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Abstract 18	

The prevalence of type 2 diabetes mellitus (T2DM) is expected to increase rapidly in the next 19	

decades, posing a major challenge to societies worldwide. The emerging era of precision 20	

medicine calls for the discovery of biomarkers of clinical value for prediction of disease 21	

onset, where causal biomarkers can furthermore provide actionable targets. Blood-based 22	

factors like serum proteins are in contact with every organ in the body to mediate global 23	

homeostasis and may thus directly regulate complex processes such as aging and the 24	

development of common chronic diseases. We applied a data-driven proteomics approach 25	

measuring serum levels of 4,137 proteins in 5,438 Icelanders to discover novel biomarkers for 26	

incident T2DM and describe the serum protein profile of prevalent T2DM. We identified 536 27	

proteins associated with incident or prevalent T2DM. Through LASSO penalized logistic 28	

regression analysis combined with bootstrap resampling, a panel of 20 protein biomarkers that 29	

accurately predicted incident T2DM was identified with a significant incremental 30	

improvement over traditional risk factors. Finally, a Mendelian randomization analysis 31	

provided support for a causal role of 48 proteins in the development of T2DM, which could 32	

be of particular interest as novel therapeutic targets. 33	

  34	
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Introduction 35	

Type 2 diabetes mellitus (T2DM) is a progressive disease characterized by decreasing 36	

sensitivity of peripheral tissues to plasma insulin accompanied by compensatory 37	

hyperinsulinemia, and a gradual failure of the pancreatic islet β-cells to maintain glucose 38	

homeostasis. The worldwide prevalence of diabetes is projected to increase from 451 million 39	

in 2017 to 693 million by 20451. In the past decade, the use of data-driven omics technologies 40	

has led to a significant advancement in the discovery of new biomarkers for complex disease. 41	

More than 240 genetic loci have been associated with T2DM2–6 and recent efforts utilizing 42	

genome-wide polygenic risk scores have shown a promising ability to predict those at risk of 43	

developing the disease6,7. Blood-based biomarker candidates with prognostic value for T2D 44	

have begun to emerge, such as the branched-chain amino acids (BCAAs) and other 45	

metabolites8,9. However, only fragmentary data are available for protein biomarkers for 46	

prediction of incident T2DM10. In fact, robust molecular biomarkers are yet to be established 47	

that add a clinically useful predictive value over glycemia markers such as fasting glucose and 48	

HbA1c10. Thus, identification of novel biomarkers for T2DM is crucial for early and 49	

improved risk assessment of the disease beyond what can be achieved through the use of 50	

conventional measures of glycemia and adiposity.  51	

 Proteins are the key functional units of biology and disease, however, high throughput 52	

detection and quantification of serum proteins in a large human population has been hampered 53	

by the limitations of available proteomic profiling technologies. The Slow-Off rate Modified 54	

Aptamer (SOMAmer) based technology has emerged as a powerful proteomic profiling 55	

platform in terms of sensitivity, dynamic range of detection and multiplex capacity11–13. A 56	

custom-designed SOMAscan platform was recently developed to measure 5,034 protein 57	

analytes in a single serum sample, of which 4,782 SOMAmers bind specifically to 4,137 58	

distinct human proteins14. We applied this platform to 5,457 subjects of the Age, 59	

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 10, 2019. ; https://doi.org/10.1101/633297doi: bioRxiv preprint 

https://doi.org/10.1101/633297
http://creativecommons.org/licenses/by-nd/4.0/


	

-4-	
	

Gene/Environment Susceptibility (AGES)-Reykjavik study, a prospective study of deeply 60	

phenotyped subjects over 65 years of age14,15. In the present study we demonstrate the 61	

identification of novel serum protein biomarkers for incident and prevalent T2DM through 62	

logistic regression and LASSO penalized logistic regression analysis combined with bootstrap 63	

resampling. Finally, by applying a Mendelian Randomization (MR) analysis, we identify a 64	

subset of those proteins that may be causally related to T2DM.  65	

 66	

Results 67	

The baseline characteristics of the population-based AGES-Reykjavik cohort participants with 68	

complete data for the current study (n = 5,438) are shown in Table S1 and an overview of the 69	

cohort and study workflow is shown in Fig. S1. The full cohort with baseline measurements 70	

included 654 prevalent T2DM cases and 4,784 individuals free of T2DM. Out of 2,940 71	

individuals without diabetes at baseline who participated in the 5-year AGESII follow-up visit 72	

(Methods), 112 developed T2DM within the period based on self-report, medication and/or 73	

fasting glucose measurement. As an internal validation cohort for incident T2DM, we 74	

considered the 1,844 AGES participants who were non-diabetic at baseline but did not 75	

participate in the AGESII 5-year follow-up visit, for whom we defined incident T2DM from 76	

prescription and medical records only (see Methods), resulting in 46 cases within up to a 12.8 77	

years follow-period. As expected, both prevalent and incident T2DM cases differed markedly 78	

from individuals free of diabetes in terms of metabolic phenotypes at baseline (Table S1).  79	

 80	

Serum protein profile of prevalent T2DM 81	

To first describe the serum protein profile associated with prevalent T2DM, we compared 654 82	

prevalent T2DM cases to 4,784 non-diabetic individuals. Using a logistic regression adjusted 83	
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for age and sex, we identified 520 unique proteins that were significantly associated with 84	

prevalent T2DM after Bonferroni correction for multiple hypothesis testing (Padj < 0.05), with 85	

the strongest associations observed for ARFIP2, MXRA8 and CPM (Fig. 1a, Table S2). In a 86	

second model including adjustment for body mass index (BMI), 322 proteins remained 87	

statistically significant (Table S2). Many of the proteins were inter-correlated, with pairwise 88	

