally distributed (Li et al., 

2017). 

 

Unit inclusion 

Units included in analyses fired at least 100 spikes in each session. Putative interneurons were identified 

and excluded based on spike width and firing rate criterion as previously described (Jadhav et al., 2016; 

Tang et al., 2017). Peak rate for each unit was defined as the maximum rate across all spatial bins in the 

linearized spatial map (see Spatial maps). A peak rate ≥ 3 Hz was required for a cell to be considered as a 

place cell. Only cells recorded continuously across all 8 behavioral sessions with stable spiking waveforms 

were analyzed (Figure S1). 

 

Behavioral state definition 

Movement or exploratory states were defined as periods with running speed > 5 cm/s, whereas immobility 

was defined as periods with speed ≤ 4 cm/s. The animal’s arrival and departure at a reward well was 

detected by an infrared beam triggered at the well. The well entry was further refined as the first time point 

when the speed fell below 4 cm/s before the arrival trigger, whereas the well exit was defined as the first 

time point when the speed rose above 4 cm/s after the departure trigger (Figures 3A and 3D). The animal’s 

time spent at a reward well (i.e., immobility period at well) was defined as the period between the well entry 

and exit.  

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Sharp-wave ripple detection 

SWRs were detected as described previously during immobility periods (≤ 4 cm/s) (Jadhav et al., 2016; 

Karlsson and Frank, 2009; Tang et al., 2017). In brief, LFPs from CA1 tetrodes were filtered into the ripple 

band (150-250 Hz), and the envelope of the ripple-filtered LFPs was determined using a Hilbert transform. 

SWRs were initially detected as contiguous periods when the envelope stayed above 3 SD of the mean on 
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at least one tetrode, and further refined as times around the initially detected events during which the 

envelope exceeded the mean. For replay and reactivation analysis (see below, Replay decoding and CA1-

PFC reactivation analysis), only SWRs with a duration ≥ 50 ms were included, similar to previous studies 

(Pfeiffer and Foster, 2013; Wu et al., 2017). 

 

Spatial maps 

Spatial maps were calculated only during movement periods (> 5 cm/s; all SWR times excluded) at positions 

with sufficient occupancy (> 20 ms). Two-dimensional occupancy-normalized spatial rate maps were 

calculated as previously described (Jadhav et al., 2012; Jadhav et al., 2016; Tang et al., 2017). To construct 

the spatial-map templates of different trajectory types on a W-maze (Figure 1C), we calculated the 

linearized activity of each cell as previously described (Jadhav et al., 2012; Jadhav et al., 2016; Karlsson 

and Frank, 2009; Singer et al., 2013). The rat’s linear position was estimated by projecting its actual 2D 

position onto pre-defined idealized paths along the track, and was further classified as belonging to one of 

the four trajectory types. The linearized spatial maps were then calculated using spike counts and 

occupancies calculated in 2-cm bins of the linearized positions and smoothened with a Gaussian curve (4-

cm SD) as previously described (Jadhav et al., 2012; Tang et al., 2017). To cross-validate the linearized 

positions, an alternative linearization method was also used based on nearest-neighbor Delaunay 

triangulation (Ferbinteanu et al., 2011). Completed trials that were detected based on both methods, i.e., 

linearized trajectories starting from and ending at reward wells, were used for replay and reactivation 

analyses. To quantify spatial coverage of place-cell populations, a spatial bin was considered as 

represented if at least one cell from the population had an occupancy-normalized rate ≥ 3 Hz within the bin 

(Kay et al., 2016; Zielinski et al., 2019). The spatial coverage of the population was then expressed as the 

percentage of the spatial bins covered. Across the populations of recorded place cells, we found place 

fields at all positions along each trajectory type (spatial coverage per subject over sessions, shown as mean 

± SD: 99.9 ± 0.1%, 99.4 ± 0.8%, 97.4 ± 2.1%, 99.5 ± 0.8%, 91.5 ± 9.3%, 96.2 ± 1.6%; n = 6 rats; see also 

Figures 1C and S5G). 

 

Place-field directionality 
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For each place cell, a directionality index (DI) was calculated based on firing rates in the preferred (FRpref) 

and non-preferred (FRnpref) running directions of the left or right trajectories (Figure 1G) as (FRpref - FRnpref) 

/ (FRpref + FRnpref), similar to previous studies (Navratilova et al., 2012; Ravassard et al., 2013). A 

directionality index of 0 indicates identical firing in both directions, whereas 1 indicates firing in one direction 

only. The similarity of the place-field population in two running directions was computed using the population 

vector overlap (PVO; Figures 1H and 6F) (Ravassard et al., 2013). The population vector (PV) was the 

activity vector of all place cells in a certain linear position bin. The PVO was defined as the vector dot 

product between the PVs across all linear positions in two running directions: 

   

where FRf,i(x) is the firing rate of the i-th place cell at the linear position x along the track in a forward running 

direction, and FRb,i(x) is for the backward running direction. The PVO ranges from 0 to 1, with 1 representing 

identical population place-field templates in two running directions. To determine the significance values for 

the PVO and DI, we created 1,000 shuffle surrogates by randomly assigning a running direction to the 

spikes of a given cell that occurred on a given side of the maze (left or right), and computed PVO and DI 

from the shuffled data. Unidirectional cells were defined as cells with a DI significantly higher than its shuffle 

surrogates (p < 0.05; See Table S1 for the number of unidirectional cells of each animal). 

