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ABSTRACT 

The blood metabolome incorporates cues from the environment as well as the host’s genetic 

background, potentially offering a holistic view of an individual’s health status. We have 

compiled a vast resource of 
1
H-NMR metabolomics and phenotypic data encompassing over 

25,000 samples derived from 26 community and hospital-based cohorts. Using this resource, 

we constructed a metabolomics-based age predictor (metaboAge) to calculate an 

individual’s biological age. Exploration in independent cohorts demonstrates that being 

judged older by one’s metabolome, as compared to one’s chronological age, confers an 

increased risk on future cardiovascular disease, mortality and functionality in older 

individuals. A web-based tool for calculating metaboAge (metaboage.researchlumc.nl) 

allows easy incorporation in other epidemiological studies. Access to data can be requested 

at bbmri.nl/samples-images-data. In summary, we present a vast resource of metabolomics 

data and illustrate its merit by constructing a metabolomics-based score for biological age 

that captures aspects of current and future cardio-metabolic health. 
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MAIN 

Chronological age is an important risk factor for virtually all types of common disease, 

including diabetes mellitus type 2, cardiovascular disease and many forms of cancer [1]. 

Moreover, chronological age is often employed as an important criterion on which clinical 

treatment decisions in older adults are based. Yet, especially in the elderly, chronological age 

is a poor representative of an individual’s intrinsic biological age, including the susceptibility 

to disease and resilience to treatment [2]. Hence, novel biomarkers are required that give 

additional information about the disparity between chronological and biological age, i.e. 

whether individuals are biologically older and potentially more vulnerable than their peers. 

 A range of multi-marker algorithms has been developed to serve as indicators of 

biological age. Examples are those based on physiological deterioration of organ systems 

from the second [3] or third [4] decade onwards, or those based on combined health deficits 

in later life, the so-called ‘frailty’ indices [5,6].
 
Others have exploited large quantities of 

highly standardized molecular data, e.g. DNA methylation data, to train so-called ‘clock’ 

algorithms [7-9] that allow one to calculate an omics-based age. The difference between an 

individual’s actual chronological age and the estimated ‘methylation age’ was for instance 

shown to associate with mortality [10]. Interestingly, when compared, each of these omics-

based biological age indicators appeared to mark unique aspects of ageing [11,12], giving 

ample incentive for the development of other, possibly complementary omics-based 

indicators of biological age. However, the requisite of a large body of data initially required 

for training similar omics age predictors is currently limiting the application of other 

molecular domains. 
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RESULTS 

The BBMRI-NL resource 

We present a novel, well standardized 
1
H-NMR blood-based metabolomics data set 

encompassing over 25,000 samples collected by the Dutch Biobanking and BioMolecular 

resources and Research Infrastructure derived from 26 community and hospital based 

cohorts (Figure 1 and Table S2, available upon request at BBMRI-NL: bbmri.nl/samples-

images-data, along with routine clinical variables). We have employed these data to 

construct a metabolomics-based clock (predictions made available as web resource 

(metaboage.reasearchlumc.nl, see Online Methods for instructions), and show that the 

difference between chronological age and ‘metabolomic age’ captures aspects of cardio-

metabolic health. 

Deriving a metabolomics-based score for biological age 

A metabolomics predictor for chronological age was trained and evaluated (see DocS1) 

employing 56 out of 226 most reliable and independent [13] metabolomic variables (see 

Table S3 and DocS2), derived from 24 cohorts (Figure 1). Two biobanks missing a 

metabolomic variable were omitted (see Online Material). In addition, PROSPER and 

LLS_SIBS were left out from training the metabolomic age predictor and used to 

independently explore the predictive value of the obtained indicator of biological age. With 

use of the data of the remaining 22 biobanks comprising 18,716 samples (9,680 males and 

10,036 females), a linear model was trained with the 56 metabolomic variables to estimate 

chronological age (see Online Material). A 5-Fold-Cross-Validation (5FCV, see Online 

Material) scheme was employed for randomly splitting the data in training (80%, 15,208 
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samples) and test (20%, 3,802 samples) sets for an unbiased training and evaluation of the 

models. The age-independent part of the difference between the estimated metabolomic 

age and chronological age (Figure 1C), hereafter referred to as ΔmetaboAge, may reflect for 

each individual the disparity between their biological and chronological age. Consequently, a 

high ΔmetaboAge indicates a relatively ‘old’ blood metabolome for a given chronological 

age. 

