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Supplemental Figure S1  

A. Genome browser view (as in Figure 1C).  

B. Metaplots (as in Figure 1D) collected for ChIP-seq samples from (Roadmap Epigenomics            

Consortium et al. 2015). 

C. Scatter showing signal from cfChIP-seq versus Leukocyte ChIP-seq of H3K4me3, H3K4me2,           

and H3K36me3 (similar to Figure 1E) 

D. Estimation of the amount of specific reads in cfChIP-seq. Top panel: box plot of the estimate of                 

%reads that are above background levels for all the cfChIP-seq samples analyzed in the              

manuscript (Table S1) compared to selected ChIP-seq samples from (Roadmap Epigenomics           

Consortium et al. 2015) . Bottom panel: percent of the signal above background that is in                

expected genomic locations (i.e H3K4me1 and H3K4me2 - promoters and enhancers, H3K4me3 -             

promoters, H3K36me3 - gene bodies). For comparison, the same analysis pipeline was applied to              

selected Roadmap Epigenomic ChIP-seq samples against the same marks. 

E. Examples of genome browser view for megakaryocytes promoters. 

  

https://paperpile.com/c/E3JSpZ/D6fZ
https://paperpile.com/c/E3JSpZ/D6fZ
https://paperpile.com/c/E3JSpZ/D6fZ
https://paperpile.com/c/E3JSpZ/D6fZ


 

Supplemental Figure S2  

A. Metaplot and heatmap (as in Figure 2A) of H3K4me3 Leukocytes ChIP-seq (roadmap sample             

E062) (Roadmap Epigenomics Consortium et al. 2015). 

B. Comparison (as in Figure 2B) of ChIP-seq of Leukocytes vs. expression in Leukocytes (roadmap              

sample E062).  

C. Comparison (as in Figure 2B) of H3K4me3 cfChIP signal from a healthy subject (H012.1) against               

expression levels of genes in Liver. 

  

https://paperpile.com/c/E3JSpZ/D6fZ


 

Supplemental Figure S3  

A. Comparison of the expression levels of genes in two clusters of Figure 3A (see inset). Cluster A                 

are 9,376 genes that do not change between samples, and Cluster B are 8,374 genes that exhibit                 

changes between pattern. Violin plots show the distribution of expression levels in three tissues -               

PBMC, Heart, and Liver, from the Roadmap Epigenomics expression data (Roadmap           

Epigenomics Consortium et al. 2015). 

B. Overlap of both clusters with the set of genes with CpG island promoters (blue) and housekeeping                

genes (based on analysis of GTEX compendium (GTEx Consortium 2015), see Methods). For             

clarity we show each cluster in a separate Venn diagram.  

https://paperpile.com/c/E3JSpZ/D6fZ
https://paperpile.com/c/E3JSpZ/D6fZ
https://paperpile.com/c/E3JSpZ/uIMG


 



Supplemental Figure S4  

A. Concept for signature scoring process. 

B. Examples of heart-specific genes in cfChIP samples (left) and in Roadmap Epigenomics            

reference samples (right). Presentation is as in Figure 5D). 

C. Same as B, but with liver-specific genes.  

D. Evaluation of expression programs (as in Figure 5A) on Roadmap Epigenomics reference            

samples. 

  



 



Supplemental Figure S5  

A. Comparison of H3K4me2 with H3K4me3 signal per gene in a healthy subject and cancer patient  

B. Comparison of H3K4me2 signal per gene between samples.  

C. Distribution of reads for cfChIP-seq with different antibodies on four samples (H012.1, H012.2,             

H013.1, and H013.2). We divided the genome into regions that contain (putative) TSS based on               

our catalogue (see below) and (putative) Enhancers. Since there are regions that are marked as               

both (in different tissues), we consider the intersection separately. For each subset we show the               

fraction of reads mapped to region. Within each bar, the fraction estimated as background (based               

on our background model, Methods) is marked in dark gray.  

D. Box plot for cfChIP signal in tissue-specific enhancers (as in Figure 6B) 

E. Distribution of CDX1 and TCF3 in healthy samples and different patient samples (as in Figure               

5D). 

  



 

  



Supplemental Figure S6  

A. Metaplot showing average H3K36me3 levels along gene body.  

B. Comparison of H3K4me3 and H3K36me3 levels per gene (H3K4me3 on promoters, H3K36me3            

on gene body).  