 

Replay decoding 

Replay decoding was implemented as previously described (Davidson et al., 2009; Karlsson and Frank, 

2009; Tang et al., 2017). Candidate events were defined as the SWR events during which ≥ 5 place cells 

fired. To detect replay, each candidate event was divided into 10-ms non-overlapping bins, and a 

memoryless Bayesian decoder was built for each of the four trajectory types to estimate the probability of 

animals’ position given the observed spikes (Bayesian reconstruction; or posterior probability matrix): P(X| 

spikes) = P(spikes| X)P(X)/P(spikes), where X is the set of all linear positions on the track of the given 

trajectory type, and we assumed a uniform prior probability of X. Assuming that all N place cells active 

during a candidate event fired independently and followed a Poisson process: 

PVO =
FRf ,i x( )FRb,i x( )

i
∑

x
∑

FRf ,i x( )FRf ,i x( )
i
∑

x
∑ FRb,i x( )FRb,i x( )

i
∑

x
∑
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where τ is the duration of the time window (i.e., 10 ms for replay events, and 500 ms for active behavior), 

fi(X) is the expected firing rate of the i-th cell as a function of sampled location X, and spikesi is the number 

of spikes of the i-th cell in a given time window. Therefore, the posterior probability matrix can be derived 

as follows: 

   

where C is a normalization constant. The assessment of replay events for significance was implemented 

as previously described (Karlsson and Frank, 2009). The p-value was calculated based on a Monte Carlo 

shuffle. First, we drew 10,000 random samples from the posterior probability matrix for each decoded bin 

and assigned the sampled locations to that bin. Then, we performed a linear regression on the bin number 

versus the location points. The resulting R-squared was compared with 1,500 regressions, in which the 

order of the temporal bins was shuffled (i.e., time shuffle) (Foster, 2017; Trimper et al., 2017). A candidate 

event with p < 0.05 based on the time shuffle was considered as a replay event. As mentioned above, each 

of the four trajectory types was independently decoded, and the replay trajectory was determined as the 

one with the lowest p-value from the shuffling procedure (Tang et al., 2017), of which the R-squared (or r) 

was reported as replay quality. Since there was a bias towards reward locations for place cells and their 

associated replay events (Figures S5G and S5I), similar to previous reports (Dupret et al., 2010; Pfeiffer 

and Foster, 2013), we excluded the spatial positions within 15 cm of reward wells from the place-field 

templates to detect replay (all our main results were similar without the 15-cm exclusion) to ensure that this 

bias did not affect our detection of the replay events representing an animal’s moving path. For plotting 

purposes only, a moving window (20 ms advanced in steps of 10 ms) was used for displaying replay 

sequences (Figures 2, 3 and S3) (Farooq and Dragoi, 2019). Only behavioral sessions with more than one 

replay event per analyzed category were included for calculating the percentage (Figures 3J-3L, Figures 

5E and 5F). 

 

Replay prediction 

P spikes X( ) = P spikesi X( ) =i=1

N∏ τ fi X( )( )spikesi e−τ fi X( )

spikesi !i=1

N∏

P X spikes( ) = C fi X( )spikesii=1

N∏( )e−τ fi X( )
i=1

N∑
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For replay prediction (Figures 3M and 3N, Figures 5G and 5H), trial-by-trial classification analysis was 

performed using support vector machines (SVMs) through the libsvm library (version 3.12) (Chang and Lin, 

2011). During immobility periods at a given reward well (see Behavioral state definition), the number of 

each replay event type was used as a feature (n = 8 possible features, 4 trajectory types x 2 replay orders, 

i.e., forward and reverse). Unless otherwise noted, all classifiers were C-SVMs with a radial basis function 

(Gaussian) kernel and trained on behaviorally correct trials. Hyperparameter (C and γ; regularization weight 

and radial basis function width, respectively) selection was performed using a random search method with 

leave-one-out cross-validation to prevent overfitting. The selected hyperparameters were then used to 

report the leave-one-out cross-validation accuracy. The percentage of correctly inferred trials was 

computed across all training/test trial combinations to give prediction accuracy. The significance of this 

prediction was determined by comparing to the distribution of shuffled data. Each “shuffled” dataset was 

constructed by randomly shuffling the trial labels (see below), and this shuffled dataset was used to train a 

classifier in the same way as the actual dataset. A prediction accuracy based on the actual dataset that 

was higher than the shuffled ones with p < 0.05 was considered as significant. 