Associations of metaboAge with cardio-metabolic risk factors 

In subsequent analyses we explored which aspects of biological age are marked by 

ΔmetaboAge. First, we investigated whether ΔmetaboAge correlates with established clinical 

risk factors for cardio-metabolic disease using phenotypic data available within the BBMRI-

NL resource (Figure 1B). Meta-analyses across biobanks showed that a positive ΔmetaboAge 

corresponded with a poor cardio-metabolic health, as represented by higher body mass 

index (BMI), higher serum levels of C-reactive protein (hsCRP) and not unsurprisingly, higher 

cholesterol and triglycerides. In addition, use of blood pressure lowering medication, but not 

lipid lowering medication, is associated with a higher ΔmetaboAge (Figure 2A). These 

associations remained significant when further adjusted for sex and BMI (see Table S4). 

Associations of metaboAge with current and future cardio-metabolic disease 

Next, we investigated whether ΔmetaboAge marks current and future clinical metabolic 

disease endpoints. Participants with current metabolic syndrome or diabetes mellitus type 2 

(T2D) were consistently estimated older as compared to their healthy counterparts of similar 

age (Figure 2B), with T2D remaining significant when also adjusting for sex and BMI (See 

Table S5 in Online Material). The predictive value of ΔmetaboAge for future cognitive and 
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cardio-metabolic disease was tested in the PROSPER study, a multi-center clinical trial 

investigating the efficacy of lipid lowering medication for elderly patients (70 – 82 years) at 

risk of cardiovascular events followed for a median follow-up time of 3.3 years [14] (Table 

S2). While at most marginal correlations were observed between ΔmetaboAge and 

measures of cognitive decline at baseline (Table S6) or during follow-up (Table S7), patients 

with a positive ΔmetaboAge were shown to be at risk of future coronary and cardiovascular 

events independent of sex, BMI, smoking status, T2D status, anti-hypertensive medication 

and pravastatin treatment (Figure 2C). Using the same model, we found patients with a 

positive ΔmetaboAge to be at increased risk of heart failure hospitalization and vascular and 

all-cause mortality (Figure 2C). 

Associations of metaboAge with mortality and functionality in the oldest old 

Finally we evaluated whether ΔmetaboAge marks biological ageing near the extremes of 

human life span. We examined participants of the LLS-SIBS [15], aged 89 years and older and 

followed during a median follow-up time of 12.4 years for all-cause mortality (Table S2). At 

baseline, a positive ΔmetaboAge correlated with lower Instrumental Activities of Daily Living 

(IADL, p=2.0 x 10
-16

), a measure of physical independence. Moreover, a positive ΔmetaboAge 

also marked nonagenarians at an increased risk of all-cause mortality (Figure 2D) during ten 

years of follow up, even when adjusting for IADL (Table S8). 
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DISCUSSION 

We present a rich resource of 
1
H-NMR serum metabolomics and routine serum 

measurements encompassing over 25,000 samples, derived from 26 community and hospital 

based cohorts (download data access request at bbmri.nl/samples-images-data. Using this 

resource, we have constructed a score reflecting an individual’s biological age, called 

metaboAge, and demonstrate that the excess of metaboAge over chronological age 

(ΔmetaboAge) confers an increased risk for future cardiovascular disease, mortality up to 

the highest ages and functionality among older adults. Lastly, we have made a web-based 

tool available at metaboage.researchlumc.nl facilitating an easy incorporation of 

ΔmetaboAge scores in future epidemiological studies.  

 We evaluated the applicability of ΔmetaboAge as a biomarker for current and future 

cardio-metabolic health and disease as the same metabolomics platform has previously 

been successfully employed to predict outcomes for cardiovascular disease [13] and type 2 

diabetes [16]. In line with these papers, we observed that higher ΔmetaboAge indicates 

various aspects of current and future cardio-metabolic health, including significant 

associations with body mass index (p = 2.59 x 10
-33

), C-reactive protein (p = 1.76 x 10
-07

), 

current Type 2 diabetes (p = 5.10 x 10
-17

), future cardiovascular events (p = 2.64 x 10
-04

) and 

vascular mortality (p = 8.56 x 10
-07

). Hence, ΔmetaboAge can be readily explored, also in 

studies lacking cardio-metabolic risk factors or endpoints, as a surrogate marker to capture 

some aspects of current or future cardio-metabolic health. 

