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 1	
 2	
Figure 11. Attenuation of the SSNR due to the projection distribution for top-like cases characterized 3	
by varying random views. As in Figures 9, for both HA and Apoferritin, we examined the effect of the 4	
SCF on the SSNR for poorly sampled cases, where the projection distributions were constrained to the fixed 5	
cone size of 45°, but the percent of random projections varies from 0%, 1%, 3% to 10%. (A-B) Decrement 6	
of the SSNR for (A) HA and (B) Apoferritin with (C) the corresponding Euler angle distribution profiles. 7	
(D) Table showing the decrement in SCF. For the first four rows in the table (and the corresponding SSNR 8	
curves in A-B), the SCF, as defined theoretically by Eq (3.25) for 0%, and Eq (3.26) for the 1%, 3% and 9	
10% cases, and numerically by Eq (3.22), approximately describes the observed change in the SSNR, as 10	
given by the last two columns.  There is the one serious issue, as discussed in the text, that the SSNR with 11	
completely empty regions of Fourier space is significantly higher for 0% uniform rather than 1%. The text 12	
explains a logical correction, given by the SCF theoretically by (3.27) and numerically by the same 13	
algorithm. The correction to the SSNR is shown in the last row and appropriately predicts a large 14	
multiplicative shift from uniform, as would be expected for such a poorly sampled case.  15	
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Appendix	A.	Some	details	for	calculations	in	Section	3:	geometrical	factor	for	1	
decay	of	density	Eq	(3.5),	checking	numerical	sampling	code	Eq	(3.9),	creating	2	
distributions	according	to	some	prescribed	function	Eq	(3.15),	proof	that	3	
uniform	distribution	maximizes	the	SCF	Eq	(3.22),	derivation	of	Eq.	(3.23)	for	the	4	
SCF	for	modulated	side-views	5	

	6	

A.1	A	general	formula	for	the	projection	geometrical	factor:	Eq.	(3.5)	7	

Our	claim	in	Eq	(3.5)	is	that	8	
	9	
																																																				< 𝛿 𝑛 ⋅ 𝑘 >µ			=

N
ôõ?

				,																																																																		(A.1)	10	

	11	
where	𝑐ö	is	a	geometrical	factor	that	we	wish	to	calculate	in	general	dimensions,	especially	for	12	

𝐷 = 2, 3.	By	| <	⋅>µ,	we	mean	the	average	over	the	surface	of	the	until	ball	in	D	dimensions.	One	13	

easy	way	is	to	integrate	the	above	equation	over	all	𝑘	with	𝑘 < 𝐿	in	D	dimensions.	Then	on	the	14	

left-hand	side	we	get:		15	

																																							 < 𝛿 𝑛 ⋅ 𝑘 >µ
?,?ø® =< 𝛿?,?ø® 𝑛 ⋅ 𝑘 >µ				,																 	 	16	

(A.2)	17	
	18	

																																											= 𝛿?,?ø® (𝑘�)														,														 	 																	(	A.3)	19	
	20	

																																															21	

																																											= 1?,?ø®,ù�N Ò¹j  											,												 	 	 					(A.4)	22	
																		23	

																																			= 𝐿ú�N		𝑉ù�N																		,																				 	 											(A.5)		24	
	25	
where	 	𝑉ù�N			 is	 the	 volume	of	 the	unit	ball	 in	𝐷 − 1	 dimensions.	 Eq	 (A.3)	holds	because	 the	26	

integrand	in	(A.2)	is	no	longer	dependent	on	the	direction,	𝑛	,	so	the	average	over	𝑛	seen	in	(A.2)	27	

integrates	to	1.	Moreover	𝑛	where	it	appears	in	the	integral	may	be	set	to	𝑧	for	convenience.			On	28	

the	RHS	of	(A.1)	we	also	perform	the	integration	over	the	ball	of	radius	𝐿	and	get	29	
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N
ôõ?