C. Level of average H3K36me3 levels along genes increases with expression level. 

D. Comparison of H3K36me3 levels per gene between  C002.1 and healthy reference. 

 

 

 

  



Supplemental Tables 

Table S1: Sequencing statistics for each sample 

Sequencing statistics per sample, yield, etc.  

Table S2: Subject clinical information 

Subject basic info, times of collection  

Table S3: Cluster annotations 

EnrichR (Kuleshov et al. 2016) results for each of the clusters of Figure 3. Fields are as follows.                  

Database: database name from the EnrichR databases, Cluster: cluster number, Term: name of enriched              

term, Overlap: X/Y X genes from cluster in Y genes in term, N: number of genes in the cluster,                   

Adjusted.P.value: -log10 p from EnrichR, Q.value: corrected p-value as -log10 q, Genes: genes in the               

overlap. 

Table S4: Cell type signatures  

Each line lists one genomic window with the following fields: Signature: name of the signature (e.g.,                

Liver, or T-cells), Chr: chromosome, Start: start location, End: end location, Gene: gene name if there is a                  

gene (or genes) associated with the location, Type: TSS or background., Browser: browser address line               

that contains the region + 10kb to each direction, Signal: maximal normalized signal in this window in                 

tissues that belong to the positive class, Background: maximal normalize signal in tissues that do not                

belong to the positive class. 

Table S5: Full analysis of signatures vs samples 

Each line list one sample. The first group of columns list the signature value (normalized reads/kb) of the                  

signature in the sample. The second group of columns (header XX-qvalue) lists the -log10 q of the test                  

whether this value is above background. 

Table S6: Compendium of pathways/complexes 

Table S7: Analysis of pathways/complexes 

Z-scores pathway changes.  

Table S8: Significantly high genes in each sample 

Each line lists a gene in one sample. Fields are: Sample: name of sample, Gene: name of gene, Observed                   

https://paperpile.com/c/E3JSpZ/dH93


normalized counts in sample (log2(1+x) transformed), Healthy normalized counts in healthy reference            

group (log2(1+x) transformed), FoldChange: difference between observed and healthy, p-Value: -log10 p            

for a test that observed number of reads is higher than expected value according to healthy reference,                 

Q-Value: -log10 q corrected p-value, Browser window: browser coordinates around gene. 

Table S9: Tumor signatures 

Table S10: Tumor enrichment 

-log10 q-values for hypergeometric enrichment test for highly expressed genes in samples (rows) against              

tumor types (columns). All q-values above 0.001 (e.g., -log10 q < 3) are set to zero. 

Table S11: Data sources 

Table S12: Roadmap samples used 

 

 

 

 



Supplementary Note 

Estimate of cfChIP-seq efficiency 

To get a rough estimate of the cfChIP procedure efficiency, we consider two alternative              
estimates: a global method and a local method.  

Both start by estimating the amount of material in the plasma. 

Assuming one diploid cell contains 6.6pg of DNA, we can use the measured amount of cfDNA                
in each sample to  compute the number of genomes: 

2 / 0.0066N genome =  * V * C  

Where is the sample volume (in ml), and is the cfDNA concentration (in ng/ml).V C   

Assuming an average nucleosome consists of ~200bp (including linker), each genome is            
packed by ~ 1.65*107 nucleosomes and we compute 

N nuc = 1.65 0 N genome *  * 1 7  

This is likely an overestimate of the amount of input material, since not necessarily all cfDNA is                 
packed in nucleosomes. 

The global method is described in the following  scheme: 

 

To estimate the total number of nucleosomes marked by a certain modification, we assume that               
the same percent of the genome is marked in every cell. Denote this to be ( ) we have: p mod  

   N mod = N nuc * p mod    



If we estimate the number of marked nucleosomes we captured in total ( ) we can then             C mod     
estimate the yield as  

  C /N  γ mod =  mod mod  

If we also estimate the number of unmarked (background) nucleosomes we captured ( ) we             C bg   
can also estimate the rate of non-specific capture by comparing it to the total input 

  C /N  γ bg =  bg nuc  

This method raises two issues. 1) How do we estimate the percent of nucleosomes in a cell                 
marked by every modification, and 2) how do we estimate the fraction of sequenced reads that                
originated from modified nucleosomes vs. background reads. 

