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Abstract 
SETD2 contributes to gene expression by marking gene 
bodies with H3K36me3, which is thought to assist in the 
concentration of transcription machinery at the small portion 
of the coding genome. Despite extensive genome-wide data 
revealing the precise localization of H3K36me3 over gene 
bodies, the physical basis for the accumulation, 
maintenance, and sharp borders of H3K36me3 over these 
sites remains rudimentary. Here we propose a model of 
H3K36me3 marking based on stochastic transcription-
dependent placement and transcription-independent 
spreading. Our analysis of the spatial distributions and 
dynamic features of these marks indicates that transcription-
dependent placement dominates the establishment of 
H3K36me3 domains compared to transcription-independent 
spreading processes, and that turnover of H3K36me3 limits 
its capacity for epigenetic memory. By adding additional 
terms for asymmetric histone turnover occurring at 
transcription start sites, our model provides a remarkably 
accurate representation of H3K36me3 levels and dynamics 
over gene bodies. Furthermore, we validate our findings by 
revealing that loss of SPT6 impairs the transcription-coupled 
activity of the SETD2:IWS1:SPT6 ternary complex, thereby 
reducing the tight correlation between transcription and 
H3K36me3 levels at gene bodies. 
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Introduction 

Eukaryotic cells use an ensemble of covalent histone 
modifications to mark important sites of regulatory activity. 
One of these marks, trimethylation of lysine 36 on histone 3 
(H3K36me3) is an abundant and highly conserved 
chromatin modification that is enriched at gene bodies of 
transcriptionally active genes and also at centromeric 
regions1–3. The presence and distribution of H3K36me3 
domains at actively transcribed genes is conserved from 
human to yeast, suggesting that this mark is extremely 
important for proper cellular function4. Important regulatory 
activities linked to the H3K36me3 mark include transcription 
elongation5,6, prevention of cryptic start sites7, as well as 
pre-mRNA splicing8 and processing9. In addition to 
transcription, H3K36me3 also plays important roles in the 
recruitment of DNA repair machinery to mismatch regions, 
and for this reason, actively transcribed genes pre-marked 
with H3K36me3 are especially protected from DNA 
damage10. 

The genome-wide distribution of H3K36me3 is maintained 
through various mechanisms. In human cells, H3K36 is 
mono- and di-methylated by eight distinct histone 
methyltransferases; however, the predominant writer of the 
trimethyl mark on H3K36 is SETD21,11,12. Interestingly, 
SETD2 is a major tumor suppressor in clear cell renal cell 
carcinoma13, breast cancer14, bladder cancer15, and acute 
lymphoblastic leukemias16–18. In these settings, mutations 
and deletions of SETD2 often leads to global 
downregulation of H3K36me3 and are strongly associated 
with decreased overall survival13–19. H3K36me3 is 
enzymatically removed from chromatin by members of 
Jumonji domain-containing histone demethylase protein 
families20. However, the mark may be also removed by other 
mechanisms, including histone turnover. Histone turnover is 
performed by diverse ATP-dependent chromatin remodeling 
complexes, such as BAF (SWI/SNF) and related 
complexes21,22, as well as histone chaperones (e.g. FACT 
complex23 or SPT624), that catalyze histone eviction from 
chromatin. Interestingly, histone turnover is highest at active 
promoters and less pronounced within transcribed regions 
enriched for H3K36me325,26. In addition to the writers and 
erasers of this mark, H3K36me3 is also read by a range of 
the proteins harboring the PWWP domain as well as Tudor, 
chromo and plant homeodomain (PHD) finger domains27, 
many of which are known transcription regulators or DNA 
damage responders (e.g. PHF128, Dnmt3a29 and 
LEDGF/p7530,31).  

Transcription-coupled H3K36me3 deposition at coding 
regions is facilitated through the unstructured yet highly 
conserved C-terminal domain of RNA polymerase 2 
(RNAP2 CTD). During transcription elongation, the RNAP2 
CTD recruits many factors to transcribed genes, including 
the histone methyltransferases MLL (KMT2A; H3K4 
methylation), DOT1L (H3K79me2), and SETD2 
(H3K36me3) (Figure 1A)32–34. These methyltransferases 
are recruited to sites of transcription in part via direct 
interaction with RNAP2 6,35–38. However, this common mode 
of recruitment curiously does not result in similar patterns of 
histone modification, as each of these marks has a distinct, 
characteristic profile across the genome39–42. For the 
H3K36me3 mark, serine-2 phosphorylation on the CTD of 
the POLR2A (Rpb1) subunit of RNAP2 interacts with the 
transcription elongation factor and histone chaperone SPT6, 
which associates with SETD2 through its binding partner 
IWS16,43,44. Through this association (Figure 1B), 
H3K36me3 is thought to be propagated along gene bodies 
in a transcription-dependent manner35. In yeast, 
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transcription is sufficient for formation of H3K36me3 domain 
over gene bodies45. Here the presence of SPT6 and IWS1 
is not only essential for SETD2 recruitment, but also for the 
catalysis of H3K36me3 placement6. However, in mammals, 
SETD2 associates with a large number of nuclear proteins 
and complexes that possess their own chromatin 
recognition domains (e.g. p5346 or STAT147), which could 
potentially influence SETD2 methyltransferase activity 
independently of transcription. Furthermore, it has been 
proposed that the placement of H3K36me3 involves 
“spreading” of the mark across the gene body48–50, and a 
variety of differing patterns reported for H3K36me3 profiles 
across gene bodies51–54. It has therefore remained uncertain 
whether SETD2 can be recruited to chromatin to place and 
spread the H3K36me3 mark through transcription-
independent mechanisms in addition to transcription-
dependent interaction with the RNAP2 CTD. Given the 
importance of H3K36me3, we were surprised to find no 
systematic genome-wide studies describing the spatial 
distribution, intensity, and dynamics of this mark placed by 
SETD2 in concert with other factors. 