?,?ø® = N
ôõ
 Aù ⋅  ®¤ d𝑘 𝑘ú�N N

?
			,																					 	 										(A.6)	1	

																																																					2	

= N
ôõ
 Aù ⋅  ®¤ d𝑘 𝑘ú�7								,													 	 	 					(A.7)	3	

	4	

																				= N
ôõ
 Aù    ⋅

®ýºv

ú�N
																							,																								 												(A.8)	5	

where		𝐴ù	is	the	surface	area	of	the	unit	ball	in	𝐷	dimensions	.	6	

	7	

Equating	the	last	two	expressions	shows	that		8	

	9	

	 𝑐ö =
 Aù

𝐷 − 1 ⋅ 	Vù�N
= 	

 Aù
𝐴ú�N

	.	 (A.9)	

This	gives		10	

𝑐ö(𝐷 = 2) = 7�
7
= 𝜋			,	 	 	 	 (A.10)	11	

and		12	

	 𝑐ö(𝐷 = 3) =
4𝜋
2𝜋 = 2.	 (A.11)	

	13	
Therefore,	the	geometrical	factor	2	that	appears	in	Eq	3.5	is	simply	the	ratio	of	the	surface	area	14	

of	a	unit	ball	to	the	circumference	of	a	great	circle	of	the	same	ball.	15	

	16	

A.2	Checking	the	Sampling	Code	Eq.	(3.9) 17	

We	want	to	evaluate		18	

                            𝑆 = 		 dk�
®
�® 	 dk¯

®
�® 	 dk�	

®
�®

N
7?

                                            (A.12) 19	
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             	1	
         𝑆 = 	 N

7
	 𝑘	dk	 sin 𝜃 𝑑𝜃�

¤ 	 𝑑𝜙	7�
¤ 	Θ |𝑘Z , |𝑘[ , |𝑘�| ≤ 𝐿                      (A.13) 2	

It	is	enough	to	consider	the	upper	quadrant,	where	all	the	components	are	positive.		3	

	This	is	where	both	the	azimuthal	angle,	𝜙,	and	the	spherical	angle,	𝜃,	are	in	the	range	 0, �
7
.	This	4	

gives	us	a	symmetrization	factor	of	8.	However,	we	may	also	consider	a	definite	ordering	for	the	5	

𝑘Z, 𝑘[, 𝑘�	giving	a	symmetrization	factor	of	6.	Putting	this	together	we	have	6	

	8	
𝑆 = 	 �⋅"

7
	 𝑘	dk	 sin 𝜃 𝑑𝜃�/7

¤ 	 𝑑𝜙	�/7
¤ 	Θ 0 ≤ 𝑘[ ≤ 𝑘Z ≤ 𝑘� ≤ 𝐿 						.												(A.14)	7	

We	wish	to	reorder	the	integrations:	first	𝑘,		then	𝜃	then	𝜙.	The	spherical	representations	for	the	9	

components	may	be	written	as:	𝑘Z, 𝑘[, 𝑘� ≡ sin 𝜃 	cos𝜙 , sin 𝜃 	sin𝜙 , cos 𝜃			 	10	

Now	0 ≤ 𝑘[ ≤ 𝑘Z	is	easily	represented	by	0 ≤ 𝜙 ≤ �
¦
		.		Let's	write	down	what	we	have	so	far:	11	

            					𝑆 = 	 �⋅"
7
	 𝑑𝜙	

Ñ
#
¤ 	 sin 𝜃 𝑑𝜃

Ñ
p
¤ 𝑘	dk 		Θ 𝑘Z ≤ 𝑘� ≤ 𝐿            .          (A.15) 12	

To	 ensure	 the	 last	 two	 inequalities	 we	 need	 𝑘 ≤ 𝐿/ cos	 𝜃	 and	 tan 𝜃 cos𝜙 ≤ 1.	 This	 last	13	

inequality	 can	 be	 used	 to	 govern	 the	 upper	 limit	 of	 the	𝜃	 integration,	 in	 place	 of	 the	𝜋/2	,	14	

because	tan 𝜃	can	always	attain	the	value	1/ cos	 𝜙	on	the	interval	[0, 𝜋/2].		15	

Putting	this	all	together	and	developing	we	get		16	

 𝑆 =
8 ⋅ 6
2   d

�/¦

¤
𝜙  sin	 𝜃

ÛÜÛ�( N
¶hR	 È)

¤
d𝜃  𝑘

®
¶hR	 Ã

¤
d𝑘 ,        (A.16) 

 =
8 ⋅ 6
2 ⋅ 2 𝐿

7   d
�/¦

¤
𝜙 

sin	 θ
	cos7 θ

ÛÜÛ�( N
¶hR	 È)

¤
d𝜃 ,        (A.17) 
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 = 4𝐿7 ⋅ 3  d
�/¦

¤
𝜙 

1
cos	 𝜃 ¤

ÛÜÛ�( N
¶hR	 È)

 ,        (A.18) 

 = 4𝐿7 ⋅ 3  d
�/¦

¤
𝜙 

1 + cos7𝜙
cos	 𝜙 − 1  ,        (A.19) 

