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Supplemental Appendix

Waterborne, abiotic and other indirectly transmitted (W.A.I.T.)
infections are defined by the dynamics of free-living pathogens

and environmental reservoirs

•

Below we provide additional information on several aspects of the project, including discussion points, and various details
on the respective models.

WAIT BACKGROUND: CONNECTION TO CONCEPTS IN EVOLUTIONARY BIOLOGY
AND ECOLOGY
In addition to epidemiological modeling efforts, there have been robust evolutionary examinations of the causes and con-
sequences of free-living infections. With regards to the evolution of virulence [1], [2], it has been studied in terms of the
“Curse of the Pharoah” hypothesis, where a free-living survival stage would directly influence pathogen virulence [3], [4].
In non-disease ecology, the concept of propagule pressure bears resemblance to free-living survival, though the former is
discussed in a much different context (e.g. seed dispersal) [5]. All of these perspectives—epidemiology, modeling, evolution-
ary biology, ecology—demonstrate that scientists from across fields have reflected on how the indirect transmission strategy
might have evolved, and how it manifests in modern epidemics.

INITIALIZING WAIT: INTRODUCTORY MODEL

Derivation and justification for terms in the model
We begin by presenting the equations governing the dynamics of the introductory model, what we refer to in the main text
as the elementary adapted SIR model.
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The framework of this introductory model, and of the WAIT scheme in general, is such that it passes the spread of infection
to a tertiary intermediate—the environmental reservoir—before the infection spreads to susceptible hosts. We achieve this
paradigm in the model’s equations by including a drainage term (-β SWi

Wu+Wi
) in the S equation which feeds into the I equa-

tion. This term replaces one which, in the usual SIR model, is normally proportional to SI , i.e. one representing a coupling
between the uninfected hosts S and infected hosts I . In the introductory WAIT version, the analogous term represents a
coupling between uninfected hosts S and infected environmental agents Wi. In this way, the spread of infection can be
seen to depend on the extent of the infection in the reservoir, and on the size the uninfected population of hosts as well.
A notable distinction between SIR and WAIT is that the WAIT coupling term is not proportional to SWi alone, as one
might have expected, but rather to SWi/(Wu + Wi)—i.e. to the fraction of infected environmental agents in the system.
The basis for this decision relies on an assumption that the interaction rate between the environmental reservoir and hosts
is frequency-dependent, w.r.t. encounters with the reservoir, as opposed to density-dependent, in the sense of the total size
of the reservoir Wu + Wi. This can be clarified by giving a short derivation of the term in question: First, assuming that
β represents the number of contact incidents between susceptible hosts S and the environmental reservoir per time step per
host, then the quantity βS is simply the contact rate between susceptible hosts and the environmental reservoir (here we
assume that the contact rate with the reservoir is density-dependent w.r.t. the host population size but not w.r.t. the reservoir
size Wu + Wi). Lastly, the fraction of these contact incidents where a susceptible host comes in contact with the infected
portion of the environment should be Wi/(Wu+Wi). Thus, the rate of such incidents should be βS×Wi/(Wu+Wi). Here,
we assume that it is these contact incidents, i.e. those between susceptible hosts and the infected portion of the environment
that give rise to new infection among the host population.

The infection within the environmental reservoir is itself a dynamical system and is governed by the Wu and Wi equations.
One will notice that a term similar to the one described above quantifies the rate at which infection spreads in the reservoir.
This term (α IWu

Wu+Wi
) has behind it analogous logic: Here, α represents the number of contact incidents with the reservoir

by infected hosts per time step per host. Thus, αI is the number of times an infected host contacts the reservoir per time
step. The fraction of these encounters where the infected hosts come in contact with the uninfected portion of the reservoir
is Wu/(Wi +Wu), and so the total rate of encounters between an infected host and uninfected environmental agent is αI ×
Wu/(Wi +Wu). Other terms in the model are either simple Malthusian-type rates or constant rates.

RWAIT
0 as a geometric mean

We also take the opportunity to describe the value of R0, which was claimed to be the geometric mean of two other R0-
like quantities. R0 can be calculated using traditional methods, using, for instance, the Next-generation Matrix. Here, we
assume that we have done so and have found the form found in equation 7 in the main text. Then, we will show that two
of the factors appearing under the square root in the formula can be regarded as R0-like quantities. Namely, there is the
number of new host-infections caused by infected environmental agents, and there is the number of new environmental
agent-infections caused by infected hosts—both of which are calculated at the disease free equilibrium (DFE).

