1	
2	
3	
4	The effect of light vs dark coat color on thermal status in
5	Labrador Retriever dogs.
6	
7	
8	Authors:
9	Caitlin Neander ¹ , Janice Baker ² , Kathleen Kelsey ³ , Jean Feugang ⁴ , Erin Perry ^{1*}
10	
11	Affiliations:
12 13	¹ Department of Animal Science, Food and Nutrition, College of Agriculture Science, Southern Illinois University, Carbondale, IL
14	² Veterinary Tactical Group, Vass, NC 28394
15 16	³ Working Dog Enterprises, Sturgeon, MO 65284
17 18 19	⁴ Department of Animal and Dairy Science, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS
20 21	
22	* Corresponding author: <u>erin.perry@siu.edu</u>
23	
24	
25	
26	
27	
28	

29 Abstract

30	Although dark coat color in dogs has been theorized as a risk factor for thermal stress,
31	there is little evidence in the scientific literature to support that position. We utilized 16 non-
32	conditioned Labradors (8 black and 8 yellow) in a three-phase test to examine effects of coat
33	color on thermal status of the dog. Rectal, gastrointestinal (GI), surface temperature, and
34	respiration rate measured in breaths per minute (bpm), were collected prior to (Baseline — phase
35	1) and immediately after a controlled 30-minute walk in an open-air environment on a sunny day
36	(Sunlight — phase 2). Follow up measurements were taken 15 minutes after walking (Cool
37	down – phase 3) to determine post-exposure return to baseline. No effect of coat color was
38	measured for rectal, gastrointestinal or surface temperature, or respiration ($P > 0.05$) in dogs
39	following their 30-minute walk. Temperatures increased similarly across both coat colors (rectal
40	1.88 °C and 1.83 °C; GI 1.89 °C and 1.94 °C; eye 1.89 °C and 1.94 °C; abdominal 2.93 °C and
41	2.35 °C) for black and yellow dogs respectively during the sunlight phase (P > 0.05). All
42	temperatures and respiration rates decreased similarly across coat colors for rectal (0.9°C and 1.0
43	°C) and GI (1.5 °C and 1.3°C) for black and yellow dogs respectively (P>0.05). Similarly, sex did
44	not impact thermal status across rectal, gastrointestinal or surface temperature or respiration rates
45	measured ($P > 0.05$). These data contradict the commonly held theory that dogs with darker coat
46	color may experience a greater thermal change when exposed to direct sunlight compared to
47	dogs with a lighter coat color.
48	

49 Keywords: Canine, Labradors, Thermal Stress, Heat Stress, Dog, Thermal Imaging,

50 Temperature, Coat Color

51

52 Introduction

53 Darker coat color has been suggested as a potential risk factor for heat injury in dogs in 54 several publications [1-4] However, little evidence is available to support this theory, and a 55 majority of these claims appear in the introduction or discussion sections of publications, or in review articles, with no supporting data. One study in Greyhounds reported higher rectal 56 57 temperatures in darker colored dogs following exercise but utilized greater numbers of males in the darker coat participant group. These males were significantly larger in size than their female 58 59 cohorts, so it is not known if sex or size played a role in their results. In addition, the darker 60 colored group (n = 166) had more than twice the number of the light coated group (n = 63) 61 which may have impacted the outcome [5]. In another study using Newfoundland dogs, researchers 62 tested patches of white and black fur exposed to heat lamps. Authors measured the microclimate of the 63 dog's coat and reported no significant difference in temperature between white and black fur regions on the dogs [6]. However, this study did not examine two separate groups of dogs with single coat 64 65 colors (i.e. solid black or white).

Work in cattle has demonstrated an impact on thermal status associated with coat color, but 66 this has not been thoroughly investigated in dogs. Increased solar absorption in darker coated cattle 67 68 has been demonstrated to increase overall heat gain [7]. Darker cattle exposed to direct sunlight had a 69 surface temperature gain of 4.8 °C, while lighter cattle only increased surface temperature by 0.7 °C 70 [8]. Additionally, this study reported increased incidence of elevated surface temperature, respiration, 71 sweating, and heat stress signals in darker colored cattle compared to lighter colored cattle. 72 The risk of thermal injury to dogs is of significant concern to the veterinary community and is 73 considered a common occurrence especially during the summer months. Evidence to validate the

74 ideas surrounding coat color as a risk factor would be helpful in establishing a better understanding of any increased danger facing dark coated dogs. Assessment of risk for heat injury can only be 75 accurately evaluated by studying dogs that incur heat injury in comparison to dogs that do not, 76 77 whether prospectively or retrospectively. Prospective studies of this nature are inherently difficult to 78 conduct as our current standards of ethics and animal stewardship generally preclude experimentally 79 induced heat injury in dogs. In addition, given the relatively low incidence of naturally occurring heat 80 injury in any given population of dogs, prospective studies relying on naturally occurring cases would require a significant amount of time to complete. Thus, risk of heat injury is primarily based on 81 82 observations of normal thermoregulatory reactions to safe levels of thermal stress, typically induced by exercise. In this study, we exposed dogs of light and dark coat colors to mild exercise (i.e. loose 83 84 leash walk) in direct sunlight to assess thermoregulatory reactions and measure various parameters 85 associated with body temperature and thermoregulation. The objective of this research was to identify the impact of coat color on the thermal status of dogs exposed to direct sunlight and to measure the 86 87 increase in temperature experienced by black dogs as compared to yellow dogs. 88

89 Materials and Methods

90 Animals and Diets

Institutional Animal Care and Use approval (protocol #18-022) was received from
Southern Illinois University prior to initiation of the study. The study was conducted in midJune in Carbondale, Illinois with seasonally typical environmental conditions (mean outdoor
temperature 29.34±1.76 °C, 84.81±3.17 °F). Non-conditioned Labrador Retrievers (n = 16)
from a single kennel and with similar genetics were recruited for participation in this study.
"Non-conditioned" was determined as having daily exercise consisting of 4±1 hours of daily

97	group turnout but the absence of a specific conditioning or exercise program. All dogs
98	utilized came from 2 litters to limit for genetic variability. Dogs had a mean age of 2.73±1.86
99	years, mean weight 26.6±3.32 kg and a mean BCS of 5.5±1.5. Study participants were maintained
100	on a commercial kibble diet (Victor High Energy, Mid America Pet Food Mount Pleasant, Texas)
101	and fed twice daily for 60 days prior to the study. All dogs were up to date on vaccinations (rabies,
102	bordetella, DHLPP) and received a monthly standardized parasite control regimen (Frontline Plus,
103	Merial France) (Interceptor Plus, Elanco, Greenfield, IN). All study participants received a health
104	screening by a licensed veterinarian prior to inclusion in the study and were also assigned a body
105	condition score (BCS) by a trained researcher (Nestle Purina Petcare Company, St. Louis, MO).
106	Following this exam, one canine was excluded from participation due to a previously undiagnosed
107	dermal condition. Dogs of opposite colors were paired according to sex and BCS for participation.
108	Phases
109	The study was separated into three phases. Phase 1 (Baseline) included housing of each dog
110	for 30 uninterrupted minutes in a climate-controlled room in individual crates. Phase 2 (Sunlight)
111	consisted of 30 minutes of loose leash walking at a controlled pace in an uncovered outdoor sandy
112	arena measuring 30m by 60m. The study concluded with Phase 3 (Cooling) and incorporated a 15-
113	minute rest in a climate-controlled room in individual crates. All dogs were monitored throughout the
114	study by veterinary staff stationed in the center of the outdoor arena and climate-controlled holding

area, and all dogs were allowed ad libitum access to water while in their crates during both the

116 Baseline and Cooling phases of the study.

Environmental conditions in the outdoor arena and in the climate-controlled room were
 monitored (Accurite Wireless Weather Station, Chaney Instrument Co. Lake Geneva, WI) to record
 temperature, humidity and heat index every five minutes.