 

Specifically, to classify well identity (Figures 3M and 3N), two independent SVMs were trained on forward 

and reverse replay, respectively. For a given replay order (i.e., forward or reverse), the number of each 

replay event type during immobility at a given well was used as a feature (n = 4 features; 4 trajectory types) 

and the well ID was used as the trial label (k = 3; center, right and left wells). For this prediction, a trial (or 

transition) is therefore defined based on the immobility period at the well during a given behavioral 

sequence. Only transitions where at least one replay event occurred for a given replay order were used. 

Because the incorrect trials mostly occurred during learning of the outbound rule (Figure S2) (Jadhav et 

al., 2012), these incorrect trials were selected to compare the replay predictions of correct vs. incorrect 

choices. During these incorrect trials, the animal was at the center well and performed a correct past 

trajectory (inbound), but was about to choose the next choice incorrectly (outbound). The numbers of the 4 

replay event types during immobility at the center well for these incorrect trials were used as input features 

(n = 4 features) to predict the well IDs (k = 3; center, right and left wells) using the SVMs trained on all 

correct trials. The percentage of these trials that correctly predicted the center well was reported as 
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prediction accuracy. To calculate statistical significance, correct trials at the center well were randomly 

subsampled 1,000 times to match the number of incorrect trials for computing prediction accuracy (Figure 

3N). 

 

To predict actual taken vs. not-taken paths based on replay (Figures 5G and 5H), independent SVMs were 

trained for each learning stage (i.e., early, middle and late) and replay order (n = 6 SVMs, 3 learning stages 

x 2 replay orders) at either center or side wells. For a given replay order (i.e., forward or reverse), the 

numbers of events replayed for all 4 possible paths during the immobility period at a given well were used 

as features (n = 4 features), and the taken behavioral sequence was used as the trial label (k = 2; taken vs. 

not-taken sequences; see Figure 1B). Only correct trials with at least one replay event in the given replay 

order were used for prediction.  

 

CA1-PFC population reactivation analysis 

In substance, the method to measure CA1-PFC reactivation here is similar to the “template matching” or 

“reactivation strength” approaches used in several previous studies (Euston et al., 2007; Girardeau et al., 

2017; Kudrimoti et al., 1999; Lansink et al., 2009; Peyrache et al., 2009; Tang et al., 2017; Wilber et al., 

2017), but operated on a timescale of replay dynamics to examine finer temporal structure of the 

reactivation activity (i.e., 10 ms instead of 50-100 ms binning in the previous studies). Reactivation 

candidate events were defined as the SWR events during which ≥ 5 place cells and ≥ 5 PFC cells fired; 

therefore, they represent a subset of replay candidate events that were defined using only the CA1 place 

cell criterion. For a candidate event with N CA1 and M PFC cells firing (N ≥ 5, and M ≥ 5), a (N x M) 

synchronization matrix during RUN (CRUN) was calculated with each element (Ci,j) representing the Pearson 

correlation coefficient (Ci,j) of the linearized spatial maps on a certain trajectory type (2-cm bin) of the i-th 

CA1 cell and the j-th PFC cell. To measure the population synchronization pattern during the SWR, the 

spike trains during the candidate event were divided into 10-ms bins as in the CA1 replay analysis and z 

transformed: 

   Qi,t =
si t( )− si t( )

σ si
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where si(t) is the spike train of the i-th cell during the candidate event, and  and  are the mean 

and standard deviation of si(t), respectively. The (N x M) synchronization matrix during the candidate event 

(CSWR) was then calculated with each element (Ci,j) representing the correlation of a CA1-PFC cell pair: 

, where i ≤ N, j ≤ M, and B is the total number of time bins during the SWR. The 

reactivation strength of this event was measured as the correlation coefficient (R) between the population 

matrices, CRUN and CSWR. To evaluate the significance of the reactivation strength, the spike times during 

the SWR were randomly shuffled 1,500 times, in order to randomize the synchronization between CA1 and 

PFC cells, but conserve the structure of their spatial maps. A candidate event with p < 0.05 versus its 

shuffled data was considered as a reactivation event. As in the replay analysis, the reactivated trajectory 

was determined as the one (among the four possible trajectory types) with the lowest p-value determined 

by the shuffling procedure. This was used to identify coherent CA1-PFC ensemble reactivation that was 

aligned with CA1 replay, and a graphical illustration of the method is provided in Figure S8. We used this 

synchronization measure because a synchronous, rather than sequential, timing relationship of cross-

regional reactivation, including CA1-PFC reactivation, was reported in previous studies (Girardeau et al., 

2017; Lansink et al., 2009; Tang et al., 2017), and it also allows us to directly compute and examine the 

combined cross-regional reactivation, rather than detecting reactivation separately in each region and then 

measuring their correlation.  