The first of these R0-like quantities represents the number of new host infections caused by an infected environmental agent,
when the system is near the DFE. We begin by noticing that the rate of new host infections (according to equations 1–5) is
given by βSWi/(Wu +Wi). Near the DFE, S ≈ πS/µ and Wi/(Wu +Wi) ≈ Wi/Wu, where the latter fact results from
a Taylor series about the DFE, using that Wi << Wu. Near the DFE, Wu ≈ πW /k as well. Thus, the rate of new host
infections near the DFE, per infected environmental agent Wi, is given by βπSk/(µπW ) (notice that we divide out by Wi

because we are interested in the per capita rate). The number of new infections caused by an environmental agent is then
this rate times the average amount of time that an environmental agent spends in the infected state. The average amount of
time an agent spends in a compartment is given by the reciprocal of the exit-rate of the compartment, in this case by 1/k.
Thus, in the product of this rate and 1/k, the k factor cancels out, and so the number of new host infections in the time
that an environmental agent is infected is given by,

RA0 =
βπS
µπW

(near the DFE). We use the superscript A to distinguish this R0-like quantity from the other. The second R0-like quan-
tity represents the number of new environmental agent infections, per infected host, that occur in the average amount of
time that a host is infected, near the DFE. This number is determined from the rate of new environmental agent infections,
αIWu/(Wu + Wi), in equations 1–5. Near the DFE, the fraction Wu/(Wu + Wi) ≈ 1, so the rate of new infections of
environmental agents, per infected host, is given simply by α. The average amount of time that a host spends in the infected
compartment is given by the reciprocal of the exit-rate, which is given by 1/(µ+ ν). Thus, the number of new infections of
environmental agents that occur in the time that a host is infected is given by,

RB0 =
α

µ+ ν
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Thus, one finds that the R0 equation presented in equation 7 in the main text can be written as,

RWAIT
0 =

√
βπS
µπW

×
√

α

µ+ ν
=
√
RA0 R

B
0

THE CHOLERA WAIT MODEL

Complete model dynamics & longer timescale behavior

(a) (b)

(c) (d)

Fig. S1: Cholera WAIT model dynamics over 100+ days of integrated time. Of note: panel (c) shows the time-linear
relationship of the vaccination rate

In order to explore the complete dynamics of the this model over 100+ days of time, simple graphs were produced showing
the behavior of every compartment, displayed in the their entirety in Fig. S1.

To elucidate the long time scale behavior of the system, we integrated to a total of 2500 days (approximately 6.85 years)
at a resolution of 106 time steps. Here we can see a visual approximation of the system as it approaches equilibrium. We
see the effects of the loss of a large amount of the total population as well as the significant decay of V. cholerae from the
system via the δ parameter.

Past the ∼130 days of simulation time, the model begins to lose real-world relevance. As mentioned in the main text, though
this model provides information with regards to the environmental factors that drive a V. cholera outbreak, the simulation is
self-contained and only models a single idealized cholera outbreak from the beginning to waning. As discussed in the main
text, these limitations are commonly observed in differential-equation based epidemiological models.
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(a) (b)

(c) (d)

Fig. S2: The Cholera model complete long term model dynamics over 2500 days of integrated time, here we can see the
effects of the global reduction of susceptible individuals as the model moves past its useful time window

Analytic Derivation of R0

The analytic expression for the basic reproductive ratio R0 of V. cholera referenced in the main text, and used as part of our
sensitivity analysis, was derived following the methods of Diekmann et. al. 2009 [6].

Step (1) of this method is to construct the arrays f = (f0, f1, ..., fm) and v = (v0, v1, ..., vm). The ith element of f ,
denoted fi, is defined to be the rate term associated with the flow of new infection into the ith compartment. That is, the
flow of infection between two infected compartments is not included in f . The ith element of v, denoted vi, is defined to
be the negative of the rate terms associated with all other flows into or out of the ith compartment. That is, the total rate
of change of the ith compartment is given by fi − vi. It turns out that for calculating R0 it suffices to restrict f and v to
infected compartments only. In the case of V. cholerae, these are the compartments I , A, BL, and BH .

f =



α(1−p)SBH

BH+κH
+ α(1−p)SBL

BL+κL

αpSBH

BH+κH
+ αpSBL

BL+κL

0

AξA
W + I(θϕ−θ+1)ξS

W

 v =


I (γθλ+ γ(1− θ) + µc + µ)

A(γ + µ)

δBL −BHχ

χBH



Step (2) is to calculate the corresponding F and V matrices. These are m × m matrices (in this case m = 4). They are
defined by,
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Fij =
∂fi
∂Xj

(x0)

Vij =
∂vi
∂Xj

(x0)

where Xj is the jth agent, selected from the m agents associated with f and v, and x0 is the disease-free equilibrium of
the model. Calculating these derivatives for the V. cholera model one finds,

V =


γ(1− θ) + γθλ+ µ+ µc 0 0 0

0 γ + µ 0 0

0 0 δ −χ

0 0 0 χ



F =


0 0 (1−p)Sα

BL+κL
− (1−p)SαBL

(BL+κL)2
(1−p)Sα
BH+κH

− (1−p)SαBH

(BH+κH)2

0 0 pSα
BL+κL

− pSαBL

(BL+κL)2
pSα

BH+κH
− pSαBH

(BH+κH)2

0 0 0 0

(ϕθ−θ+1)ξS
W

ξA
W 0 0



the above matrices are still not set to the disease-free equilibria, this is done in the following steps. Step (3) is to calculate
the inverse of the matrix V . For our case this turns out to be,