120 Data Collection

121	Thermal status data for each dog were captured immediately following each of the three
122	phases utilizing four methods as shown in Fig 1. Gastrointestinal (GI) data were captured using an
123	ingestible thermistor orally administered (CorTemp, CorTemp Inc, Palmetto, FL) 30 minutes
124	(±15) prior to the Baseline phase. GI temperatures were monitored with a handheld wireless
125	reader (CorTemp, HQInc Palmetto, FL.). GI temperature was recorded in triplicate for each data
126	collection period to ensure accuracy and the mean was utilized for statistical analysis. Rectal
127	measurements were collected in tandem, using calibrated, 8second digital thermometers
128	(American Diagnostics Company ADTEMP II model #413B) inserted to a depth of
129	approximately 2 cm with petroleum jelly to minimize canine discomfort. Thermal images of
130	participants were captured using a forward-looking infrared thermal camera (FLIR T400 thermal
131	camera) at an approximate distance of 2 meters from the canine to capture body surface
132	temperature as previously described [9-12]. To reduce the effects of environmental factors, all
133	images were captured in an enclosed area with no exposure to wind or direct sunlight. Thermal
134	images were analyzed using thermography software (ThermaCam Researcher Professional 2.9,
135	FLIR Systems Inc. Wilson, OR, USA) to determine body surface temperature at the left eye
136	and caudal abdomen as described previously [13-15] with examples shown in Fig 2.
137 138 139 140 141	 Fig 1. Pictogram representing the phases and points of data collection. Fig 2. Thermography¹ depicting Baseline² (left) and Sunlight³ (right) values for Labrador Black
142 143 144	6. The two areas of interest were left eye ⁴ and left caudal abdomen ⁵ .
145	Digital video was utilized to record respiration rates (GoPro Camera, GoPro Inc. San
146	Mateo, Ca) for 30 seconds at the start of each data collection period prior to rectal temperature

147	monitoring. The head, face, and tongue were captured and later played back in slow motion to
148	count respiration during this 30 second period. A single independent observer was utilized
149	throughout all canine respiration videos to minimize observer bias. Respiration was calculated as
150	breaths per minute (BPM) = 30 -second respiration x 2.

151 Statistical Analysis

152	All data were analyzed using SAS version 9.4 (SAS Institute Inc., Cary, NC). Each
153	phase (baseline, sunlight, cooling) was examined using a Proc Glm repeated measures test.
154	Baseline and Sunlight temperatures were examined using a paired t test to identify main effects
155	of coat color and sex for dependent variables including rectal, gastrointestinal, surface
156	temperature, respiration rate, and water consumption.
157	Additionally, a multivariate ANOVA was utilized to identify differences associated with the
158	interactions of coat color and sex on rectal, gastrointestinal, body surface temperature,
159	respiration, and water consumption. Water consumption throughout the data collection period
160	was calculated as: Water offered – Water remaining = Water consumed
161	Return to baseline was identified as having achieved a cooling phase temperature within 0.5°F of the
162	dog's initial baseline temperature using the below equations. If the cooling phase temperature had
163	fallen to within 0.5°F, it was deemed "yes" the dog returned to a baseline temperature. The following
164	equation was utilized:
165	Baseline – Cooling $\leq 0.5^{\circ}$ F = Return to Baseline (Yes)
166	Baseline – Cooling $\ge 0.5^{\circ}$ F = Return to Baseline (No)
167	Return to baseline was reported as Yes or No and was analyzed using the Proc Freq procedure of SAS
168	(chi square) to examine differences coat color and sex. Significance for all outcomes was established

169 at P < 0.05.

170

171 **Results**

- 172 Following 30 minutes of walking in direct sunlight, rectal temperatures increased by 1.88°C in
- black dogs, and 1.83 °C in yellow coated dogs (P<0.0001). Similarly, GI temperatures
- increased by 1.89 $^{\circ}$ C in black coated dogs, and 1.94 $^{\circ}$ C in the yellow group, (P < 0.0001) as
- 175 shown in Fig 3. Eye surface temperature increased by 2.8 $^{\circ}$ C black and 1.93 $^{\circ}$ C yellow (P <
- 176 0.005) and abdominal surface temperature increased by 2.93 $^{\circ}$ C black and 2.35 $^{\circ}$ C yellow (P <
- 177 0.0001). See Figs 3-4, Table 1. No significant temperature difference was noted between black
- 178 and yellow Labradors across all phases.

Fig 3. Mean change in rectal¹ and gastrointestinal temperature $(GI)^2$ across three phases in non-

- 180 conditioned Labradors.
- 181
- 182 **Fig 4.** Mean change in body surface temperature measured by thermography¹ at the eye² and
- 183 abdomen³ in non-conditioned Labradors
- 184

Table 1. Mean values of thermal status indicators₁ across three phases (Baseline², Sunlight³, Cooling⁴) in

186 Labradors grouped by coat color.

Variable	Color	Baseline	P-value	Sunlight	P-value	Cooling	P-value
Rectal ₅	Black	38.44±0.37 °C	0.8404	40.3±0.41 °C b	0.9354	39.46±0.34	0.4673
		a		104.5±0.8 °F		°C°	
		101.2±0.7 °F				103±0.6 °F	
	Yellow	38.51±0.52 °C		40.31±0.34 °C		39.43±0.30	
		a		b		°C°	
		101.3±1.0 °F		104.6±0.6 °F		102.8±0.4 °F	
GI ₆	Black	38.76±0.25 °C	0.6279	40.68±0.47 °C	0.8286	39.2±0.6 °C°	0.8153
		a		b		102.6±1.1 °F	
		101.8±0.5 °F		105.2±0.9 °F			
	Yellow	38.66±0.48 °C		40.61±0.21°C		39.29±0.26	
		a		b		°C°	
		101.6±0.9 °F		105.1±0.4 °F		102.6±0.5	
						°C°	
Eye ₇	Black	36.09±0.57 °C	0.0934	38.89±0.42 °C	0.3004	37.4±0.5 °C°	0.0973
-		a		b		99.3±0.96 °F	
		97.0±1.1 °F		102.0±0.8 °F			