Pearson’s r ranging from -0.60 to 0.97 (Fig. S2a). A pathway and gene ontology (GO) 89	

enrichment analysis of all 520 proteins associated with prevalent T2DM revealed an 90	

enrichment of proteins involved in extracellular matrix (ECM)-receptor interaction, 91	

complement and coagulation cascades, metabolic processes and extracellular region (Fig. 92	

S3a, Table S3). We furthermore found the genes encoding the 520 prevalent T2DM-93	

associated proteins to be enriched for high expression in liver, followed by other tissues that 94	

included kidney, gastrointestinal tract and pancreas (Fig. S4a). Thus, the diabetic state is 95	

reflected in a major shift in the serum proteome that is involved in metabolic, inflammatory 96	

and ECM processes. 97	

 98	

Serum protein profile of incident T2DM 99	

The serum protein profiles of T2DM patients observed in the cross-sectional analysis 100	

described above may represent shifts that occurred either before or after the onset of the 101	

disease. To identify serum protein signatures that preceded the onset of T2DM, we next 102	

focused our analysis on the 2,940 non-diabetic AGES participants who participated in a 103	

second study visit (AGESII) 5-years after the baseline visit, of which 112 developed T2DM 104	

within the follow-up period. In a logistic regression analysis adjusted for age and sex, we 105	

identified 99 unique proteins significantly associated with incident T2DM after Bonferroni 106	

correction for multiple hypothesis testing with the strongest associations observed for 107	

IGFBP2, APOM and INHBC (Fig. 1b, Table S4). After further adjustment for BMI, 24 108	
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proteins remained statistically significant (Padj < 0.05) (Table S4). Once again we observed 109	

extensive correlations between many of the serum proteins, with pairwise Pearson’s r ranging 110	

from -0.55 to 0.97 (Fig. S2b). The majority (84/99 proteins or 85%) of proteins associated 111	

with incident T2DM were also associated with prevalent T2DM (Fig. 1c), an overlap that was 112	

highly significant (Fisher’s exact test P = 7.2×10-63), and the direction of effect was generally 113	

consistent (Spearman’s correlation coefficient = 0.82, Fig. 1d-f). The proteins associated with 114	

incident T2DM included proteins with an established role in T2DM (IGFBP2, adiponectin 115	

and insulin), proteins encoded by genes reported as T2DM GWAS loci6 (ATP1B2, PTPRS) 116	

and various apolipoproteins (APOM, APOF, APOA5). Functional enrichment analysis of the 117	

full set of 99 proteins associated with incident T2DM revealed a significant enrichment for 118	

numerous GO terms related to metabolism, lipid transport and response to insulin while 119	

enriched pathways included leptin signaling and adipogenesis (Fig. S3b, Table S3). Tissue 120	

expression enrichment analysis revealed a strong enrichment for genes expressed in liver, 121	

followed by adipose tissue (Fig. S4b). Thus, the functional annotation of the serum proteins 122	

associated with incident T2DM was characterized by tissue specific signatures and pathways 123	

that seem to reflect dyslipidemia and insulin resistance, which are critical in the development 124	

of T2DM. We compared our findings with previously described protein biomarker candidates 125	

for incident T2DM as previously reviewed11. Of 58 previously suggested candidates that were 126	

targeted in our study, we found 26 to be at least nominally associated (P < 0.05) with incident 127	

T2DM in our data and additional 15 with prevalent T2DM (Table S5). 128	

 129	

Predictive performance of protein biomarkers for incident T2DM 130	

As it is of considerable interest to define a set of biomarkers for clinical prediction of T2DM, 131	

we aimed to define the subset of proteins associated with incident T2DM that had the best 132	

predictive value. To evaluate the power to discriminate between incident T2DM cases and 133	
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non-cases, we applied a receiver operating characteristic (ROC) curve to compute the area 134	

under the curve (AUC). The AUC for incident T2DM using age and sex alone was 0.56 (95% 135	

CI 0.51-0.62) and a clinical model including the Framingham-Offspring Risk Score (FORS)16 136	

components (age, sex, parental history of diabetes, BMI, systolic blood pressure, HDL, 137	

triglycerides, fasting glucose and abdominal circumference as a proxy for waist) yielded an 138	

AUC of 0.86 (95% CI 0.83-0.90). Only a single protein (REN) added significantly to the 139	

FORS model C-statistic (Cincrease = 0.0055, P = 0.041, Table S4), thus motivating a 140	

multivariate predictor analysis. For this purpose, a least absolute shrinkage and selection 141	

operator (LASSO) logistic regression model combined with bootstrap resampling was fitted 142	

using incident T2DM as outcome and age, sex, and the full set of 4,782 SOMAmers as 143	

predictors. Here, a set of 32 non-zero parameter estimates gave the highest AUC when the 144	

tuning parameter log(lambda) was -4.54 for incident T2DM (Fig. S5). To account for 145	

randomness in the selection process, model performance and improved variable selection, the 146	

LASSO was bootstrapped 1,000 times through resampling. The proteins were rank-ordered 147	

with respect to how often they were selected during the bootstrap resampling and for the 148	

strength of association to incident T2DM in the logistic regression analysis. The top 20 149	

protein predictors among those significantly associated (Padj < 0.05) with incident T2DM in 150	

the logistic regression analysis are listed in Table 1. We investigated the added value of both 151	

top 10 and 20 ranked serum proteins beyond age, sex and the full FORS model. Both sets of 152	

proteins increased the predictive value significantly, where an addition of 10 and 20 proteins 153	

increased the AUC from 0.86 for the FORS model to 0.90 (P = 3.2×10-3) and 0.91 (P = 154	

