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Figure 3: Schematic illustrating an example branching re-
cursion hierarchy, given by initial seed A 7→ D. If the
minimum-line outputs from the initial seed, POLARIS(A, D),
include points B, C, and D, POLARIS(A, B), POLARIS(B, C),
and POLARIS(C, D) are subsequently called - with each one
forming a new branch across the next-highest tier in the hi-
erarchy. Red numbers indicate the order in which POLARIS
navigates its recursive hierarchy. Broken leaves represent pairs
of data points where further segmentation is futile; i.e., no
lower energy line exists between them (occurring exclusively
when r0 is returned as the lowest-energy approximation). As a
note, the notation POLARIS(input1, input2) has been used
here to describe one complete cycle of methods (1) and (2).

for their significance in the energy landscape. This ensures
that the overall line may still pass through these locations -
including situations where the zero-energy point is neighbored
by three other points in the path. Within this exception, it
follows that no energy contribution is added to the path of
least action.

RESULTS
An experimentally generated free-energy landscape was used
for testing POLARIS’ methods (Figure 4) - constructed
through application of Manifold Embedding techniques to
a set of ribosomal cryo-EM data (19). The ribosome has
long been described as a “thermal ratchet machine” (37),
whereby random energetic perturbations lead to large-scale
shifts across its available configurations. The landscape ob-
tained represents the conformational state space available
to the naked ribosome (i.e., the ribosome in the absence of
its functional ligands), with the reaction coordinates corre-
sponding to the two highest-ranking, orthogonal factors for
motion. These discovered coordinates capture the ribosome’s
leading degrees of freedom during translocation - encom-
passing a composite of large-scale movements across its two
subunits (19, 38), including rotations and swivels. Analysis
of 3D reconstructions along the naked ribosome’s trajectory
revealed that it undergoes conformational changes akin to
those observed for factor- and GTP hydrolysis-driven translat-

ing ribosomes - clearly demonstrating the macromolecule’s
intrinsically dynamic nature (3).

Conformations reported by cryo-EM reveal that each
“state” of the ribosome is actually an ensemble of structurally
similar configurations clustered within a specific minimum-
region on the energy landscape (3). Meanwhile, the rugged,
higher-energy hills correspond to the less-favorable states of
the macromolecular complex as it travels from one minima
to the next. Given such a system, to properly delineate the
ribosome’s key mechanisms of translation control, POLARIS
was used to determine the most likely transitional pathways
between different combinations of these free-energy basins.

Figure 4: Energy landscape for the conformational coordinates
of the naked ribosome during translation elongation. Data
taken from ribosomal reaction coordinates (19).

MEPSA Comparison
For validation, POLARIS’ results were compared to those
obtained with a published energy landscape analysis algo-
rithm entitled MEPSA (Minimum Energy Pathway Analysis)
(30), which uses an approach similar to Dijkstra’s algorithm
(24), with small differences in the sampling and traceback.
The metric used to compare the two algorithms is the final
integrated energy from a single continuous list of coordinates
spanning between any two user-defined points.

The MEPSA tool allows two options for algorithmic
comparison: the self-defined, less accurate ‘GLOBAL’ option
(capable of accepting arbitrary user start and end inputs as
well as predefined anchor points) and the more accurate option
’NODE BYNODE’ (accepting only predefined global minima
as user inputs). For the first comparison, the ‘GLOBAL’
approach was chosen to compare each program’s output
given any set of user-defined start and end coordinates, here
using (41, 51) and (17, 14) respectively on the ribosome
energy landscape (Figure 4). Chosen for the complexity of
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the regions in between, this trajectory includes opportunities
for traversing many narrow, branching low-energy pathways
throughout the center of the landscape, as well as a final leap
across a mountain range of highest-energy coordinates into a
pool of minimum energy.