	Yellow	36.68±0.55 °C		38.6±0.54 °C b		36.9±0.51	
		а		101.5±1.0 °F		°C°	
		98.0±1.1 °F				98.4±1.0 °F	
Abdominal ₈	Black	36.24±0.91 °C	0.7763	39.15±0.73 °C	0.0908	37.4±0.5 °C°	0.1002
		a		b		100.7±1.3 °F	
		97.2±1.7 °F		102.5±1.4 °F			
	Yellow	36.01±1.44 °C		38.4±0.75 °C b		36.9±0.51	
		a		101.1±1.5 °F		°C°	
		96.9±2.9 °F				99.6±1.2 °F	
Respiration ₉	Black	123.3±20.5ª	0.7206	270.5±40.2 ^b	0.744	241.7±24.5°	0.2998
	Yellow	132.9±40.7 ^a		276.6±28.2 ^b		216.4±59.7°	

187

188 *Notes a significant difference observed by coat color

189 ^{a,b,c}Notes a significant difference observed by phase

¹Thermal status indicators including rectal, gastrointestinal, eye and abdominal temperature

¹⁹¹ ²Baseline occurred 30 minutes prior to sunlight exposure (sunlight) and recorded initial measurements

³Sunlight phase consisted of 30 minutes of active walking in a sunny outdoor area on a leash

⁴Cooling phase occurred 15 minutes after walking in a climate-controlled room with water

⁵Rectal temperature was recorded by inserting thermometer to a depth of approximately 2 cm with

195 petroleum jelly

⁶GI (gastrointestinal) temperature was recorded with an ingestible thermistor CorTemp 30 minutes prior
 to baseline

⁷Eye temperature was captured using thermography FLIR T400 at the left eye

⁸Abdominal temperature was captured using thermography FLIR T400 at the left caudal abdomen

- ⁹Respiration rate was captured for 30 seconds utilizing a GoPro, depicted as breaths per minute (bpm)
- 202 Similarly, all temperature measurements significantly decreased from sunlight to cooling
- 203 phase. Following cessation of cooling phase, rectal temperatures decreased by 0.84°C black and 1.0

[°]C yellow (P<0.0001) and GI temperatures decreased 1.45 C in black dogs and 1.33 in yellow

205 dogs (P<0.0001) as shown in Fig 3. Thermal eye surface temperature decreased 1.49 °C in black

and 1.71 °C in yellow dogs (P < 0.005), and abdominal surface temperature decreased by 1.0 °C

207 black and 0.85 °C yellow (P < 0.0001) as shown in Fig 4. A similar change in respiration rates

208 was shown across both coat colors of Labradors, meaning that coat color did not significantly

impact breathing rates across phases (P > 0.05), as shown in Fig 5.

210

Fig 5. Mean change in respiration rates¹ across three phases in non-conditioned Labradors.

212

214	Exposure to walking in sunlight significantly increased the rectal (1.84°C), GI (1.94°C), eye
215	surface (2.41°C) and abdominal surface (2.67°C) temperatures of all dogs when Baseline and
216	Sunlight temperatures were compared ($P < 0.0001$). Furthermore, returning to the climate-
217	controlled room significantly decreased the rectal (0.7° C), GI (1.41° C), eye surface (1.58° C), and
218	abdominal surface (0.92°C) temperature of all dogs (P < 0.0001).
219 220	After completion of 30 minutes in direct sunlight walking, both males and females saw a similar
221	increase across all temperatures, rectal (1.83°C male, 1.84°C female), GI (2.04°C male, 1.87°C
222	female), eye surface (2.3°C 2 male, 2.5°C female) and abdominal surface (2.93°C male and 2.5
223	°C female). A similar fall in temperatures for both sexes was seen after 15 minutes of passive
224	cooling, rectal (0.92°C male, 0.89°C female), GI (1.32°C male, 1.47°C female), eye surface
225	(1.62°C male, 1.57°C female), and abdominal surface (1.0°C male, 0.87°C female) as shown in
226	Figures 6-7, Table 2.
227 228 229	Fig 6. Mean change in rectal ¹ and gastrointestinal temperature (GI) ² across three phases in non-conditioned Labradors.
230 231 232 233	Fig 7. Mean change in surface temperature measured by thermography ¹ at the eye ² and abdomen ³ in non-conditioned Labradors across three phases.
234 235	Table 2. Mean values of thermal ¹ status indicators across three phases (Baseline ² , Sunlight ³ , Cooling ⁴) in Labradors grouped by sex.

VARIABLE	SEX	BASELINE	P-	SUNLIGHT	P-VALUE	COOLING	P-
			VALUE				VALUE
RECTAL ₅	Male	38.52±0.35 °C ª	0.8536	40.35±0.31 °C b	0.6991	39.43±0.3 °C°	0.7511
		101.3±0.7°F		104.6±0.6 °F		103±0.6 °F	
	Female	38.44±.5 °C ª		40.28±0.41 °C b		39.39±0.27 °C°	
		101.2±0.9 °F		104.5±0.8 °F		102.9±0.5 °F	
GI ₆	Male	38.68±0.36 °C ª	0.9407	40.72±0.21 °C b	0.6005	39.4±0.41 °C°	0.3736
		101.7±0.7 °F		105.3±0.4 °F		102.9±0.8 °F	
	Female	38.73±0.39 °C ª		40.6±0.44 °C b		39.13±0.49 °C°	
		101.7±0.7 °F		105.1±0.9 °F		102.4±0.9 °F	

