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Section 1 Proof of Property 4 

 Apparently, 𝐺" and 𝐺# must have one or more common ancestors in 𝑇, because at least 𝐺% 
is a common ancestor. Their common ancestors must be a group of nested sets, so there is one 
common ancestor that includes all other common ancestors as subsets. Let 𝐺&  be the largest 
common ancestor. 𝐺& ∈ {𝐺%, 𝐺*, 𝐺+,⋯ 𝐺-}. 𝐺&  is also the closest to 𝐺" and 𝐺# among all common 
ancestors, because all other common ancestors are its subsets. Because 𝐺& ⊂ 𝐺" and 𝐺& ⊂ 𝐺#, 
𝐺& ⊆ 𝐺"⋂𝐺#. Suppose that there is a mutation event 𝑢 ∈ 𝐺&  and 𝑢 ∉ 𝐺"⋂𝐺#. 𝑢 must occur on 
both the path from 𝐺&  to 𝐺" and the path from 𝐺&  to 𝐺#, which conflicts with Assumption 1. So 
such 𝑢 can not exist, and 𝐺& = 𝐺"⋂𝐺# . Thus, 𝐺"⋂𝐺#  is the closest to 𝐺"  and 𝐺#  and also the 
largest among all their common ancestors.  
 
 
 

Section 2 Proof of Property 5  
 If 𝐺" ⊂ 𝐺# , then 𝐺"⋂𝐺# = 𝐺" ∈ {𝐺%, 𝐺*, 𝐺+,⋯𝐺-} . If 𝐺# ⊂ 𝐺" , then 𝐺"⋂𝐺# = 𝐺# ∈
{𝐺%, 𝐺*, 𝐺+,⋯𝐺-} . If 𝐺" ⊄ 𝐺#  and 𝐺" ⊅ 𝐺# , because 𝐺" ≠ 𝐺# , then 𝐺" ⊈ 𝐺#  and 𝐺" ⊉ 𝐺# . 
According to property 4, 𝐺"⋂𝐺# is a common ancestor of 𝐺" and 𝐺# in 𝑇. So in all of the above 
three possible cases, 𝐺"⋂𝐺# ∈ {𝐺%, 𝐺*, 𝐺+,⋯𝐺-}. 
 
 
 

Section 3 Proof of Theorem 1 
 If 𝑇: is not consistent with 𝑇, there must be at least one pair-wise relationship being 
changed. Let them be 𝐺" and 𝐺# in 𝑇. The change can be one of the three following cases. 

(1) 𝐺" and 𝐺# has an ancestor-descendant relationship in 𝑇. Without loss of generality, let 𝐺" 
be an ancestor of 𝐺#. In 𝑇:, 𝐺# becomes an ancestor of 𝐺". Then, there are back mutations 
that are Type II errors. 

(2) 𝐺" and 𝐺# has an ancestor-descendant relationship in 𝑇. Let 𝐺" be an ancestor of 𝐺#. In 𝑇:, 
𝐺" and 𝐺# do not have an ancestor-descendant relationship, which means they are no 
longer both in a path from 𝐺% to a leaf node. In such a case, consider two paths in 𝑇:, 
which are from the closest common ancestor of 𝐺" and 𝐺# to 𝐺" and 𝐺#. There must be 
mutations happening on both paths that cause Type I errors.  

(3) In 𝑇, 𝐺" and 𝐺# do not have an ancestor-descendant relationship, which indicates 𝐺" −
𝐺# ≠ 𝛷 and 𝐺# − 𝐺" ≠ 𝛷. But in 𝑇:, they have an ancestor-descendant relationship. Let 𝐺" 
be an ancestor of 𝐺#. Then, there are dropout mutations that are included in 𝐺" but not in 
𝐺# and cause Type II errors.  