 

Model simulations for reactivation analysis 

We created a simulated neuronal population as an illustrative example of the reactivation method described 

above (Figure S8), in comparison to other potential methods. We used model simulations here because 

while the “true” connectivity of recorded CA1-PFC populations is inaccessible, using the forward-modelling 

scheme, in which the “ground truth” is known and the neuronal connectivity among the simulated population 

can be defined, allows for validation of the method for identifying synchronous reactivation. For simplicity, 

we formulate the model for 5 CA1 and 5 PFC cells. From neurophysiological data, it is known that when an 

animal moves along a trajectory, CA1 place cells often exhibit narrowly tuned single-peaked place fields, 

whereas the spatial maps of PFC cells are often broadly tuned and multi-peaked, suggesting a many-to-

si t( ) σ si

Ci, j =Qi
CA1Qj

PFC B
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one mapping between hippocampal and PFC representations (Jadhav et al., 2016; Tang et al., 2017; Yu 

et al., 2018). Motivated by these response properties, the estimated firing rate (i.e., place field) of each 

place cell i, , is defined as a Gaussian tuning curve, 

   

where  is the maximum firing rate of the i-th cell,  is the linear position of the animal at time t, 

 is the position evoking the maximum average rate  of the cell, and  determines the width of 

the tuning curve (  = 5 cm for CA1 cells). The synchronization pattern between CA1 and PFC cells within 

the population is defined by a many-to-one connectivity matrix. If the activity of the k-th PFC cell is 

synchronized with that of n CA1 cells (n ≥ 1), the estimated firing rate (i.e., spatial map) of the k-th PFC 

cell,  is determined as, 

 

where  is the connectivity weight between the i-th CA1 cell (i = 1, 2, …, n) and the k-th PFC cell,  is 

the baseline firing rate of the k-th PFC cell, and  is 10 cm for PFC cells. Thus, the peak positions of the 

PFC spatial map were determined by the synchronized CA1 cells as  for i = 1, 2, …, n. We assume 

that the spiking activity of each neuron follows an inhomogeneous Poisson process. Thus, spike sequences 

were simulated by using the estimated firing rate  to drive a Poisson process. The probability of 

observing  spikes of the i-th cell in a bin of size  is given by a Poisson distribution with a rate 

parameter , 

 . 

As in the real data,  is 10 ms for SWR events and 500 ms for active behavior. Note that this Poisson 

process generates an irregular firing pattern during SWRs that reflects the underlying spatial map. The 

ri t( )

ri t( ) = fi x t( )( ) = ri,max exp − 1
2

x t( )− xi,max
σ f

⎛

⎝⎜
⎞

⎠⎟

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ri,max x t( )

xi,max ri,max σ f

σ f

rk t( )

rk t( ) = wi,k exp − 1
2

xi t( )− xi,max
σ f

⎛

⎝⎜
⎞

⎠⎟

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟i=1

n

∑ + ck

wi,k ck

σ f

xi,max{ }

r t( )

Ni,t τ

ri t( )τ

P Ni,t ri t( )( ) = ri t( )τ( )Ni ,t
Ni,t !

exp −ri t( )τ( )

τ
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reactivation method was then applied to the simulated data as described above, and compared to Bayesian 

decoding (O'Neill et al., 2017) and line-fitting (Ólafsdóttir et al., 2016, 2017) methods. 

 

CA1-PFC activation ratio and pairwise reactivation 

For each cell activated during a SWR synchronous event (i.e., candidate event), the average firing rate of 

the cell during the SWR divided by its average firing rate across the behavioral session was used as its 

activation ratio. The activation ratio for a SWR synchronous event was then measured as the mean 

activation ratio across all cells activated during the SWR (Figure 7H, Figure S7E). Pairwise reactivation 

strength was measured as the correlation coefficient between spatial correlation and SWR cofiring of cell 

pairs (Figure 7I, Figure S7G), as described previously (Tang et al., 2017). In brief, the spatial correlation 

of a cell pair was defined as the Pearson’s correlation coefficient between their linearized spatial maps 

across all 4 trajectory types. SWR cofiring of a cell pair was calculated as the Pearson’s correlation 

coefficient between their spike trains occurring during SWR events using 50-ms bins. 