 Ideally, biomarkers of biological age are broadly applicable and are thus indicative of 

one or several of the five health domains as defined by Lara et al. [17]. Whereas we showed 
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that ΔmetaboAge is indicative of classical biomarkers belonging to the physiological 

(cardiovascular health), immune (hsCRP), and physical capability domain (IADL), we were 

unable to establish significant correlations with classical biomarkers of the cognitive or 

endocrine domain. This was either because we lacked the classical biomarkers, as for the 

endocrine domain, or that ΔmetaboAge did not correlate with the available classical 

biomarkers, as for the cognitive domain. Of note is that a measure not available to us, 

general cognitive ability, has recently been reported to associate with several metabolite 

measurements of this platform in a large epidemiological study [18]. Hence, we expect that 

future large-scale metabolomics studies using the Nightingale platform, e.g. the UK Biobank, 

will shed more light on other aspects of biological age indicated by ΔmetaboAge. 

 While the blood metabolome can be readily assessed using 
1
H-NMR metabolomics at 

high throughput, high reproducibility and low costs, no 
1
H-NMR metabolomics clock has to 

date been made available. We have applied the clock paradigm popularized by the work of 

Horvath et al. [8] to derive such a metabolomics-based predictor of age. Similarly, we have 

shown that our clock associates with various clinical endpoints including mortality. While 

clock algorithms have become increasingly popular as a means to perform sample 

stratification, an important limitation of the clock paradigm remains that it is hard to trace 

back why such scores reflect aspects of current and future disease, let alone for which 

disease applications a particular score is most suitable. Hence, newly proposed scores 

inevitably require additional empirical evidence in other epidemiological cohorts to support 

its added value. To accommodate future research with ΔmetaboAge, we have made a web-

based tool available at metaboage.researchlumc.nl. 
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 In summary, we present a rich resource of 
1
H-NMR serum metabolomics and routine 

serum measurements encompassing over 25,000 samples (download data access request at 

bbmri.nl/samples-images-data). Moreover, we illustrate the merit of such a resource by 

presenting ΔmetaboAge, a novel metabolomics-based indicator of biological age capturing 

aspects of current and future cardio-metabolic health (predictions available at: 

metaboage.researchlumc.nl).  
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METHODS 

Methods, including statements of data availability and any associated accession codes and 

references, are available in the online version of the paper. 
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FIGURE LEGENDS 

FIGURE 1: BBMRI-NL a vast 
1
H-NMR metabolomics resource enabling approaches for 

personalized medicine 

A: Cohorts in the Dutch Biobanking and Biomolecular resources Research Infrastructure 

(BBMRI-NL), totaling 25,253 samples display interlinked age distributions robustly covering 

the complete adult lifespan from 18 till 85 years. While, VUNTR and CODAM (grey) were 

omitted for training the age predictor due to incomplete data (Online Methods), LLS_SIBS 

and PROSPER (boxed) were held out to independently evaluate the merit of age predictions 

as surrogate biomarkers for clinical endpoints. B: Additional omics data (orange) and 

phenotypic variables (blue) available within the BBMRI-NL resource. C: Flow chart of the 

analyses: a predictor for chronological age is trained on BBMRI-NL metabolomics data. The 

age-independent part of differences between predicted age and chronological age, termed 

ΔmetaboAge, is associated with endpoints. D: 5-Fold-Cross Validation (5FCV) is performed to 

assess the accuracy of the age predictor. Predictions on the test set of a representative fold 

are depicted, with ΔmetaboAge exemplified in orange. 