So if 𝑒𝑟𝑟𝑜𝑟@𝑇:A = 0, 𝑇: is consistent with 𝑇. Without loss of generality, let the genomes in 𝑇: be 
𝐺%, 𝐺*,⋯ , 𝐺C, 𝑛 ≤ 𝑁. Suppose that 𝑇:  is not closed under intersection. Then there exist two 
genomes 𝐺" and 𝐺#, 𝑖, 𝑗 ∈ {1,⋯ , 𝑛}, 𝐺" ∩ 𝐺# ∉ {𝐺%, 𝐺*,⋯ , 𝐺C}. 𝐺" and 𝐺# must have at least one 



common ancestor in 𝑇:, because at least 𝐺% is their common ancestors. The common ancestors of 
𝐺"  and 𝐺#  must be a group of nested sets. Let 𝐺K  be the largest of them, where 	𝑘 ∈
{0,1,⋯ , 𝑛}, 𝑘 ≠ 𝑖, 𝑘 ≠ 𝑗. 𝐺" ∩ 𝐺# must be the same as 𝐺K , because otherwise the path from 𝐺K  to 
𝐺" and the path from 𝐺K  to 𝐺# will share at least one mutations that cause Type I error. So 𝑇: must 
be closed under intersection. 
 
 
 

Section 4 Proof of Theorem 2 
Actually, we can prove starting from an initial tree constructed using any pair of genomes, 

Algorithm 1 Steps 4 and 5 will build a full-size phylogenetic tree with 0 error.  

 Algorithm 1 Step 3 constructs an initial phylogenetic tree with the normal genome 𝐺% and 
two tumor genomes (let them be 𝐺* and 𝐺+). We denote the initial tree by 𝑇:"C". There are three 
possible relationships between 𝐺* and 𝐺+.  

(1) 𝐺* and 𝐺+ are from two different lineages in 𝑇, so 𝐺*⋂𝐺+ = 𝐺%. The tree generated by 
Step 3.1 will be selected as 𝑇:"C", which has 0 error.  

(2) 𝐺* and 𝐺+ are in the same lineage and have an ancestor-descendant relationship, i.e. 
either 𝐺* ⊂ 𝐺+ or 𝐺+ ⊂ 𝐺*. A tree generated in either Step 3.2 or Step 3.3 will be selected 
as 𝑇:"C", which has 0 error.  

(3) 𝐺* and 𝐺+ are in the same lineage, but do not have an ancestor-descendant relationship. In 
this case, 𝐺*⋂𝐺+ ≠ 𝛷,𝐺* ⊈ 𝐺+ , and	𝐺* ⊉ 𝐺+ . A tree generated in Step 3.4 will be 
selected as 𝑇:"C" and it has 0 error.  

So in all three cases, 𝑇:"C" has 0 error. 

Then, suppose we have constructed a phylogenetic tree 𝑇: that includes 𝐺%, 𝐺*,⋯ , 𝐺C and 
that 𝑇: has 0 error, which indicates 𝑇: is closed under intersection and consistent with 𝑇. Consider 
adding 𝐺O  to 𝑇:  to generate 𝑇:CPQR . There are three possible relationships between 𝐺O  and 
𝐺%, 𝐺*,⋯ , 𝐺C. 

(1) 𝐺O is not an ancestor of any of 𝐺*,⋯ , 𝐺C in 𝑇 and 𝐺%, 𝐺*,⋯ , 𝐺C, 𝐺O are closed under 
intersection. This means ∀𝑖 ∈ {1,⋯ , 𝑛}, 𝐺" ⊅ 𝐺O  and ∀𝑖 ∈ {0,1,⋯ , 𝑛}, 𝐺" ∩ 𝐺O ∈
{𝐺%, 𝐺*,⋯ , 𝐺C}. 𝐴(𝐺O), the set of all ancestors of 𝐺O in 𝑇, must not be empty, because it 
contains at least 𝐺% that appears in both 𝑇 and 𝑇:. 𝐴(𝐺O) must be a group of nested sets. 
Let 𝐺"∗  be the largest set in 𝐴(𝐺O) that is already included in 𝑇:. Algorithm 1 Step 5.1 can 
add 𝐺O as a child node of 𝐺"∗  to generate 𝑇:CPQR. Apparently, 𝑇:CPQR does not have any 
Type II error, because there is no back/dropout mutation on the newly added edge 𝐺"∗ →
𝐺O. Suppose 𝑇:CPQR has Type I error, which must be caused by some shared mutation 
event between 𝐺"∗ → 𝐺O and some edge already included in 𝑇:. Let 𝑢 be such a mutation 
event. Then, the following two conditions must hold. 

