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Abstract

We argue that a proper distinction must be made between informed and unin-
formed decision making when setting empirical therapy policies, as this allows to
estimate the value of gathering more information and to set research priorities. We
rely on the stochastic version of a compartmental model to describe the spread of an
infecting organism in a health care facility, and the emergence and spread of resistance
to two drugs. We focus on information and uncertainty regarding the parameters of
this model. We consider a family of adaptive policies. In the uninformed setting, the
best adaptive policy allows to reduce the average cumulative infected patient-days
over two years by 39.3% (95% CI: 30.3% – 48.1%) compared to the combination ther-
apy. Choosing empirical therapy policies while knowing the exact parameter values
allows to further decrease the cumulative infected patient-days on average by 3.9%
(95% CI: 2.1% – 5.8%). In our setting, the benefit of perfect information might be
offset by increased drug consumption.

Keywords: health care associated infection, antimicrobial resistance, antibiotic cycling,
value of information.

1 Introduction

Antimicrobials are known to select for drug resistance [17]. Their extensive and in-
dispensable use, as well as patients’ vulnerability, make drug resistance a serious issue
in health care facilities [9]. Since antimicrobial resistance is often associated with fitness
costs, that is a lower ability of resistant organisms to survive and reproduce in the ab-
sence of treatment compared to their drug susceptible counterpart, strategies have been
proposed to counteract the evolution of resistance by treating strains with different drugs
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in empirical therapies, either over time or simultaneously [18]. An empirical therapy policy
specifies which antimicrobial is to be administered “by default” before the exact cause of
an infection is known.1 Empirical therapy policies aimed at reducing the evolution and
spread of antimicrobial resistance include alternating drugs (drug cycling or metronomic
therapies, either following a fixed rotation schedule or adaptively, see [14]), and assigning
drugs randomly to patients (drug mixing).

The respective merits of such policies have been debated and empirical evidence remains
elusive. Theoretical studies have sought to compare the performance of empirical therapy
policies by using compartmental models of infections and emergence of drug resistance
in health care facilities at the between-host level. We refer to [6, 22] for reviews and
perspectives on this topic. The emergence and spread of drug resistance is a nonlinear
phenomenon that strongly depends on the parameters of the population dynamics in the
health care facility and on the characteristics of the disease. These parameters, however,
may be difficult or costly to estimate accurately, thus preventing the choice of an optimal
empirical therapy policy in each given parameter setting.

The problem of making decisions under parameter uncertainty is ubiquitous in health
care. Put in general terms, the decision maker needs to choose an alternative a in a set
A of strategies so as to maximize a value function V (a, ξ), where ξ is a set of uncertain
parameters. An alternative a0 is typically chosen that maximizes the expected value over
possible realizations of ξ: a0 = argmaxa∈AEξ [V (a, ξ)].2 Notice that V (a, ξ) may itself be
the expected outcome of a stochastic process that is not specified here. While maximizing
the expected value by choosing a0, the decision maker forgoes alternatives that would
perform better than a0 for some instances of ξ. Said differently, the performance of an
alternative a0 chosen without perfect knowledge of ξ can go far from the optimum for each
instance of ξ. The expected “loss” of the decision maker between choosing the best strategy
on average over the possible realizations of ξ his best strategy for each realizations of ξ
is then Eξ [maxa∈A V (a, ξ)− V (a0, ξ)] = Eξ [maxa∈A V (a, ξ)] − maxa∈AEξ [V (a, ξ)]. This
quantity is called the expected value of perfect information (EVPI). The EVPI provides
an upper bound on the cost one should be willing to pay to acquire more information on ξ.
Value of information analyses have been proposed as an extension of sensitivity analyses
[10, 11], and as a tool for research prioritization and clinical trial optimization [24]. Efficient
estimation methods for variants of the EVPI have been developed until recently [12, 13].