Although great effort has been made to elucidate the 
participation of H3K36me3 in various cellular processes1, 
much less is known about dynamics of the H3K36me3 mark 
itself in human cells. How are the activities of enzymes that 
regulate H3K36me3 writing and erasure coordinated to 
result in formation of these domains? Is the transcription-
coupled H3K36me3 placement sufficient to achieve the 
steady-state of these domains, or are other transcription-
independent processes needed to propagate and stabilize 
these marks? What are the insulation mechanisms that 
prevent this mark from spreading outside of its boundaries?  

Because chromatin and its marks are highly dissipative 
complex systems55,56, non-linear and agent-based kinetic 
models have become invaluable tools to understand the 
dynamical behavior of the chromatin landscape and to 
predict the behavior of epigenetic systems57–62. We 
previously developed a model of H3K9me3 dynamics 
premised on simple nucleation-propagation-turnover 
Markov processes that provided quantitative predictions of 
kinetic properties and dynamics of H3K9me3 domains 
throughout the genome58. This model allowed us to 
elucidate the constraints that lead to the characteristic 
pattern of enrichment and memory of H3K9me3 domains in 
embryonic stem cells and fibroblasts59. Here we have further 
developed this approach to model the establishment and 
dynamic properties of H3K36me3 domains at gene bodies 
throughout the genome. Our analysis shows that 
H3K36me3 domains are broad, flat domains with sharp 
borders at gene bodies despite the lack of discernable 
insulator features in multiple cell types. We find that the 
abundance of H3K36me3 at gene bodies scales in 
proportion to transcription frequency, consistent with 
transcription-dependent marking by SETD2. In contrast to 
the direct local spreading of H3K9me3 marks in 
heterochromatin, our analysis shows that transcription-
independent H3K36me3 spreading must be small in 
proportion to transcription-dependent mechanisms. 
Furthermore, incorporating measured rates of histone 
turnover is sufficient to produce remarkably in-vivo-like mark 
distributions over gene bodies without insulator elements. 

Finally, we find that SPT6 loss sharply reduces the observed 
dependence of H3K36me3 levels on transcription 
frequency, consistent with our model of H3K36me3 
placement occurring primarily through transcription-
dependent marking. Together our data provide new insights 
into the placement, persistence, and function of H3K36me3 
domains. 
 
Results 
 
The quantitative dependence of H3K36me3 marking on 
transcription frequency 

We began by performing a comprehensive analysis of 
histone mark ChIP-seq signals at gene bodies based on the 
degree of transcription. We analyzed the ChIP-seq profiles 
of H3K4me1, H3K4me3, H3K27ac, H3K27me3, H3K36me3, 
and H3K79me2 at gene bodies in K562 chronic myeloid 
leukemia cells. Despite extensive studies of the relationship 
between transcription and histone modification domains, we 
found few systematic reports relating the quantitative 
accumulation of all such marks to the frequency of 
transcription. We therefore sought to assess the relationship 
between the levels of each of these marks with 
transcriptional frequency, using the fragments per kilobase 
million (FPKM) levels from RNA-seq in the same cells as a 
proxy. We found that all of these marks highly statistically 
significant (p<2.2e-16) correlation with transcription. All 
marks positively correlated with transcription except for 
H3K27me3, which displayed a negative correlation (Figure 
1C and S1). Of those with positive correlation, all histone 
marks except for H3K36me3 displayed a strong 
characteristic peak localized at transcription start sites 
(TSSs), consistent with regulatory roles during transcription 
initiation. In contrast, we found that H3K36me3 domains are 
localized directly over transcriptional units, with sharp, well-
defined borders near TSSs and transcription termination 
sites (TTSs, Figure 1D), consistent with many previous 
studies of H3K36me39,19,40. By comparing the mean levels 
of H3K36me3 across gene bodies to their FPKM values, we 
found that H3K36me3 had the highest correlation (R=0.543, 
p<2.2e-16) between transcriptional activity and histone 
mark levels over several powers of 10 (Figure 1E). 
Altogether, the unusually high correlation and presence of 
the mark throughout the entire transcriptional unit indicated 
a strong link between H3K36me3 accumulation and 
transcription elongation. 