 

Statistical analysis 

Data analysis was performed using custom routines in Matlab (MathWorks, Natick, MA). We used 

nonparametric and two-tailed tests for statistical comparisons throughout the paper, unless otherwise 

noted. We used repeated measures ANOVA for multiple comparisons of paired Gaussian distributions, 

followed by a Tukey’s test, when appropriate. For non-Gaussian distributions of multiple groups, we used 

Kruskal-Wallis or Friedman test, with post hoc analysis performed using a Dunn’s test. P < 0.05 was 

considered the cutoff for statistical significance. Unless otherwise noted, values and error bars in the text 

denote means ± SEM. 

 

DATA AND SOFTWARE AVAILABILITY 

The data and code that support findings of this study are available upon reasonable request by contacting 

the Lead Contact, Dr. Shantanu P. Jadhav (shantanu@brandeis.edu). 
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Figure S1. (Related to Figure 1). Recording locations, cluster quality and stability of neural recordings 

(A) Recording locations for all 6 rats (color coded). The recording sites were reconstructed from the electrolytic lesions in 

post hoc Nissl-stained coronal brain sections and mapped onto the stereotaxic atlas (Paxinos and Watson, 2004). The 

distance from Bregma (mm) is denoted on the right for each section. Electrodes were localized to target areas in dorsal 

area CA1 and medial prefrontal cortex (PFC) after histology (PFC electrodes primarily in PreLimbic (PrL) cortex, with a few 

electrodes from one animal KL8 in Anterior Cingulate Cortex (ACC) area of PFC).  

(B and C) Representative histological sections through (B) PFC and (C) dorsal hippocampus. Left: Coronal Nissl-stained 

section illustrating lesion locations at end of tetrode tracks (marked by arrowheads). Right: Schematic illustration of the 

section shown on the left based on the stereotaxic atlas (Paxinos and Watson, 2004) (colored dots represent the lesion 

locations on the section). 

(D and E) Cluster examples of 5 single cells (color-coded) recorded on (D) one CA1 and (E) one PFC tetrode from the first 

and last behavioral sessions, respectively. Scatter plots show the peak-to-trough amplitudes of spike waveforms recorded 

on 2 of the 4 channels (each dot representing a single sampled spike; spikes associated with each isolated single unit are 

shown in a different color). Spike waveforms of the example cells on 4 channels are shown on the corresponding right 

panels (line: mean; shading: SD). 

(F and G) Cluster quality for all animals across 8 behavior sessions, for (F) CA1 place cells and (G) PFC cells. For the W-

maze single-day learning paradigm, single-units were tracked continuously across interleaved run and rest sessions (W-

maze run sessions: 17.9 ± 1.0 mins per session, 8 sessions per rat; interleaved rest sessions in rest box: 23.0 ± 4.9 mins 

per session, 9 sessions per rat; total recording duration: 6.04 ± 0.37 hours per rat; mean ± SD). From top to bottom, isolation 

distance (Schmitzer-Torbert et al., 2005), cluster center-of-mass shift (Mallory et al., 2018) across sessions (spikes from 

the first session of the Animal ER1 were clustered separately and therefore excluded from the center-of-mass shift analysis), 

correlation coefficient of spike waveforms in two consecutive sessions (Li et al., 2017) (Fisher-transformed for normality). 

Each dot on the scatter plots represents an isolated single unit (All cells that were continuously tracked across all 8 

behavioral sessions with stable spiking waveforms, and with firing fields on the W-track, are shown; CA1: n = 216 cells; 

PFC, n = 154 cells). Dotted horizontal lines indicate inclusion thresholds used for each criterion. Error bars: mean ± 95% 

CI. Animal IDs and total number of cells recorded are denoted and color-coded on the top. 
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Figure S2. (Related to Figure 1). Behavioral performance of all animals 

Data are presented as mean ± 90% CIs for the outbound (blue) and inbound (teal) components from all the 6 animals that 

learned the W-maze task over 8 sessions in a single-day. Learning curves were estimated using a state-space model 

(Jadhav et al., 2012; Maharjan et al., 2018; Smith et al., 2004). Horizontal dashed lines, chance-level performance of 0.5. 

Performance in first and final sessions: 53.67 ± 0.02%, and 85.17 ± 0.06% for outbound component; 33.74 ± 15.40%, and 

95.45 ± 0.04% for inbound component (data are presented as mean ± SD). 
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Figure S3. (Related to Figure 2). Additional example forward and reverse replay events of behavioral trajectories 

from different learning sessions 

(A-C) Early session (Epochs 1-3) examples. (D-F) Middle session (Epochs 4-5) examples. (G-I) Late session (Epochs 6-8) 

examples. Data are presented as in Figure 2. (i) Left: Place-cell activity during the SWR with ripple-filtered (150-250 Hz) 

LFP from one tetrode shown on top (black line). Right: Corresponding linearized place fields on trajectories 1 to 4 sorted by 

their peak locations on the replay trajectory (red). (ii) Bayesian reconstruction of the decoded behavioral trajectories with 

the replay quality (r) and p-value based on time-shuffled data denoted on top. Cyan lines: the linear fit maximizing the 

likelihood along the replayed trajectory. Color bars: posterior probability.  
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Figure S4. (Related to Figure 3). Representative replay events at reward wells 

(A and B) Example replay events at center well during early learning (sessions 1-3).  

