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Abstract 

 

Recent advances in DNA sequencing technologies have expanded our understanding of the molecular 

underpinnings for several genetic disorders, and increased the utilization of genomic tests by clinicians. Given 

the paucity of evidence to assess each variant, and the difficulty of experimentally evaluating a variant’s clinical 

significance, many of the thousand variants that can be generated by clinical tests are reported as variants of 

unknown clinical significance. However, the creation of population-scale variant databases can significantly 

improve clinical variant interpretation. Specifically, pathogenicity prediction for novel missense variants can 

now utilize features describing regional variant constraint. Constrained genomic regions are those that have an 

unusually low variant count in the general population. Several computational methods have been introduced to 

capture these regions and incorporate them into pathogenicity classifiers, but these methods have yet to be 

compared on an independent clinical variant dataset. Here we introduce one variant dataset derived from 

clinical sequencing panels, and use it to compare the ability of different genomic constraint metrics to 

determine missense variant pathogenicity. This dataset is compiled from 17,071 patients surveyed with clinical 

genomic sequencing for cardiomyopathy, epilepsy, or RASopathies. We further utilize this dataset to 

demonstrate the necessity of disease-specific classifiers, and to train PathoPredictor, a disease-specific 

ensemble classifier of pathogenicity based on regional constraint and variant level features. PathoPredictor 

achieves an average precision greater than 90% for variants from all 99 tested disease genes while 

approaching 100% accuracy for some genes. Accumulation of larger clinical variant datasets and their 

utilization to train existing pathogenicity metrics can significantly enhance their performance in a disease and 

gene-specific manner. 
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Introduction 

 

Comprehensive sequencing has become the cornerstone of genomic medicine and research. However, unlike 

previous targeted or single gene testing, multigene sequencing can yield thousands of rare variants often 

requiring manual clinical correlation and interpretation. Unlike synonymous (or silent) and loss of function 

(mainly nonsense, frameshift, and canonical splice site) variants where the impact on the protein can be 

relatively easily predicted, novel missense variants are the most challenging to interpret, often leading to 

inconclusive genomic reports and leaving clinicians and families with daunting uncertainties and anxieties. On 

the other hand, researchers are currently incapable of studying the impact of every possible missense variant 

in the ~20,000 genes of the human genome. Therefore, novel clinical-grade approaches are needed to assist 

clinicians and researchers in determining the pathogenicity of missense variants. 

 

Machine learning has yielded several pathogenicity prediction tools built with variant features and previously 

assigned pathogenic and benign labels. Collections of labeled variant labels for classifier training and testing 

include the Human Gene Mutation Database (HGMD) (Stenson et al. 2009), the Leiden Open Variation 

Database (Fokkema et al. 2011), and ClinVar (Landrum et al. 2016). Additionally, frequently occurring variants 

from databases like the Genome Aggregation Database (gnomAD) (Lek et al. 2016) are used as a substitute 

for benign variants. Variant features can describe single positions, like genomic sequence context and amino 

acid conservation, or regions that contain the variant, like protein domains and variation constraint. 

 

Two uses of simple region features are seen in the Functional Analysis through Hidden Markov Models 

(FATHMM) (Shihab et al. 2013) and the variant effect scoring tool (VEST) (Carter et al. 2013). FATHMM and 

VEST were found to be the most important features for determining pathogenicity in an ensemble of 18 

prediction scores called REVEL (Ioannidis et al. 2016). VEST distinguished disease missense variants in 

HGMD from high frequency (allele frequency >1%) missense variants from the Exome Sequencing Project 

(ESP) (Auer et al. 2016) using a random forest with 86 features from the SNVBox database (Wong et al. 