V −1 =



γδχ+δµχ
δ(γ+µ)χ(γ(1−θ)+γθλ+µ+µc)

0 0 0

0 γδχ−γδθχ+γδθλχ+δµχ+δµcχ
δ(γ+µ)χ(γ(1−θ)+γθλ+µ+µc)

0 0

0 0 1
δ

1
δ

0 0 0 1
χ



Step (4) is to calculate the matrix product F · V −1.

F · V −1 =



0 0 − (p−1)SακL

δ(BL+κL)2 − (p−1)Sα(δκHB
2
L+2δκHκLBL+κL(χ(BH+κH)2+δκHκL))
δχ(BH+κH)2(BL+κL)2

0 0 pSακL

δ(BL+κL)2
pSα(δκHB

2
L+2δκHκLBL+κL(χ(BH+κH)2+δκHκL))

δχ(BH+κH)2(BL+κL)2

0 0 0 0

θ(ϕ−1)ξS+ξS
W (θ(λ−1)γ+γ+µ+µC)

ξA
Wγ+Wµ 0 0



Step (5) is to then take F · V −1, at the disease-free equilibrium and produce (F · V −1)DFE ,
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(F · V −1)DFE =



0 0 − (p−1)α
δκL

− (p−1)α(δκH+2δκLκH+κL(χκ2
H+δκLκH))

δχκ2
Hκ

2
L

0 0 pα
δκL

pα(δκH+2δκLκH+κL(χκ2
H+δκLκH))

δχκ2
Hκ

2
L

0 0 0 0

θ(ϕ−1)ξS+ξS
W (θ(λ−1)γ+γ+µ+µc)

ξA
Wγ+Wµ 0 0



Step (6): Lastly, in order to determine the basic reproductive ratio the eigenvalues of (F · V −1)DFE are computed, here the
largest eigenvalue is given as R0.

R0 =
√
p (ξAµc + γ (θ(λ− 1)ξA + ξA + (θ(1− ϕ)− 1)ξS) + µ (ξA + (θ(1− ϕ)− 1)ξS)) + (γ + µ)(θ(ϕ− 1) + 1)ξS

×
√
α
√
χκHκL + δ (κL + 1) 2√

δχW (γ + µ)κHκ2L (γθ(λ− 1) + µc + γ + µ)

R0 sensitivity & multi-parameter adjustment
A sensitivity analysis was conducted in order to determine which parameters have the largest relative effect on the reproduc-
tive ratio of the cholera model. Such a ranked analysis of parameter sensitivity allows one to see the added insight gained
by introducing a WAIT component to traditional epidemiological models and resolving the environmental dynamics of dis-
ease. The stability and robustness of the model can be seen in the long-term behavior of the system and the eigenvalue
analysis at the disease-free equilibrium. In the cholera case, there is an added level of complexity present in finding distri-
butions of model parameters that vary monotonically for the Latin Hyper-Cube Sampling algorithm used in generating the
PRCC analysis. This is due to the dense nature of this model’s analytic expression for R0. For that reason, a partial rank
correlation coefficient (PRCC) analysis was forgone.

Of additional relevance: although vaccination is an important part of disease management, no vaccination dynamics (or
parameters) appear in the analytic expression for R0 nor the tornado diagram (Figure S3). This is because vaccination is
preemptive, and though helpful, is not a characteristic of the basic, essential reproductive capacity of V. cholerae.

Fig. S3: A tornado plot showing the relative sensitivity of R0 to changes in the model parameters black bars indicate
the value of R0 when the associated parameter (excluding p) is increased by 15% from the value chosen in the model.
White bars indicate the value of R0 when the associated parameter (excluding p) is decreased by 15%. The proportion of
asymptomatic cases, p, is hypersensitive in R0, thus in order to better render the diagram p is only symmetrically varied by
5.5%.
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In Figure S3, we observe that parameters W and α are the 2nd and 3rd most sensitive to the reproductive capacity of V.
Cholerae. Both of these parameters appeal to properties of the aquatic environment and can be influenced by intervention.
Within the scope of the model, reducing contaminated water consumption or increasing the size of the aquatic environment
(thus diluting the infectious material) reduces its reproductive potential substantially. Furthermore, the effects of these envi-
ronmental parameters on the reproductive potential of V. Cholerae outweighs the impact of non-environmental interventions
(antibiotics, vaccines; parameterized in this model by θ, λ, and φ).