(C and D) Example replay events at side wells during early learning.  

(E) Example replay events at center well during middle sessions (sessions 4-5).  

(F) Example replay events at the side well during late performance (sessions 6-8).  

Data are presented as in Figures 3G-3I. For each example, the behavioral sequence is shown in (i) and all the replay 

events during immobility at the well (i.e., current position; green circle) are shown in (ii). Top: Bayesian reconstruction of 

the replayed trajectory. Colored points overlaid on the replayed trajectory (black arrowhead line) indicate the Bayesian-

decoded positions, with the color denoting relative time within the replay event (early in red, and late in yellow). Bottom: 

ripple-filtered LFP and the sequential spiking of place cells during the SWR.  
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Figure S5. (Related to Figure 3). Control analyses examining the bias in forward and reverse replay of future and 

past choices 

(A) The bias in reverse and forward replay of past and future choices is not affected by exclusion of bidirectional cells. 

Forward replay showed a significant bias for future choices, while reverse replay is biased for past choices, using 

unidirectional place cells only. Data are presented as in Figures 3J and 3K. Unidirectional cells were defined as cells with 

a directionality index significantly higher than the shuffle surrogates in a given session (by randomly shuffling the labels of 

two running directions). See Table S1 for the number of unidirectional cells in each session. 

(B and C) The bias in replay content for both reverse and forward replay was seen during the first (i.e., arrival; B) as well 

as the second (i.e., departure; C) half of time spent in reward wells. 

(D-F) The bias in replay content did not differ appreciably during engaged (D) vs. disengaged (E) periods (Ólafsdóttir et al., 

2017), although (F) the replay rate was significantly higher during disengaged than engaged periods. For trials with an 

immobility duration (defined as ≤ 4 cm/s) at a reward well longer than 6 s, the total time spent at the well was equally divided 

into 4 parts; the first and last parts were defined as engaged periods, and the rest were considered as disengaged. In (F), 

each dot pair represents a session from one animal. ****p < 1e-4, ***p < 0.001, rank-sum paired tests. Error bars: SEM. 

(G) Spatial distributions of the peak positions of place fields for the 4 trajectory types (schematic of these trajectories shown 

on top). The x-axis shows the linearized positions of each trajectory with the start and end well IDs denoted (C: center well; 

L: left well; R: right well). Consistent with previous studies (Dupret et al., 2010; Pfeiffer and Foster, 2013), we found an 

accumulation of place fields at the center well (goal location; Grubb’s test for outliers, ****p < 1e-4, *p < 0.05). Prob = 

probability. 

(H and I) Spatial distributions of the decoded positions during replay at the 3 different reward wells (color-coded). Violin 

plots are shown in (H), and histograms are shown in (I). Note that consistent with the results in Figure 3, reverse replay is 

biased to past paths, whereas forward replay is biased to future paths. For example, at the center well, reverse replay is 

biased towards positions along the past trajectories of R-to-C and L-to-C (Hartigan’s dip test for bimodality, dip = 0.062, p 

< 1e-4); whereas forward replay is biased towards positions along the future trajectories of C-to-R and C-to-L (Hartigan’s 

dip test for bimodality, dip = 0.065, p < 1e-4). In addition, consistent with previous studies (Davidson et al., 2009; Diba and 

Buzsáki, 2007; Foster and Wilson, 2006; Karlsson and Frank, 2009), we found that replay trajectories, specifically only 

reverse replay trajectories, tended to start from the animals’ current location at the corresponding reward well (current 

location is the only statistical outlier during replay at a given well; Grubb’s test for outliers, ****p < 1e-4, ***p < 0.001, *p < 
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0.05; p > 0.05 for forward replay shown in Iii). Note that the over-representation of current location cannot be explained 

solely by the spatial distributions of place fields shown in (G).   
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Figure S6. (Related to Figures 4 and 5). Change in SWR replay properties over the course of learning 

(A) Candidate event rate significantly decreased across sessions (p < 0.0001 and F(6, 30) = 19.98, Repeated measures 

ANOVA; *p = 0.022, Tukey’s post hoc tests). Note that SWR rate and place-cell spiking during SWRs significantly decreased 

over learning, as shown in Figure 4. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2019. ; https://doi.org/10.1101/632042doi: bioRxiv preprint 

https://doi.org/10.1101/632042
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

(B) Percentage of replay out of candidate events did not change across sessions (p = 0.12 and F(6, 30) = 2.37, repeated 

measures ANOVA). In (A and B), thin dashed lines are for individual animals, thick lines and error bars represent means 

and SEM. 