2.8×10-4), respectively (Fig. 2a-b, Table 2). The observed increase in AUC was considerably 155	

greater than for randomly sampled sets of proteins (Fig. 2b). Observed and predicted 156	

proportion with incident T2DM in each risk decile of the 20 protein discrimination model are 157	

shown in Fig. S6. 158	
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  To our knowledge, similar data does currently not exist in another cohort for 159	

independent replication of our findings. However, in addition to the bootstrap approach 160	

employed for internal validation, we performed a secondary validation approach using data 161	

from the 1,844 AGES-Reykjavik participants who were non-diabetic at baseline but did not 162	

participate in the AGESII 5-year follow-up visit and were thus not included in the discovery 163	

analysis for incident T2DM (Table S1). Using the 20 proteins chosen from the LASSO 164	

analysis (Table 1), the AUC for incident T2DM (as defined from prescription and medical 165	

records) was significantly increased from 0.80 for the FORS model to 0.84 (P = 6.6×10-3) 166	

(Fig. S7, Table S6) in this set of individuals.  167	

 168	

Potentially causal associations between protein biomarkers and T2DM 169	

While it is not a requirement for clinically useful biomarkers to be causally related to disease, 170	

identifying causal disease pathways provides important insights for the development of new 171	

therapeutic strategies. We therefore performed a MR analysis17 to identify proteins with a 172	

potentially causal role in the development of T2DM (Fig. S8). To maximize the protein 173	

coverage for this analysis, we used a subset of the AGES cohort with available genetic data (n 174	

= 3,219) to select genetic instruments for the proteins of interest but note that cis-pQTLs 175	

identified in AGES replicated over 80% of cis-pQTLs reported by others14. For the genes 176	

encoding the 536 proteins associated with either incident or prevalent T2DM in our study, 177	

using a cis-window of 100 kb up- and downstream and including the exons and introns of the 178	

genes in question, we identified suitable genetic instruments (see Methods) for 246 proteins, 179	

of which 184 (75%) proteins had more than one independent (r2 < 0.1) instrument (Table S7). 180	

On average, we identified 5 (range 1 - 20) genetic instruments per protein (Fig. S9), which 181	

explained on average 6% (range 0.4% - 48%) of the variance in their respective protein levels 182	

and with a mean F-statistic of 85 (range 10 - 3014). Of note, the genetic variants regulating 183	
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the levels of the T2DM-associated proteins were strongly enriched within enhancer regions 184	

mapped in liver and hepatocytes from the Encode and Roadmap consortia (Fig. S4c-d), 185	

supporting the previously observed enrichment for liver expression of the genes encoding the 186	

T2DM-associated proteins.  187	

 We performed a two-sample MR analysis, integrating the genetic instruments for 188	

protein levels identified in AGES with summary statistics from the recent DIAMANTE 189	

GWAS for T2DM in 898,130 European individuals (74,124 T2DM cases and 824,006 190	

controls)6. In this analysis, 48 proteins were supported as potentially causal (P < 0.05) for 191	

T2DM with the strongest support for MMP12, HIBCH and WFIKKN2 (Fig. 3, Fig. S10). Of 192	

these 48 proteins, few exhibited evidence of heterogeneity (2/36 proteins with >1 instrument) 193	

or pleiotropy (1/30 proteins with >2 instruments) (Table S8). Proteins for which multiple 194	

genetic instruments were available tended to have smaller estimated effect sizes, together with 195	

a narrower confidence interval (Fig. 3). Of the 48 proteins, three (WFIKKN2, INHBC and 196	

AFM) were among the 20 proteins selected for the prediction of incident T2DM in the 197	

LASSO analysis. We further tested the 48 potentially causal proteins in a one-sample MR 198	

analysis using data from 3,196 AGES participants with available genotype data (NT2DM = 368, 199	

11.5%), fitting an age and sex adjusted two-stage regression with the second stage as a 200	

logistic regression. Using this approach, we obtained additional support (P < 0.05 and 201	

directionally consistent estimates) for four proteins (RBP7, IL18R1, FAM177A1, AFM) (Fig. 202	

S11, Table S8). We compared the observational and MR estimates for all 48 proteins (Table 203	

S8, Fig. S12). As expected due to a small sample size, the one-sample MR estimates were less 204	

precise than the two-sample MR estimates, as illustrated by the wider confidence intervals. 205	

We observed directional consistency between observational and two-sample MR estimates for 206	

26 out of 48 (54%) proteins (Table S8), which neither related to the strength of the MR 207	

associations nor the number of instruments per protein (Fig. S13). As an example of 208	
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discrepancies between observational and MR estimates, we found serum levels of MMP12 to 209	

be increased in T2DM, consistent with previous reports18, whereas the MR estimate for 210	

MMP12 suggested a protective effect for T2DM. These findings are similar to the reported 211	

protective MR estimate for MMP12 and risk of coronary heart disease19 whereas clinical and 212	

experimental studies have shown higher levels of MMP12 in cardiovascular disease18,20. 213	

 214	

Discussion 215	

To our knowledge, the primary data used in the present study is the largest protein dataset 216	

generated to date in terms of number of proteins measured and human samples screened. In 217	

the literature there are few descriptions of plasma protein based biomarkers and drug targets 218	

for incident T2DM, and those available are usually limited to relatively few protein 219	

measurements21–25. In this study of a population-based sample of 5,438 elderly Icelanders, we 220	

advance the current knowledge by describing hundreds of proteins significantly associated 221	

with prevalent or incident T2DM, or both.  222	

 The large number of proteins significantly associated with prevalent T2DM 223	

demonstrates a major shift in the serum proteome in the diabetic state. We note that we have 224	

previously shown that the time between diagnosis and sample collection had no effect on the 225	

association of individual proteins to prevalent disease14. This proteomic shift seems to some 226	

extent be driven by inflammatory processes and ECM alterations given the observed enriched 227	

pathways. By contrast, these pathways were not enriched among proteins associated with 228	

incident T2DM, suggesting they may be secondary to the onset of the disease. Further studies 229	

of these proteomic changes are required to understand if and how they may affect downstream 230	

complications of T2DM, as diabetes-induced changes of the ECM may for example contribute 231	

to cardiovascular disease26. While we observed some proteomic changes specific to prevalent 232	
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T2DM, others could be observed before the onset of the disease as illustrated by a large subset 233	

of the proteins also being associated with 5-year incident T2DM in non-diabetic individuals. 234	

