Tumor Evolution Decoder (TED): Unveiling Tumor Evolution Based on Mutation Profiles of Subclones or Single Cells

(Supplementary Information)

Yitan Zhu ${ }^{* 1}$, Subhajit Sengupta ${ }^{1}$, Lin Wei ${ }^{1}$, Shengjie Yang ${ }^{1}$, Yuan $\mathrm{Ji}^{* 1,2}$

1. Program of Computational Genomics \& Medicine, NorthShore University HealthSystem, Evanston, Illinois, USA
2. Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, USA

* Corresponding author

Corresponding Authors
Yitan Zhu
1001 University Pl, Evanston, IL 60201
Phone: 224.364.7437
Fax: 847.570.8033
Email: zhuyitan@gmail.com
Yuan Ji
1001 University Pl, Evanston, IL 60201
Phone: 224.364.7312
Fax: 847.570.8033
Email: koaeraser@gmail.com

Section 1 Proof of Property 4

Apparently, G_{i} and G_{j} must have one or more common ancestors in T, because at least G_{0} is a common ancestor. Their common ancestors must be a group of nested sets, so there is one common ancestor that includes all other common ancestors as subsets. Let G_{c} be the largest common ancestor. $G_{c} \in\left\{G_{0}, G_{1}, G_{2}, \cdots G_{N}\right\}$. G_{c} is also the closest to G_{i} and G_{j} among all common ancestors, because all other common ancestors are its subsets. Because $G_{c} \subset G_{i}$ and $G_{c} \subset G_{j}$, $G_{c} \subseteq G_{i} \cap G_{j}$. Suppose that there is a mutation event $u \in G_{c}$ and $u \notin G_{i} \cap G_{j}$. u must occur on both the path from G_{c} to G_{i} and the path from G_{c} to G_{j}, which conflicts with Assumption 1. So such u can not exist, and $G_{c}=G_{i} \cap G_{j}$. Thus, $G_{i} \cap G_{j}$ is the closest to G_{i} and G_{j} and also the largest among all their common ancestors.

Section 2 Proof of Property 5

If $G_{i} \subset G_{j}$, then $G_{i} \cap G_{j}=G_{i} \in\left\{G_{0}, G_{1}, G_{2}, \cdots G_{N}\right\}$. If $G_{j} \subset G_{i}$, then $G_{i} \cap G_{j}=G_{j} \in$ $\left\{G_{0}, G_{1}, G_{2}, \cdots G_{N}\right\}$. If $G_{i} \not \subset G_{j}$ and $G_{i} \not \supset G_{j}$, because $G_{i} \neq G_{j}$, then $G_{i} \nsubseteq G_{j}$ and $G_{i} \nsupseteq G_{j}$. According to property $4, G_{i} \cap G_{j}$ is a common ancestor of G_{i} and G_{j} in T. So in all of the above three possible cases, $G_{i} \cap G_{j} \in\left\{G_{0}, G_{1}, G_{2}, \cdots G_{N}\right\}$.