(a) (b)

(c) (d)

Fig. S4: The Cholera model behavior around the space where R0 = 1, as different pairs of parameters are adjusted we can
see the outbreak transition into a self-sustaining epidemic

Further analysis was conducted to better understand the regions around certain parameters where this model predicts an
epidemic. In Figure S4, we present the results of simultaneous modification of a number of model parameters: α and γ, α
and ξS , α and W , p and ξS (the dash lines represent the parameters used in the model).

We can further pontificate on these results in light of several real world hypothetical situations. For example, Figure S4
highlights how R0 increases rapidly as γ decreases. In the context of the effects of health and wellness on the body’s ability
to fight disease, this model suggests that forces that negatively effect overall health would have an effect on disease dynam-
ics. If the recovery rate among infected individuals drops too low (as during a drought or famine) even standard levels of
contaminated water consumption may cause an epidemic.

Additional intervention dynamics in Cholera
Figure S5 shows some additional intervention dynamics that were simulated for the system. Here an additional assortment
of starting points and parameter combinations are considered. The interventions shown below were applied in the same
manner as discussed in the main text, modifying the driving parameters that define each intervention relative to the nominal
model parameters.
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As with all the interventions simulated in this model, the staggered intervention starting points are chosen by adjusting the
initial conditions to match the conditions of the model at the point of intervention.

(a) (b)

(c) (d)

Fig. S5: Additional cholera model intervention dynamics highlighting both compound and and individual simultaneous
approaches

For preemptive interventions, vaccination or water-treatment can begin before the cholera outbreak begins. This could apply
in settings adjacent to ones that have experienced cholera, but have not themselves shown any signs of an outbreak.

Specifically: these intervention dynamics underscore, within the scope of this model, the power of water treatment and the
benefit of early interventions early in undermining epidemic dynamics.

Jacobian ODE system analysis & related values



− IW
I+δ −

Wθ
ε+θ − λ 0 0 γ V − Wδτ

(I+δ)2
− Wετ

(ε+θ)2

− W
(I+δ)(ε+θ) (BL − 1) (I (ε+ θ) + θ (I + δ)) −κLµCR+R (µC − 1)− λ− ω 0 0 0 −Wδτ(BL−1)

(I+δ)2
−Wετ(BL−1)

(ε+θ)2

BLW (I(ε+θ)+θ(I+δ))
(I+δ)(ε+θ) 0 −R− λ 0 0 BLWδτ

(I+δ)2
BLWετ
(ε+θ)2

0 R (κLµC − µC + 1) R −γ − λ 0 0 0
0 0 0 0 −V − λ 0 0
0 S

BH
(χµC − µC + 1) κH

BH
0 0 −p 0

0 0 0 0 0 p −A



Here we present both a symbolic and numeric form of the Jacobian Matrix of the WAIT V. cholerea ODE system, the nu-
meric form being at the disease-free equilibrium. The eigenvalues for the disease-free Jacobian are calculated and are all
shown to be negative, aside from 0.
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−4.49 · 10−5 0.0 0.0 0.00342 0.00137 −1.5 · 10−6 0.0
0.0 −0.2669 0.0 0.0 0.0 3.0 · 10−7 0.0
0.0 0.0 −0.200 0.0 0.0 1.2 · 10−6 0.0
0.0 0.221 0.2 −0.00347 0.0 0.0 0.0
0.0 0.0 0.0 0.0 −0.00141 0.0 0.0
0.0 20834.667 21.667 0.0 0.0 −1.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0 −0.0334



Above we present the numeric form of the DFE Jacobian Matrix, this was calculated using the nominal model parameters
applied through the simulation. Below are the eigenvalues corresponding to this Matrix.

−0.0035, −0.0014, 0, −0.259, −1.0087, −0.0327, −0.2

As with any set of ordinary differential equations the Jacobian Matrix represents the flow of the system in phase space. The
eigenvectors give the direction of flow and the sign of the vectors (eigenvalues) orient’s them toward or away from an equi-
libria. Given the Jacobian Matrix is computed at the disease-free equilibria and all its eigenvalues are negative (aside from
0) we can say that the system (given the nominal chosen model parameters) tends to equilibrate and that there is a stable
equilibrium at the disease-free equilibrium point in phase space. This is to say that, given the chosen model parameters and
an infinite amount of time, the model will move toward and equilibrate at the disease-free equilibrium.

THE HEPATITIS C VIRUS WAIT MODEL

Additional notes on the structure of the model
Here we provide justification for two terms in the model that would benefit from elaboration: (a) the rate of new infection
of susceptible individuals, cβS Ni

Ni+Nu
, and (b) the rate of new infection of clean needles, γζ(IE + IL)

Nu

Ni+Nu
; other terms

in the model are fairly generic.

For (a), the total incidence rate of receiving needles from other users, per capita, is given by c. Then, cS represents the
total rate of susceptible hosts receiving needles from other users. In our model, we assume that the likelihood of sharing
an infected needle is proportional to the fraction of infected needles in circulation Ni

Ni+Nu
. Thus, the rate at which suscepti-

ble hosts use infected needles is cS Ni

Ni+Nu
. β corresponds to the proportion of such incidences where an injection with an

infected needle by an uninfected user leaves the individual infected, and thus the product of the two cβS Ni

Ni+Nu
represents

the rate of new infection among hosts via infected needles.