While the distinction between uninformed best expected outcome and expected in-
formed best outcome is a classic topic of the health economics literature [3], we believe

1In the following, we will include prophylactic treatments in this definition.
2For the sake of simplicity, in this presentation we use the expected value but any other aggregation

function could be applied similarly.
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that it deserves more attention than it has received to this day in investigations of optimal
empirical therapy policies. Many authors in this literature used only point estimates of
model parameters to investigate the effects of antimicrobial consumption on the emergence
and spread of resistance [1, 2, 7, 8, 16]. Other authors performed sensitivity analyses of
model parameters. In [20], for instance, the authors showed how the performance of each
considered policy was affected by variations of each parameter when other parameters were
set to their default value. This approach allows to compare the respective influences of
parameters on the performance of a given policy, but it does not take account of the re-
spective performances of policies in the parameter space. In [25], the authors considered six
different scenarios and, for each of them, variations of each parameter over relevant values,
all other parameters being set to their default value. Again, the chosen approach did not
allow to explore the entire parameter space. Because of this, while the authors showed how
the optimal policy changed with the parameters, they could not provide results in terms
of the expected payoff of always choosing the best policy when the different parameter
values are known. They gave results in terms of which policy outperformed the others “for
most parameter settings”. This conclusion was clearly meant to provide insight to decision
makers in the absence of information about parameter values. However it is not without
ambiguity, and this for two reasons. First, policies that perform better in most cases do
not necessarily maximize the expected payoff (policy rankings do not contain all relevant
information about payoffs). Second, this way of presenting results may cause confusion
as it seems to confound the two terms in the EVPI: the best policies are computed for
each parameter setting, that is based on known parameter values, but the final result is
presented as a substitute for the uninformed maximal expected payoff.

Several studies used stochastic sensitivity analyses to explore the parameter space more
thoroughly by randomly drawing parameter values in relevant ranges. In [19], the authors
computed average performances for different policies, but instead of averaging over all
drawn parameter sets, they used a moving average along the values of one of the parameters.
In an early article [5], the problem of parameter uncertainty could be swept aside by the
authors as the same policy had the best performance for all drawn parameter values.
This, however, needs not always be the case. In a more recent study [23], the authors
presented their results in terms of the proportion of randomly drawn parameter settings
for which each considered policy performed better than the others. Here we may raise
the same objection as previously, that ranking policies in this way can be misleading as it
somewhat mixes up informed and uninformed decision making. The authors also showed
which policy was optimal in each region of the parameter space. Doing so undoubtedly
gives insight into the problem hand and it may have significant practical implications for
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some specifications we will not tackle here. use a transparent metric in order to make the
distinction between informed and uniformed decision makers and, for each, specify their
best treatment strategies.

To support our claim that a clear distinction must be made between maximizing the
expected performance and considering the expected optimal performance in analyses of
empirical therapy policies, we will use numerical simulations of a variant of the compart-
mental models presented in [22], and specifically [7]. We will consider a family of adaptive
empirical therapy policies in the same spirit as the policies presented in [16], and stand-
ard empirical therapy policies usually found in the literature. We will randomly draw
parameter values and we will compute the performance of each policy given the drawn
parameters. From there, we will be able to determine the policy with the best expected
performance, and compare it with the expected performance of choosing the best policy for
any parameter values. It is worth noticing that our estimates will depend on the ranges in
which parameters will be drawn, and more specifically on our assumption that parameters
are (for the most part) independent. The method we use in order to tackle uncertainty
is Monte-Carlo sampling, hence we are confident that many generalizations – like para-
meters or individual-specific parameters – over our model would be handled without much
technical issues.

Finally, we remark that the population dynamics parameters of the health care facility
and of the disease are not the only sources of uncertainty relevant to the design of empir-
ical therapy policies. Gathering information about the state of the epidemic, for instance,
can be essential. The frequency of patient screenings has sometimes been interpreted as a
quantity of information (e.g. in [21]). See also [15] for a dynamic optimization approach
relying on periodic screening of the population, and a comparison with the expected per-
formance of an optimization strategy [14] that does not use this information. Another
source of uncertainty that is more difficult to control is the way policies are actually imple-
mented in the field; see [4] for a stochastic differential equation approach to this problem.
In the present article, we assume that the spread of the infection can be screened exactly
when needed, and that the chosen policies are properly implemented.

We present the materials and methods used in the study in Section 2: the compart-
mental model describing the emergence and spread of an infection in a health care facility
in Section 2.1, and the considered policies in Section 2.2. We show and discuss our res-
ults in Section 3: first in the uninformed case (Section 3.1), then in the informed case
(Section 3.2). Section 4 concludes.
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2 Materials and methods

2.1 Model

We use a compartmental epidemiological model to describe the spread of an infection
in a health care facility (Figure 1). The events featured in the model are summarized
in Table 1. The model parameters are shown in Table 2 with the distributions in which
they are randomly drawn. We refer to [14] for a detailed description of the model, and for
references supporting or bringing context to the underlying assumptions.