A BMI-adjusted model suggested that a considerable proportion of the proteins were 235	

associated with T2DM via obesity. The proteins associated with incident T2DM were mainly 236	

involved in lipid transport, metabolism and insulin response, supporting the involvement of 237	

these pathways during the preclinical stage of T2DM. Both sets of proteins associated with 238	

prevalent or incident T2DM were enriched for liver-specific gene expression compared to the 239	

full set of 4,137 serum proteins measured, consistent with the genetic variants regulating their 240	

levels being enriched in enhancers mapped in liver tissue and hepatocyte cell lines. These 241	

results underscore that the diabetic serum proteomic signatures seem to reflect processes 242	

ongoing in the liver, although other tissues also contribute to the proteomic changes related to 243	

T2DM, as demonstrated for example by the enrichment of adipose expression among proteins 244	

associated with incident T2DM.  245	

A systematic review of blood-borne and urinary biomarkers for incident T2DM 246	

concluded that no single marker has been identified with a prediction value comparable to that 247	

of glycemia markers, although some can add value to the prediction10, thus highlighting a 248	

potential need for multivariate predictors. A major strength of our study is the extensive 249	

protein coverage of the applied array, making this the most comprehensive screening of serum 250	

proteins for prediction of incident T2DM to date. Through LASSO regression we identified a 251	

subset of 20 proteins that as a group added significantly to the FORS model of clinical 252	

variables for prediction of incident T2DM, both in an internal bootstrap validation setup and 253	

importantly also in a separate sample of the AGES cohort that was not used for discovery 254	

analysis. However, it should be noted that our validation sample contained few cases and 255	

different criteria were applied to define incident cases than for the discovery sample, since the 256	

validation sample did not include a fasting glucose measurement and thus did not capture 257	
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undiagnosed or non-medicated individuals. It may however also be considered a strength that 258	

the protein predictors still improved the prediction of incident T2DM despite these differences 259	

but we acknowledge that these efforts serve as internal validation only. Currently, similar data 260	

in other cohorts are lacking and future efforts will have to be made for replication of our 261	

findings in independent populations and across different proteomics technologies.  262	

The MR analysis revealed a total of 48 proteins that may be causally related to T2DM. 263	

Among the candidate proteins with the strongest support, we found HIBCH that is a BCAA 264	

catabolic enzyme, where the MR estimate suggested an inverse causal effect between the 265	

proteins and risk of T2DM. Circulating BCAAs levels have consistently been shown to 266	

predict T2DM27 although the underlying mechanisms are complex and remain to be fully 267	

understood28. Our findings support a model where higher protein expression of the BCAA 268	

catabolic pathway reduces risk of T2DM. Members of the PPAR signaling pathway (FABP4, 269	

FABP1) were also found among the causal candidate proteins for T2DM. PPARs are the 270	

target of the thiazolidinediones anti-diabetic drug class and our results suggest that other 271	

members of this pathway could be considered as therapeutic targets. In fact, FABP4 inhibitors 272	

have been proposed as novel therapeutic strategies for obesity and T2DM29 and a PPARg-273	

regulated30 retinol-binding protein, RBP4, is similarly being considered as an anti-diabetic 274	

target31. Our results from both two- and one-sample MR analysis implicate another retinol-275	

binding protein, RBP7, the expression of which is affected by PPARg ligands32, which may 276	

be an interesting novel candidate for follow-up studies. 277	

Three proteins from the 20 protein predictor for incident T2DM were also supported 278	

as causal by the MR analysis; afamin (AFM), inhibin βC (INHBC) and WFIKKN2. Afamin 279	

has been associated with both prevalent and incident T2DM in a large-scale pooled study of 280	

eight prospective cohorts33 and we here obtain support from both two- and one-sample MR 281	

analyses for it to play a causal role in the disease. Less is known about the function of the 282	

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 10, 2019. ; https://doi.org/10.1101/633297doi: bioRxiv preprint 

https://doi.org/10.1101/633297
http://creativecommons.org/licenses/by-nd/4.0/


	

-13-	
	

other two proteins; inhibin βC is one of the inhibin/activin hormones and is highly expressed 283	

in liver whereas WFIKKN2 is known to bind GDF8/11 proteins with high affinity34, both of 284	

which have been implicated in diabetes35,36. We and others have shown that genetic variants 285	

in the WFIKKN2 region regulate serum GDF8/11 levels in trans via WFIKKN2 protein 286	

levels14,19 and previously noted a correlation between WFIKKN2 and GDF8/11 serum 287	

levels14, however in the current study we did not find a significant association between 288	