For (b) (the rate of new infection of clean needles via infected hosts) we suppose that the rate at which needles are infected
is proportional to the number of infected individuals and is scaled by the daily rate of injections per capita, γ. The product,
γ(IE + IL) therefore represents the average number of injections per day by all infected individuals. The proportion ζ
represents the fraction of which that leave a needle infected.

Lastly, to account for the events where an injection drug user can select an already infected needle for an injection event,
we multiply by the fraction of needles with the potential for becoming infected, i.e. the uninfected proportion, Nu

Ni+Nu
. This

would most likely manifest as the proportion of uninfected needles in the total population of IDU. In the HCV WAIT model,
we approximate this as the proportion of uninfected needles that a particular IDU has access to. This approximation will
break down when there is large variance in the distribution of infected and uninfected needles in the infected population of
IDU. Note that for the purposes of infecting a needle, we only need to consider the population of infected individuals and
thus, do not need to suppose that the distribution of infected and uninfected needles has low variance in the total population
of IDU.

The dynamics of needles
Our model allows us to distinguish between the discard rates of infected and uninfected needles. However, while it may be
that interventions such as needle-exchange programs are capable of increasing the infected needle discard rate above that
of the uninfected needles, in many circumstances, the distinction between the two might be more difficult to disentangle.
Thus, in many cases there may not be a discernible distinction between ku and ki, in which case these rates are effectively
equal—we will denote this universal discard rate by k (= ku = ki).
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Our model presents a somewhat counter-intuitive dynamic when ku = ki: Since the infection rate of needles relies on the
proportion of uninfected needles in a population, reducing the proportion of clean needles in the population can actually ex-
acerbate an infection. Namely, increasing the discard rate of all needles will, in particular, reduce the number of uninfected
needles in the population but—due to asymmetries in how infected and uninfected needles are treated in the model—can
actually lead to an increase in the proportion of infected needles in the population, increasing the probability that a user will
select an infected needle. We examine the mathematical details of this behavior below.

A public health interpretation of this would simply be removing all needles from the IDU community (through law enforce-
ment, for example) without a proportional increase in safe, clean needles (as supplied in clean-injection sites or needle-
exchange programs), potentially intensifying the local HCV epidemic as a result. Figure S6(C) shows the steady state frac-
tion of infected needles in a population of IDU, as a function of this universal discard rate k. Notice that for the parameters
chosen in our model, the proportion of infected needles increases when the discard rate k is increased.

In such circumstances, the disease burden and value of R0 are both increased. In Figure 5 in the main text, we demonstrate
how changing ku and ki can modify the value of R0. We find that increasing ku while moving along a constant value of
ki has the effect of increasing the R0 value. Whereas, increasing ki while moving along a constant value of ku reduces
R0. That is, removing more uninfected needles while keeping the same infected needle discard rate can harm a population
of IDU, and doing the opposite helps the population. One can also see that increasing ku and ki simultaneously along the
diagonal line—where ku = ki—will increase R0. This suggests that if a distinction between infected and uninfected needles
cannot be determined (as is often the case), then adding clean needles to a population has a larger impact on disease burden
than flatly removing all needles.

Equilibrium values of the infected needles

Fig. S6: (a) represents the number of uninfected needles, Nu, as a function of the discard rate, k. (b) shows the same but
for Ni, the number of infected needles in the population. (c) shows the fraction of infected needles in the population across
the fractional discard rate k, i.e. it shows the value of Ni/(Nu + Ni) at equilibrium as a funciton of k. Note, that these are
endemic equilibria, whereas the disease-free equilibrium will occur when the infection fully clears from the population of
IDUs, and the population of infected needles accordingly goes to zero.

By setting the model equations to zero, one can determine the equilibrium or steady state values of the agents as a function
of the parameters in the model. In doing so, we can demonstrate more quantitatively how the proportion of infected and un-

S10



infected needles is affected by modifying the discard rate of needles. In Fig. S6 (a) and (b) we plot the equilibrium values
for Nu and Ni as a function of k (where k = ku = ki).

One will notice that the equilibrium value of Nu is a monotonically decreasing function of k (at least for k between 0 and
1), whereas Ni actually increases with k first before gradually decreasing. That is, whereas the steady state value of unin-
fected needles always decreases when the universal discard rate k is increased, the steady state value of the infected needles
actually has the potential to rise if k is increased from a sufficiently small value. This is consistent with a prior point about
the effects of flatly discarding needles, without regard to their infected or uninfected status: it can increase the proportion
of infected needles in a population and thus fuel the epidemic. Fig. S6(C) shows the fraction of infected needles in the
population, and although one finds that the absolute number of infected needles in equilibrium will subside beyond a certain
value of k (in our case this is around k = 0.5), we find that the fraction of infected needles is a monotonically increasing
function of k. That is, for the parameters chosen, discarding needles universally will increase the likelihood of encountering
an infected needle in the population of IDUs. We emphasize that this insight was only possible because the needle reservoir
(the environment) was modelled separately, a central feature of WAIT.