 

FIGURE 2: Associations of ΔmetaboAge with (risk factors of) cardio-metabolic disease risk 

and all-cause mortality 

Associations with A: Association of cardio-metabolic risk factors with ΔmetaboAge in BBMRI-

NL. B: Association of prevalent cardio-metabolic disease with ΔmetaboAge in BBMRI-NL. C: 

Association of incident cardio-metabolic disease with ΔmetaboAge in PROSPER. D: 

Association of mortality with ΔmetaboAge in LLS_SIBS adjusted for age and sex. A Kaplan-

Meijer curve illustrates the difference in mortality between quintiles with the highest (blue; 

estimated ≥ 6.9 years older) and lowest (red; estimated ≥ 7.3 years younger) ΔmetaboAge. 

β’s are reported as increase in ΔmetaboAge per unit of increase in the risk factor (A) or 

disease status (B). HR’s reported as increased risk per 10-years of ΔmetaboAge. *log-

transformed; CI: confidence interval; med.: medication. P-values are in bold when significant 

after correction for multiple testing (Bonferroni). 
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ONLINE METHODS 

STUDY SAMPLE 

The study sample was selected from the following 26 Dutch biobanks: MRS, VUNTR, CSF, 

NESDA, FUNCTGENOMICS, LIFELINES, HARM, ERF, HELIUS, CHECK, STEMI_GIPS-III, 

LLS_PARTOFFS, GARP, CODAM, BIOMARCS, TMS, DCS, TOMAAT, VUMC-ADC, UCORBIO, 

RAAK, ALPHAOMEGA, TACTICS, ERGO, PROSPER and LLS_SIBS, jointly participating in the 

Dutch Biobanking and BioMolecular resources and Research infrastructure (BBMRI-NL: 

http://www.bbmri.nl). Protocols for these studies were approved by the ethics committees 

at all involved institutes, and informed consent was obtained from all participants. 

Individuals with missing phenotypic data on age or sex (92) or aged under 18 years (5) were 

excluded, leaving 23,590 individuals in the current study. A description of the included 

cohorts is provided in Table S2 in the Supplementary Appendix. 

METABOLOMICS 

Metabolite concentrations were measured in EDTA plasma samples using the commercially 

available high-throughput proton nuclear magnetic resonance (
1
H-NMR) metabolomics 

platform of Nightingale Health ltd. (Helsinki, Finland). In addition to the quantification of 

routine lipids, lipoproteins, fatty acid composition, amino acids, ketone bodies and 

gluconeogenesis-related metabolites, this platform also reports on average sizes of 

lipoprotein particle subclasses VLDL, LDL, and HDL and their respective lipid content ratios. 

In total, 226 metabolomic variables are reported for measurements in EDTA plasma, 

described in more detail elsewhere [1], of which 62 were analyzed in the current study (See 

Table S3 in the Supplementary Appendix for a full list). The selection of 62 metabolomic 

variables was based on previous publications [2] and omits derived or highly correlating 

metabolomic variables from the dataset to prevent instability in the age predictor. 
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DATA PREPROCESSING 

Cohorts reporting on all 62 metabolomic variables were included, i.e. omitting VUNTR 

(N=3,564) and CODAM (N=150) missing glutamine and acetoacetate respectively. 

Metabolomic variables measured at low success rates (<98%) or that frequently failed to 

reach the detection limit (<99%) were excluded (3-hydroxybutyrate, XXL_VLDL_L, 

XL_VLDL_L, L_VLDL_L, XL_HDL_L and L_HDL_L). Outlier samples were removed by allowing 

at most 1 missing value per sample (removing 200), 1 zero per sample (removing 64) and no 

metabolite levels more than 5 standard deviations away from the overall mean per 

metabolomics variable (removing 442). Obtained data (19,014 samples x 56 metabolomic 

variables) was scaled and the remaining 467 missing data points (0.046% of the data) were 

imputed using nipals of the R package pcaMethods. For more details, See Supplemental 

Material Doc S2. 