GDF8/11 and T2DM so additional studies are required to understand the mechanisms by 289	

which WFIKKN2 may affect risk of T2DM. 290	

The availability of both exposure and outcome data in our dataset provided the 291	

opportunity to compare causal estimates from the two-sample MR analysis and the 292	

observational estimate. In many cases we found these estimates to disagree. Inconsistent 293	

directionality between causal and observational estimates has been noted for particular serum 294	

proteins, such as for MMP12 and the risk of coronary heart disease19, for which we find a 295	

similar inconsistency with regard to T2DM. Further work will be required to understand the 296	

underlying causes of these inconsistent estimates, which indicate a complex relationship 297	

between genetics, protein mediators and disease.  298	

To conclude, our results demonstrate a major shift in the serum proteome before and 299	

during the diabetic stage. The many signals observed in our study suggest that there is 300	

potential for developing clinically useful serum protein panels for T2DM risk prediction that 301	

can add information over traditional risk factors, thus promoting early diagnosis and improved 302	

prognosis of those at risk of developing the disease. Furthermore, proteins supported as 303	

potentially causal in our data could be of particular interest as novel therapeutic targets. 304	

 305	

  306	

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 10, 2019. ; https://doi.org/10.1101/633297doi: bioRxiv preprint 

https://doi.org/10.1101/633297
http://creativecommons.org/licenses/by-nd/4.0/


	

-14-	
	

Methods 307	

Study population 308	

Cohort participants aged 66 through 96 were included from the AGES – Reykjavik Study15, a 309	

single-center prospective population-based study of deeply phenotyped subjects (n = 5,457). 310	

After excluding individuals without a fasting glucose measurement or with established type 1 311	

diabetes, 5,438 individuals remained for analysis in the current study (mean age 76.6 ± 5.6 312	

years). All AGES study cohort members were European Caucasians. Blood samples were 313	

collected at the AGES baseline visit after an overnight fast, serum was prepared using a 314	

standardized protocol and stored in 0.5 ml aliquots at -80°C. T2DM was determined from 315	

self-reported diabetes, diabetes medication use or fasting plasma glucose ≥ 7 mmol/L 316	

according to the American Diabetes Association guidelines37. Of the 4,784 AGES participants 317	

free of T2DM at first visit in AGES, 2,940 attended a 5-year follow-up visit (AGESII). Those 318	

with manifest T2DM at the five years follow-up visit were classified as incident T2DM cases, 319	

using same criteria as for the baseline visit. For the remaining 1,844 individuals who did not 320	

attend the AGESII follow-up visit, we used linked medical and prescription records and 321	

defined incident T2DM as having a registered ICD10 code starting with ‘E11’ or an ATC 322	

prescription code starting with ‘A10’ at any given time after the AGES baseline visit. 323	

Prescription records were obtained from a centralized database of drug prescriptions from the 324	

Directorate of Health in Iceland. Lipids, fasting glucose and HbA1c levels were measured on 325	

a Roche Hitachi 912 instrument, with reagents from Roche Diagnostics. Fasting insulin levels 326	

were measured on a Roche Elecsys 2010 instrument with an electrochemiluminescence 327	

immunoassay, using two monoclonal antibodies and a sandwich principle. The first IRP 328	

WHO Reference Standard 66/304 (NIBSC) was used to standardize the method. BMI was 329	

calculated as weight/(height)2. Abdominal circumference was measured in cm and used as a 330	

proxy for waist circumference in the FORS16 clinical model, as waist circumference was not 331	
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measured at the AGES baseline visit. Parental history of diabetes was obtained from 332	

questionnaires administered at the baseline AGES visit.  333	

 The AGES-Reykjavik study was approved by the National Bioethics Committee in 334	

Iceland (approval number VSN-00-063), the National Institute on Aging Intramural 335	

Institutional Review Board (US), and the Data Protection Authority in Iceland. Informed 336	

consent was obtained from all study participants.  337	

Protein profiling platform 338	

Each protein has its own detection reagent selected from chemically modified DNA libraries, 339	

referred to as Slow Off-rate Modified Aptamers (SOMAmers)38. We designed an expanded 340	

custom version of the SOMApanel platform to include proteins known or predicted to be 341	

found in the extracellular milieu, including the predicted extracellular domains of single- and 342	

certain multi-pass transmembrane proteins as previously described14. The new aptamer-based 343	

platform measures 5,034 protein analytes in a single serum sample, of which 4,782 344	

SOMAmers bind specifically to 4,137 human proteins (some proteins are detected by more 345	

than one SOMAmer) and 250 SOMAmers that recognize non-human targets (47 non-human 346	

vertebrate proteins and 203 targeting human pathogens). Serum levels of 4,137 human 347	

proteins were determined at SomaLogic Inc. (Boulder, US) in distinct samples from 5,457 348	

individuals essentially as previously described12,14. We note that albumin-tolerance testing is a 349	

part of standard assay development at SomaLogic and has been evaluated for all analytes on 350	

the new custom-designed aptamer-based platform, showing no effect of albumin addition on 351	

the SOMAmer-protein interactions. To avoid batch or time of processing biases, both sample 352	

collection and sample processing for protein measurements were randomized and all samples 353	

run as a single set. The 5,034 SOMAmers that passed quality control had median intra-assay 354	

and inter-assay coefficient of variation, CV = 100×⌠/µ, <5%, or similar to that reported on 355	

variability in the SOMAscan assays38. Finally, in addition to multiple types of inferential 356	

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 10, 2019. ; https://doi.org/10.1101/633297doi: bioRxiv preprint 

https://doi.org/10.1101/633297
http://creativecommons.org/licenses/by-nd/4.0/


	

-16-	
	

support for SOMAmer specificity towards target proteins including cross-platform validation 357	

and detection of the many cis-acting effects14, a direct measures of the SOMAmer specificity 358	

for 779 of the SOMAmers in complex biological samples was performed using tandem mass 359	

spectrometry14. Hybridization controls were used to correct for systematic variability in 360	

detection and calibrator samples of three dilution sets (40%, 1% and 0.005%) were included 361	

so that the degree of fluorescence was a quantitative reflection of protein concentration.  362	