• Pathogenic strains. We model resistance to two drugs, drug 1 and drug 2. At each
time, a patient is either infected with a wild-type strain susceptible to both drugs,
infected with a strain resistant to drug 1 but not to drug 2 (1-resistant), infected
with a strain resistant to drug 2 but not to drug 1 (2-resistant), infected with a strain
resistant to both drugs (12-resistant), or uninfected with any of the above. S, R1,
R2, R12, and X denote the number of patients with each health status respectively.
We assume that infected patients are only infected with one pathogenic strain at any
given time.

• Admissions and discharges. We consider a small health care facility or a hospital ward
with an average population of N = 40 patients. We will run stochastic simulations of
the model. We assume that admission and discharge do not depend on health status.
We also make the simplifying assumption that transmission of strains and emergence
of resistance in the community is exogenous to the problem in hand.

• Treatments. Three treatments are available: drug 1 in monotherapy (treatment 1),
drug 2 in monotherapy (treatment 2), and a combination of drugs 1 and 2 (treatment
12). Patients can also be left without a treatment (treatment 0). Decision variable
fi, i ∈ {0, 1, 2, 12}, is equal to 1 when patients receive treatment i and to 0 otherwise.
At all time, f0 + f1 + f2 + f12 = 1.

• Recovery. Infected patients recover spontaneously at rate γ regardless of the infecting
strain. Patients receiving adequate treatment recover at rate τ .

• De novo mutation. Infecting organisms acquire i-resistance through de novo muta-
tion at rate νi, i ∈ {1, 2, 12}, of two different genes as illustrated in Figure A.1 in
Appendix.

• Infection and superinfection. We assume homogeneous mixing. Pathogenic strains
are transmitted to uninfected patients with transmission rate β, and to already in-
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fected patients with transmission rate σβ. We assume σ = 1 in this instance of the
model, but the general case is σ ∈ [0, 1]. i-resistant strains incur a fitness cost on
transmission ci ∈ [0, 1], i ∈ {1, 2, 12}, and their transmission rate is weighed by 1−ci.

• Strain replacement. Within-host, a new pathogenic strain acquired through de novo
mutation or contagion must compete with the resident pathogenic strain or with
the commensal microflora in the case of previously uninfected patients. i-resistant
strains incur a fitness cost si ∈ [0, 1], i ∈ {1, 2, 12}, on competitive performance. We
normalize the fitness cost sS of the wild-type susceptible strain to 0, and the fitness
cost sX of the commensal microflora to 1. A strain receiving adequate treatment has
a fitness cost of 1. The rate of replacement of a resident strain with fitness cost sj
by a new strain with fitness cost si is given by function χε as

χε(si, sj) =


1 if si − sj ≤ −ε
0.5− si−sj

2ε
if |si − sj| < ε

0 if si − sj ≥ ε.
(1)

We further assume that a new strain cannot colonize a treated patient unless it is
resistant to that patient’s treatment.

X

S

R1 R2

R12

(a) De novo mutations.

X

S

R1 R2

R12

(b) Contagion.

Figure 1: For clarity we display de novo mutations (black, panel (a)) and contagion (black,
panel (b)) on two separate graphs. Gray: admissions and discharges. Dotted gray: recovery.
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2.2 Empirical therapy policies

Our objective is to minimize the cumulative infected patient-days over two years (720
days). To do this, we assume that an empirical therapy policy is to be chosen among the
THRES-k, k ∈ {0, ..., 25}, adaptive policies defined as

each day, administer to all patients


treatment 0 if R12 ≥ k

at the beginning of the day,
treatment 12 otherwise,

and THRES-∞. THRES-0 consists in administering treatment 0 to all patients during two
years. THRES-∞ consists in administering treatment 12 to all patients during two years;
it corresponds to THRES-k in the limit k →∞. Notice that in our setting, the threshold
k does not depend on the average population size N .

There are several reasons why we focus on THRES-k empirical therapy policies in this
study. First these policies have been shown to be close to policies optimized with artificial
intelligence tools for some parameter values and when the number of individuals in each
compartment is screened, see [15]. As we will see later in this article, they indeed yield
much better results than standard policies. Also, THRES-k policies are much easier to
implement in an actual health care facility . Finally, for our purpose, THRES-k policies
are much less computationally demanding than actually optimized policies.