We next sought to address whether the shape of the 
H3K36me3 domain varied with transcriptional activity by 
analyzing these marks at individual loci genome-wide. We 
restricted our analysis to transcripts with FPKM values >2, 
and with gene bodies that spanned the 15-kb window of our 
analysis. The resulting heat map of 9,079 genes (Figure 1F) 
revealed that although the intensity of H3K36me3 marking 
varies with transcriptional activity, the overall shape of the 
distribution is largely unaffected, yielding flat plateaus at 
gene bodies throughout the genome. This interpretation was 
confirmed by examination of browser tracks of individual 
genes (Figure 1G). Nearly identical genome-wide results 
were obtained in A549 cells, an unrelated non-small cell 
lung cancer line, indicating these features are shared across 
multiple cell types (Figure S2). 
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A transcription-dependent model of H3K36me3 dynamics  

We next constructed a dynamic Markov state machine 
model to describe the dynamics of H3K36me3 marking and 
its relationship to transcription frequency. We constructed a 
one-dimensional lattice model of chromatin, analogous to 
the “beads on a string” picture of chromatin. Although 
higher-order chromatin structure may contribute to certain 
features of transcription, our relatively simple treatment of 
chromatin structure is justified, since well-ordered, evenly 
spaced arrays of nucleosomes are clearly visible at lowly 
and highly expressed genes in our analysis of MNase-seq 
data in K562 cells (Figure S3). In our simulations, the lattice 
{Ij} spans from j = 1 to j = 512, where each lattice position j 
corresponds to an individual nucleosome. Thus with a 
nucleosomal spacing of 195 bp, our lattice model 
corresponds to 99.8 kbp of DNA. To make our model as 
general as possible, we consider that each nucleosome 
position along the lattice may occupy one of two states: an 
unmodified (Ij = 0) state or a modified with H3K36me3 (Ij = 
1) state. Briefly, four features define the standard model 
(Figure 2): 

(1) Transcription-dependent marking: Upon an 
individual transcription event occurring in an individual time 
step, nucleosome positions in a transcriptional unit 
(positions 174-338) are each randomly marked with 
probability Pn. This process corresponds to the recruitment 
and stochastic labeling of nucleosomes during transcription 
events. Transcription events occur within a given time step 
at probability Pi. 

(2) Transcription-independent spreading: Our general 
kinetic scheme integrates any processes that locally spread 
H3K36me3 into a single net propagation probability (P+). In 
our model, P+ describes the transcription-independent 
spreading of H3K36me3 to nucleosome positions 
immediately adjacent to H3K36me3-marked sites at each 
time step. This scenario represents the hypothetical 
pathway whereby SETD2 is recruited to sites of H3K36me3, 
for example directly or indirectly through H3K36me3 
reader(s). Mechanistically, this process is likely composed 
of multiple rate-limiting steps (e.g. recruitment, marking), 
however for simplicity we treat this spreading as occurring 
as a single rate-limiting step. 

(3) Background marking: All nucleosomes across the 
lattice are subject to weak, low probability of marking at each 
time step. This probability is Pbg, and corresponds to any 
process, such as non-specific SETD2 recruitment, that lead 
to non-specific marking. 

(4) Random mark/histone turnover: At each time step, 
all positions across the lattice are subject to stochastic 
removal of the H3K36me3 mark. All nucleosome marks are 
removed at each time step with probability P–. This process 
corresponds to any mechanism that results in the loss of the 
mark, and includes both H3K36 demethylation and 
histone/nucleosome turnover. 

The implementation of this reaction scheme is 
performed using Monte Carlo simulation, where each of 
these processes occurs as a homogeneous Poisson 
process with exponentially distributed event times. The 
lattice space of the simulation is implemented with periodic 
boundary conditions, hence no insulator elements are 

present. Full details of this simulation are described in the 
Methods section, and MATLAB code of its implementation 
is provided as supplemental information. 

When these processes are permitted to occur 
simultaneously, a dynamic H3K36me3 domain is 
established over the simulated gene body (Figure 2E). 
These simulated domains bear several features in common 
with our observations of H3K36me3 ChIP-seq data. In 
particular, simulations with low transcription probabilities 
bear elevated levels of H3K36me3 compared to 
background. Moreover, H3K36me3 levels of lowly 
transcribed genes in these simulations are significantly 
reduced compared to simulations with high transcription 
frequencies (Figure 2E-G). 

To assess the contribution of the transcription-
independent spreading, we performed 1,014 simulations by 
spanning a range of Pn, Pi, and P+, while keeping Pbg and P– 
constant. The output of each of these simulations spanned 
a range of outcomes from very little marking throughout the 
simulation, to full saturation of the simulation space. 
Between these extremes, a domain of H3K36me3 is 
established that shows a strong dependency on 
transcription frequency. The full set of these outcomes is 
presented in Figure S4. 