STATISTICS 

Constructing the metabolomics-based age predictor: 

The metabolomics-based age predictor was trained using a linear model: 

 Chronological Age = β0 + β1 x met1 + β2 x met2 + … + β56 x met56 + ε   [1] 

Two evaluation procedures were employed for getting an unbiased estimate of the model 

performance under two different scenarios. A 5-Fold-Cross-Validation (5FCV) was applied 

splitting the samples at random in a partition for model training, i.e. ‘TRAIN’ consisting of 

80% of the samples, and an independent partition for model evaluation, i.e. ‘TEST’ consisting 

of 20% of the samples. Samples were drawn while preserving overall age-distribution using 

the function createFolds of R package caret. Secondly, a Leave-One-Biobank-Out-Validation 

(LOBOV) was applied by holding out the samples belonging to one particular cohort to create 

‘TRAIN’ and evaluating these in the left-out samples, i.e. ‘TEST’.  
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 By lack of a single performance measure reporting faithfully under all conditions, we 

report two complementary measures, as was previously proposed for the methylation age 

predictor [3]. First, we report the Pearson correlation between chronological age and 

predicted age (r). Second, we report the median absolute difference between chronological 

and predicted age (‘median error’). The range and median of both measures are reported 

across folds or cohorts for respectively the 5CV and LOBOV settings. For more details, See 

Supplemental Material Doc S1. 

Associations of ΔmetaboAge with other phenotypes and endpoints 

To investigate whether age predictions might serve as surrogate biomarkers for biological 

age and age-related disease, we define Δage as the predicted age minus the actual 

chronological age, i.e. the model residuals. For direct comparisons, we define ΔmetaboAge 

as the age-independent part of Δage, obtained by regressing Δage onto chronological age. 

For associations with phenotypes we prefer to adjust for chronological age directly, e.g.: 

 Δage = β0 + β1 x chronological age  + β2 x phenotype + ε   [2] 

Associations of ΔmetaboAge with phenotypes were performed for each cohort separately 

and meta-analyzed across cohorts on the estimated coefficients (β2) as implemented in the 

function rma of R package metaphor. While analyses in BBMRI-NL were adjusted for 

chronological age and optionally sex and BMI, a more extensive model was evaluated in 

PROSPER to include also the canonical risk factors of cardiovascular disease, i.e. sex, BMI, 

current smoking status [YES/NO], diabetes mellitus type 2 status [YES/NO], hypertension 

status [YES/NO] and study covariates, i.e. pravastatin treatment [YES/NO]. Associations with 

cardio-metabolic phenotypes in BBMRI-NL were summarized using a random effect meta-

analysis and β’s were reported as increase in ΔmetaboAge per unit of increase in the risk factor or 
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disease status. The associations with cognitive tests were summarized across the three sub-

cohorts of PROSPER using a fixed effect meta-analysis. 

 A Cox proportional hazards model with age at sampling as the time scale was used to 

test for the association between ΔmetaboAge and incident endpoints in PROSPER and LLS-

SIBS. While we only adjusted for sex and optionally IADL in the LLS_SIBS, we evaluated an 

extended model in PROSPER representing the aforementioned canonical risk factors for 

cardiovascular disease and study covariates. HR’s are reported as increased risk per 10-years 

of ΔmetaboAge. 

 A linear mixed model was employed to test for the association between differences 

in time-course trajectories of cognitive tests with ΔmetaboAge: 

 TEST = β0 + β1 x ΔmetaboAge + β2 x tp + β3 x ΔmetaboAge x tp + …  + ε  [3] 

Associations of ΔmetaboAge with cognitive test scores (one of: Stroop, Letter Digit Test 

(LTD), Picture Learning Test, immediate (PLTi) and delayed (PLTd)) were performed for each 

sub-cohort of PROSPER separately and fixed-effect meta-analyzed on the estimated 

coefficients of the interaction term (β3) of ΔmetaboAge x tp (timepoint) and were adjusted 

for the aforementioned canonical risk factors. 

metaboAge web-based tool 

Metabolic age predictions can be obtained at https://bbmri.nl.researchlumc.nl/metaboage. 

The web-based tool requires the original tab-delimited files as supplied by Nightingale 

Health and will return metabolic age predictions. Data is transferred to the web-based tool 

using an encrypted connection (HTTPS), and the data will be stored only the duration of the 

computation and directly deleted thereafter. In case you would like to contribute your 

metabolomics data and participate in BBMRI-NL, please contact the corresponding author. 
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Data requests 

Please visit bbmri.nl/samples-images-data and fill out and sign the data access request and 

code of conduct forms to request the data in this manuscript. Applications compliant with 

ethical and legal legislations will be reviewed by the BBMRI-NL board for overlap with other 

ongoing projects before access is granted. 
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