Combination therapies such as THRES-∞ are frequently implemented in the clinic and
are commonly considered in the literature. In the following discussions, we will at times
compare the expected performances of the THRES-k polices to the expected performances
of other policies found in the literature: MONO-1, MONO-2, CYC-n and METRO-n.
MONO-1 and MONO-2 consist in administering treatment 1 and 2 respectively to all
patients during two years. CYC-n is a cycling policy with a fixed period: treatment 1
during n days followed by treatment 2 during n days. METRO-n has been shown to be of
special interest [14] and consists in administering treatment 12 during n days followed by
no treatment during n days.

For the sake of clarification, let us make a some technical remarks at this point. In
the present article, we are mainly concerned by the information the decision maker has or
has not about the disease or population dynamics. When we say that the decision maker
is informed or uninformed, we specify the status of the information about the disease and
population dynamics parameters. However, the fact that we consider policies that are
conditional – like THRES-k (k ∈ {1, ..., 25}) policies – or unconditional – like THRES-
k (k ∈ {0,∞}), MONO-1, MONO-2, CYC-n and METRO-n policies – on the status
of the individuals and in particular dependent on the number of individuals that are in
compartment R12 is a different problem relying on a different type of information. Both
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sets of information are not exactly independent as we might learn the parameters of the
disease or the population dynamics from the observations of the numbers of individuals in
the different compartments at different times. We will not consider this possibility here
and leave this aspect for further work.
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Population changes Rate
Admissions and discharges
S ← S + 1 NµmS

Ri ← Ri + 1, i ∈ {1, 2, 12} Nµmi

X ← X + 1 Nµ
(
1−

∑
i∈{S,1,2,12}mi

)
S ← S − 1 µS
Ri ← Ri − 1, i ∈ {1, 2, 12} µRi

X ← X − 1 µX
De novo mutations
S ← S − 1, Ri ← Ri + 1, i ∈ {1, 2} νi [f0χε(si, sS) + fiχε(si, 1)]S
S ← S − 1, R12 ← R12 + 1 ν12 [f0χε(s12, sS) + (f1 + f2 + f12)χε(s12, 1)]S
Ri ← Ri − 1, R12 ← R12 + 1, i ∈ {1, 2} ν(3−i) [(f0 + fi)χε(s12, si)

+(f(3−i) + f12)χε(s12, 1)
]
Ri

Infections and recoveries
X ← X − 1, S ← S + 1 f0β(1− cS)χε(sS, 1)XS/N
X ← X − 1, Ri ← Ri + 1, i ∈ {1, 2} (f0 + f(3−i))β(1− ci)χε(si, 1)XRi/N
X ← X − 1, R12 ← R12 + 1 β(1− c12)χε(s12, 1)XR12/N
S ← S − 1, X ← X + 1 [τ(f1 + f2 + f12) + γ]S
Ri ← Ri − 1, X ← X + 1, i ∈ {1, 2}

[
τ(f(3−i) + f12) + γ

]
Ri

R12 ← R12 − 1, X ← X + 1 γR12

Superinfections
S ← S − 1, Ri ← Ri + 1, i ∈ {1, 2} σβ(1− ci) [f0χε(si, sS) + fiχε(si, 1)]SRi/N
Ri ← Ri − 1, S ← S + 1, i ∈ {1, 2} σβ(1− cS)f0χε(sS, si)SRi/N
S ← S − 1, R12 ← R12 + 1 σβ(1− c12) [f0χε(s12, sS)

+(f1 + f2 + f12)χε(s12, 1)]SR12/N
R12 ← R12 − 1, S ← S + 1 σβ(1− cS)f0χε(sS, s12)SR12/N
Ri ← Ri − 1, R12 ← R12 + 1, i ∈ {1, 2} σβ(1− c12) [(f0 + fi)χε(s12, si)

+(f(3−i) + f12)χε(s12, 1)
]
RiR12/N

R12 ← R12 − 1, Ri ← Ri + 1, i ∈ {1, 2} σβ(1− ci)(f0 + fi)χε(si, s12)RiR12/N
Ri ← Ri − 1, σβ(1− c(3−i))

[
f0χε(s(3−i), si)

R(3−i) ← R(3−i) + 1, i ∈ {1, 2} +f(3−i)χε(s(3−i), 1)
]
RiR(3−i)/N

Table 1: Events considered in the model.
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Parameter Unit Description Range Sampling
Admissions and discharges

N – Average number of patients. [10, 100] linear
µ day-1 Turnover rate. [3× 10−3, 0.5]* logarithmic

mS – Proportion of incoming patients in-
fected with the susceptible strain. [0.07, 0.9]* logarithmic

m1 –
Proportion of incoming patients in-
fected with the strain resistant to
drug 1.