(C) Replay rate was not significantly different at the three reward wells (p = 0.16, Friedman test), and replay decreased 

across sessions for both center and side wells (Center well: p = 0.0002, Friedman test; p = 0.0038 for sessions 1-2 vs. 8, 

Dunn’s post hoc tests; Side wells: p = 0.0008, Friedman test; p = 0.033 for sessions 1-2 vs. 7, p = 0.012 for sessions 3 vs. 

8, Dunn’s post hoc tests). Each dot represents one session from a subject. Lines and error bars represent means and 

SEMs, respectively. 

(D) Immobility time at reward wells decreased with learning (p = 0.0018 and F(6, 1241) = 3.531, one-way ANOVA; **p = 

0.0063, Holm-Sidak's post hoc tests). 

(E and F) Number of SWRs per choice decreased across 8 behavioral sessions (*p = 0.027, Kruskal-Wallis test with Dunn’s 

post hoc).  

(G and H) Number of candidate events per choice decreased across 8 behavioral sessions (****p < 1e-4, Kruskal-Wallis 

test with Dunn’s post hoc).  

(I and J) Number of replay events per choice decreased across 8 behavioral sessions (****p < 1e-4, Kruskal-Wallis test with 

Dunn’s post hoc). In E, G and I, the vertical dashed lines on the histograms represent mean values. Error bars: SEM. 

(K and L) Place-field templates of the replay events in Figure 5. Sequential firing of place cells during replay events and 

corresponding linearized place fields on trajectories 1 to 4 sorted by their peak locations on the replay trajectory (red) are 

shown. (K) is for the replay events in Figures 5A and 5B; (L) is for Figures 5C and 5D. 
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Figure S7. (Related to Figure 7). Properties of CA1-PFC reactivation 

(A) CA1 replay quality of taken vs. not-taken trajectories. Replay quality was measured as “R-squared” from the linear 

regression maximizing the likelihood along the replayed trajectory. While the reactivation strength of CA1-PFC population 

was higher for taken vs. non-taken trajectory replay (Figures 7E and 7F), we found no significant difference in CA1 replay 

quality for taken vs. not-taken paths (p = 0.066, Kruskal-Wallis test).  

(B) Number of CA1-PFC reactivation events per SWR was higher during early vs. late sessions (first 4 vs. last 4), confirming 

our previous reports (Tang et al., 2017).  

(C and D) Change of CA1-PFC reactivation strength over learning. (C) Stronger CA1-PFC reactivation of CA1-forward-

replayed taken path compared to the not-taken path was observed only in late performance sessions (p = 0.21, 0.44, and 

0.008 for CA1 replay of taken paths at early, middle, and late learning stages; p = 0.53, 0.08, and 0.66 for CA1 replay of 

not-taken paths at early, middle. and late learning stages; rank-sum paired tests). (D) No statistically significant trend was 

observed for reverse CA1 replay (p = 0.77, 0.32, and 0.066 for CA1 replay of taken paths at early, middle and late learning 

stages; p = 0.61, 0.33, and 0.57 for CA1 replay of not-taken paths at early, middle, and late learning stages; rank-sum 

paired tests).  

(E and F) Raster plots (top) and corresponding PSTHs (bottom) aligned to SWR synchronous events of four PFC (E) and 

two CA1 (F) neurons, showing activation during SWRs. Horizontal dashed lines: mean firing rates in the entire session. 
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Lines and shadings in the PSTHs: means and SEMs. Activation ratio of each cell is denoted on the top of the corresponding 

panel. 

(G) SWR co-firing as a function of spatial correlation for CA1-PFC (top) and CA1-CA1 (bottom) cell pairs for one high-

performance animal indicated in Figure 7I. Spatial correlations are divided into six subgroups with equal number of cell 

pairs (i.e., sextiles), similar to a previous study (Tang et al., 2017). Note the strong correlation between SWR cofiring vs. 

spatial correlation of CA1-PFC pairs (r = 0.11, p = 2.3e-4), as well as CA1-CA1 pairs (r = 0.55, p < 1e-10). 
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Figure S8. (Related to Figure 7). Template matching to detect CA1-PFC reactivation: method summary and 

comparison 

(A) Generation of simulated data from a simple toy model. The simulated CA1-PFC neuronal population consists of 5 CA1 

and 5 PFC cells with a many-to-one connectivity matrix. (Ai) Connectivity matrix (red for CA1-PFC pairs with synchronous 

firing; white for non-synchronous pairs). (Aii) Spatial maps of the simulated neurons on one trajectory with their peak firing 

rates denoted on the right (i.e., MAX FR). PFC neurons have multi-peaked spatial maps. (Aiii) Simulated spike trains during 

a SWR event. These spike trains were generated from a Poisson process, whose rate was determined by the spatial maps 

in (Aiv).  