For the percent of marked nucleosomes we use a rough estimate based on ChIP-seq of               
specific blood cells and other quantitative studies of modifications. Single molecule imaging            
(Shema et al. 2016) in multiple cell types show that H3K4me3 levels are fairly consistent at 2%                 
while quantitative MS suggest less than 1% (Zheng, Huang, and Kelleher 2016). Based on              
H3K4me3 ChIP-seq of blood cells we estimate the percent to be: 

  (1%)  0.01p K4me3 =   

Estimation of other marks is roughly as follows: 

  (2.5%)  0.025p K4me2 =   

  (10%)  0.10p K4me1 =   

  (17%)  0.17p K36me3 =   

The second question is how to estimate the amount of captured modified nucleosomes. Here              
we use genomic areas that are not expected to contain marked nucleosomes (based on              
ChIP-seq of multiple tissues) to estimate the observed background rate in terms of reads/kb.           α      
(In fact we use a more nuanced estimate, see below on the precise estimation procedure.)               
According to this logic: 

  and  /1000S bg = α* Lgenome  S mod = Stotal − Sbg  

Where is the total number of unique fragments we recovered and is the  Stotal           3.3 0Lgenome =  * 1 9   
length of the genome. 

Estimating the number of captured fragments from the number of sequenced fragments requires             
considering the sequencing efficiency --- what fraction of the captured fragments (ones that             
reached the last PCR step) were actually sequenced. We estimate this efficiency by examining              
the distribution of duplicate reads in our sequencing output (more below). Given the estimate              

https://paperpile.com/c/E3JSpZ/wxIh
https://paperpile.com/c/E3JSpZ/Cvbs


we estimate γseq   

S /γCmod =  mod seq  

Putting these all together we get: 

  .0066/  γ mod ≈  S .3 0( total − α* 3 * 1 6
 ) * 0 γ  1.6 0 ( seq * p mod * V * C * 2 *  * 1 7)  

And 

  α .3 0 .0066/  γ bg ≈  * 3 * 1 6
 * 0 γ 1.6 0 ( seq * V * C * 2 *  * 1 7)  

 

The alternative local method reasons that every modification has genomic areas which tend to              
be fully marked and others that are completely unmarked. For instance, nucleosomes flanking             
promoters of “housekeeping genes” are expected to be marked by H3K4me3 in all cells, while               
areas distant from genes and enhancers are expected to be unmarked.. The coverage at these               
areas depends on the rates aforementioned and thus can be used to estimate cfChIP efficiency. 

 

More precisely, let be a genomic location, and the number of unique sequenced fragments   l      Sl       
that overlap with it. Then for an unmarked location: 

   (negative location)[S ] NE l =  genome * γbg * γseq  

We emphasize the expectation, since at each specific location the number of fragments will be               
distributed around this mean.  



In a positive location, where we expect that all input nucleosomes are marked, the expectation               
is 

   (positive location)[S ] N γ )E l =  genome * ( mod + γbg * γseq  

The sum is due to the fact that a fragment can be captured in a specific or  γmod + γbg                
non-specific manner.  

To estimate capture rate, we define the coverage in positive location to be the coverage in the                 
95’th percentile of non background regions 

p uantile(95, )C  = q Cmod   

And the coverage in negative locations to be the mean coverage at background regions.      μbg          
Using these we conclude that 

μ /  γbg ≈  bg N( genome * γseq)   

And  

Cp/ γ  γmod ≈  N( genome * γseq) −  bg  

 

Note that this approach circumvents the need to estimate the total number of modified              
nucleosomes in cells. However, it does require to define positive locations that are assumed to               
be modified in all cells --- and while there are locations with strong ChIP-seq peaks in multiple                 
cell types that seem to meet that requirement, we do not have any current experimental               
evidence that support such a claim. 

Table S1 contains the estimates using both methods in the samples where we quantified DNA               
content. 

Estimation of sequence efficiency 

This problem has been examined in the literature (Daley and Smith 2013) and in various tools                
(e.g., Picard’s EstimateLibraryComplexity). Here we derive a simple method that provide an            
initial estimate, although more complex ones exist.  