[10−3, 0.1]* logarithmic

m2 –
Proportion of incoming patients in-
fected with the strain resistant to
drug 2.

[10−3, 0.1]* logarithmic

m12 –
Proportion of incoming patients in-
fected with the strain resistant to
drugs 1 and 2.

[10−6, 0.1]* logarithmic

De novo mutations and fitness costs

νi day-1
Rate of acquisition of resistance to
treatment i through de novo muta-
tion. i ∈ {1, 2, 12}

[10−10, 0.1]* logarithmic

ci – Cost on infectivity of resistance to
treatment i, i ∈ {1, 2, 12}. [0, 0.2]* linear

cS – Cost on infectivity of susceptible or-
ganisms. 0 –

si –
Cost on competitive performance
of resistance to treatment i, i ∈
{1, 2, 12}.

[0, 0.2] linear

sS – Cost on competitive performance of
susceptible organisms. 0 –

sX – Cost on competitive performance of
commensal organisms. 1 –

ε – Slope parameter in function χε. [0.05, 50] logarithmic
Infections, superinfections, and recoveries

β day-1 Transmission rate. [0.2, 1]* linear
σ – Relative rate of superinfection. [0, 0.5]* linear
γ day-1 Rate of spontaneous recovery. [0, 0.2]* linear

τ day-1 Rate of recovery under appropriate
treatment. [0.2, 1] linear

Table 2: Model parameters. * source: [23].
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3 Results

3.1 Uninformed decision making

Assuming that the exact values of the model parameters are unknown, we compare
the policies presented in section 2.2 by randomly drawing nP = 400 parameter sets. For
each policy and each parameter set, we run nS = 100 stochastic simulations of the model
(section 2.1) and compute the average performance of the policy over nP × nS = 40, 000

stochastic simulations.3 All stochastic simulations are initialized by simulating a period of
30 years without treatment (treatment 0).

Under the THRES-0 policy, no treatment is ever implemented and we obtain an average
of 27,920.4 cumulative infected patient-days over two years (95% CI: 26,345.6 – 29,495.2).
The combination therapy THRES-∞ allows an average 58.2% reduction compared to
THRES-0 with an average cumulative infected patient-days: 11,668.9 (95% CI: 10,313.1 –
13,024.7). MONO-1 and MONO-2 yield respectively 20,356.2 (95% CI: 18,820.0 – 21,892.4)
and 20,809.1 (95% CI: 19,249.1 – 22,369.1) cumulative infected patient-days on average,
which corresponds to a 27.1% and a 25.5% reduction compared to THRES-0. The res-
ults obtained the tested CYC-n and METRO-n are not as good as the results obtained
with THRES-∞ (results shown in Table A.1 in the Appendix). Hence, of all the policies
considered in this article that are also commonly found in the literature and that are in-
dependent on the number of individuals in the different compartments, THRES-∞ shows
the best performance; we retain THRES-∞ as a benchmark in the following discussions.

The average performances of our adaptive policies THRES-k as a function of the
threshold k are shown in Figure 2. We obtain the best performance with THRES-1,
which consists in administering treatment 12 as long as no patient is infected with the
12-resistant strain, and treatment 0 when one or more patients are infected with the 12-
resistant strain. Under THRES-1, the average cumulative infected patient-days is reduced
by 74.7% compared to THRES-0 and by 39.3% compared to THRES-∞ with an average
of 7,078.1 (95% CI: 6,059.8 – 8,096.4) cumulative infected patient-days.

It is therefore reasonable for an uninformed decision maker to implement policy THRES-
1 in order to minimize the expected cumulative infected patient-days over two years.
THRES-1, however, will not show the best performance in all parameter settings. This
is best illustrated in Figure 3: for each of the nP = 400 randomly drawn parameter set-
tings, we plot the average cumulative patient-days over nS = 100 stochastic simulations
obtained under THRES-k against that obtained under THRES-∞. We show zoomed-in

3The confidence intervals of the grand means (means of means) are computed with the appropriate
random effects.
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Figure 2: Average cumulative infected patient-days over two years (400 × 100 stochastic
simulations) obtained with THRES-k policies. Dashed: 95% confidence intervals.

graphs in Figure A.2 in Appendix. We see that THRES-∞ outperforms THRES-1 for some
parameter values (significantly at the 95% threshold). Unsurprisingly, the performance of
THRES-25 is close to that of THRES-∞. Yet notice that we find a significant difference
at the 95% threshold between THRES-25 and THRES-∞ for several individual parameter
settings.