			1			1					
EYE ₇		Male	36.58±0.64 °C ª	0.2509	38.9±0.14 °C b	0.3087	37.28±0.5 °C°	0.5457			
			97.9±1.3 °F		102.0±0.3 °F	-	99.1±1.0 °F				
		Female	36.16±0.57 °C ª		38.66±0.62 °C b		37.09±0.59 °C°				
			97.1±1.1 °F		101.6±1.2 °F		98.8±1.1 °F				
ABDO	MINAL ₈	Male	36.2±0.95 °C ª	0.8360	39.13±0.34 °C b	0.1674	38.13±0.45 °C°	0.9533			
			97.2±2.0 °F	-	102.4±0.7 °F	-	100.6±0.9 °F				
		Female	36.09±1.33 °C a		38.58±0.97 °C ^b		37.71±0.81 °C°				
			97.0±2.5 °F		101.4±1.9 °F		99.9±1.5 °F				
RESP	IRATION ₉	Male	124.0±50.3 a	0.8203	274.0±34.4 ^b	0.9533	225.3±33.9 °	0.8553			
		Female	130.2±51.4 a		272.9±35.9 ^b		230.1±56.0 °				
236											
237											
238	^{a,b,c} Notes a sign	nificant diffe	erence observed by	phase							
239			ncluding rectal, gas								
240	² Baseline occurred 30 minutes prior to sunlight exposure (sunlight) and recorded initial measurements										
241			f 30 minutes of acti								
242			minutes after walk			with water					
243			corded by inserting								
244			erature was recorded			orTemp 30 mi	nutes prior to base	line			
245			red using thermogr								
246			as captured using th								
247	⁹ Respiration rat	te was captu	red for 30seconds u	tilizing a GoF	ro, depicted as brea	ths per minut	e(bpm)				
248											
249											
250	Acro	ss all phas	es of the study,	sex did not	show a significa	ant effect or	n respiration rate	25			
200	11010	ss un prius	es of all staay,		bile ii u signine		i i copii anoni i an				
251	of the Labrac	dors, with	both sexes show	ring a simila	ar increase and d	ecrease in b	opm (P > 0.05),	as			
252	shown in Fig	g 8.									
253											
254	Fig 9 Moon	ahanga in	ragnization rates	l oaroga thr	aa nhaqaa in nan	andition	d Labradara				
254	rig o. Mean	change m	respiration rates	across un	ee phases in non	-conditione	a Labradors.				
255											
256											
0.57	N	сс <u>с</u>				C	, ,·				
257	No et	ffect of coa	at color ($P = 0.53$	(560) or sex	(P = 0.9806) wa	s seen for v	vater consumpti	ion			
258	with black do	ogs consur	ming 173.75±19	5.3 ml and	yellow dogs con	suming					
259	221.21±57.1	ml.									
2.00											
260											
261	No ef	fect of coa	t color was noted	when rectal	temperatures we	ere examined	d for a return to				
262	baseline in 12	2.5% and 2	8.6% of black and	d yellow do	gs respectively, (1	P = 0.5692)	. Similarly, GI				
				-		,	2 /				
263	temperatures	s returned t	to baseline 50%	of black and	d 42.9% of yello	w dogs (P =	= 1.00) and				
264	abdominal -	urface terr	porture with 10	50/ hlaster	and $20 40/$ 11	u do co (D -	0 6000)	ing			
264	abdominal surface temperature with 12.5% black and 28.6% yellow dogs ($P = 0.6080$) returning										

- to baseline values. Conversely, coat color did impact the dog's return to baseline when eye
- surface temperature was examined with 12.5% black and 71.4% yellow dogs achieving baseline

values after their Cooling phase, as shown in Table 3 (P = 0.0406).

268

Table 3. Return to baseline¹ rectal², gastrointestinal³ (GI), thermal eye⁴, and thermal abdominal⁵

temperatures by coat color and sex.

271

VARIABLE	BLACK	YELLOW	P-VALUE	MALE	FEMALE	P-VALUE
RECTAL	12.5%	28.6%	0.5692	16.7%	22.2%	1.00
GI	50%	42.9%	1.00	33.3%	55.6%	0.6084
EYE	12.5%	71.4%	0.0406*	50%	33.3%	0.2286
ABDOMINAL	12.5%	28.6%	0.6080	0%	33.3%	0.6080

272

273 *Notes a significant difference between groups

¹Return to Baseline occurred when cooling temperature returned within 0.5°F of the initial baseline temperature

275 reading measured 30 min prior to sunlight exposure (sunlight

²Rectal temperature was recorded by inserting a thermometer in 2cm rectally

³GI (gastrointestinal) temperature was recorded with an ingestible thermistor CorTemp 30 minutes prior to baseline

⁴Eye temperature was captured using thermography FLIR T400 at the left eye

⁵Abdominal temperature was captured using thermography FLIR T400 at the left caudal abdomen

280

281 Sex did not influence cooling as rectal temperatures returned to baseline in 22.2% and 16.7% of

282 female and male dogs respectively (P =1.00). Temperatures for the GI tract returned to baseline

283 in 55.6% of female and 33.3% of male dogs (P =0.6084).

284 Similarly, no effect of sex was observed for cooling of surface temperatures measured at

the caudal abdomen with 33.3% of female and 0% of male dogs returning to baseline values (P

= 0.6080). Eye surface temperature returned to baseline in 33.3% female and 50% of male dogs

- achieving baseline values after their Cooling phase (P = 0.2286), as shown in Table 3.
- 288

289 **Discussion**

290 Black dogs did not demonstrate a difference in temperature following exposure to

291 direct sunlight when compared to yellow dogs for any of the parameters we examined,

292 including rectal thermometer using a standard medical-grade predictive digital thermometer, 293 GI temperature using an ingestible thermistor, eye surface temperature and abdominal surface temperature using forward-looking infrared thermography, respiration or water 294 295 consumption. Contradictory to currently held beliefs, all dogs experienced a similar rise 296 in rectal, GI, surface temperature, and respiration from the baseline to the sunlight 297 phase, with no difference shown between dark vs lighter coated dogs (P > 0.05) as shown in Figures 3–5 and Table 1. Furthermore, no effect of sex was measured as both males 298 and females demonstrated similar responses to sunlight exposure and cooling based on 299 300 rectal, GI, eye surface, abdominal temperatures, and respiration rates (P > 0.05) shown 301 in Figures 6-8, and Table 2.

302 Contrary to the commonly held belief, our data demonstrated that black dogs did not 303 experience a greater heat gain than their yellow counterparts. Similarly, there was no difference in the apparent thermoregulatory effect between dark and light dogs. This is 304 particularly noteworthy because of the relative short duration of the walk and the significant 305 306 temperature increase we observed in both dark and light-coated dogs. It is also interesting to 307 note that the 15-minute cooling period was inadequate for 80% of the dogs to achieve 308 baseline thermal status based on rectal measurements which are considered standard for 309 recording accurate temperature in animal species [16].

Conversely, almost 50% of each group was able to return to a baseline values via GI values after 15 minutes of cooling. This could be attributed to water consumption during the cooling phase affecting the CorTemp capsule reading. [17] However, it is important to note that all dogs did experience a significant decrease in their rectal, GI, eye and abdominal temperatures, and respiration rates. Future work should include

315 studies with a longer cooling period to determine that time frame necessary for 316 non-conditioned dogs to achieve baseline thermal status following thermal stress. The data presented here are inconsistent with the previous study examining racing 317 318 greyhounds with larger proportions of dark coated dogs having higher rectal 319 temperatures after racing [5]. Key differences between this study and the prior study on 320 Greyhounds include controlled coat color (black or yellow vs. multiple light or dark colors), tighter grouping of age and sex, and a controlled time period and consistent 321 environment. However, there were fewer dogs in our study compared to the study on 322 323 Greyhounds (16 vs. 229). Power calculations indicate that it would take more than 500 dogs to adequately test this question using an alpha of 0.05 and 80% power. That number of dogs 324 is beyond our capacity. Furthermore, the greyhounds utilized in the previous study were 325 326 considerably more fit than the non-conditioned dogs used in our study. Fitness level can impact thermal response as previously demonstrated in working canines [18, 19] and 327 should be examined as a controlled factor in future work. 328