 = 4𝐿7 ⋅ 3 𝐼 .        (A.20) 

To	evaluate	 the	 last	 integral,	𝐼	we	use	 the	substitution	cos𝜙	 = √cos 𝛾.	The	 limits	 for	𝛾	now	1	

become	 𝜙 = 0 ↔ 𝛾 = 0	, 𝜙 = 𝜋/4 ↔ 𝛾 = 𝜋/3.	 	 We	 also	 have	 sin𝜙 =2	

1 − cos	 𝛾,	 1 + cos7 𝜙 = 1 + cos	 𝛾.	 This	 leads	 to	 dϕ = R¹�)	Ò*
7 ¶hR	) N�¶hR	)

	 	 ,	 which	 can	 be	3	

simplified	to	d𝜙 = Nu¶hR	) Å)
7 ¶hR	)

.		So		4	

 𝐼 = −
𝜋
4 +

1 + cos	 𝛾  𝑑𝛾
2 cos	 γ

�/W

¤
 

1 + cos	 𝛾
cos	 𝛾

 ,     (A.21) 

 = −
𝜋
4 +

1
2

(1 + cos	 𝛾) 𝑑𝛾
cos	 𝛾

�/W

¤
 ,     (A.22) 

 = −
𝜋
4 +

𝜋
6 +

1
2

𝑑𝛾
cos	 𝛾

�/W

¤
 ,     (A.23) 

 = −
𝜋
12 +

1
2

𝑑𝜎
sin	𝜎

�/7

�/"
 ,      (A.24) 

 = −
𝜋
12 +

1
2 ln	 tan	(𝜎/2) �/"

�/7 ,     (A.25) 

 = −
𝜋
12 −

1
2 ln	 tan	( 𝜋/12) 

,      (A.26) 

 = −
𝜋
12 +

1
2 ln	( 2 + 3) ,      (A.27) 

 = −
𝜋
12 + ln	( 1 + 3) − ln	 2 ,       (A.28) 

 = 0.39667956 .       (A.29) 

Finally,	now	5	

 
𝑆
4𝐿7 = 3𝐼 = 1.19 ,   (A.30) 
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This	factor	is	the	empirically	observed	excess	area	of	an	average	plane	embedded	into	a	cube.	1	

This	is	the	approximately	20	per	cent	increase	in	actively	sampled	points.	It	is	a	larger	factor	than	2	

the	comparable	1.12	that	would	appear	in	a	similar	2D	problem.		3	

  	4	
                               °

7®
= ¦

�
log cot �

�
= ¦

�
ln(1 + 2	) = 1.122                    .      (A.31) 5	

Another approach to evaluating (A.9) is to introduce an auxiliary variable via N
?
=6	

7
√�
	 d𝛼-
¤ 	exp−(𝛼7 𝑘Z7 + 𝑘[7 + 𝑘�7 )	. Then there are just a few steps to a single integral and a 7	

numerical evaluation: °
¦®p

= �
¦
		 d𝛼	 �i. ·

·
-
¤

W
= 	1.190038, which is (A.30).  8	

A.3	Creating	distributions	according	to	some	prescribed	function	Eq	(3.15)	9	

In	order	to	create	a	numerical	sampling	map	for	modulated	side	views,	we	would	like	to	assign	10	

azimuthal	angles	to	projections	such	that	the	oscillatory	azimuthal	distribution	density	indicated	11	

by	(3.11)	is	achieved.	This	is	well	known	how	to	do:	for	completeness,	we	include	the	argument	12	

here.	From	the	density	function	(3.11),	the	cumulative	distribution	function	can	be	found	which	13	

is		14	

																						cdf 𝜙 = (1 + 𝜆 cos 2	𝜙)		d𝜙È
¤ 		= 𝜙 + Ý

7
sin 2	𝜙																			.									(A.32)	15	

Now	the	azimuthal	angle	should	be	given	by		16	

																										cdf�N 𝜙 ∈ 0,2𝜋 																																																					.						(A.33)	17	

	That	is,	numbers	should	be	drawn	evenly	between	0	and	2𝜋,	resulting	in	an	array	given	by	(A.33).	18	