Genotyping and imputation 363	

For the MR analysis, we included 3,219 AGES participants for whom genetic data was 364	

available. Genotyping was performed using the Illumina 370CNV BeadChip array and 365	

genotype calling was performed using the Illumina Bead Studio. Samples were excluded 366	

based on sample failure, genotype mismatch with reference panel and sex mismatch on 367	

genotypes39. Imputation (1000 Genomes Phase 3 v5 reference panel) was performed using 368	

MaCH (version 1.0.16), and the following QC filtering was applied at the variant level: call 369	

rate (<97%), Hardy Weinberg Equilibrium (p < 1×10-6, PLINK mishap haplotype-based test 370	

for non-random missing genotype data (p < 1×10-9), and mismatched positions between 371	

Illumina, dbSNP and/or HapMap.  372	

Statistical analysis 373	

Prior to the analysis of the protein measurements, we applied a Yeo-Johnson transformation 374	

on the protein data to improve normality, symmetry and to maintain all protein variables on a 375	

similar scale40 35. Logistic regression was run for all 4,782 SOMAmers targeting 4,137 human 376	

proteins for incident or prevalent T2DM as outcome, with age and sex included as covariates, 377	

and an additional model including BMI. Associations with P-value below a Bonferroni 378	

corrected threshold (P < 0.05/4,782 = 1.1×10-5) were considered significant. When more than 379	

one SOMAmer was available for the same protein, the one with the lowest P-value in the age 380	
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and sex adjusted model was retained for all downstream analyses. Functional enrichment 381	

analysis for selected sets of proteins were performed using g:Profiler41, using the full set of 382	

human proteins targeted by the SOMApanel as background and a significance threshold of 383	

Benjamini-Hochberg FDR < 0.05. Tissue-specific gene expression enrichment analysis was 384	

performed using the TissueEnrich R package42. 385	

For establishing a multivariate protein predictor for incident T2DM, we ran a Least 386	

Absolute Shrinkage and Selection Operator (LASSO) (L1-regularized regression) logistic 387	

regression model, with incident T2DM as outcome and age, sex, and proteins as predictors, 388	

using the glmnet R package for LASSO regression43. The LASSO solution is found by 389	

maximizing the diagnostic capacity of the predictors (the area under the curve or AUC) with 390	

constraints on the parameter estimates. With the LASSO approach most of the regression 391	

parameter estimates are set to zero. The constraint is chosen via cross-validation which 392	

introduces some randomness into the solution process. To account for the randomness in the 393	

selection process and to reduce chance of overfitting, the whole process was bootstrapped 394	

1,000 times. The proteins selected for the final 10 and 20 protein predictors were chosen from 395	

those significantly associated with incident T2DM in the original logistic regression analysis, 396	

but ranked by the number of times they were chosen in the LASSO bootstrap analysis.  397	

 We assessed discrimination or differentiation between T2DM cases and non-cases 398	

through the receiver operating characteristic (ROC) curve, which is a graph of the true 399	

positive rate versus the false positive rate for each classification rule derived from a prediction 400	

model44. To quantify the predictive value of the selected set of proteins, the area under the 401	

ROC curve (AUC) was estimated. The AUC can be interpreted as the probability that a 402	

patient with the outcome is given a higher probability of the outcome by the model than a 403	

randomly chosen patient without the outcome44. ROC curves were compared with a paired 404	

two-sided DeLong's test for two correlated ROC curves using the pROC package in R45. 405	
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For the MR analysis we identified genetic instruments as follows. For each protein, 406	

SNPs within a cis window of 100 kb up- or downstream of the respective protein-encoding 407	

gene (and including the gene in question) were tested for an association with protein levels in 408	

a linear regression model adjusted for age and sex assuming an additive genetic model. SNPs 409	

were included as genetic instruments if the association with protein levels was window-wide 410	

significant (P < 0.05/number of SNPs in the given window, similar to what was previously 411	

described14) and the F-statistic ≥ 10. Finally, the genetic instruments per protein were filtered 412	

to only include independent signals (r2 > 0.1, > 500 kb apart), identified using the clump_data 413	

command in the TwoSampleMR R package46 where linkage disequilibrium is calculated 414	

between the provided SNPs using European samples from the 1000 Genomes project and only 415	

the SNP with the lowest P-value retained among those in LD. We investigated cell-type 416	

specific enhancer enrichment of the genetic instruments compared to established GWAS loci 417	

through HaploReg v4.147 using the SNP with the lowest association P-value per protein. 418	

The two-sample MR analysis was performed using the “TwoSampleMR” R package46, 419	

using DIAMANTE GWAS summary statistics for T2DM without adjustment for BMI in 420	

European individuals6 as outcome. The inverse variance weighted method was used for the 421	

MR analysis unless only one genetic instrument was available, in which case the Wald ratio 422	

was used. A Cochran’s Q test (‘mr_heterogeneity’ function in the TwoSampleMR package) 423	

was used to evaluate heterogeneity of instruments and MR Egger regression 424	

(‘mr_pleiotropy_test’ function in the TwoSampleMR package) performed for indication of 425	

horizontal pleiotropy. For the one-sample MR analysis we performed a two-stage 426	

instrumental variable regression, with the second stage as a logistic regression, where a 427	

weighted genetic risk score was used as an instrumental variable when more than one genetic 428	

instrument was available for a given protein.  429	

 430	
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Data availability 431	

The custom-design Novartis SOMAscan is available through a collaboration agreement with 432	

the Novartis Institutes for BioMedical Research (lori.jennings@novartis.com). Data from the 433	