Section 3 Proof of Theorem 1

If \hat{T} is not consistent with T, there must be at least one pair-wise relationship being changed. Let them be G_{i} and G_{j} in T. The change can be one of the three following cases.
(1) $\quad G_{i}$ and G_{j} has an ancestor-descendant relationship in T. Without loss of generality, let G_{i} be an ancestor of G_{j}. In \widehat{T}, G_{j} becomes an ancestor of G_{i}. Then, there are back mutations that are Type II errors.
G_{i} and G_{j} has an ancestor-descendant relationship in T. Let G_{i} be an ancestor of G_{j}. In \hat{T}, G_{i} and G_{j} do not have an ancestor-descendant relationship, which means they are no longer both in a path from G_{0} to a leaf node. In such a case, consider two paths in \widehat{T}, which are from the closest common ancestor of G_{i} and G_{j} to G_{i} and G_{j}. There must be mutations happening on both paths that cause Type I errors.
(3) In T, G_{i} and G_{j} do not have an ancestor-descendant relationship, which indicates $G_{i}-$ $G_{j} \neq \Phi$ and $G_{j}-G_{i} \neq \Phi$. But in \widehat{T}, they have an ancestor-descendant relationship. Let G_{i} be an ancestor of G_{j}. Then, there are dropout mutations that are included in G_{i} but not in G_{j} and cause Type II errors.
So if $\operatorname{error}(\hat{T})=0, \widehat{T}$ is consistent with T. Without loss of generality, let the genomes in \widehat{T} be $G_{0}, G_{1}, \cdots, G_{n}, n \leq N$. Suppose that \hat{T} is not closed under intersection. Then there exist two genomes G_{i} and $G_{j}, i, j \in\{1, \cdots, n\}, G_{i} \cap G_{j} \notin\left\{G_{0}, G_{1}, \cdots, G_{n}\right\} . G_{i}$ and G_{j} must have at least one
common ancestor in \widehat{T}, because at least G_{0} is their common ancestors. The common ancestors of G_{i} and G_{j} must be a group of nested sets. Let G_{k} be the largest of them, where $k \in$ $\{0,1, \cdots, n\}, k \neq i, k \neq j . G_{i} \cap G_{j}$ must be the same as G_{k}, because otherwise the path from G_{k} to G_{i} and the path from G_{k} to G_{j} will share at least one mutations that cause Type I error. So \hat{T} must be closed under intersection.

Section 4 Proof of Theorem 2

Actually, we can prove starting from an initial tree constructed using any pair of genomes, Algorithm 1 Steps 4 and 5 will build a full-size phylogenetic tree with 0 error.

Algorithm 1 Step 3 constructs an initial phylogenetic tree with the normal genome G_{0} and two tumor genomes (let them be G_{1} and G_{2}). We denote the initial tree by $\widehat{T}_{i n i}$. There are three possible relationships between G_{1} and G_{2}.
(1) $\quad G_{1}$ and G_{2} are from two different lineages in T, so $G_{1} \cap G_{2}=G_{0}$. The tree generated by Step 3.1 will be selected as $\widehat{T}_{\text {ini }}$, which has 0 error.
(2) $\quad G_{1}$ and G_{2} are in the same lineage and have an ancestor-descendant relationship, i.e. either $G_{1} \subset G_{2}$ or $G_{2} \subset G_{1}$. A tree generated in either Step 3.2 or Step 3.3 will be selected as $\hat{T}_{i n i}$, which has 0 error.
(3) $\quad G_{1}$ and G_{2} are in the same lineage, but do not have an ancestor-descendant relationship. In this case, $G_{1} \cap G_{2} \neq \Phi, G_{1} \nsubseteq G_{2}$, and $G_{1} \nsupseteq G_{2}$. A tree generated in Step 3.4 will be selected as $\widehat{T}_{\text {ini }}$ and it has 0 error.
So in all three cases, $\widehat{T}_{i n i}$ has 0 error.
Then, suppose we have constructed a phylogenetic tree \hat{T} that includes $G_{0}, G_{1}, \cdots, G_{n}$ and that \widehat{T} has 0 error, which indicates \widehat{T} is closed under intersection and consistent with T. Consider adding G_{m} to \hat{T} to generate $\widehat{T}_{\text {next }}$. There are three possible relationships between G_{m} and $G_{0}, G_{1}, \cdots, G_{n}$.
(1) $\quad G_{m}$ is not an ancestor of any of G_{1}, \cdots, G_{n} in T and $G_{0}, G_{1}, \cdots, G_{n}, G_{m}$ are closed under intersection. This means $\forall i \in\{1, \cdots, n\}, G_{i} \not \supset G_{m}$ and $\forall i \in\{0,1, \cdots, n\}, G_{i} \cap G_{m} \in$ $\left\{G_{0}, G_{1}, \cdots, G_{n}\right\} . A\left(G_{m}\right)$, the set of all ancestors of G_{m} in T, must not be empty, because it contains at least G_{0} that appears in both T and \widehat{T}. $A\left(G_{m}\right)$ must be a group of nested sets. Let $G_{i^{*}}$ be the largest set in $A\left(G_{m}\right)$ that is already included in \widehat{T}. Algorithm 1 Step 5.1 can add G_{m} as a child node of $G_{i^{*}}$ to generate $\widehat{T}_{\text {next }}$. Apparently, $\widehat{T}_{\text {next }}$ does not have any Type II error, because there is no back/dropout mutation on the newly added edge $G_{i^{*}} \rightarrow$ G_{m}. Suppose $\hat{T}_{\text {next }}$ has Type I error, which must be caused by some shared mutation event between $G_{i^{*}} \rightarrow G_{m}$ and some edge already included in \widehat{T}. Let u be such a mutation event. Then, the following two conditions must hold.
(1.a) $\forall j \in\{1, \cdots, n\}$ and $G_{j} \in A\left(G_{m}\right), u \notin G_{j}$, because $u \notin G_{i^{*}}$, which is the largest set in $A\left(G_{m}\right)$.
(1.b) Therefore, $\exists k \in\{0,1, \cdots, n\}, G_{k} \notin A\left(G_{m}\right)$ and $u \in G_{k}$.