These	are	the	angle	labels	to	be	given	to	achieve	the	desired	distribution	(3.11).	So	long	as	𝜆 < 1,	19	

this	 is	easy	 to	do,	because	 the	distribution	 is	positive	and	 the	cdf	 is	monotonically	 increasing	20	
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(graphically,	the	inverse	corresponds	to	flipping	across	the	diagonal,	which	maps	a	function	into	1	

another	 function	 due	 to	 monotonicity).	 The	 python	 pseudo	 code	 would	 read:	 phi0=	 cdf0=	2	

np.linspace(0,2*np.pi,NumPoints);	 	 	cdf	 = 	phi0 + Ý
7
	sin	(2	phi0),	 	cdfInv	=	np.interp(phi0,cdf,	3	

cdf0).	That	is,	map	the	array	phi0	to	the	desired	phi	(which	is	the	desired	cdfInv),	in	the	same	4	

manner	that	cdf	was	mapped	to	cdf0,	where	phi0,	cdf0	are	both	regularly	spaced.	5	

A.4	Proof	that	uniform	distribution	maximizes	the	SCF	Eq	(3.22).	6	

	7	

Consider	a	set	of	positive	numbers	 	𝑎1 	that	satisfy	a	constraint	𝐶:	 	 𝑎11 = 𝑀.	The	set	are	to	8	

represent	the	sampling	on	the	unit	sphere.	We	wish	to	maximize	 N
231	 	subject	to	𝐶.		We	begin	by	9	

writing	the	usual	variational:	10	

																																			ℒ =	 N
231	 + 𝜇		(	 𝑎11 −𝑀)						,																																										(A.34)	11	

where	𝜇	is	a	Lagrange	parameter.	Extremizing	ℒ	wrt	the	𝑎2 	yields	12	

																													 6ℒ
627

= 𝜇 −	 N
27
p = 0							 → 										𝑎2 	= 𝜇		.																																						(A.35)	13	

The	second	variation	is:	14	

																													6
pℒ

627
p = 2 N

27
8 = 2	𝜇

8
p 	> 0					.		 	 	 	 		(A.36)	15	

Since	 the	 second	 variation	 is	 positive,	 the	 uniform	 solution	𝑎2 = constant,	 corresponds	 to	 a	16	

minimum.		17	

The	argument	supplied	here	implies	why	the	SCF	attains	its	maximum	(1/SCF	attains	its	minimum	18	

as	in	the	above	calculation),	when	the	sampling	(which	is	a	conserved	quantity	on	every	shell	of	19	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2019. ; https://doi.org/10.1101/635938doi: bioRxiv preprint 

https://doi.org/10.1101/635938
http://creativecommons.org/licenses/by/4.0/


	 70	

Fourier	 space)	 is	 distributed	 as	 uniformly	 as	 possible,	 or	 equivalently	 the	 projections	 are	1	

distributed	uniformly.	2	

	3	

A.5	Derivation	of	Eq.	(3.23);	SCF	for	modulated	side-views	4	

	5	
From	Eq.	3.16,	we	have	6	
	7	

																																																						2𝑘	sp 𝑘, 𝜃, 𝜙 = 7(N�Ý ¶hR 7È)
� R¹� Ã

																																										(A.37)	8	
	9	
	10	

Using	the	definition	of	SCF,	1/SCF =	< (1/(2k	sp	)>,	then	(A.37)	becomes	11	
	12	

									“side-modulated”									 N
KLM

= 	 N
�
	 d𝜙	�/7
¤ sin 𝜃 d𝜃	�

¤ 	 � R¹� Ã
7(N�Ý ¶hR 7È)

			,																			(A.38)	13	

	14	
	15	
where	the	last		term	in	the	integrand	of	(A.38)		is	the	reciprocal	of		(A.37).		The	integration	over	16	

𝜃,	can	be	easily	performed	( sin7 𝜃 d𝜃 = 𝜋/2�
¤ )		leaving:	17	

	18	

									“side-modulated”									 N
KLM

= 	 �
¦
	 	�/7
¤ 	 ÒÈ

(N�Ý ¶hR 7È)
			,		 	 	 (A.39)	19	

	20	
																																																								= 	 �

p

�
				 N

�
	�¤

Ò9
(N�Ý ¶hR 9)

						,																																																		(A.40)									21	

	22	
Integrals	of	the	sort	that	appear	in	(A.40)	are	easily	reduced	by	means	of	the	so-called	23	

Weierstrass	half	angle	formula:		𝑡 = tan 𝑣/2	; cos 𝑣 = N�<p

Nu<p
	.	The	integral	in	(A.40)	becomes		24	

	 7
N�Ý

	 	-
¤

Ò<

Nuv=>vº>	<
p
		=	 7

N�Ýp
	 	-
¤

Ò?
Nu	?p			=	

7
N�Ýp

�
7
.					So	the	expression	in	(A.40)	becomes:	25	

													“side-modulated”																		 N
KLM

= 	 �
p

�
			 N

N�Ýp
																				.													(A.41)	26	

	27	
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which	is	(3.23).	1	

	 	2	
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Appendix	B			Derivation	of	Eq.	(3.12)	and	(3.18):	sampling	distributions	from	1	
projection	distributions	2	