By analyzing the influence of the outcomes of the 
spreading parameter P+, we found that elevated mark 
spreading in a transcriptionally independent manner would 
result in poor establishment of H3K36me3 domains with 
sufficient contrast above non-transcribed regions (Figure 3). 
We found that the major effect of increasing the spreading 
term P+ was to increase background marking intensity 
without providing a corresponding increase in marking of the 
gene body. This outcome was true regardless of whether 
transcriptional frequency was low or high (Figure 3A). 

To analyze this phenomenon in quantitative terms, we 
adopted a similar set of metrics to those we used previously 
to characterize H3K9me3 domains58. To quantify the mean 
intensity of marking, we use the term ⟨N⟩, which reports the 
fraction of nucleosome positions in the gene body with 
H3K36me3 marks. To quantify the overall specificity of the 
domain, we used a specificity score S: 

 

𝑆 =
〈𝐼'()(	+,-.〉 − 〈𝐼〉
〈𝐼'()(	+,-.〉

 

 
where ⟨Igene body⟩ is the mean mark density at the gene 

body, and ⟨I⟩ is the mean mark density over the entire lattice. 
Finally, the contrast between gene bodies and background 
regions is reflected by the efficiency score E: 

 
𝐸 = 〈𝐼'()(	+,-.〉 − 〈𝐼〉 

 
By plotting the intensity, specificity, and efficiency of the 

domains across different parameters, it is readily apparent 
why elevated spreading results in poor domains. While the 
intensity of marking increases within gene bodies, the 
specificity of this marking strongly drops due to the presence 
of additional marks outside of gene bodies (Figure 3B-C). 
The net result of elevated spreading is to reduce the contrast 
of the marks between the gene bodies and background 
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regions (Figure 3D). Based on this result, we conclude that 
transcription-dependent is the dominant mode of 
H3K36me3 placement, and therefore anticipate that non-
transcriptional propagation of H3K36me3 in cells is likely to 
produce a small fraction of the overall H3K36me3 marks at 
gene bodies. 
 
Replication-independent histone turnover induces an 
asymmetric distribution of H3K36me3 at the TSS 

One notable feature of the H3K36me3 ChIP-seq tracks 
that was not captured by our model is the reduction of mark 
intensity near the TSS. This reduction is found in many 
individual tracks and is largely independent of transcription 
frequency (Figure 1D). We hypothesized that increased 
histone turnover in this region could induce a substantial 
reduction of H3K36me3 intensity in a dynamic manner by 
decreasing the effective lifetime of the H3K36me3 mark 
near the TSS. 

We therefore sought a metric for histone turnover across 
the gene body. Several experimental approaches have been 
developed to measure the absolute kinetics of histone 
lifetime, including metabolic labeling and CATCH-IT 63,64. 
These methods have revealed a striking correspondence of 
histone lifetime with the profiles revealed by ChIP of the 
replication-independent histone H3.364. We developed a 
variant of our standard model, where the rate of histone 
turnover was not uniform throughout the gene body, but 
varied by position (Figure 4A). We used the average profile 
of H3.365,66 as a proxy for the relative rates of replication-
independent histone turnover across the gene body and 
compared the results of the standard model (constant 
turnover) with the variable turnover model. 

Compared to the standard model, the resulting 
H3K36me3 profiles from the variable turnover model are 
strikingly similar to the genomic profiles observed from 
ChIP-seq (Figure 4B-C). These profiles also show a similar 
dependence on transcription frequency as the ChIP-seq 
data. We therefore conclude that a full description of 
H3K36me3 dynamics requires including the varied rates of 
histone turnover that occur near transcription start sites. Our 
findings furthermore suggest that H3K36me3 is not faithfully 
copied nor rapidly spread onto the replication-independent 
H3.3 histones, as these processes would otherwise mask 
this dependency. Consequently our work confirms that the 
levels and genome-wide profiles of H3K36me3 are 
regulated in a replication-independent manner. 
 
SPT6 loss impairs the scaling relationship between 
H3K36me3 and transcriptional frequency 

To validate our model and test whether transcription-
coupled activities are responsible for most H3K36me3 
placement, we sought experimental confirmation that 
disruption to the SETD2:IWS1:SPT6 ternary complex would 
affect the scaling relationship between H3K36me3 
abundance and transcription frequency. We therefore 
compared mononucleosomal H3K36me3 signals obtained 
following siRNA transfection against either luciferase 
negative control (siLuc) or SPT6 (siSPT6), previously 
obtained elsewhere67. To measure transcription frequency, 
we used 3’ RNA-seq data from the same cells. Counts 

obtained using 3’ RNA-seq directly report on the frequency 
of transcription events at a given locus. 