3.2 Informed decision making

We now turn to decision making when the exact parameter values are known to the
decision maker. In this setting, we call INFOBEST the empirical therapy policies chosen
as follows. For each of the nP = 400 randomly drawn parameter settings, we compute the
average two year cumulative infected patient-days over nS = 100 stochastic simulations
for each considered policy (THRES-k, k ∈ {0..25}, and THRES-∞), and we retain the
policy with the best average performance. Put differently, INFOBEST policies maximize
the expected performance given known parameters.

Then we run another series of nS stochastic simulations under the chosen INFOBEST
policy for each parameter setting. Notice that we use different runs for the same strategies
in order to avoid statistical biases not differentiating between the training runs used to
define our policy and the test runs which outcomes correspond to our in silico trials. By
definition, the average performance of the INFOBEST policies over the nP×nS simulations
is better than any of the THRES-k (k ∈ {0, ..., 25,∞}) and in particular THRES-1, the
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policy maximizing expected performance in an uninformed setting. We obtain an average
difference of 278.3 (95% CI: 147.0 – 409.6) cumulative infected patient-days over two years
between INFOBEST and THRES-1. INFOBEST allows a 3.9% improvement over THRES-
1. This difference estimates the expected value of knowing the exact value of population
dynamics and disease parameters. The average cumulative infected patient-days obtained
with INFOBEST for each parameter value are plotted against those obtained with in
Figure 4.4

Our comparisons of policies have relied so far on the average cumulative infected patient-
days. It must be noted that our analysis did not internalize the costs associated with the
different policies, for instance screening costs and treatment costs. To be complete in this
setting, costs must be considered once a policy has been chosen. In Figure 5, we show the
average proportion of days with treatment 12 over two years obtained with the THRES-k
and the INFOBEST policies. For thresholds k ≥ 8, the proportion of days in which treat-
ment 12 is administered is increasing with k, as the threshold k above which all treatment
is stopped becomes less likely to be crossed. Counter intuitively, the average proportion of
days with treatment 12 is decreasing with k for k ≤ 7; THRES-1, the policy that would
be chosen in the uninformed case, is among the policies implying the most days with
treatment 12. This shows that small thresholds are efficient at reducing the emergence of
double resistance, thus allowing to administer treatment 12 more often overall. The aver-
age proportion of days with treatment 12 obtained with the informed INFOBEST policies
is higher (0.833, 95% CI: 0.830 – 0.836) than those obtained with the THRES-k policies for
k ∈ {1, ..., 25}. Indeed, for some parameter settings, the INFOBEST policy is THRES-∞
for which treatment 12 is administered everyday. In particular, the average proportion of
days with treatment 12 is significantly lower at the 95% threshold under THRES-1 (0.791,
95% CI: 0.788 – 0.794) than under INFOBEST. This may have policy implications, as it
shows that if treatment costs are not internalized in the analysis, informed decision making
increases the expected drug consumption compared to uninformed decision making.

4 Conclusion

An essential element in the design of empirical therapy policies is the information
available to the decision maker. Being able, for instance, to set screening priorities, is an
important part of empirical therapy devising and analysis. Yet doing so requires to make
a proper distinction between informed and uninformed decision making when producing
and presenting results.

4Alternative views are provided in Appendix.
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In this article, we focus on the information regarding the population dynamics paramet-
ers of the disease and of the considered health care facility. We emphasize the distinction
between decision making in uninformed and informed settings. objective is to minimize
the cumulative infected patient-days in the long run (two years). In an uninformed set-
ting, only the range of each parameter and the underlying dynamical system are known
to the decision maker. An empirical therapy policy is then chosen that minimizes the ex-
pected cumulative infected patient-days over two years. In an informed setting, the exact
parameter values are known, and the decision maker chooses a policy that minimizes the
expected cumulative infected patient days (over stochastic realizations of the spread of the
disease) given the parameter values.