	3	
	4	
Eq	(3.11)	reads		5	
	6	
	7	
	8	

                                   sp 𝑘 = dµ⋅� O¶hR	 · 𝑛   𝛿 𝑛 ⋅ 𝑘 /𝐶r,R¹Ò�    ,                                  (B.1) 9	

 10	

where integrations are taken over all unit vectors,	𝑛 , in 3D. Also 𝐶r,R¹Ò�		is a normalization 11	

constant ensuring Eq (3.8):  < 2𝑘	sp 𝑘 >= 1	, where <⋅>? denotes angular average over the 12	

angles in 𝑘 with the uniform measure on the sphere. The integration in B.1 is over the set of normal 13	

vectors to the sphere, with the given constraint. Putting this together with B.1 yields: 14	

                                  𝐶r,R¹Ò� = 	𝐶r,R¹Ò� < 2𝑘	sp 𝑘 >?								   ,                      (B.2) 15	

                          = 2𝑘 d𝑛µ⋅� O¶hR	 ·   <  𝛿 𝑛 ⋅ 𝑘 >?     ,                     (B.3) 16	

                        = 2 d𝑛µ⋅� O¶hR	 ·   <  𝛿 𝑛 ⋅ 𝑘 >?          .                    (B.4) 17	

 18	

Now   <  δ(	𝑛 ⋅ 	𝑘) >?  cannot be a function of the direction of 𝑛. So it can be conveniently 19	

calculated when 𝑛 = 𝑧, which does not depend on an azimuthal angle in the integration over 𝑛 , 20	

and therefore leads only to the average over the altitude. This leads to: 21	

                                           <  δ 	𝑛 ⋅ 	𝑘 >?	= 	
N
7
			 sin 𝜃 		d𝜃		𝛿(𝑘�)

�
¤ 			 ,              (B.5) 22	

                                                                      = 	 N
7
			 sin 𝜃 		d𝜃		𝛿(cos 𝜃)�

¤ 			 ,         (B.6) 23	

                                                                      =		 N
7
			         .                                        (B.7) 24	

 25	
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 1	

Eq. B.7 is a natural result. It is the ratio of the circumference to the surface area of the unit circle: 2	

2𝜋/4𝜋 = 1/2. Returning to (B.4) we get: 3	

                                                      𝐶r,R¹Ò� = d𝑛µ⋅� O¶hR	 ·                           ,                 (B.8) 4	

                         						= 2𝜋 sin 𝜃µ 		d𝜃µ		Θ(| cos 𝜃µ	| < cos 𝛼)�
¤   ,          (B.9)                           5	

                         						= 2	𝜋 sin 𝜃µ 		d𝜃µ		
��·
·                             ,         (B.10)                           6	

                             						= 4	𝜋 cos 𝛼                                         .                   (B.11)                           7	

 8	

So, substituting (B.11) into (B.1) yields 9	

 10	

                                   sp 𝑘 = N
¦	� ¶hR·

				 dµ⋅� O¶hR	 · 𝑛   𝛿 𝑛 ⋅ 𝑘                 .          (B.12)                   11	

 12	

It is easy to argue that  sp 𝑘  does not depend on the azimuthal angle of 𝑘 , which we can 13	

therefore take to be zero in order to evaluate (B.12):  	𝑘 	= sin 𝜃 		𝑥 + cos 𝜃	𝑧 . Instead of the 14	

integration over the sphere given by the unit vector,  𝑛, we need to perform the integral in (B.12) 15	

over the great circle perpendicular to 	𝑘. Therefore, we can parametrize  𝑛 , in the integration in 16	

(B.12) by  17	

                           𝑛 		= (−	cos 𝜃 	sin𝛽	 	 , cos𝛽	 	 , sin 𝜃 sin𝛽	)        .   (B.13) 18	

 Eq. (B.13) is a parametrization of all the unit vectors perpendicular to 𝑘	 as described in the last 19	

paragraph. By changing 𝛽, we can sweep out the unit vector given by (B.13): these are the locus 20	

of normals to 𝑘 and outside the cone of half angle 𝛼. So from (B.12) 21	

 22	
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                                   𝑘	sp 𝑘 = N
¦	� ¶hR·

			 d𝛽7�
¤ 	Θ(	| sin 𝜃 sin𝛽 | < cos 𝛼)		   .                 (B.14)                   1	