By plotting the H3K36me3 profiles based on 
transcription frequency in the siLuc control, we observed the 
scaling relationship between transcriptional frequency and 
H3K36me3 levels as described in Figure 1 above, 
confirming that the control does not affect this relationship 
(Figure 5A-B, R=0.462). In contrast, transfection of cells 
with siSPT6 causes a profound but incomplete reduction in 
the levels of H3K36me3 at gene bodies (Figure 5C). 
Moreover, this treatment alters the relationship between 
transcription frequency and H3K36me3 levels: Instead of 
observing a strong scaling relationship, the H3K36me3 
levels show a reduced dependence on transcription 
frequency (Figure 5C-D, R=0.05). Pooling of transcripts into 
quintiles reveals that this effect persists despite pooling and 
across genomic replicates (Figure 5E) [F(1,14) = 13.4, p = 
2.6e-3]. Together, our analysis shows that disruption of the 
SETD2:IWS1:SPT6 ternary complex alters the relationship 
between H3K36me3 accumulation and transcription 
frequency, providing an important validation of our kinetic 
model. 
 
Discussion 
 

Here we have employed quantitative approaches to 
accurately model the properties of H3K36me3 domains. Our 
comprehensive analysis of histone marks indicates that 
H3K36me3 domains are uniquely located throughout the 
transcribed regions of genes in different cell types. In 
contrast to some reports suggesting that H3K36me3 have 
strongly biased distributions over the gene bodies, our 
analysis shows that H3K36me3 domains are characterized 
as being broad, flat plateaus that span the entirety of gene 
bodies, with sharply defined boundaries and only modest 
deviations in intensity from the TSS to the TTS. We find a 
direct correspondence between transcription frequency and 
the intensity of H3K36me3 marking, indicating a tight 
relationship between transcription and H3K36me3 
placement. Of the histone modifications we analyzed, the 
plateau-like distribution is characteristic only of H3K36me3, 
unlike other marks which show a high degree of enrichment 
near the TSS. The even marking throughout the gene body 
suggests that placement of the H3K36me3 mark occurs 
continuously throughout the entire process of transcription 
elongation. 

 Many questions have remained regarding the 
mechanisms that explain the accumulation of these marks 
across gene bodies. We used lattice-based simulation 
approaches to assess the contribution of transcription-
dependent marking, transcription-independent maintenance 
(spreading) and histone turnover to the H3K36me3 domain 
shape. Our results indicate that transcription-independent 
spreading at even low rates would increase the H3K36me3 
background levels outside of the coding regions. We find 
that elevated rates of spreading would eventually lead to 
collapse of the sharp domain boundaries that are observed 
in vivo. Therefore, our model suggests that transcription-
dependent marking is the major pathway for H3K36me3 
domain formation. This is in agreement with observation that 
H3K36me3 levels are proportional to the transcription 
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frequency of individual genes. Importantly, SETD2-
dependent H3K36me3 marking has essential roles at sites 
of double-stranded DNA breaks68. Although we find that 
spreading mechanisms do not contribute substantially to 
normal sites of transcription, we cannot currently exclude 
the involvement of transcription-independent spreading 
mechanisms during double-strand break repair. 

Incorporation of replication-independent histone 
turnover into our model reduces the mark intensity near the 
TSS, yielding a strikingly similar domain shape to profiles 
measured in cells. Interestingly, genome-wide studies show 
that many active genes have a nucleosome-free region at 
the transcription start site. Our analysis (Figure S5) 
demonstrate that unlike H3K36me3 intensity, the size of this 
region does not correlate with transcription frequency, 
suggesting that the steady-state exclusion of histones from 
promoter regions is independent of H3K36me3 
accumulation. 

Transcription-dependent H3K36me3 marking relies on 
RNAP2:SETD2:IWS1:SPT6 complex formation6. Because 
our analysis suggested that co-transcriptional marking was 
the major pathway of H3K36me3 placement, we sought to 
test and validate this model by quantifying the effects 
following disruption of the SETD2:IWS1:SPT6 ternary 
complex. We analyzed ChIP-seq data obtained in the 
presence and absence of SPT6. Despite the loss of 
transcription scaling in SPT6 knock-down cells, a modest 
accumulation of H3K36me3 is preserved over gene bodies, 
suggesting that some kind of non-transcriptional 
mechanisms may still be operating in the absence of SPT6. 
As such, it is tempting to speculate that residual marking 
might reflect transcription-independent processes that may 
contribute to bookmarking of gene bodies independently of 
complexes involving SPT6. Such processes might be 
essential to prevent the complete silencing of genes by 
Polycomb complexes, since H3K36me3-containing 
nucleosomes are poor PRC2 substrates and H3K36me3 
antagonizes PRC2-mediated H3K27 methylation69,70. In 
general, we propose that significant deviations of the 
transcription dependence of H3K36me3 levels may reflect 
biologically important sources of regulation, for example 
sites where polymerases move unusually quickly or slowly 
through a gene71, or where other regulatory factors such as 
H3K36 demethylases are in close proximity (Figure 5F)  

Genome-wide analysis of H3K36me3 shows that it does 
not spread outside of the gene body boundaries, despite the 
lack of any obvious insulator elements. Furthermore, others 
have shown using an inducible system that these marks also 
do not spread onto adjacent loci45. In the same study, the 
authors found that the H3K36me3 mark persisted in the 
locus for 60 minutes after transcription inhibition, suggesting 
a short epigenetic memory for recently occurred 
transcriptional activity. This finding is consistent with our 
model, which suggests a short persistence of H3K36me3 in 
the absence of transcription. We therefore conclude that the 
strong dependence on co-transcriptional processes limits 

the capacity of the H3K36me3 mark to serve as a stable, 
heritable epigenetic mark at gene bodies.  