329 Infrared thermal cameras have been widely used in livestock species to identify changes in the surface temperature of the animals. These studies focused on areas that 330 331 had more skin exposure for more accurate data, such as the flank, eye, and facial region. In our canine study, thermal images were captured inside a building to reduce effects 332 333 from wind, sun, and other environmental exposures. Both yellow and black dogs showed 334 similar changes in body surface temperatures which does not support the idea that coat color is a potential risk factor for thermal stress. A comparison of skin surface 335 336 temperature during exposure to sunlight in dogs is warranted. There were some 337 challenges associated with the capture of the thermal imaging. Although the baseline

338 photos were captured with little difficulty, many of the dogs were hot following the 339 sunlight exposure and several were non-compliant in assuming the same posture. More obedient/compliant dogs would prove better subjects for this nature of study. 340 In designing the study, we considered that if body temperature measurements 341 were similar between the dark and light coated dogs, perhaps dark coated dogs simply 342 343 undertook increased efforts of thermoregulation such as increased respiration (i.e. panting) or increased water consumption. However, we found no difference in these 344 parameters between the dark and light coated dogs, suggesting that the effort they 345 346 expended to thermoregulation was also similar. A key limitation in our study is that we did not record heart rate, which would be important in assessment of thermoregulatory 347 response. More sophisticated instrumentation and monitoring would be important in 348 349 further studies to determine if more subtle physiological changes were occurring with

350 thermoregulation.

Novel data produced by this work include an absence of significant difference in 351 352 body temperature between black or yellow coated dogs. The techniques utilized to assess temperature, panting and water consumption are non-technical, readily available methods 353 354 for canine handlers or owners to assess thermal status of dogs in the field, and thus are 355 important to prevention of heat related injury. These data provide critical evidence to dispute the theory that dark coat color is a risk factor for thermal stress which is reported across 356 357 several forums including veterinary textbooks and previously published articles [1-4]. In this experiment, dark and light-colored dogs exposed to the same environment 358 showed a similar heat gain and loss (mean peak rectal 40.31±0.37 °C and mean peak GI 359 temperatures 40.65±0.37 °C respectively). This study also showed that when these non-360

361	conditioned dogs reached rectal temperatures near 40.9 °C (105.62 °F), and
362	gastrointestinal temperatures near 42°C (106.16 °F), 15 minutes of rest in a cool room
363	with water available for consumption is adequate to begin to decrease the temperature,
364	although a return to baseline values may not be achieved within that time frame. No
365	medical intervention or active cooling method was needed to decrease the dogs'
366	temperature and nor heat-related negative health impacts were noted by the veterinary
367	team on site, despite dogs reaching temperatures as high as 42°C (106.16 F).
368	

369 Ethical Conflicts

370 The authors declare that they had no conflict of interest.

371 Acknowledgements

372 The authors would like to thank the undergraduate and graduate students of Southern Illinois

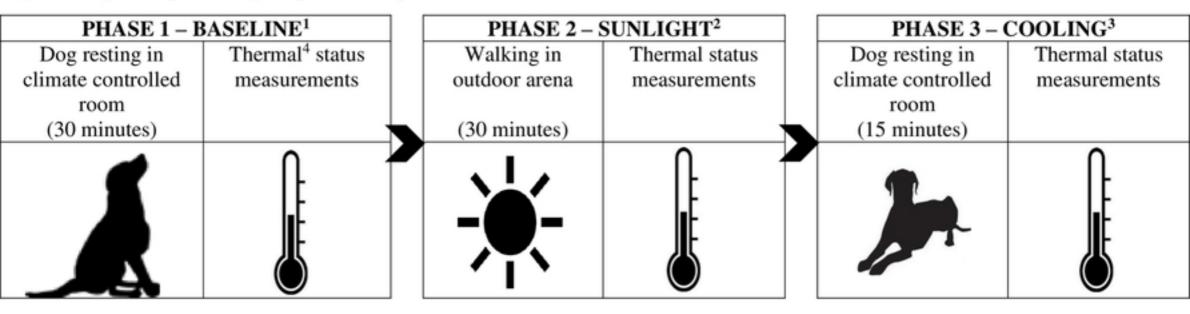
373 University for their participation in this research. The researchers would also like to

acknowledge SIT Service Dogs for contributing the use of their dogs for this project.

375 Funding

376 This study was partially supported by the USDA-ARS Biophotonics (Grant # 58-6402-377 3-018).

378

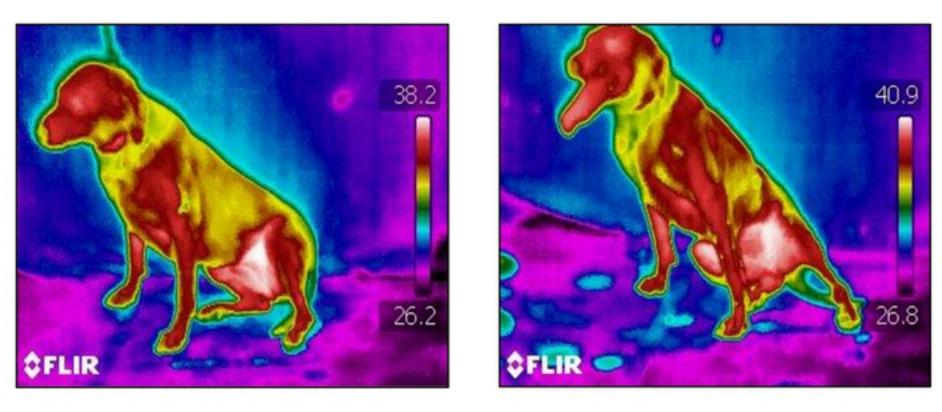

379 **References**

Flournoy S, Wohl J, Macintire D. Heatstroke in Dogs: Pathophysiology and Predisposing
 Factors. Compend. 2003;25:410–418.

382	2.	Johnson SI, McMichael M, White G. Heatstroke in small animal medicine: A clinical
383		practice review. J Vet Emerg Crit Care. 2006;16(112-119):10-1111.
384	3.	Andress M, Goodnight M. Heatstroke in a Military Working Dog. United States Ary Med
385		Dep Journal. 2013; p. 34–37.
386	4.	Carter AJ, Hall EJ. Investigating factors affecting the body temperature of dogs
387		competing in cross country (canicross) races in the. UK J Therm Biol. 2018;72(33-
388		38):10–1016.
389	5.	McNicholl J, Howarth GS, Hazel SJ. Influence of the Environment on Body Temperature
390		of Racing Greyhounds. Front Vet Sci. 2016;3(1-13):10-3389.
391	6.	Chesney CJ. The microclimate of the canine coat: The effects of heating on coat and skin
392		temperature and relative humidity. Vet Dermatol. 1997;8:183-190.
393	7.	Finch VA, Bennett IL, Holmes CR. Coat colour in cattle: effect on thermal balance,
394		behaviour and growth, and relationship with coat type. J Agric Sci. 1984;102(141).
395	8.	Hillman PE, Lee CN, Carpenter JR, Baek KS, Parkhurst A. Impact of Hair Color on
396		Thermoregulation of Dairy Cows to Direct Sunlight; ASAE Annual Meeting. 2001.
397	9.	Church JS et al. Influence of environmental factors on infrared eye temperature
398		measurements in cattle. Res Vet Sci. 2014;96(220-226):10-1016.
399	10.	McManus C. et al., Infrared thermography in animal production: An overview. Comput
400		Electron Agric. 2016;123:10–16.
401	11.	Salles MSV, C S. Mapping the body surface temperature of cattle by infrared
402		thermography. J Therm Biol. 2016;62(63-69):10-1016.
403	12.	Rizzo M, Arfuso F, Alberghina D, Giudice E, Gianesella M, Piccione G. Monitoring
404		changes in body surface temperature associated with treadmill exercise in dogs by use of