Below, we provide the results of our analytic calculation of the equilibrium values of infected needles as a function of k.
We find that the infected needle equilibrium can be expressed in the form,

N∗
i (k) =

ã+ b̃k +
√
c̃+ d̃k + ẽk2

g̃k(h̃k + f̃)

where the parameters ã, b̃, c̃, d̃, ẽ, f̃ , g̃, and h̃ (given explicitly below) are independent of k and which are functions of the
other parameters in the model.

From the equations governing the dynamics of infected and uninfected needles, it is evident that the total number of needles
Nu +Ni evolves according to the equation:

d(Nu +Ni)

dt
= πN − k(Nu +Ni)

This is determined by adding the equations for Nu and Ni together. Setting this equation to zero shows that the total num-
ber of needles in the population, Nu + Ni, has as its equilibrium value πN/k. From this and the equation provided above
for the equilibrium value of infected needles N∗

i , one can show that N∗
u , the equilibrium value of the uninfected needles, is

given by,

N∗
u(k) =

1

k

(
πN −

ã+ b̃k +
√
c̃+ d̃k + ẽk2

g̃(h̃k + f̃)

)
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Below, we give the explicit form of the parameters in the above formulae:

ã = −εµπ2
N (µ+ τ + φ)

b̃ = πN (γζ(βc(πI + πS + πT )− µ(πI + πT ))− µπN (µ+ τ + φ))

c̃ = µ2π4
N ε

2(µ+ τ + φ)2

d̃ = 2µπ3
N ε(2cβγζ(πI + πT )(µ+ τ)+

(µ+ τ + φ)(−βcγζ(πI + πS + πT ) + µ(γζ(πI + πT ) + πN (τ + φ)) + µ2πN ) + 2βcγζ(µ+ τ)(πI + πT )))

ẽ = π2
N (4cβγζµ(πI + πT )(γζ(πI + πS + πT ) + πN (µ+ τ))+(

−βcγζ(πI + πS + πT ) + µ(γζ(πI + πT ) + πN (τ + φ)) + µ2πN
)2
)

f̃ = πN ε(µ+ τ)

g̃ = 2βc

h̃ = γζ(πI + πS + πT ) + πN (µ+ τ)

One can also explicitly construct the fraction of infected and uninfected needles among the total population of needles at
equilibrium by simply dividing either of respective formulae above by πN/k. A graph of the fraction of infected needles in
the population is given in fig. S6(c).

Let us now consider the effects of small perturbations δk, around a given value of k, on the values of N∗
i and N∗

u . We find
from a Taylor expansion of N∗

i (k) and N∗
u(k) about k that:

N∗
i (k + δk) ≈ N∗

i (k)−
1

k
(N∗

i (k)−B(k))δk

N∗
u(k + δk) ≈ N∗

u(k)−
1

k
(N∗

u(k) +B(k)) δk

where,

B(k) =
2b̃
√
c̃+ d̃k + ẽk2 + d̃+ 2ẽk

2g̃(h̃k + f̃)
√
c̃+ d̃k + ẽk2

which can be verified using the fact that B can also be expressed as

B(k) = N∗
i (k) + k

dN∗
i

dk

or by

B(k) = −N∗
u(k) + k

dN∗
u

dk

this follows from the Taylor expansions above—i.e. the term scaling δk is dN∗
i

dk in the first equation and dN∗
u

dk in the second
equation. Note that dN∗

u

dk follows easily from the expression for dN∗
i

dk since N∗
u = πN

k − N∗
i . Evidently, the peak in figure

S6(b) occurs because k is such that N∗
i (k) = B(k) (k ≈ 0.5). This offers some intuition into the meaning of B(k). For

a given discard rate k, B(k) represents a threshold value for number of infected needles at equilibrium: above B(k), the
number of infected needles at equilibrium can be decreased by increasing k, whereas when the number of infected needles
at equilibrium is below B(k), it can actually increase the number of infected needles at equilibrium to increase k. Figure
S6(c) is counter-intuitive because it says that increasing the discard rate of needles k actually leads to an increase in the
equilibrium value of the infected needle fraction. To examine the details of this peculiarity more precisely we look at the
equilibrium of the infected needle fraction, which we will denote by n∗i (k) = N∗

i /(N
∗
i +N∗

u).
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Using the Taylor expansions from above, it is straightforward to calculate the perturbations about k for the fraction of in-
fected needles. Denoting this fraction by n∗i (k), we have that

n∗i (k + δk) =
N∗
i (k + δk)