Many of the processes dependent on H3K36me3 are 
ubiquitous and highly conserved from yeast to humans. 
Additionally, H3K36 oncohistone mutations72 and loss of the 
H3K36me3 methyltransferase SETD273 both play important 
roles during cancer development. In particular, lysine-to-
methionine mutations of H3K36 (H3K36M) contribute to 
distinct subtypes of sarcomas and pediatric 
chondroblastoma74,75. In these patients, expression of 
H3K36M mutants leads to global reduction of H3K36 
methylation, including H3K36me3 throughout gene bodies, 
and shapes the oncogenic transcriptome of these cancer 
cells. Additionally, SETD2 deletions and loss-of-function 
mutations have been identified in patients with clear cell 
renal cell carcinoma (ccRCC), and alterations 
of SETD2 have been uncovered in pediatric high-grade 
gliomas, colorectal cancer and several hematologic 
malignancies. In ccRCC, progressive deregulation of 
H3K36me3 is linked to metastasis and is associated with 
overall lower survival 19,76. The H3K36me3 demethylases 
(JMJD2A and B) have also been implicated in colorectal 
cancer77 and ER positive breast cancer78 development. 
Overall, dysregulation of H3K36me3 homeostasis 
represents a common pathway that contributes to several 
malignancies. 

Drugs targeting chromatin regulators are currently 
viewed as promising treatment avenues for various 
diseases, and the number of such drugs in clinical use is 
anticipated to grow in the foreseeable future79–83. 
Unfortunately, the cross-talk between chromatin modifying 
enzymes and other factors responsible for the maintenance 
of their modifications remains enigmatic. Insight into this 
interplay is an essential first step towards rational targeting 
of the chromatin landscape. Additionally, understanding of 
marking kinetics is invaluable for drug dosage and 
sustainability of the desired effect. Therefore, investigation 
of dynamic mechanisms and kinetic properties that underlie 
steady-state activities of each mark is crucial for the 
development of future treatments. 

The chromatin landscape is a highly dissipative complex 
system that constantly integrates hundreds of signals and 
coordinates appropriate responses. Simulation approaches 
premised on simple assumptions like those that we present 
here enable modeling of different scenarios and are 
therefore ideal for quantitative profiling of the dynamical 
behavior and kinetics of chromatin marking. Additionally, a 
number of modern chemical biology tools and chemical 
probes enable rapid perturbation and characterization of 
highly dynamic and complex systems like the chromatin 
landscape for experimental validation of these processes83. 
Future models incorporating additional processes, such as 
co-transcriptional regulation, may further illuminate the 
functions of H3K36me3 and its role in development and 
disease. 
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Methods 
Processing of ChIP-seq data. Data set files for H3K4me1, H3K4me3, H3K27me3, H3K27ac, H3K79me2, and H3K36me3 
were obtained as bigWig files from the ENCODE Consortium for both K562 and A549 cells. These files were provided by 
the ENCODE Consortium based on uniquely mapped reads to the hg19 genome build. H3.3 ChIP seq profiles from HeLa 
cells were obtained from GEO accession GSE45023. All data was processed and analyzed from at least 2 independent 
biological replicates. 
 
Heat maps and metagene plots. ChIP-seq bigWig files were processed using bwtool84 to extract the regions 34,600 bp 
upstream of TSSs, and 17,300 bp downstream of TSSs, and the resulting values were averaged at 200 bp windows. The 
resulting matrix was used to generate metagene profiles and heatmaps using R. Similar matrices were obtained using the 
same approach for the region 17,300 bp upstream of TTSs and 34,600 bp downstream of TTSs. Scaled whole-gene body 
metagene plots were not used because they were found to introduce biases that did not exist in unscaled plots. 
 
RNA-seq analysis and integration with ChIP-seq data sets. FPKM values were obtained directly from the ENCODE 
Consortium following mapping to the hg19 genome. To harmonize the relationship between RNA-seq and ChIP-seq data, 
the UCSC table browser was used to map annotations reported using Ensembl transcript identifiers to gene symbols. For 
RNA-seq, the longest transcript was chosen as the canonical transcript, and its TSS was used for ChIP-seq analysis. All 
analyses were performed by matching the gene symbols between ChIP-seq and RNA-seq data sets. All data was processed 
and analyzed from at least 2 independent biological replicates. 
 