405		infrared methodology. J Therm Biol. 2017;69(64–68):10–1016.
406	13.	Zanghi BM. Eye and Ear Temperature Using Infrared Thermography Are Related to
407		Rectal Temperature in Dogs at Rest or With Exercise. Front Vet Sci. 2016;3(111).
408	14.	Yanmaz LE, Doğan E, Okumuş Z, Şenocak MG, Yildirim F. Comparison of Rectal, Eye
409		and Ear Temperatures in Kangal Breed Dogs. Kafkas Univ Vet Fak Derg. 2015;21(615-
410		617):10–9775.
411	15.	Gomart SB, Allerton FJW, Gommeren K. Accuracy of different temperature reading
412		techniques and associated stress response in hospitalized dogs; Journal of Veterinary
413		Emergency and Critical Care. 2014;24:279-285
414	16.	Greer RJ, Cohn LA, Dodam JR, Wagner-Mann CC, Mann FA. Comparison of three
415		methods of temperature measurement in hypothermic, euthermic, and hyperthermic dogs.
416		J Am Vet Med Assoc. 2007;230:1841–1848.
417	17.	Lewis S, Foster RC. Effect of Heat on Canines and Felines. Iowa State Univ
418		Veterinarian. 1976;38:117-121.
419	18.	Robbins PJ, Ramos MT, Zanghi BM, Otto CM. Environmental and Physiological Factors
420		Associated with Stamina in Dogs Exercising in High Ambient Temperatures. Front Vet
421		Sci. 2017;4(1–9):10–3389.
422	19.	Baker JA, Davis MS. Effect of conditioning on exercise-induced hyperthermia and post-
423		exercise cooling in dogs. Comp Exerc Physiol. 2018;14(91–97):10–3920.

Fig 1. Pictogram representing the phases and points of data collection.



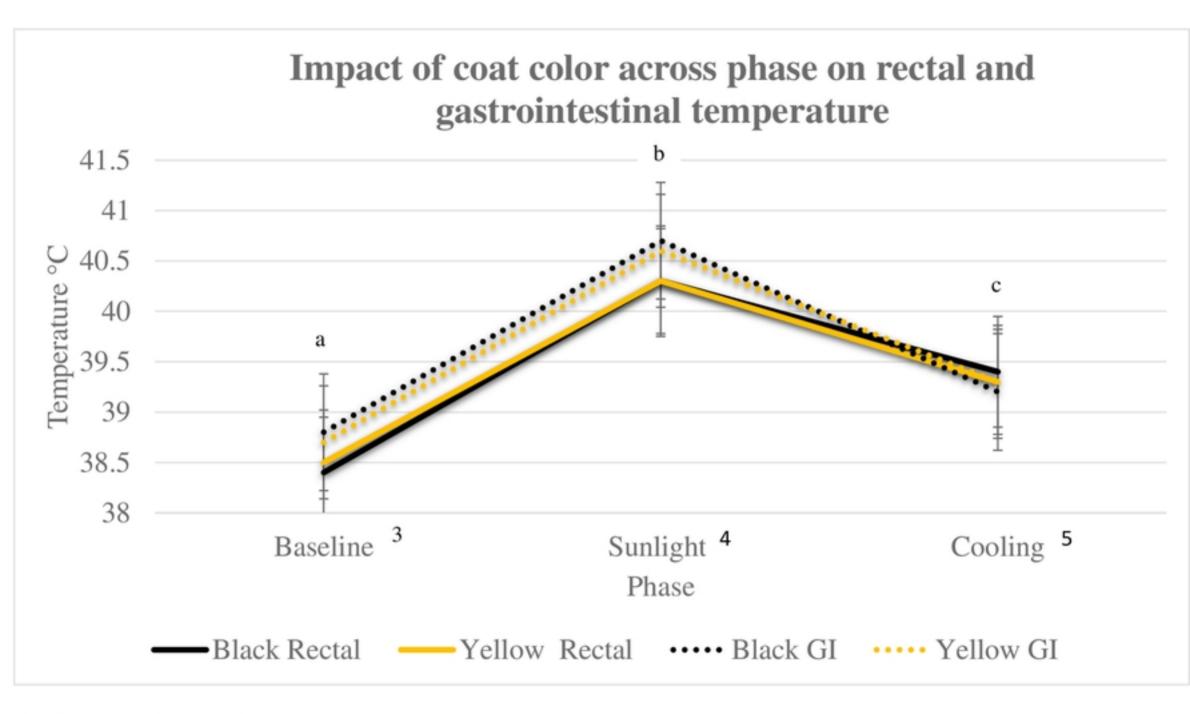
¹Baseline occurred 30 minutes prior to sunlight exposure (sunlight) and recorded initial measurements

- ²Sunlight phase consisted of 30 minutes of controlled pace walking in a sunny outdoor area on a leash
- 3Cooling phase occurred 15 minutes after walking in a climate-controlled room with water

⁴Thermal status measurements consisted of rectal, gastrointestinal, eye surface, abdominal surface temperature, and respiration rate

Fig 2. Thermography¹ depicting Baseline² (left) and Sunlight³ (right) values for Labrador Black 6. The two areas of interest were left eye⁴ and left caudal abdomen⁵.