(B) Template matching decoding of coherent CA1-PFC replay. (Bi) Synchronization matrix of CA1-PFC population activity 

calculated during running (RUN), with each element representing the correlation of spatial maps of a CA1-PFC cell pair. 

(Bii) Similarly, a synchronization matrix for SWR was measured based on the pairwise correlation of spike trains during the 

SWR. (Biii) The reactivation strength was then computed as the correlation coefficient (r) between the synchronization 

matrices during RUN vs. SWR (each dot representing a CA1-PFC pair, red line from linear regression). For the simulated 

population, the reactivation strength is 0.49, significantly higher than its shuffle surrogates (randomly shuffling spike times 

during the SWR; p = 0.004; note that the SWR spike trains of the simulated data are a sample of the Poisson process during 

RUN). (Biv) Detailed view of the CA1-PFC coordination using example cell pairs indicated by stars on the connectivity matrix 

in (Ai). Curves: spatial maps. Ticks: spikes during the SWR.  

(C and D) Comparison of template matching, Bayesian decoding (O'Neill et al., 2017), and line-fitting (Ólafsdóttir et al., 

2016, 2017) using the model in (A). Despite strong correlation of the population activity during RUN and the SWR 

(synchronization detected using template matching in B), the PFC activity during the SWR was detected (C) as a “non-

replay” event by Bayesian decoding due to a lack of sequential structure (p = 0.29 by comparison to time shuffles), and (D) 

not coherent with the replay in CA1 using line-fitting (p = 0.06 by comparison to time shuffles).  

(E and F) Bayesian decoding and line-fitting results of the two reactivation events shown in Figures 7A and 7B, respectively. 

(E) Note that for the event in Figure 7A with a clear sequential structure, the line-fitting method also detected a coherent 

CA1-PFC reactivation (p = 0.001), but (F) not for the event in Figure 7B with multi-peaked, many-to-one coordination of 

CA1-PFC activity (p = 0.30 by comparison to time shuffles). White lines on Bayesian-reconstruction matrices for Bayesian 

decoding represent the linear fit maximizing the likelihood along the trajectory, and for line-fitting mark the extent of the line-

fit based on CA1 place-cell activity (± 15 cm).  
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Animal ID CA1 place 
cells Session no. Unidirectional cells (percentage) Mean ± SD 

(% unidirectional) 

ER1 44 

1 
2 
3 
4 
5 
6 
7 
8 

25 (56.8%) 
26 (59.1%) 
37 (84.1%) 
34 (77.3%) 
34 (77.3%) 
34 (77.3%) 
37 (84.1 %) 
32 (72.7%) 

73.6 ± 10.4 

KL8 47 

1 
2 
3 
4 
5 
6 
7 
8 

26 (55.3%) 
24 (51.1%) 
28 (59.6%) 
31 (66.0%) 
36 (76.6%) 
37 (78.7%) 
35 (74.5%) 
33 (70.2%) 

66.5 ± 10.3 

JS14 37 

1 
2 
3 
4 
5 
6 
7 
8 

23 (62.2%) 
31 (83.8%) 
29 (78.4%) 
30 (81.1%) 
33 (89.2%) 
35 (94.6%) 
34 (91.9%) 
34 (91.9%) 

84.1 ± 10.6 

JS15 40 

1 
2 
3 
4 
5 
6 
7 
8 

19 (47.5%) 
30 (75.0%) 
25 (62.5%) 
29 (72.5%) 
31 (77.5%) 
31 (77.5%) 
31(77.5%) 
33 (82.5%) 

71.6 ± 11.3 

JS17 24 

1 
2 
3 
4 
5 
6 
7 
8 

10 (41.7%) 
16 (66.7%) 
20 (83.3%) 
18 (75.0%) 
21 (87.5%) 
19 (79.2%) 
20 (83.3%) 
17 (70.8%) 

73.4 ± 14.6 

JS21 24 

1 
2 
3 
4 
5 
6 
7 
8 

16 (66.7%) 
13 (54.2%) 
13 (54.2%) 
18 (75.0%) 
17 (70.8%) 
20 (83.3%) 
22 (91.7%) 
16 (66.7%) 

70.3 ± 13.1 

Total 216 - 157.9 (73.1%) 73.3 ± 12.5 

 

Table S1. (Related to Figure 1). Summary of unidirectional cells 

Number of CA1 place cells recorded continuously over 8 learning sessions, the number and percentage of unidirectional 

cells in each session, and percentage of unidirectional cells (mean ± SD) for each animal are shown. 
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