AGES Reykjavik study are available through collaboration (AGES_data_request@hjarta.is) 434	

under a data usage agreement with the IHA. All data supporting the conclusions of the paper 435	

are presented in the main text and supplementary materials.  436	

 437	

  438	
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Tables 553	

Table 1. The top 20 proteins predicting incident T2DM as ranked by the number of times 554	
chosen in LASSO bootstrap analysis score in the AGES discovery sample (n = 2,940), shown 555	
with beta-coefficient, P-values and Bonferroni-corrected P-value from the logistic regression 556	
analysis adjusted for age and sex. 557	

Protein 
(Entrez 
symbol) 

beta P-value P-valueadj 
N times 

chosen in 1000 
bootstraps 

AXIN2 0.46 3.9×10-06 1.9×10-02 890 
SPINK9 -0.53 1.8×10-07 8.5×10-04 878 
MMRN2 -0.46 2.2×10-06 1.0×10-02 842 
ARFIP2 -0.70 6.4×10-12 3.0×10-08 840 
APOA5 -0.62 6.2×10-09 3.0×10-05 793 
REN 0.51 1.3×10-06 6.3×10-03 767 
RET 0.70 1.4×10-11 6.8×10-08 684 
NCAM2 -0.58 7.2×10-09 3.5×10-05 668 
IGFBP2 -1.04 1.3×10-16 6.3×10-13 641 
IMPAD1 -0.53 5.2×10-08 2.5×10-04 489 
WFIKKN2 -0.65 1.6×10-09 7.8×10-06 488 
STAT3 0.44 3.8×10-06 1.8×10-02 481 
CCL11 -0.44 9.8×10-06 4.7×10-02 452 
EDN2 0.47 9.7×10-07 4.6×10-03 439 
INHBC 0.72 4.5×10-13 2.2×10-09 439 
SCO1 -0.47 7.9×10-06 3.8×10-02 425 
AFM 0.55 5.6×10-08 2.7×10-04 388 
IDS -0.47 3.1×10-06 1.5×10-02 375 
RAB26 -0.45 3.5×10-06 1.7×10-02 363 
CPM 0.55 4.7×10-08 2.2×10-04 354 

 558	

Table 2. Receiver operating characteristic discrimination scores (AUC) based on 10 or 20 top 559	
ranked protein predictors for incident T2DM together with baseline and the FORS clinical 560	
model in the AGES discovery sample (n = 2,940). P-values (paired two-sided DeLong's test) 561	
are shown for the comparison of ROC curves to either the previous model or the baseline 562	
model. 563	

Model N proteins AUC Lower 
bound 

Upper 
bound 

P-value 
previous 

P-value 
baseline 

Age, sex 0 0.56 0.50 0.61 1 1 
 10 0.84 0.80 0.88 1.93×10-20 1.93×10-20 
 20 0.87 0.83 0.90 0.016 2.63×10-23 
FORS 0 0.86 0.83 0.90 1 1 
 10 0.89 0.86 0.93 3.25×10-03 3.25×10-03 
 20 0.91 0.88 0.94 0.045 2.83×10-04 
 564	
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Supplementary Table legends 565	

Table S1. AGES-Reykjavik cohort baseline characteristics stratified by follow-up data 566	
availability and T2DM status.  567	

Table S2. Serum protein associations with prevalent T2DM in the AGES cohort (n = 5,438). 568	
Results are shown for logistic regression models adjusted for age and sex, or age, sex and 569	
BMI. Padj, Bonferroni corrected P-value. 570	

Table S3. Functional enrichment results from gProfiler for proteins associated with prevalent 571	
T2DM, incident T2DM or significant in the two-sample MR analysis for T2DM, using the 572	
full SOMApanel as background. Benjamini-Hochberg adjusted P-values <0.05 are 573	
highlighted in yellow.  574	

Table S4. Serum protein associations with incident T2DM in the AGES cohort (n = 2,940). 575	
Results are shown for logistic regression models adjusted for age and sex; age, sex and BMI 576	
or the Framingham Offspring Risk Study (FORS) clinical model for prediction of incident 577	
T2DM. For the FORS model we show the AUC for the full model, together with the AUC 578	
increase for the given protein over the FORS clinical model alone and the respective P-value 579	
comparing the two (paired two-sided DeLong's test).  580	

Table S5. Overview of 57 published biomarker candidates for incident T2DM, together with 581	
the observed significance level of the corresponding protein measured in the current study. 582	
NS, not significant, Padj, Bonferroni adjusted P-value. 583	

Table S6. Receiver operating characteristic discrimination scores (AUC) based on 10 or 20 584	
top ranked protein predictors for incident T2DM together with baseline and the FORS clinical 585	
risk model in the AGES validation sample (n = 1,844). P-values (paired two-sided DeLong's 586	
test) are shown for the comparison of ROC curves to either the previous model or the baseline 587	
model.  588	

Table S7. An overview of the associations between the cis-SNPs used as instruments for the 589	
246 proteins that were included in the MR analysis. 590	