MNase analysis and measurement of nucleosomal spacing. MNase-seq data was obtained from the ENCODE Consortium 
for K562 cells as bigWig files. For each canonical TSS defined above, we began by Z scaling the MNase-seq signal in the 
window ± 4 kbp from the TSS. The +1 nucleosome was then identified by the position where the Z-scaled MNase-seq signal 
reached 0.5 downstream of the TSS, and heat maps were created beginning 200 bp upstream of this position. Phase scores 
were assigned for each locus, and the top-scoring TSSs containing strong phases were used to plot the matrix of MNase 
signals. The resulting signal was averaged across all TSSs with sufficiently high phase scores and showed a readily 
apparent 195-bp periodicity. The precise value of this periodicity was measured with greater precision by examining the 
strongest frequency component following fast Fourier transform (FFT). The highest frequency signal in the FFT 
corresponded to 1/195 bp, confirming the canonical 195-bp periodicity reported elsewhere85. 
 
Protein-protein interaction network graphing. Protein-protein graphs of functional interactions between proteins were plotted 
using STRING86. 
 
Browser tracks. Genome browser tracks were generated using the WashU Epigenome Browser, with the resulting tracks 
exported as SVG files. 
 
Monte Carlo simulations. Implementation of Monte Carlo simulations was performed using custom code written in MATLAB 
(Mathworks, Natick, MA). All Monte Carlo steps were implemented using classic Monte Carlo methods and will be provided 
as supplemental data upon acceptance of the manuscript. Briefly, The stochastic trajectory of a given genetic locus is carried 
out by iteration of the following processes at each time step (see Figure 2): 

(1) Transcription-coupled marking: if transcription is occurring in a given time step, each gene body site at position 
j that is unmarked (Ij = 0) is converted to a marked state (Ij = 1) with probability Pn (where Pn = kn∆t). Transcription occurs 
within each given time step randomly with probability Pi. 

(2) Transcription-independent spreading: for each marked nucleosome j on the lattice, if the j − 1 position is 
unmarked (Ij−1 = 0), it is converted to a marked state (Ij−1 = 1) with probability P+. Similarly, if the j + 1 position is unmarked 
(Ij+1 = 0) , it is converted to a marked state (Ij +1 = 1) with probability P+ . Mark propagation thus proceeds outward in both 
directions from each marked site. 

(3) Background marking: each position j that is unmarked (Ij = 0) is converted to a marked state (Ij = 1) with 
probability Pbg (where Pbg = kbg∆t). 

(4) Turnover: for each marked nucleosome j on the lattice, conversion to an unmarked state (Ij = 0) occurs with 
probability P− (where P− = k−∆t). 

(5) Time evolution: Simulation time t is incremented by ∆t. 
The above procedure treats transcription, marking, and turnover as homogeneous Poisson processes with exponentially 
distributed lifetimes. We also allow all simulations to evolve using periodic boundary conditions; therefore, there is no 
boundary implicit in the simulations. For all simulations, the value of ∆t was chosen to be sufficiently small such that P– = 
0.05. Source code for Monte Carlo simulations will be provided before or upon acceptance. 
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Statistical analyses. All statistical procedures were performed using R. All reported P values were obtained using two-sided 
tests. When calculated p-values are smaller than the 64-bit double precision machine epsilon (2-52 = 2.2e-16), p-values are 
reported as p<2.2e-16. 
 
Figure Legends 
 
Figure 1. H3K36me3 placement by the SETD2:IWS1:SPT6 complex and genome-wide dependence on transcription. 
(A) STRING analysis of validated interactions between RNA Polymerase 2 (RNAP2) and histone methyltransferases MLL 
(KMT2A), DOT1L, and SETD2. The SETD2:IWS1:SPT6 ternary complex has extensive interactions with RNAP2 subunits. 
(B) IWS1 and SPT6 interact with the RNAP2 unstructured C-terminal domain to recruit SETD2, leading to H3K36me3 
placement. (C) Analysis of histone ChIP-seq signals at gene bodies in K562 cells, organized by the degree of transcription 
measured via RNA-seq. H3K36me3 is the histone mark with the highest correlation to transcription. Measurement of 
correlation values is provided in Figure S1. (D) H3K36me3 profiles are flat plateaus over transcriptional units starting with 
the transcription start site (TSS) through the transcription termination site (TTS) in K562 cells. (E) The mean ChIP-seq 
enrichment of H3K36me3 scales with the transcript abundance measured with RNA-seq. (F) Heatmap of H3K36me3 
plateaus at individual transcription units with their associated RNA-seq output measured by fragments per kilobase million 
(FPKM). (G) Individual genome browser tracks in K562 cells. 
 
Figure 2. General components of the kinetic model of H3K36me3 at transcriptional units. (A) During a transcription 
event, nucleosomes within a transcriptional unit (gene body) are marked with constant probability. (B) H3K36me3 marks 
may be maintained by transcription-independent processes that lead to spreading of the marks to neighboring sites with 
constant probability. (C) All sites are marked with a very low background activity with constant probability. (D) Sites marked 
with HK36me3 are randomly turned over to unmarked sites with constant probability. (E) Visualization of an individual 
simulation over time reveals transient accumulation of H3K36me3 marks that are dissipated when transcription is infrequent. 
(F) Visualization of an individual simulation over time reveals steady-state levels of H3K36me3 marks are maintained when 
transcription is frequent. (G) The profile of simulated H3K36me3 levels in simulations scales in intensity with transcription 
frequency. 
 