 2	

The criterion Θ(	| sin 𝜃 sin𝛽 | < cos 𝛼) in B.14 is a rewrite for the constraint of the projection 3	

directions, 𝑛 ⋅ 𝑧 < cos	 𝛼, from Eq. B.12. Continuing from Eq. B.14. 4	

 5	

                    						𝑘	sp 𝑘 					= N
	� ¶hR·

			 d𝛽�/7	
¤ 	Θ(	sin𝛽 < cos 𝛼	/ sin 𝜃	)		   .     (B.15)                   6	

 7	

If cos 𝛼 > sin 𝜃, then the argument of the indicator function in (B.15) is always true. If not the 8	

upper limit of 𝛽 in the integral must be reduced to asin (cos 𝛼 	/ sin 𝜃). This leads to: 9	

                               		k	sp	 k, θ = 	 N
�
			
R¹�ºv »¼�½

�¾¿À
¶hR·

						,			 �
7
− 𝜃 < 	𝛼,			                        (B.16) 10	

	12	
																											 "side-like" 																													N

7
		 N
¶hR·

			,													 �
7
− 𝜃 ≥ 	𝛼		,				                       	11	

	13	
	14	
which	is	(3.12).	15	
	16	
Finally	17	
	18	
	19	

																																											sp 𝑘 = dµ⋅� O¶hR	 · 𝑛   𝛿 𝑛 ⋅ 𝑘 /𝐶r,ÜhS         .                       (B.17)	20	
	21	
	22	
Using	(B.8)	and	(B.17)	using	the	parallel	argument	to	(B.1)-(B.7)	together,	we	note	that		23	
	24	
																					25	

																									𝐶r,R¹Ò� + 𝐶r,ÜhS = dµ⋅� O¶hR	 · 𝑛 	+ dµ⋅� T¶hR	 · 𝑛 = 4	𝜋					.																(B.18)	26	
	27	
	28	
	29	
So		30	
	31	

																									𝐶r,ÜhS = 4	𝜋 −	𝐶r,R¹Ò� 	= 4	𝜋	 1 − cos 𝛼 = 		8	𝜋		 sin7 𝛼/2			.															(B.19)	32	
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	1	
	2	
The	parallel	derivation	to	(B.14)	now	becomes:	3	
	4	
	5	

																						𝑘	sp 𝑘 = N
�	� R¹�p ·/7

			 d𝛽7�
¤ 	Θ(	 sin 𝜃 sin𝛽 > cos 𝛼)									.																(B.20)	6	

	7	
	8	

This	is	the	integration	around	the	locus	of	points	normal	to		𝑘	and	inside	the	cone	of	half-9	

angle,	𝛼.		However,		sin𝛽		may	be	replaced	by	cos	𝛽	by	shift	of	origin,	and	an	overall	factor	of	4	10	

introduced	due	to	the	4	equivalent	quadrants:		11	

	12	

																						𝑘	sp 𝑘 = N
7� R¹�p ·/7

			 d𝛽�/7
¤ 	Θ cos𝛽 	> cos 𝛼 / sin 𝜃 																.					(B.21)	13	

	If	cos 𝛼 > sin 𝜃,	then	the	condition	of	the	indicator	function	cannot	be	fulfilled,	and	the	left-14	

hand	side	=	0.		Otherwise	15	

	16	

																																		𝑘	sp 𝑘 	= N
7� R¹�p ·/7

			 d𝛽�/7
¤ 	Θ 	𝛽 < acos (cos 𝛼 / sin 𝜃 			)							.	(B.22)	17	

	18	

So		19	

																								𝑘	sp 𝑘 																	= 	 Û¶hR (¶hR·/ R¹� Ã)
7� R¹�p ·/7

													for									 ã
7
− θ	 ≤ 		𝛼					,		 (B.23)	20	

																								 "top-like" 												= 	0																																					for									 ã
7
− θ	 > 		𝛼					.		 (B.24)	21	

	22	

	23	
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This	is	(3.18).	Thus,	the	sampling	is	zero	in	directions	close	to	along	the	z-axis,	for	the	top	like	1	

cases.	2	

	3	

 4	

  5	
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