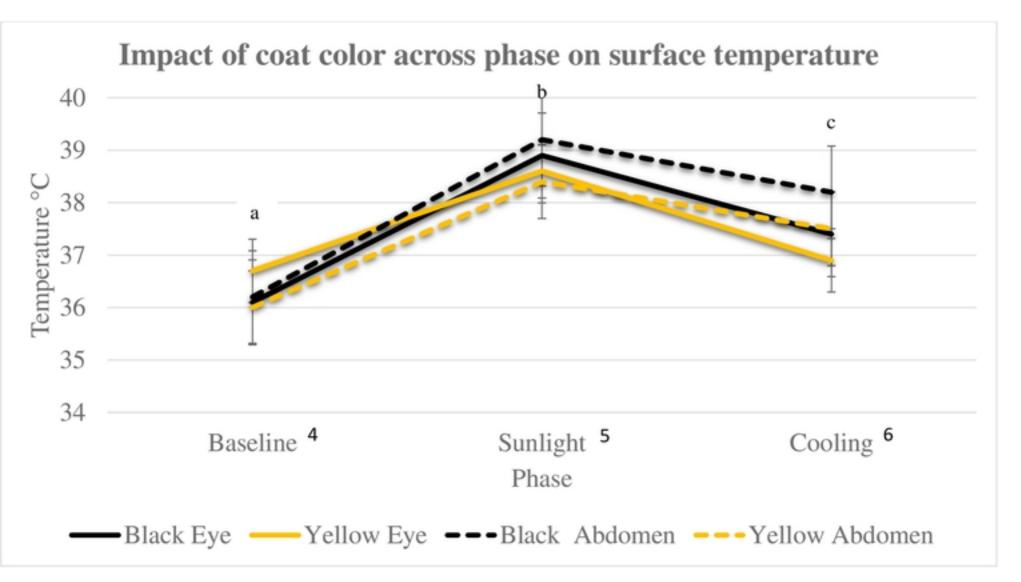
¹Thermography captured using FLIR T400. Peak values noted at the top of the color legend at the right of each image.


²Baseline occurred 30 minutes prior to sunlight exposure (sunlight) and recorded initial measurements

³Sunlight phase consisted of 30 minutes of active walking in a sunny outdoor area on a leash

⁴Eye thermal temperature has been correlated with rectal temperature.

⁵Abdominal temperature has been correlated with rectal temperature.


Fig 3. Mean change in rectal¹ and gastrointestinal temperature (GI)² across three phases in non-conditioned Labradors.

a,b,c Notes significant difference by phase

- * Notes significant difference by color
- ¹ Rectal temperature was recorded by inserting thermometer to a depth of approximately 2 cm with petroleum jelly
- ² GI (gastrointestinal) temperature was recorded with an ingestible thermistor CorTemp 30 minutes prior to baseline
- ³ Baseline occurred 30 minutes prior to sunlight exposure (sunlight) and recorded initial measurements
- ⁴ Sunlight phase consisted of 30 minutes of active walking in a sunny outdoor area on a leash
- 5 Cooling phase occurred 15 minutes after walking in a climate-controlled room with water

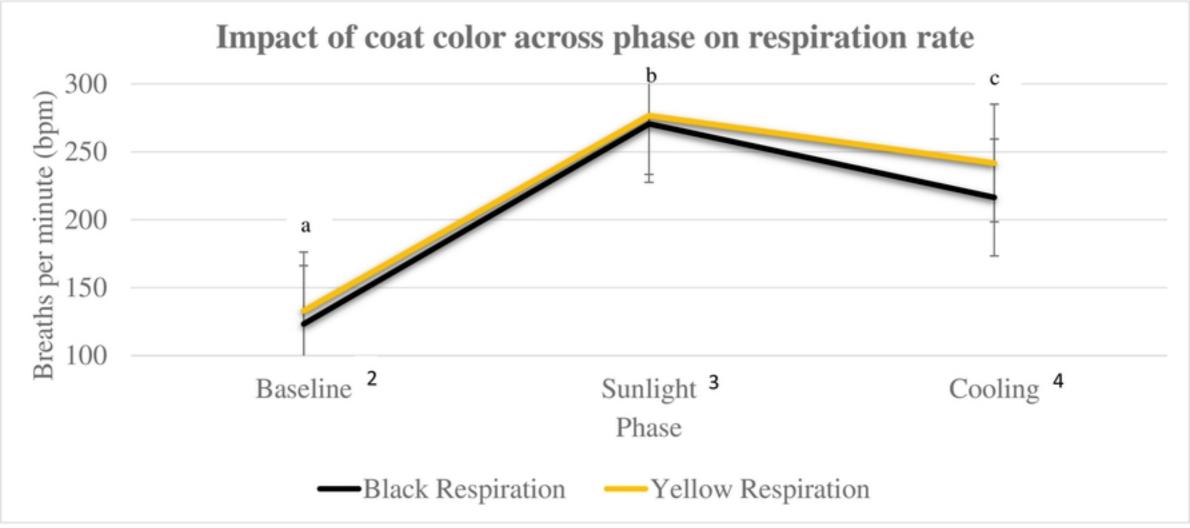
Fig 4. Mean change in body surface temperature measured by thermography¹ at the eye² and abdomen³ in non-conditioned Labradors

a,b,c Notes significant difference by phase

* Notes significant difference by coat color

Thermography captured using FLIR T400

²Eye temperature was captured using thermography focusing on left eye


³Abdomen (Ab) temperature was captured using thermography focusing on left caudal abdomen

⁴Baseline occurred 30 minutes prior to sunlight exposure (sunlight) and recorded initial measurements

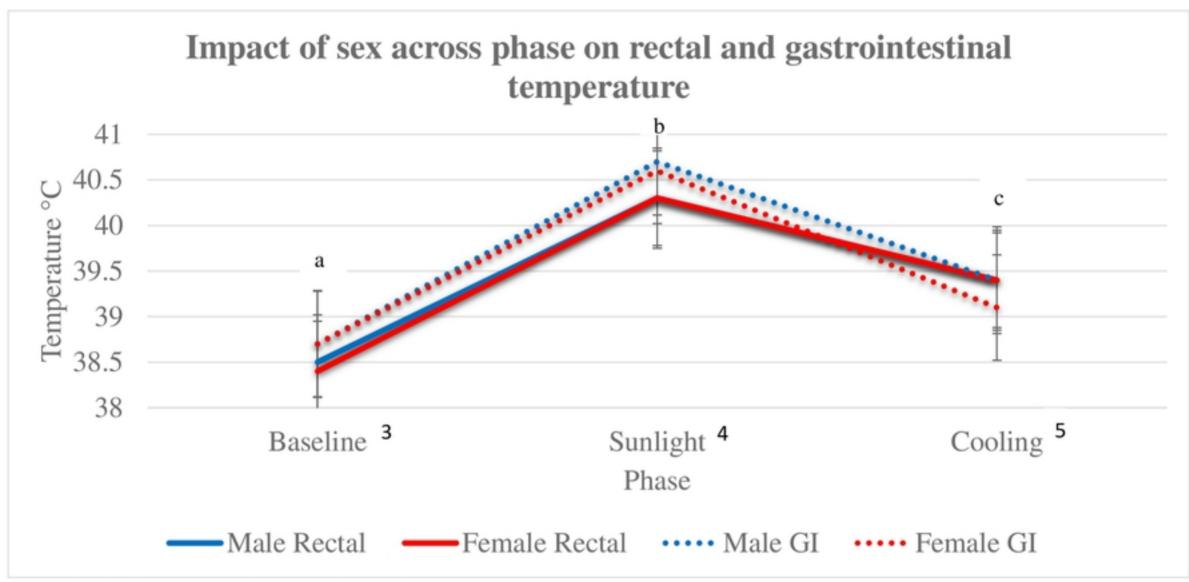
⁵Sunlight phase consisted of 30 minutes of active walking in a sunny outdoor area on a leash