Table S8. Two- and one-sample Mendelian randomization results for 48 T2DM-associated 591	
proteins that were significantly (P < 0.05) associated with T2DM in the two-sample MR 592	
analysis.  593	
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Fig. 1 a) Volcano plots demonstrating serum protein (SOMAmer) associations with prevalent T2DM and b) incident 
T2DM. Points are colored where Padj < 0.05. c) Venn diagram showing the overlap between unique proteins associated 
with prevalent T2DM (blue) and incident T2DM (red). d) Beta coefficients for associations between proteins 
(SOMAmers) and prevalent T2DM (x-axis) and incident T2DM (y-axis) The colors denote significant associations with 
prevalent T2DM (blue), incident T2DM (red) or both (yellow). e) Violin and boxplots showing serum protein levels 
across the AGES cohort stratified by T2DM status for top three proteins associated with prevalent T2DM and f) incident 
T2DM. Stars denote significant difference compared to the non-diabetic group with nominal P-values (two-sided t-test) as 
such: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. Boxplots indicate median value, 25th and 75th percentile, 
whiskers extend to smallest/largest value no further than 1.5×IQR, outliers not shown. pT2DM, prevalent T2DM; 
iT2DM, incident T2DM in participants with AGESII follow-up visit; iT2DMrec, incident T2DM in participants without 
AGESII follow-up visit. 
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Fig. 2 a) ROC curves showing the added value of top 10 and 20 ranked proteins (red shades) for 
prediction of incident T2DM compared to age and sex (grey) and Framingham-Offspring risk score, 
FORS (black) in the AGES cohort (n = 2,940, nFORS = 2,926). b) The AUC for top 10 and 20 proteins 
(red shades) is shown compared to a base model (black point and dotted line) of age and sex (left) or 
FORS (right) and compared to the AUC obtained by 100 permutations of randomly sampled sets of 
proteins (grey shades). Error bars represent 95% confidence intervals. 
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Fig. 3 Forest plot for the 48 proteins supported as causal (P < 0.05) in the two-sample MR analysis, 
together with the number of SNPs used as instruments and the MR P-value. MR estimates were 
obtained using the inverse variance weighted method when >1 SNP was available for a given protein, 
but otherwise with the Wald ratio. 
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Fig. S1 Workflow of the current study. The top left Venn diagram provides an overview of the AGES 
cohort, stratified by T2DM status and follow-up visit participation. The workflow is divided into 
three major steps; 1) identifying proteins associated with prevalent or incident T2DM using logistic 
regression analysis, 2) identifying a panel of proteins for multivariate prediction of incident T2DM 
using a LASSO bootstrap analysis, followed by internal validation using a separate part of the AGES 
cohort, and 3) combining genetic data from AGES and summary statistics from the DIAMANTE 
T2DM GWAS to screen all T2DM-associated proteins for potential causality using a Mendelian 
randomization analysis. pT2DM, prevalent T2DM; iT2DM, incident T2DM in participants with 
AGESII follow-up visit; iT2DMrec, incident T2DM in participants without AGESII follow-up visit.  
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Fig. S2 Distribution of Pearson’s correlation coefficients (r) for pairwise correlations between 
proteins significantly associated with a) prevalent T2DM and b) incident T2DM.  
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Fig. S3 Functional enrichment results from gProfiler for a) 520 proteins associated with prevalent 
T2DM and b) 99 proteins associated with incident T2DM. 
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Fig. S4  a) Tissue-specific gene expression enrichment for the 520 proteins associated with prevalent 
T2DM compared to the full panel of 4,137 proteins measured, b) Tissue-specific gene expression 
enrichment for 99 proteins associated with incident T2DM compared to the full panel of 4,137 
proteins measured, c) Cell-type specific enhancer enrichment of genetic variants regulating levels of 
proteins associated with prevalent T2DM compared to GWAS SNPs, d) Cell-type specific enhancer 
element enrichment of genetic variants regulating levels of proteins associated with incident T2DM  
compared to GWAS SNPs. 
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Fig. S5 An example of a LASSO regression output for incident T2DM (n = 2,940, ncase = 112). A set 
of 27 non-zero parameter estimates gave the highest AUC when the tuning parameter log(lambda) 
was -4.54. 
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Fig. S6 Calibration plots in the AGES sample with 5-year follow-up data (n = 2,940, nFORS = 2,926), 
showing observed and predicted proportion of individuals with incident T2DM in each risk decile of 
the discrimination model including a-b) the FORS clinical model variables and c-d) the FORS 
clinical model variables plus the top 20 proteins from the LASSO analysis. 
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Fig. S7 a) ROC curves showing the added value of top 10 and 20 ranked proteins (orange shades) for 
prediction of incident T2DM compared to age and sex (grey) and the Framingham-Offspring risk 
score, FORS (black) in the AGES validation sample (n = 1,844, nFORS = 1,743). b-c) Calibration plots 
showing observed and predicted proportion of individuals with incident T2DM in the AGES 
validation sample (n = 1,844) in each risk decile of the discrimination model including the FORS 
clinical variables and d-e) the FORS clinical variables plus the 20 proteins. 
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Fig. S8 Flowchart illustrating the main steps of the Mendelian randomization analysis for 
proteins associated with incident or prevalent T2DM in the AGES cohort. 
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Fig. S9 Histogram for the number of instruments identified per protein in the AGES cohort. 
Independent instruments were defined as genetic variants not in LD (r2 < 0.1) and >500 kb apart. 
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Fig. S10 Scatterplots for the top three significant proteins in the two-sample MR, demonstrating the 
estimated effects (with 95% confidence intervals) of their respective genetic instruments on the 
protein levels in AGES (x-axis) and the risk of T2DM in the DIAMANTE GWAS (y-axis) 
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Fig. S11 Scatterplots for the three proteins with P < 0.05 and directionally consistent in both the two- 
and one- sample MR analyses and more than one genetic instrument, demonstrating the estimated 
effects (with 95% confidence intervals) of their respective genetic instruments on the protein levels in 
AGES (x-axis) and the risk of T2DM in a) the DIAMANTE GWAS (y-axis) and b) in the AGES 
cohort.  
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Fig. S12 Forest plots comparing observational estimates (darker blue) for incident and prevalent 
T2DM, and MR estimates (lighter blue) for T2DM in two- and one-sample MR analyses for a) the 
top three significant proteins in the two-sample MR analysis and b) the four proteins with P < 0.05 
and directionally consistent in both two- and one-sample MR analyses. Error bars represent 95% 
confidence intervals. 
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Fig. S13 Comparison of MR P-values (two- and one-sample) and number of instruments by 
directional consistency between observational estimate for prevalent T2DM and two-sample MR. 
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