N∗
i (k + δk) +N∗

u(k + δk)
≈ N∗

i (k)− (N∗
i (k)−B(k))δk/k

(N∗
i (k) +N∗

u(k))
(
1− δk

k

)
and using N∗

i (k) +N∗
u(k) = πN/k along with the approximation 1

1−x ≈ 1 + x with x = δk/k, we can write

n∗i (k + δk) ≈ k

πN

(
N∗
i (k)− (N∗

i (k)−B(k))

(
δk

k

))(
1

1− δk
k

)

≈ k

πN

(
N∗
i (k)− (N∗

i (k)−B(k))

(
δk

k

))(
1 +

δk

k

)
≈ n∗i (k) +

k

πN
B(k)

(
δk

k

)
= n∗i (k) +

B(k)

πN
δk

where in expanding out the product of binomials we used (δk/k)2 ≈ 0. This shows that the function B(k) is just dn∗
i

dk , up
to a scaling factor of πN . The sign of B(k) determines whether the infected needle fraction (at equilibrium) will increase
or decrease with the discard rate k. Thus, the number of infected needles in a population will decrease with increasing k
if the number of infected needles in the steady state exceeds B(k), which as we have seen is the rate at which the fraction
of infected needles increases scaled by πN . For the parameters chosen in our model, the value of B(k) is positive for all k
values examined (between 0 and 1).

Analytic calculation of R0

Below, we provide the F and V matrices used to calculate R0. In this text, we follow the lines of [6], which establishes
an algorithm for calculating R0 as the maximum eigenvalue—also called the spectral radius—of the matrix F · V −1. This
matrix is sometimes cited as the Next Generation Matrix, however, as Diekmann et. al. (2009) [6] point out, this matrix
may be larger than the true next generation matrix. Nonetheless, the maximum eigenvalue of F · V −1 will be the same as
that of the true next generation matrix. The steps to construct F and V are outlined in the cholera section above. For the
case of HCV one finds the following.

F =

 0 0
cβku
µ

πS
πN

0 0 0
γζ γζ 0



V =

ω + τ + µ+ φ 0 0
−ω µ+ τ + φ 0
0 0 ε+ ki



From this one can construct F · V −1:

F · V −1 =


0 0

cβkuπS
µ(ε+ ki)πN

0 0 0
γζ

µ+ τ + φ

γζ

µ+ τ + φ
0
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From this, one can calculate the maximum eigenvalue of F · V −1. One finds,

R0 =

√
cγζβkuπS

πNµ(µ+ τ + φ)(ε+ ki)

The reproductive ratio is generally interpreted as the average number of secondary infections per capita caused by infected
hosts in the time that these hosts have the infection, when the system is near the disease-free equilibrium (DFE). In the
context of the WAIT modelling scheme, the interpretation of the reproductive ratio may be modified somewhat as the spread
of infection is mediated through interactions between living hosts and an environmental intermediate. In this framework,
does the R0 value represent the number of new infections within the environment or within the population of living hosts?
It will turn out that the R0 value in the WAIT framework represents a kind of average of both of these interpretations, or
more precisely, a geometric mean of the two. To put this concretely, we look at the HCV R0 formula from a perspective
that illuminates its nature as a geometric mean.

There are two modes of transmission of new infection in the HCV model. One is the infection of clean needles due to in-
jection by infected hosts, and two is the infection of susceptible hosts due to injection by infected needles. These two modes
of transmission can each have a reproductive ratio associated with them: the first would be the number of new infected
needles caused by infected hosts in the average amount of time that a host is infected (per infected host), and the second
would be the number of new infections of susceptible hosts that occur in the average time a needle spends in the infected
state, (per infected needle). The first of these two, which we will denote by X , can be derived by considering the rate of
transmission of infection to clean needles per infected host. In the dynamical equations the total rate is given by γζ(IE +
IL)

Nu

Ni+Nu
, hence the rate per infected host is simply γζ Nu

Ni+Nu
. Lastly, at the disease-free equilibrium, the fraction Nu

Ni+Nu

is unity since there are no infected needles in the population. This leaves γζ as the per capita rate of new infection of nee-
dles. Now, the average time that a host is infected (in either of the infected stages, early or late) is simply the reciprocal of
the exit rates of the pair of IE and IL compartments. That is to say if the average lifetime of an agent within a set, such
as the infected hosts, is 5 days, for example, then one would expect 1/5 of the set to leave daily as one expects that on any
day 1/5 of the set is comprised of agents who entered the set five days ago—here the assumption is that the set of lifetimes
in the set exhibits little variance. That is, the average lifetime within a set is the reciprocal of the exit rate—the exit rate
taken as a proportion of the total population, as opposed to a total rate of change in the population size. In the case of the
infected population in the HCV model, the exit rates are given by µ,τ , and φ, which are death rate, transfer to treatment
rate, and the self-clearance rate, respectively. Thus, the average lifetime of agents within the infected group is given by
1/(µ+ τ + φ). X is therefore given by X = γζ/(µ+ τ + φ).