To illustrate our point, we draw upon the stochastic version of a compartmental epi-
demiological model describing the spread of an infecting organisms in a health care facility.
The organism may evolve resistance to two antimicrobial drugs. We assume that a policy
is to be chosen in a family of adaptive empirical therapies that consist in administering a
combination therapy when the number of patients infected with a double resistant strain
is below a threshold, and to administer no drug when this threshold is exceeded. The
combination therapy is a limiting case of such adaptive policies.

In the uninformed setting, we find that the best adaptive policy reduces the average cu-
mulative infected patient-days over two years by 39.3% (95% CI: 30.3% – 48.1%) compared
to the combination therapy. Choosing an empirical therapy policy knowing the exact para-
meter values allows to avoid a further improvement of 3.9% (95% CI: 2.1% – 5.8%). This
estimates the expected value of having access to exact parameter values. While this figure
may seem only marginal, we point out that it is still informative: it shows that gathering
more information about parameter values may not be cost efficient, at least in the setting
presented in this article. Indeed, we also show that drug consumption is higher on average
in the informed setting. A full consideration of the costs associated with the policies might
therefore shift the balance towards uninformed expected performance maximization.
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(a) k = 1

(b) k = 25

Figure 3: Average cumulative infected patient-days for THRES-k (k ∈ {1, 25}) and
THRES-∞. Each cross for one of 400 randomly drawn parameter settings. Error bars:
95% confidence intervals over 100 stochastic simulations. Dashed: y=x line.

15

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 10, 2019. ; https://doi.org/10.1101/629550doi: bioRxiv preprint 

https://doi.org/10.1101/629550


Figure 4: Average cumulative infected patient-days for INFOBEST and . Each cross for
one of 400 randomly drawn parameter settings. Error bars: 95% confidence intervals over
100 stochastic simulations. Dashed: y=x line.

Figure 5: Average proportion of days with treatment 12 over two years (400×100 stochastic
simulations). Black: THRES-k. Gray: INFOBEST (independent on k). Dashed: 95%
confidence intervals.
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A Additional figures and results

(+,+)

(1,+)

(+, 2)
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ν12
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Figure A.1: The four genotypes included in our model with mutation rates. The arrows
represent transitions between genotypes. The two considered genes are separated by a
comma. ‘+’ represents a wild-type allele. ‘1’ and ‘2’ represent alleles giving resistance to
drugs 1 and 2 respectively. (+,+): wild-type susceptible. (1,+): 1-resistance only. (+, 2):
2-resistance only. (1, 2): resistance to both drugs.

Policy Cumulative infected
patient-days at day 720 Policy Cumulative infected

patient-days at day 720
CYC-10 13,353.4

(95% CI: 11,979.9 – 14,726.9) METRO-10 15,536.8
(95% CI: 14,210.5 – 16,863.1)

CYC-20 14,265.5
(95% CI: 12,886.0 – 15,645.1) METRO-20 16,172.1

(95% CI: 14,912.4 – 17,431.8)

CYC-30 14,855.6
(95% CI: 13,481.0 – 16,230.1) METRO-30 16,471.6

(95% CI: 15,249.8 – 17,693.5)

CYC-40 15,399.4
(95% CI: 14,018.2 – 16,780.7) METRO-40 16,656.5

(95% CI: 15,449.9 – 17,863.1)

CYC-50 15,707.3
(95% CI: 14,328.4 – 17,086.2) METRO-50 16,601.0

(95% CI: 15,414.4 – 17,787.6)

CYC-60 16,046.7
(95% CI: 14,658.2 – 17,435.2) METRO-60 16,938.5

(95% CI: 15,752.3 – 18,124.6)

Table A.1: Outcomes for CYC-n and METRO-n and different values of n.
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(a) k = 1

(b) k = 25

Figure A.2: Average cumulative infected patient-days for THRES-k (k ∈ {1, 25}) and
THRES-∞. Each cross for one of 400 randomly drawn parameter settings. Error bars:
95% confidence intervals over 100 stochastic simulations. Dashed: y=x line. Same as
Figure 3 with different scales.
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(a) All results.

(b) Zoomed-in.

Figure A.3: Average cumulative infected patient-days for INFOBEST and . Each cross
for one of 400 randomly drawn parameter settings. Error bars: 95% confidence intervals
over 100 stochastic simulations. Dashed: y=x line. Color corresponds to the implemented
strategy that maximizes outcome: yellow-red for THRES-k for k ∈ {1..25}, black for
THRES-∞.
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