So $u \in G_{k} \cap G_{m} \in\left\{G_{0}, G_{1}, \cdots, G_{n}\right\}$, because $G_{0}, G_{1}, \cdots, G_{n}, G_{m}$ are closed under intersection. Apparently, $G_{k} \cap G_{m} \in A\left(G_{m}\right)$ and $u \in G_{k} \cap G_{m}$, which conflicts with (1.a). So $\widehat{T}_{\text {next }}$ does not have any Type I error.
(2) $\quad G_{m}$ is an ancestor of some genome among $G_{1}, \cdots G_{n}$ in T, which indicates $\exists i, j \in$ $\{0,1, \cdots, n\}, G_{i} \subset G_{m} \subset G_{j}$. All genomes on the path from G_{i} to G_{j} in \widehat{T} must also be either an ancestor or a descendent of G_{m} in T, because \hat{T} is consistent with T. Among them, let $G_{j^{*}}, j^{*} \in\{0,1, \cdots, n\}$, be the smallest descendent of G_{m} that is already in \widehat{T} and $G_{i^{*}}, i^{*} \in\{0,1, \cdots, n\}$, be the largest ancestor of G_{m} that is already in \widehat{T}. The edge $G_{i^{*}} \rightarrow$ $G_{j^{*}}$ must exist in \widehat{T}. Step 5.2 can add G_{m} as an intermediate node on this edge and generate a 0 -error $\hat{T}_{\text {next }}$.
(3) $\quad G_{m}$ is not an ancestor of any of G_{1}, \cdots, G_{n} in T, and $G_{0}, G_{1}, \cdots, G_{n}, G_{m}$ are not closed under intersection. This means $\forall i \in\{1, \cdots, n\}, G_{i} \not \supset G_{m}$, and $\exists i \in\{0,1, \cdots, n\}, G_{i} \cap G_{m} \notin$ $\left\{G_{0}, G_{1}, \cdots, G_{n}, G_{m}\right\}$. Let $G_{i^{*}}, i^{*} \in\{0,1, \cdots, n\}$ be the largest ancestor of G_{m} that is included in \widehat{T}. Apparently, in \widehat{T} only the descendants of $G_{i^{*}}$ can have an intersection with G_{m} that falls out of $\left\{G_{0}, G_{1}, \cdots, G_{n}, G_{m}\right\}$, because $\forall k \in\{1, \cdots, n\}$ and $G_{k} \notin D\left(G_{i^{*}}\right), G_{k} \cap$ $G_{m}=G_{k} \cap G_{i^{*}} \in\left\{G_{0}, G_{1}, \cdots, G_{n}, G_{m}\right\}$. Consider a child of $G_{i^{*}}$ in \hat{T} denoted by $G_{j}, G_{m} \cap G_{j}$ is either $G_{i^{*}}$ or not included in $\left\{G_{0}, G_{1}, \cdots, G_{n}, G_{m}\right\}$. If $G_{m} \cap G_{j}=G_{i^{*}}$, which means $G_{i^{*}}$ is the closest common ancestor to G_{m} and G_{j} in T, then $\forall s \in\{1, \cdots, n\}$ and $G_{s} \in D\left(G_{j}\right)$, $G_{m} \cap G_{s}=G_{i^{*}} \in\left\{G_{0}, G_{1}, \cdots, G_{n}, G_{m}\right\}$. So there must be at least one child of $G_{i^{*}}$ whose intersection with G_{m} is not included in $\left\{G_{0}, G_{1}, \cdots, G_{n}, G_{m}\right\}$.