(1.a) ∀𝑗 ∈ {1,⋯ , 𝑛}	and 𝐺# ∈ 𝐴(𝐺O), 𝑢 ∉ 𝐺#, because  𝑢 ∉ 𝐺"∗ , which is the largest set 
in 𝐴(𝐺O).  
(1.b) Therefore, ∃𝑘 ∈ {0,1,⋯ , 𝑛}, 𝐺K ∉ 𝐴(𝐺O) and 𝑢 ∈ 𝐺K.  



So 𝑢 ∈ 𝐺K⋂𝐺O ∈ {𝐺%, 𝐺*,⋯ , 𝐺C} , because 𝐺%, 𝐺*,⋯ , 𝐺C, 𝐺O  are closed under 
intersection. Apparently, 𝐺K⋂𝐺O ∈ 𝐴(𝐺O) and 𝑢 ∈ 𝐺K⋂𝐺O, which conflicts with (1.a). 
So 𝑇:CPQR does not have any Type I error. 

(2) 𝐺O  is an ancestor of some genome among 𝐺*,⋯𝐺C  in 𝑇 , which indicates ∃𝑖, 𝑗 ∈
{0,1,⋯ , 𝑛}, 𝐺" ⊂ 𝐺O ⊂ 𝐺# . All genomes on the path from 𝐺"  to 𝐺#  in 𝑇:  must also be 
either an ancestor or a descendent of 𝐺O in 𝑇, because 𝑇: is consistent with 𝑇. Among 
them, let 𝐺#∗, 𝑗∗ ∈ {0,1,⋯ , 𝑛}, be the smallest descendent of 𝐺O that is already in 𝑇: and 
𝐺"∗ , 𝑖∗ ∈ {0,1,⋯ , 𝑛}, be the largest ancestor of 𝐺O that is already in 𝑇:. The edge 𝐺"∗ →
𝐺#∗  must exist in 𝑇:. Step 5.2 can add 𝐺O  as an intermediate node on this edge and 
generate a 0-error 𝑇:CPQR. 

(3) 𝐺O is not an ancestor of any of 𝐺*,⋯ , 𝐺C in 𝑇, and 𝐺%, 𝐺*,⋯ , 𝐺C, 𝐺O are not closed under 
intersection. This means ∀𝑖 ∈ {1,⋯ , 𝑛}, 𝐺" ⊅ 𝐺O , and ∃𝑖 ∈ {0,1,⋯ , 𝑛} , 𝐺" ∩ 𝐺O ∉
{𝐺%, 𝐺*,⋯ , 𝐺C, 𝐺O} . Let 𝐺"∗ , 𝑖∗ ∈ {0,1,⋯ , 𝑛}  be the largest ancestor of 𝐺O  that is 
included in 𝑇:. Apparently, in 𝑇: only the descendants of 𝐺"∗  can have an intersection with 
𝐺O that falls out of {𝐺%, 𝐺*,⋯ , 𝐺C, 𝐺O}, because ∀𝑘 ∈ {1,⋯ , 𝑛} and 𝐺K ∉ 𝐷(𝐺"∗), 𝐺K ∩
𝐺O=𝐺K ∩ 𝐺"∗ ∈ {𝐺%, 𝐺*,⋯ , 𝐺C, 𝐺O}. Consider a child of 𝐺"∗  in 𝑇: denoted by 𝐺#, 𝐺O ∩ 𝐺# 
is either 𝐺"∗ or not included in {𝐺%, 𝐺*,⋯ , 𝐺C, 𝐺O}. If 𝐺O ∩ 𝐺# = 𝐺"∗, which means 𝐺"∗ is 
the closest common ancestor to 𝐺O  and 𝐺#  in 𝑇, then ∀𝑠 ∈ {1,⋯ , 𝑛} and 𝐺\ ∈ 𝐷@𝐺#A, 
𝐺O ∩ 𝐺\ = 𝐺"∗ ∈ {𝐺%, 𝐺*,⋯ , 𝐺C, 𝐺O}. So there must be at least one child of 𝐺"∗ whose 
intersection with 𝐺O is not included in {𝐺%, 𝐺*,⋯ , 𝐺C, 𝐺O}.  