We can view the sequencing protocols as starting with a small set of molecules that have the                 
sequencing adapters. These are amplified (16 rounds of PCR) and some fraction of the              
amplified fragments is sequenced. Due to the large amplification and the numbers of initial              
fractions (~millions), we can think of the number of times we see a specific input molecule to be                  
Poisson distributed with a parameter which summarizes the rate at which we see this specific     λ            
fragment when collecting the actual number of sequences.  

https://paperpile.com/c/E3JSpZ/ROjq


In processing the sequenced reads, we view duplicates as artifacts of the sequencing and not               
as two identical input molecules. Indeed, comparing two technical repeats from the same             
plasma sample, we find negligible overlap, suggesting that most duplicates are technical            
artifacts. 

We can summarize the observed duplicate frequency as  

n /np︿k =  k unique  

where are the number of fragments that were duplicated times, and is the number of nk         k    nunique     
unique fragments observed. Estimation of sequencing efficiency can be reduced to estimating            

the number of fragments we did not observe.n0  

The simplest approach is to assume duplicates are due to a Poisson process with unknown               
parameter . To estimate this parameter we need a slightly modified procedure, as we do not λ                
observe fragments with . This results in a truncated likelihood functionk = 0  

(λ) (p(k| k , λ) lpoisson =  ∑
 

k = 1
nk log > 0  =  ∑

 

k = 1
nk log  (1 )(  1

k! + k log λ − log − e−λ )   

We can find the maximum likelihood  

(λ)λ
︿

=  arg max
λ

lpoisson   

using line search. Once we have this parameter we can estimate the number of total fragments                
(including the ones we did not see). Briefly, based on the Poisson model,  we conclude that 

(k 0 | λ ) n 1nunique = ntotal * p >  * =  total * ( − e ) −λ*
  

Where is the unknown real rate. Since sequencing efficiency is the fraction of observed λ  *              
fragments 

/n   γseq = nunique total = 1 − e−λ* ≈ 1 − e−λ
︿

 

In many cases the actual distribution of duplicates does not match a Poisson distribution. For               
example  

 



  

H012.1 - Poisson fit (blue) does not match 
observed duplication frequency (gray). Note 
that this sample was sequenced deeply, and 
the estimate is that there are few unseen 
sequences. 
 
Estimate of  is 99.5%γseq  

C002.2 - Poisson fit matches nicely the 
observed duplication frequency. This sample 
was sequenced much more shallow and most 
fragments were seen only once. The estimate 
is that there are many more unseen 
sequences. 
 
Estimate of  is 39.7%γseq  

 

We reasoned that this discrepancy might be due to some fragments undergoing early             
duplication(s), thus amplified more than the rest. However, since the actual rate depends on              
decisions downstream of amplification (e.g., loading libraries onto sequencer etc), we need to             
assume that the rate of reproducing each copy of these “early winners” is the same as the rest                  
of the fragments. This means that we assume a mixture of Poissons: 

(k | λ, ρ ..., ) (k | m )pmix  1 ρM =  ∑
M

m = 1
ρm* ppoisson * λ  

Where are mixture weights that estimate the proportion of fragments that are amplified ...,ρ1 ρM             
once, twice, thrice and so on. Fitting this mixture model requires performing numerical             
optimization to find parameters that maximize the likelihood. For our two examples we get: 
 



  

H012.1 - with mixture fit (red line). This is 
much closer to the empirical distribution, and 
makes a substantially different estimate of the 
number of unseen fragments. 
 
Estimate of  is 91.4%γseq  

C002.2 - here the mixture fit is close to the 
Poisson fit above. 
 
Estimate of  is 38.3%γseq  

We can gain better sense of these by examining the individual components that make up the                
mix. 

 

  

H012.1 - the mixture is made up of several 
components  

C002 - the mixture is dominated by the first 
component 

 

Our conclusion (based on these two examples and more) is that for shallow sequenced              
samples (e.g., similar to C002.2), the two estimators of efficiency are similar, while for deeply               
sequenced samples (e.g., similar to H012.1), there are differences in the estimates. Since in              
these cases the mixture model is closer to the observed duplication frequency we consider it as                
the more accurate estimate. 



To be clear, the estimate of sequencing efficiency according to this model is similar to above: 

(k 0 | λ, , .., )  γseq ≈ pmix >  ρ1 . ρM = 1 − ∑
M

m=1
ρm* e−m λ*  

 

 

TSS location catalogue 

We constructed a TSS catalogue through the following steps. All steps were carried on the               
“hg19” human genome assembly: 

1. We downloaded ChromHMM calls for 111 tissues and cell types throughout the human             
genome from Roadmap Epigenomics website (Table S7). UCSC Browser known gene           
annotations and ENSEMBL transcript annotations were downloaded (Table S7). 