The net energy of the least-energy pathway found by
MEPSA was 34.6 kcal/mol with a length of 106 points,
containing many unnecessary regions where the algorithm
appeared to draw jagged lines between its predefined nodes
(Figure 5A). For the same arbitrary points, POLARIS returned
a 78-point 24.7 kcal/mol path (Figure 5B), showing a differ-
ence of 9.9 kcal/mol between the two algorithms in favor of
POLARIS.

Figure 5: Comparison between MEPSA’s ‘GLOBAL’ algo-
rithm (A) and POLARIS (B). While both algorithms found the
same approximate global path, POLARIS returned a path of
integrated energy 9.9 kcal/mol less with a 28-point difference
in path lengths. For the POLARIS run, the option ‘Transition
State Weighting’ was used with search depths {r1, n7}, {r2,
n5}, and {r4, n3}; taking approximately 6 minutes using 4
processors.

For the ‘NODE BY NODE’ comparison, MEPSA’s node
2 (16, 23) and node 41 (47, 55) were selected from the set
of MEPSA’s pre-defined nodes and chosen here based on
their proximal similarity to the arbitrary points selected in
the ‘GLOBAL’ comparison above. The pathway found by
MEPSA returned an integrated energy of 28.5 kcal/mol with
98 points (Figure 6A). POLARIS used the same nodes 2 and
41 as user inputs and identified a 72-point pathway having
an integrated energy of 20.0 kcal/mol (Figure 6B). The total
difference between the two minimum energy approximations
found by the two algorithms was 8.5 kcal/mol, again favoring
POLARIS.

DISCUSSION
In both comparisons with MEPSA, POLARIS’ outputs gave
a substantially lower energy path while providing higher
flexibility in the choice of user-defined start and end points, as
well as in the number of optional user-defined transit locations.
While the final paths from each follow the same broad regions

Figure 6: Comparison between MEPSA’s ‘NODE BY NODE’
algorithm (A) and POLARIS (B). While both algorithms
again found the same approximate global path, POLARIS
returned a path of integrated energy 8.5 kcal/mol less with
a 26-point difference in path lengths. For the POLARIS run,
the option ‘Transition State Weighting’ was used with search
depths {r1, n7}, {r2, n5}, and {r3, n3}; taking approximately
3.5 minutes using 4 processors.

throughout the landscape, the MEPSA algorithm appears to
favor the production of jagged segments and deviates from
POLARIS’ minimum path within regions of its locally defined
nodes (such as in the southeast corner of the landscape).

As a further explanation for this large difference in energy
and number of path points, MEPSA grows its trajectory in
strictly cardinal directions (N, E, S, W), while POLARIS
makes allowances for both cardinal and ordinal directivity (N,
NE, E, SE, S, SW, W, NW) whenever locally required. Since
the energy landscape ultimately represents a molecule’s move-
ment as a combination of its two highest-ranking eigenvectors
(the two reaction coordinates), any combination of the two
must be accounted for - including cardinal (where only one
eigenvector feature is altered at a time) and ordinal (where
both features change simultaneously). In theory, this principle
should hold for all reaction coordinates, regardless of context.

As for computation time, it should be noted that MEPSA
generated the above paths within seconds. It should also be
noted that its self-defined ‘global minimum’ solutions were un-
dershot considerably by POLARIS’ techniques (which make
no such claims to finding the ‘perfect’ solution). While PO-
LARIS is capable of similar speeds at drastically lowered seg-
mentation depth and permutational order, the lowest-energy
trajectories found (shown here) required more computation
time (10-20 minutes). Thus, when weighting accuracy over
timing, POLARIS’ methods seem considerably more fit. Al-
though these differences may seem trivial from a macroscopic
view, such exactitude is essential on the microscopic level for
accurately calculating biologically-relevant reaction rates via
downstream algorithms. In the discussion to follow, POLARIS
will be analyzed in terms of its ‘Completeness’, ‘Accuracy’,
‘Complexity’.
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Completeness
The greater the number of permutations that POLARIS is
allowed to iterate through and compare against, the more accu-
rate its computations will be in obtaining the minimum energy
path. However, since the purpose of POLARIS is to limit
this exhaustive search, it instead seeks to iteratively find the
set of optimal approximations by use of feasible parameters
(user-defined { PN

r} combinations) between each recursion,
thus performing a series of computationally inexpensive oper-
ations that ultimately give rise to the same output as would
one computationally exhaustive approach. Because of this,
limits must be drawn on the total number of permutations
allowed for the program to compute and compare between.