The other reproductive ratio Y can be derived similarly by considering the rate of new host infections due to infected nee-
dles: cβS Ni

Ni+Nu
. First, in the disease free equilibrium the value for S∗ is given by πS/µ. Second, near the disease-free

equilibrium Ni << Nu and hence we can approximate the fraction: Ni

Ni+Nu
= Ni

Nu

1
Ni
Nu

+1
≈ Ni

Nu
(1− Ni

Nu
) ≈ Ni

Nu
, neglecting the(

Ni

Nu

)2
term. The result is that near the DFE, the rate term cβS Ni

Ni+Nu
can be expressed as cβ

(
πN

µ

)
Ni

Nu
. The DFE value

for Nu—the uninfected needles—is given by πN/ku, which is easily verified by inspection of the Nu dynamical equation.
Thus, inserting this into the above rate, and considering the rate per infected needle Ni, one is left with cβ

(
πN

µ

)(
ku
πN

)
as

the rate of new host infections caused by infected needles per infected needle. As in the prior argument, the average lifetime
a needle spends infected is given simply by the reciprocal of the exit rate for agents in the set. In this case, the exit rate
of infected needles is given by ε—the virus decay rate—and by ki—the infected needle discard rate. Hence, the average
lifetime for an infected needle is given by 1/(ε + ki). Thus, Y is given by cβ

(
πN

µ

)(
ku
πN

)
× 1/(ε + ki) =

cβπNku
µ(ε+ki)πN

. One
will notice that the equation above for R0 can be written as

R0 =

√
γζ

µ+ τ + φ
×

√
cβkuπS

µ(ε+ ki)πN
=
√
XY

In other words, the R0 can be viewed as the geometric mean of the two quantities X and Y discussed above.
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R0 Sensitivity
We employ a sensitivity analysis for two purposes: (i) to establish that model dynamics do not rely on the particular values
of any one parameter and (ii) that the sensitivity of the dynamics is shared fairly evenly among the parameters. This is
an indication that when the phenomenon of interest are modelled in this manner, one can expect that the dynamics of the
infection are also shared fairly evenly among the parameters.

Fig. S7: R0 Tornado: A tornado diagram for parameters in the R0 formula. Black bars indicate the value of R0 when the
associated parameter is decreased by 10% from the value chosen in the model. White bars indicate the value of R0 when
the associated parameter is increased by 10%.

Fig. S7 demonstrates how the value of R0 shares its dependence evenly among most of the parameters. We calculated the
Partial Rank Correlation Coefficient (PRCC) with respect to the value of R0, for each of the parameters in the R0 for-
mula (equation 14 in the main text) (Figure 6 in the main text). The calculation followed the lines given in Blower and
Dowlatabadi (1994) [7], and we will briefly recapitulate the calculation here.

There are 12 parameters in the R0 formula (equation 14 in the main text). Using Latin Hypercube Sampling (LHS), 100
samples of the 12 parameters were taken. Each sample of 12 parameters was used to calculate a value of R0. Then, the
resulting R0 values and parameters were ranked according to their value among the 100 samples. That is, the R0 value
and the 12 parameters in each sample were assigned numbers 1–100 depending on how they ranked compared to other
samples. This results in 12 vectors, and one additional one for R0, of length 100, whose entries are just some ordering of
the whole numbers between 1 and 100—we will call them rank vectors. Then, between any two of the 12 rank vectors and
one additional rank vector for R0 we can calculate the generic correlation coefficient for the 100 samples. If we arrange the
parameters, indexing them 1 through 12, and the R0 value, giving it the index 13, into a list of, let us just generically call
them, variables, then, we can collect the correlation coefficients Cij , between the ith and jth variable, into a symmetric
matrix C.

Cij =

∑100
k=1(rik − µ)(rjk − µ)√∑100

k=1(rik − µ)2
∑100
k=1(rjk − µ)2

rik in the equation above is the rank of the ith variable (recall that R0 is included in the variables) in the kth sample, and
µ = (1 + 100)/2 = 50.5 is the average rank. Thus, for i and j between 1 and 12, Cij is the correlation coefficient between
the ith and jth parameter, and for i between 1 and 12, Ci,13 (= C13,i) is the correlation between the ith parameter and the
value of R0. Note, that the diagonal values of C are all one. Next, we construct the matrix B, which is simply the matrix
inverse of C, i.e. B = C−1. Lastly, the PRCC value for the ith parameter is constructed from the matrix elements of B
according to the following formula,

PRCCi =
−Bi,13√
BiiB13,13
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This entire calculation was repeated 50 times, with 50 sets of 100 LHS samples. The values shown in the PRCC calculation
(Main text, Figure 6) show the average over these 50 iterations, with the standard deviations as the error bars.
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