2. We filtered all genomic ranges that were marked with states "1_TssA" or "2_TssAFlnk”,             
and merged adjacent ranges that were marked as either state in exactly the same set of                
tissues. We call these “ChromHMM TSS windows”. We found 640,744 such windows.            
Each ChromHMM TSS window was assigned gene name(s) through the following steps:  

a. If it was within 2.5Kb of one or more TSSs in UCSC known gene annotation, it                
was assigned the name of these genes.  

b. If not, we searched for an ENSEMBL transcript start within 2.5Kb. Again if such              
were found the TSS window received the gene name associated with the            
transcript.  

c. All other TSS windows remained without a name 

This procedure assigned names to 190,552 windows, and 450,192 windows remained           
unnamed. In some cases the unnamed TSS windows can be seen as alternative starts              
of an annotated gene (either upstream or downstream of the annotated TSS), but in              
many other cases these were far from transcript starts. In general, after correcting for              
length, the rate of seeing a read from H3K4me3 cfChIP in unnamed windows is 6-fold               
smaller than that of named windows. This suggests that most of the unnamed windows              
are not observed in our data. In terms of coverage, named TSS windows cover 4.46% of                
the genome, and unnamed ones an additional 7.03%. Given the estimate of 1-2% of              
nucleosomes in a cell carrying the H3K4me3 mark, we conclude that most of these              
putative promoters are not used in any given cell. 

3. To include transcripts that are not represented in the TSS catalogue, we examined all              
genes in the UCSC known gene database and all transcripts in the ENSEMBL database.              



For each gene we defined a TSS window of size 3Kb centered on the TSS. We                
discarded all such windows that overlapped with a TSS window described in step 2. In               
total this step added 11,518 and 36,166 TSS windows from UCSC known genes and              
ENSEMBL transcripts, respectively. 

4. We created windows that tile the remaining genomic regions between TSS windows. For             
each TSS window without an adjacent TSS window, we created “flanking” regions of size              
1Kb (or less). This resulted in 475,727 flanking windows (as some of the TSS windows               
are adjacent to each other, depending on ChromHMM calls in different tissues). The             
remaining uncovered regions were tiled with “background” regions of size 5Kb (or less).             
In total there were 485,245 such windows. 

The resulting catalogue was saved as BED file (TSS.bed). This catalogue was used in all               
analysis of H3K4me3 cfChIP and re-analysis of reference ChIP-seq data. 

Enhancer location catalogue 

The construction of enhancer catalogue was similar to that of the TSS catalogue, except for               
Step 2 above where we included the enhancer states “6_EnhG” and “7_Enh”. Similarly to the               
TSS catalogue construction, here too we merged consecutive enhancer windows that are called             
in the same tissues. In Step 3 we only added additional TSSs (as above). Step 4 was left                  
unchanged, except for the fact that we considered regions that were neither TSS nor              
Enhancers. 

The resulting catalogue contained 2,345,831 enhancer windows,, most of which were relatively            
short: 91.9% of the windows are 1kb or shorter, and 49.2% are only 200bp long (the basic                 
length of a ChromHMM call).  Nonetheless, the these windows covers 40% of the genome.  

We used this for the analysis of H3K4me1 and H3K4me2 cfChIP. 

Gene body location catalogue 

The construction this catalogue was similar to that of the TSS catalogue, except that in Step 2                 
we collected only the transcribed states “3_TxFlnk”, “4_Tx”, and “5_TxWk”. We named regions if              
they overlapped with a annotated  gene or transcript. 

In Step 3 we added UCSC known gene database and all transcripts in the ENSEMBL database                
and added the gene body, if it did not overlap with regions from Step 2. The resulting gene                  
regions are often very long, and thus before Step 4, all gene regions were tiled with 5kb size                  
windows. Step 4 was left unchanged, except it considered regions that were not genes. 

The resulting catalogue contained 1,021,467 gene windows based on ChromHMM calls, and an             
additional 4,301 and 861 gene windows based on UCSC genes and ENSEMBL transcripts that              
were not covered by ChromHMM. This is consistent with the fact that most genes were               
expressed in one of the tissues covered by the Roadmap Epigenomics project. Most of the               



genome (71%) was covered by these windows --- recall that these include both exonic and               
intronic regions. 

 We used this catalogue for the analysis of H3K36me3 cfChIP. 