Figure 3. The effects of transcription-independent spreading of H3K36me3 in simulations. (A) For both low- and high-
transcription simulations, as local spreading probability increases, the entire simulation experiences increased levels of 
marking, reducing the contrast of the mark between gene body and background. (B) Plot of mean H3K36me3 mark intensity 
at gene bodies as a function of transcription probability and spreading probability. (C) Plot of H3K36me3 specificity at gene 
bodies as a function of transcription probability and spreading probability. (D) Plot of H3K36me3 efficiency at gene bodies 
as a function of transcription probability and spreading probability. 
 
Figure 4. Variable histone turnover reproduces in vivo-like distributions of H3K36me3. (A) In addition to the standard 
constant turnover model, a variable turnover model where histone turnover is incorporated is presented. The rate of 
replication-independent histone turnover is obtained by measuring the profiles of H3.3 over gene bodies from ChIP-seq. (B) 
The constant turnover model reproduces essential features of H3K36me3 as observed from ChIP-seq data, including the 
observed scaling with transcription frequency. (C) The variable turnover model reproduces several in vivo-like features of 
H3K36me3 as observed from ChIP-seq data, including the characteristic asymmetric depletion and scalloped edges at the 
TSS, as well as the observed scaling with transcription frequency. 
 
Figure 5. Validation of transcription-dependent kinetic model of H3K36me3 marking. (A) Analysis of the profile of 
H3K36me3 at gene bodies as a function of transcription frequency following control RNAi silencing of luciferase (siLuc). (B) 
Mean H3K36me3 level scales in the siLuc control with transcription frequency based on analysis of 3’ RNA-seq counts. (C) 
Analysis of the profile of H3K36me3 at gene bodies as a function of transcription frequency following RNAi silencing of 
SPT6 (siSPT6). (D) Mean H3K36me3 level scales in the siSPT6 with transcription frequency based on analysis of 3’ RNA-
seq counts. (E) Analysis of transcription dependent H3K36me3 marking following segmenting transcripts into quintiles. 
Analysis from n=2 independent genome-wide replicates reveals a reduced scaling relation between transcription frequency 
and H3K36me3 levels. (F) Conceptual model describing the scaling relationship between transcription frequency and 
H3K36me3 levels. Deviations from this relation can arise from several sources of site-specific biological regulation. 
 
Supplemental Figure Legends 
 
Figure S1: Relationship between transcription frequency and ChIP-seq enrichment of chromatin marks at gene 
bodies.  The mean ChIP-seq enrichment of (A) H3K4me1, (B) H3K4me3, (C) H3K27ac, (D) H3K27me3, (E) H3K36me3 
and (F) H3K72me2 marks in K562 cells is plotted against the transcript abundance measured by RNA-seq. 
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Figure S2: Analysis of histone marks at gene bodies in A549 cells. (A) H3K36me3 profiles over transcriptionally active 
genes; transcription start sites (TSS) and transcription termination sites (TTS) are highlighted. The individual genes 
clustered by transcription abundance determined by RNA-seq. (B) The mean ChIP-seq enrichment of H3K36me3 scales 
with transcript abundance measured by RNA-seq. (C) Heatmap of H3K36me3 plateaus at individual transcription units with 
their associated RNA-seq output measured by fragments per kilobase million (FPKM). (G) Individual genome browser tracks 
for different chromatin marks in A549 cells. 
 
Figure S3: Analysis of nucleosome occupancy downstream of transcription start sites. (A) Heatmap of MNase-seq 
fragments in K562 cells at individual genes aligned by their transcription start sites (TSSs) and arranged by transcription 
frequency. Arrays of nucleosomes positioned downstream of TSSs are highlighted. (B) Mean nucleosome density 
determined by MNase-seq aggregated across individual genes ordered by their transcription frequency. (C) Phasing of the 
MNase-seq signal is constant.  
 
Figure S4:  Model output spanning all parameters. Dependence of H3K36me3 domain shape and boundaries on 
frequency of transcription-independent spreading, background marking and transcription-dependent marking. The 
probabilities of transcription event (Pi), H3K36me3 propagation by transcription-independent spreading (P+) and by 
transcription-dependent placement (Pn) are underlying variables. 
 
Figure S5:  Nucleosome-free regions do not scale with transcription frequency. (A) Heatmap of MNase-seq fragments 
at individual genes aligned by their TSS and ordered by the size of nucleosome free region. The abundance of transcripts 
of individual genes measured by RNA-seq are highlighted. (B) The transcript abundance measured by RNA-seq plotted 
against size of nucleosome-depleted region (NDR). (C) H3K36me3 levels show no strong relationship with the size of the 
NDR. 
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