This total permutation limit is set by the user under the
‘Parameters’ section found within the ‘Settings’ tab (Figure 9).
Here, combinations of n and r can be chosen for each {ri }5i=1,
with the total number of permutations accessible from that
combination calculated to the right (as given within the
adjacent P(4n , r) entry box).

For r1, the maximum image subdivision depth, nmax , is
automatically chosen from the given datafile. At this depth,
every value on the landscape is represented as a possible min-
imum node at least once, with this parameter thus comparing
between all permutations of single points between each new
S and E varying across all recursions. As nmax contains all
other minima options within it (obtained individually from n1
to nmax−1), it is redundant to compute any other combination
less than this value for r1 (with equivalent logic holding for
all other ri).

Accuracy
Uncertainty is first introduced in the choice of the overhead
metric and its ability to realistically encapsulate the dynamics
of the system being explored. For example, for the potential
energy surface of a chemical reaction, a reaction could be
approximated either by the path having the lowest integrated
energy, or by the path having the lowest maximum peak
(activation energy). To provide flexibility in this overhead
metric, POLARIS offers the ‘Transition State Weighting’
constraint, which can be enabled to weight the comparison of
competing lowest-energy paths based on their rate-limiting
step (point of maximal energy through which that path passes)
instead of by just the net integrated energy along that path.
When this feature is activated, POLARIS weights all energies
across the landscape based on a power function - keeping
lower energies approximately untouched while making higher-
energy coordinates increasingly more unfavorable.

When bifurcation opportunities exist within a landscape
(as in the case of the central, branching region of Figure 4),
significant uncertainty can be introduced for the path of least
action. This is especially relevant when such bifurcations are
approximately degenerate - leading to two distinct paths of
almost equivalent energy spanning radically different regions
of the landscape.

During pathway comparisons on the example ribosome
landscape, POLARIS isolated one such nearly equivalent
energy bifurcation - dividing the ribosome’s most probable
sequence of configurations into two discrete sets separated by
a high-energy island (Figure 7). From an accuracy perspec-
tive, this instance illustrates the reliance on POLARIS’ user
parameters in constructing its least-energy path, as well as the
importance of the user experimenting with these parameters
to achieve optimum results.

As an aside, an exploration of such bifurcations can be
instrumental for elucidation of a given system’s underlying
dynamics. As such, the user can supply defined midpoints
between the set of start and end coordinates to resolve such
bifurcations (e.g., by placing one anchor at a minimum point
in the middle of the landscape for one run, followed by another
anchor instead at a minimum in the southeast corner for the
next), with the added ability to then compare each least-energy
approximation after completion of both runs.

Figure 7: Comparison of two approximately degenerate paths
found via POLARIS. To create each path, midpoints were
placed alongside the initial user-defined start and end points -
forcing POLARIS’ exploration of both routes independently
on separate runs. These two diverging paths go through the
center (black points) and southeast (white points) regions of
the landscape and contain path energies 8.97 kcal/mol (with 16
points) and 8.50 kcal/mol (with 37 points), respectively. With
only a difference of 0.47 kcal/mol between them, it is possible
that such a degenerate least-energy bifurcation could represent
novel conformational mechanics that allow for flexibility in
macromolecular processes both spatially and temporally. For
example, the bifurcation seen above may represent a shortcut
in the ribosomal work cycle (elongation) that only becomes
available under specific buffer or temperature conditions -
allowing the ribosome to modulate its reaction rates based on
fluctuating environmental signals.
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Complexity
In application, the number of contending lowest-energy paths
become innumerable as the size and topological complexity of
the landscape increases - making an exhaustive computational
search for the path of least action infeasible towards these
limits. Large and highly complex maps should therefore be
used with this limitation in mind.