Processing of sequencing files 

Base calling was performed with bcl2fastq (2.18). Paired-end reads were mapped to the human              
genomes (‘hg19’ assembly) using bowtie2 with “no-mixed” and “no-discordant” flags descarding           
reads with quality 0. BEDPE files (start and end of every fragment) were obtained using               
BEDtools “bamtobed” with “bedpe” flag, discarding duplicate fragments.  

BEDPE files were converted to coverage counts over windows in the catalogue using BEDtools              
“intersect” command and also using BioConductor “GenomicRanges” countOverlaps() function.         
Both methods count for each window the number of sequenced fragments that overlap with the               
window. 

Estimating background signal 

Every ChIP procedure has non-specific background signal. In the case of cfChIP the             
background is due to some forms of non-specific binding of DNA and chromatin fragments to               
the beads-antibody complex. Our experience showed that the background levels varied           
between samples and batches of bead-antibody ligation. Moreover, the sequencing depth           
varied between samples, and in a deeply sequenced sample the number of background reads              
increases. Thus, it was important to estimate background signal levels to be able to contrast               
them with actual signal. 

We initially applied a simple minded procedure for removing background in H3K4me3 signal.             
We reasoned that virtually all of the specific signal in H3K4me3 is at TSS and gene 5’ regions.                  
Thus, reads in other locations represent background. To account for TSSs that are not              
annotated in our TSS catalogue, we reasoned that some small fraction of background windows              
might contain real signal, and thus we removed the ones with the highest values.  

In more detail we did the following. We created a vector with the coverage of all “background”                 
windows of size >= 4Kb (323,237 out of 485,245).  And applied the following procedure: 

estimateBackground X) (  
 uantile(95, X)T ← q   // find the 95th quantile of X 

[X  T ]X ← X ≤   // restrict ourselves to values below T 

(x  | x  )λ̂ =  arg max
λ

∏
|X |

i = 1
P λ i i ≤ T  // maximum likelihood of truncated poisson 

Return /5λ̂  // convert to reads/Kb  

This procedure was relatively robust to the choice of quantile for removing outlier windows.  



However, in some samples the Poisson distribution was not a good fit for background values.               
Further examination revealed that much of this discrepancy was due to local background             
effects. One local effect is the sex chromosomes that appear in 50% levels in males, and 100%                 
(X) and 0% (Y) in female. These were not the only local effects - some regions showed higher                  
levels of background. This could be due to segmental duplication (regions close to centromeres              
and telomeres) or accessibility issues. Moreover, in cancer samples there were clear            
aberrations that were patient specific.  

To overcome these issues, we devised a localized background rate estimate. We used the              
above estimation procedure, but in successive levels of resolution. 

1. Genome-wide background level. 
2. Chromosome-specific background. 
3. Tiles of 10Mb covering each chromosome at offsets of 2.5Mb. 
4. Tiles of 5Mb covering each chromosome at offset of 1.25Mb. 

The estimate at each level used the estimate of the previous level as a prior (using                
pseudo-counts of 1000 windows in levels 2 and 3, and 500 windows in level 4). 

The result is an estimate of background coverage rate at overlapping tiles of 5Mb. To get a                 
single estimate, for each location we take the maximum of the estimate of the tiles covering it                 
(typically 4 tiles). We choose the maximum as we reasoned that over-estimate of background              
might reduce the estimated signal but would reduce the number of background artifact. 

Example of the background estimate for a healthy sample (male) 

 

The gray line displays the genome-wide estimate, the black lines the chromosome-specific            
estimate, the blue line the larger tile-based estimates, and the light blue points the local               
estimate (based on the smaller tiles) 

In this example the chrX background is lower than autosomal chromosomes (slightly more than              
half) and chrY background is a bit lower. Many locations in chrY are orthologous to ones in chrX                  
leading to skewed estimates. Other deviations occur close to centromeres where we find the              
background level to be higher in some chromosomes (e.g., chr1, chr9). 

A healthy female sample is similar, except for the sex chromosomes. 



 

When we examine a patient with cancer, the background estimate is much more variable,              
presumably reflecting chromosomal aberrations in the tumor (e.g., duplication in chr13 and in an              
arm of chr8). 

 

Gene-level signal and normalization 

For each gene we assigned a set of TSS windows that are annotated with the gene name. For                  
each sample we computed the actual total coverage over the windows assigned to the gene               
and the expected mean of background reads over these windows (using possibly different local              
rate at each window and the window size). 