Suppose that $\exists j_{1}, j_{2} \in\{1, \cdots, n\}$, both $G_{j_{1}}$ and $G_{j_{2}}$ are children of $G_{i^{*}}$ in \hat{T} and that both $G_{m} \cap G_{j_{1}}$ and $G_{m} \cap G_{j_{2}}$ are not in $\left\{G_{0}, G_{1}, \cdots, G_{n}, G_{m}\right\} . G_{m} \cap G_{j_{1}}$ and $G_{m} \cap G_{j_{2}}$ can not be the same; otherwise $G_{m} \cap G_{j_{1}}=G_{m} \cap G_{j_{2}} \supset G_{i^{*}} \Longrightarrow G_{j_{1}} \cap G_{j_{2}} \supset G_{i^{*}}$, giving the error of duplicated mutations on the edge $G_{i^{*}} \rightarrow G_{j_{1}}$ and the edge $G_{i^{*}} \rightarrow G_{j_{2}}$ in \widehat{T}. So $G_{m} \cap G_{j_{1}}$ and $G_{m} \cap G_{j_{2}}$ are different. Then, in T there are two paths from $G_{i^{*}}$ to G_{m}, one through $G_{m} \cap$ $G_{j_{1}}$ and the other through $G_{m} \cap G_{j_{2}}$, which also cause duplicated mutations in T. Thus, there must be one and only one child of $G_{i^{*}}$ in \widehat{T} (denoted by $G_{j^{*}}$) that gives $G_{m} \cap G_{j^{*}} \notin$ $\left\{G_{0}, G_{1}, \cdots, G_{n}, G_{m}\right\}$.
Algorithm 1 Step 5.3 will add two genomes, i.e. $G_{m} \cap G_{j^{*}}$ and G_{m}, to \hat{T} as illustrated by Fig. 3d. Apparently, the resulted $\widehat{T}_{n e x t}$ does not have any Type II error. Because $G_{m} \cap G_{j^{*}}$ is the closest common ancestor to G_{m} and $G_{j^{*}}$ in T, the edge $G_{m} \cap G_{j^{*}} \rightarrow G_{m}$ will not share any mutation with other edges in $\hat{T}_{\text {next }}$. So $\hat{T}_{\text {next }}$ does not have any Type I error neither.
In all of the three possible cases, Algorithm 1 Step 5 will always generate an error-free $\widehat{T}_{\text {next }}$. Thus, when Algorithm 1 ends, the full-size phylogenetic tree must have 0 error, and thus is consistent with T.

Section 5 An Example Of Edge Pruning

We pick one of the simulation datasets used for performance evaluation to illustrate the edge pruning effect. It is a dataset of 5% noise level, i.e. 20 out of the 400 mutation features are random noise. Fig. S1b and Fig. S1c show the phylogenetic trees before and after edge pruning, respectively, where the true tree is given in Fig. S1a. In this case, both Options of Algorithm 2 give the same pruned tree that is identical to the true tree. Option 1 is set to keep 8 tumor genomes and Option 2 is set to remove edges whose lengths are shorter than 50% of the average edge length in the tree before edge pruning starts.

Figure S1 An illustration of using Algorithm 2 to prune noisy edges in a tree constructed by Algorithm 1 (a) The evolution process used for generating the simulation data. (b) The estimated phylogenetic tree constructed by Algorithm 1 without pruning. The numeric values on the edges are the edge lengths. (c) The estimated phylogenetic tree obtained after pruning edges using Algorithm 2. Both Option 1 and Option 2 give the same pruned tree, which is consistent with the ground truth (a).