6 Cooling phase occurred 15 minutes after walking in a climate-controlled room with water

Fig 5. Mean change in respiration rates¹ across three phases in non-conditioned Labradors.

a,b,c Notes significant difference by phase

* Notes significant difference by coat color


¹ Respiration rate was captured for 30 seconds by a GoPro camera

²Baseline occurred 30 minutes prior to sunlight exposure (sunlight) and recorded initial measurements

³Sunlight phase consisted of 30 minutes of active walking in a sunny outdoor area on a leash

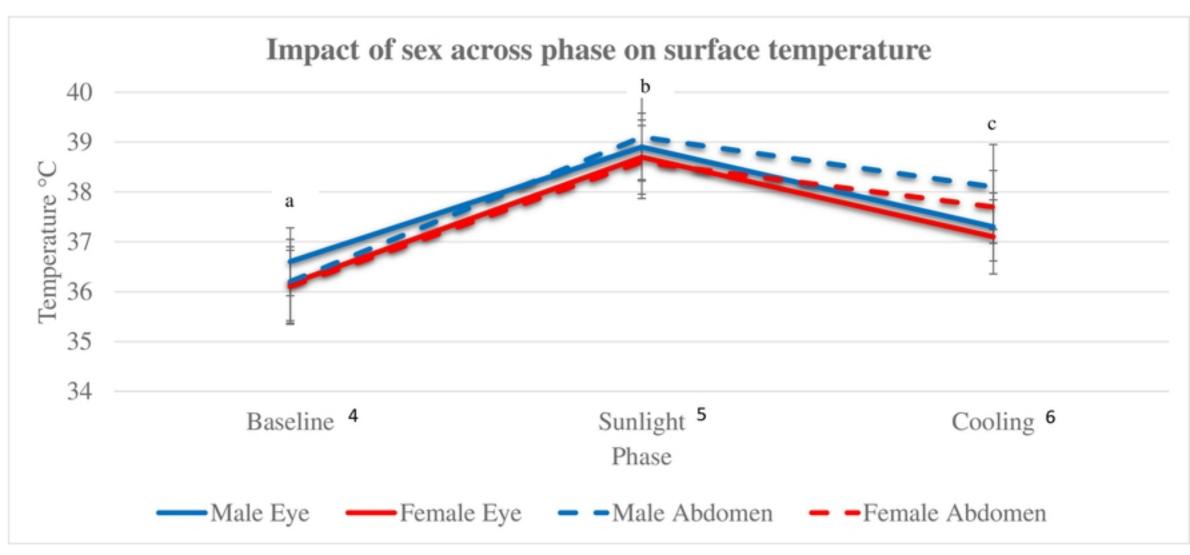
⁴ Cooling phase occurred 15 minutes after walking in a climate-controlled room with water

Fig 6. Mean change in rectal¹ and gastrointestinal temperature (GI)² across three phases in non-conditioned Labradors.

a,b,c Notes significant difference observed by phase

* Notes significant difference observed by sex

¹ Rectal temperature was recorded by inserting thermometer to a depth of approximately 2 cm with petroleum jelly


² GI (gastrointestinal) temperature was recorded with an ingestible thermistor CorTemp administered 30 minutes prior to baseline

³ Baseline occurred 30 minutes prior to sunlight exposure and recorded initial measurements

⁴ Sunlight phase consisted of 30 minutes of active walking in a sunny outdoor area on a leash

5 Cooling phase occurred 15 minutes after walking in a climate-controlled room with water

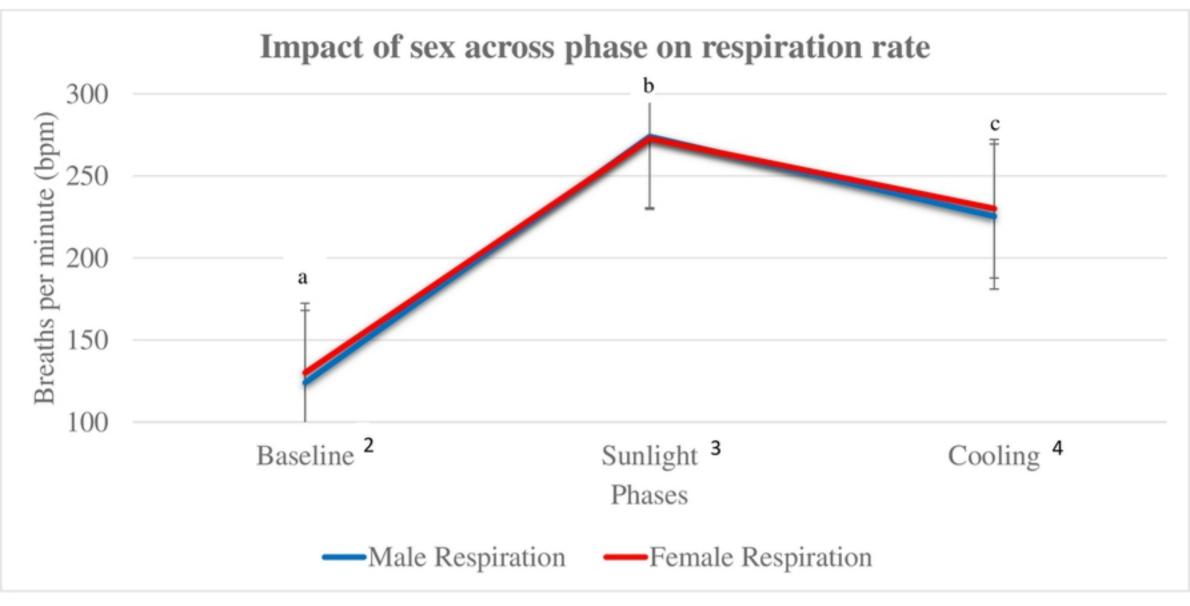
Fig 7. Mean change in surface temperature measured by thermography¹ at the eye² and abdomen³ in non-conditioned Labradors across three phases.

a,b,c Notes significant difference observed by phase

* Notes significant difference observed by sex

¹Thermography captured using FLIR T400

²Eye temperature was captured using thermography focusing on left eye


³Abdomen (Ab) temperature was captured using thermography focusing on left caudal abdomen

⁴Baseline occurred 30 minutes prior to sunlight exposure and recorded initial measurements

⁵Sunlight phase consisted of 30 minutes of active walking in a sunny outdoor area on a leash

6 Cooling phase occurred 15 minutes after walking in a climate-controlled room with water

Fig 8. Mean change in respiration rates¹ across three phases in non-conditioned Labradors.

^{a,b,c} Notes significant difference observed by phase

* Notes significant difference observed by sex

¹Respiration rate was captured for 30 seconds by a GoPro camera

²Baseline occurred 30 minutes prior to sunlight exposure and recorded initial measurements

³Sunlight phase consisted of 30 minutes of controlled pace walking in a sunny outdoor area on a leash

⁴ Cooling phase occurred 15 minutes after walking in a climate-controlled room with water