Suppose that ∃𝑗*, 𝑗+ ∈ {1,⋯ , 𝑛}, both 𝐺#] and 𝐺#^are children of 𝐺"∗ in 𝑇:  and that both 
𝐺O ∩ 𝐺#] and 𝐺O ∩ 𝐺#^ are not in {𝐺%, 𝐺*,⋯ , 𝐺C, 𝐺O}. 𝐺O ∩ 𝐺#] and 𝐺O ∩ 𝐺#^ can not be 
the same; otherwise 𝐺O ∩ 𝐺#] = 𝐺O ∩ 𝐺#^ ⊃ 𝐺"∗ ⟹ 𝐺#] ∩ 𝐺#^ ⊃ 𝐺"∗ , giving the error of 
duplicated mutations on the edge 𝐺"∗ → 𝐺#] and the edge 𝐺"∗ → 𝐺#^ in 𝑇:. So 𝐺O ∩ 𝐺#] and 
𝐺O ∩ 𝐺#^ are different. Then, in 𝑇 there are two paths from 𝐺"∗ to 𝐺O, one through 𝐺O ∩
𝐺#] and the other through 𝐺O ∩ 𝐺#^, which also cause duplicated mutations in 𝑇. Thus, 
there must be one and only one child of 𝐺"∗  in 𝑇: (denoted by 𝐺#∗) that gives 𝐺O ∩ 𝐺#∗ ∉
{𝐺%, 𝐺*,⋯ , 𝐺C, 𝐺O}.  

Algorithm 1 Step 5.3 will add two genomes, i.e. 𝐺O ∩ 𝐺#∗  and 𝐺O, to 𝑇: as illustrated by 
Fig. 3d. Apparently, the resulted 𝑇:CPQR does not have any Type II error. Because 𝐺O ∩ 𝐺#∗ 
is the closest common ancestor to 𝐺O and 𝐺#∗  in 𝑇, the edge 𝐺O ∩ 𝐺#∗ → 𝐺O  will not 
share any mutation with other edges in 𝑇:CPQR. So 𝑇:CPQR does not have any Type I error 
neither. 

In all of the three possible cases, Algorithm 1 Step 5 will always generate an error-free 𝑇:CPQR. 
Thus, when Algorithm 1 ends, the full-size phylogenetic tree must have 0 error, and thus is 
consistent with 𝑇. 
 
 
 

Section 5 An Example Of Edge Pruning   



We pick one of the simulation datasets used for performance evaluation to illustrate the edge 
pruning effect. It is a dataset of 5% noise level, i.e. 20 out of the 400 mutation features are 
random noise. Fig. S1b and Fig. S1c show the phylogenetic trees before and after edge pruning, 
respectively, where the true tree is given in Fig. S1a. In this case, both Options of Algorithm 2 
give the same pruned tree that is identical to the true tree. Option 1 is set to keep 8 tumor 
genomes and Option 2 is set to remove edges whose lengths are shorter than 50% of the average 
edge length in the tree before edge pruning starts. 
 
 
 

 
 

Figure S1    An illustration of using Algorithm 2 to prune noisy edges in a tree constructed by Algorithm 1 (a) The 
evolution process used for generating the simulation data. (b) The estimated phylogenetic tree constructed by 
Algorithm 1 without pruning. The numeric values on the edges are the edge lengths. (c) The estimated phylogenetic 
tree obtained after pruning edges using Algorithm 2. Both Option 1 and Option 2 give the same pruned tree, which 
is consistent with the ground truth (a). 