The range of available permutations to search through
is proportional to the size of the data file (as seen via the
available combinations of n and r). As increasingly larger
combinations of {ni , r j } are chosen, the timing of each search
will also increase, as defined by the number of available
permutations (i.e., { PN

r}). Thus, the timing of each run is
ultimately governed by the algorithm’s rate limiting step,
itertools.permutations, via O( PN

r ).
In its current state, POLARIS is best applied to energy

landscapes of biologically-relevant size, at dimensions similar
to the scale of reaction coordinates seen within chemistry
and biophysics (19, 39). Here it has been shown that the
algorithm is fully capable of representing the trajectories
of highly complex structures within this domain (i.e., the
ribosome, contained within a 70×70 dimension landscape).
For landscapes larger than these recommended dimensions,
pixel values could be binned beforehand or masked out to
only those regions of interest - both of which will be supplied
as future options within the POLARIS user interface.
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SUPPLEMENTARY MATERIAL
User Interface
POLARIS supports Comma Separated Spreadsheet (.csv, .txt)
inputs in the form of m × n heat maps. The GUI structure
consists of a main window with two tabs entitled ‘Coordi-
nates’ and ‘Settings’. Under the ‘Coordinates’ tab, an energy
landscape can be imported and viewed. Once loaded, between
2 and 10 sets of user coordinates can be chosen, allowing the
user to find the one-way path of least action between any two
points, a series of points, or creating a cycle of points possibly
corresponding to stable, reversible processes (Figure 8).

Figure 8: Image from the main page of the POLARIS user
interface, allowing users to load a valid datafile and add up to
10 intermediate transit locations on the energy landscape as
desired.

Advanced settings can be accessed via the ‘Settings’ tab,
where parameters can be set to specify the algorithm’s max-
imum search depth and performance. The ‘Transition State
Weighting’ option can also be enabled to weight POLARIS’
comparison of competing lowest-energy paths based their
rate limiting step, as opposed to the integrated energy along
all coordinates in that path. After these settings have been
decided upon, the user can proceed back to the ‘Coordinates’
tab and click the ‘Calculate Path’ button to initiate the path
finding algorithm.

Every value of n can be changed in the ‘Parameters’ section
(Figure 9) by first unmarking its corresponding checkbox, if
active. As that value of n is altered, the total permutation
count will automatically update to the right. Adjusting these
n parameters for each value of r such that the P(4n , r) values

are all of the same order of magnitude will prevent any
extreme rate limiting steps within the computation. Once
these parameters have been set, they can be activated by
checking each checkbox - thus instructing POLARIS to use
those specific parameters within its search.

Figure 9: Image from the ‘Settings’ tab of the POLARIS user
interface, allowing users to set parameters and constraints
as desired. Note that each n j has been chosen such that the
total number of permutations for each { PN

r} combination are
of approximately the same order of magnitude, and initially
chosen as to be in line with the range provided by nmax

(16,384 total permutations). As this order of magnitude is
increased, so too will the computation time.

Upon completion of the backend algorithm, landscape-
path plots (Figure 10) and transition state diagrams (Figure 11)
are saved automatically as .png images. Additionally, coordi-
nates of the minimum energy path and its respective energies
are automatically generated within plain text files in the form
of three column lists (x, y, z ∈ energy). These files also contain
the total integrated energy, overall length of each trajectory,
user defined parameters and elapsed computation time in their
header.
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Figure 10: Example output of the least action path for an
example, computationally-generated landscape.

Figure 11: Example transition state diagram for the path seen
in Figure 10, with energies plotted against the set of coupled
coordinates (RC1, RC2).
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