More precisely,  

C[g, ]s  =  ∑
 

w∈W g

C[w, ]s    

[w, ] idth(w)B[g, ]s  =  ∑
 

w∈W g

λ̂ s  * w   

where is the set of windows assigned to gene , the coverage of window in W g         g  C[w, ]s      w  
sample , and  the estimated background rate of window in sample .s [w, ]λ̂ s  w s  

The null assumption is that the coverage is distributed as a Poisson with parameter       Cg        .Bg 

Thus, we argued that values much larger than expected are signal. We define the raw signal at                 
gene  asg  



 if  and 0 otherwise S[g, ]s  = C[g, ]s  − B[g, ]s   C[g, ]s  ≥ B[g, ]s  + 2√B[g, ]s   

Thus we consider to be a real signal if it is larger than two standard deviations from the   C[g, ]s                 
mean of the background level for the gene. 

Applying this procedure for each sample generates a matrix of counts for each gene in each                
sample. We also include in this matrix the samples from Roadmap Epigenomics data of              
H3K4me3 ChIP which were processed in the same manner. 

To normalize the effect of different coverage, we reasoned that the signal at promoters of               
“housekeeping” autosomal genes should be similar in different samples. We defined these            
genes as ones with highly significant signal in a set of reference healthy samples. The precise                
choice of significance level did not change the normalization. 

On the matrix of raw signal samples X housekeeping genes we applied quantile normalization              
(Bioconductor normalize.quantiles()). This resulted in normalized values for housekeeping         
genes in each sample. However, it does not assign values for all other genes. We thus,                
estimate a multiplicative normalization factor for each sample to best match quantile-normalized            
values to raw values. For most samples the relation between the two was linear.  

The scaling factors were rescaled so that the total normalized signal (below) at the set of                
reference healthy samples will be a million on average. 

Using these normalization factors, we computed for each sample the normalized gene    [s]ν          
levels 

[g, ] ν[s] S[g, ]N s =  *  s   

Using the same normalization procedure we also normalized the coverage at each window in              
each sample  

[w, ] ν[s] (C[w, ] [w, ] , )N s =  *  max
 

s − B s
 

0  

Defining tissue-specific signature 

Using the Roadmap Epigenomics metadata table we defined sets of Roadmap samples that             
belonged to a tissue or group of tissues (see Table S8). These definitions included some               
redundancies. For example, the group Lymphocytes included B-Cells, T-Cells, and NK           
samples, and thus subsumed each of these groups. 

We then defined for each group the set of specific windows, as windows passing the following             w    
criteria: 

1. The window  is on an autosomal chromosomew  
2. In at least one of the atlas samples in the group, [w, ] 5N s ≥ 3  



3. In all atlas samples outside the group, [w, ] 5N s < 1  
4. In all windows  within 1Kb of , w′ w [w, ] 5N s < 1  

The last condition is added as we noticed that often when a gene is expressed there is “spill                  
over” to neighboring windows.  

Groups for which we found less than 4 specific windows were considered to be without               
signature. For all other groups, we define the signature as the set of specific windows (see                
Table S2). 

Statistical tests 

We use two main tests in the manuscript. 

Detection test. To test whether a gene or a signature is present above background in a                
sample, we used a Poisson distribution. More specifically: 

computeDetectionPValue W , )( s  

[w, ]λ ← ∑
 

w∈W
B s  

[w, ]x ← ∑
 

w∈W
C s  

Return (X )P λ ≥ x  // Poisson p-value 

Here is a set of windows, it can be the windows associated with a gene or tissue-specific W                 
signature as above. 

High coverage test. To test whether the observed signal of a set of genes is higher than                 
expected in healthy samples, we used a reference of healthy subjects to define the expected               
normalized signal of the gene as the average of in the reference samples.[g]H [g, ] N s  

We then used the following procedure 

computeOverExpressionPValue(G,s)  

[g, ] [g]λ ← ∑
 

g∈G
B s + 1

ν[s] * ∑
 

g∈G
H  

[g, ]x ← ∑
 

g∈G
C s  

Return (X )P λ ≥ x  // Poisson p-value 

The main difference from the previous test is that we included the contribution of healthy               
samples after we transform from normalized units to the units of the specific sample. The               
second difference is that we work at the level of genes. 
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