2011). These features describe amino acid substitutions, regional amino acid composition, conservation 

scores, local protein structure, and annotations of functional protein sites. FATHMM scored variants by their 
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conservation in homologous sequences, weighted by the tolerance of each variant’s protein family (Pfam) 

domain or SUPERFAMILY (Gough et al. 2001) to mutations observed in HGMD and the set of functionally 

neutral UniProt variants (The UniProt Consortium 2017). VEST’s inclusion of functional protein sites, and 

FATHMM’s Pfam domain tolerance consideration enabled them to capture regional protein features such as 

domain structure and conservation, but did not capture regional tolerance to genetic variation. 

 

Large variant collections like the Exome Aggregation Consortium (ExAC) dataset (Lek et al. 2016) and 

gnomAD have enabled metrics that summarize purifying selection within genomic regions. Regions with high 

purifying selection are constrained and have less population variation than expected. Regions with low 

purifying selection are unconstrained and have equal or more population variation compared to expectation. 

With this knowledge, classifiers might flag a variant as pathogenic if it lies within a genomic region that selects 

against variants (Amr et al. 2017). Here we examine three constraint metrics derived from ExAC or gnomAD. 

One such constraint metric is the constrained coding region (CCR) percentile, which compared observed 

variant counts from gnomAD to those predicted by CpG density (Havrilla et al. 2019). A similar feature called 

missense depletion was constructed for the MPC (missense badness, PolyPhen-2, and constraint) 

pathogenicity classifier of de novo missense variants (Samocha et al. 2017). MPC’s missense depletion 

feature was measured as the fraction of expected ExAC variation that was observed in exons. Only ExAC 

variants with minor allele frequencies below 0.1% were considered. The expected rate of rare missense 

variants was based on a model that utilized both gene and sequence context specific mutation rates (Samocha 

et al. 2014). An additional pathogenicity feature introduced by MPC was missense badness, which accounted 

for an amino acid substitution’s increase in deleteriousness when it occurs in a missense-constrained region. 

The third constraint metric is the missense tolerance ratio (MTR), which was calculated in 31 codon windows 

using missense and synonymous variant frequencies from ExAC and gnomAD (Traynelis et al. 2017). MTR is 

the ratio of the observed missense variant fraction to the missense variant fraction calculated from all possible 

variants in the window when all nucleotide changes are equally likely. A variant in a low MTR region is 

expected to have a high chance of being pathogenic. 
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In this manuscript, we evaluate the effectiveness of region based pathogenicity predictors in a clinical setting. 

We introduce three patient variant training datasets gathered from clinical sequencing panels for 

cardiomyopathy, epilepsy, and RASopathies. These datasets cover 17,071 patients. All variants have been 

manually classified by two main clinical laboratories, whose members significantly contributed to the 

development of the American College of Medical Genetics and Genomics/Association for Molecular Pathology 

(ACMG/AMP)  sequence variant interpretation guidelines (Richards et al. 2015). We use each dataset to 

compare CCR, FATHMM, missense badness, missense depletion, MTR, and VEST, and to train disease-

specific predictors. These clinical variant sets have the advantage of being consistently reviewed in a clinically 

sound manner, and originate from focused disease studies. This allows us to explore the hypothesis that 

disease-specific classifiers, first introduced for smaller gene sets (Homburger et al. 2016; Tavtigian et al. 

2008), are better than general genome wide classifiers. We also introduce PathoPredictor, a disease-specific 

pathogenicity score trained with clinical sequencing panel variants to combine the pathogenicity scores 

compared here. 

 

Results 

 

Variants and genes studied 

 

We focus on patient variants from three disease panels: cardiomyopathy, epilepsy, and RASopathies (Figure 

1). We also investigate the subset of epilepsy dominant genes: CDKL5, KCNQ2, KCNQ3, PCDH19, SCN1A, 

SCN1B, SCN2A, SCN8A, SLC2A1, SPTAN1, STXBP1, and TSC1. These genes account for a large number of 

epilepsy pathogenic variants and, since they follow a dominant inheritance pattern, might have distinct 

characteristics impacting variant prediction relative to all other epilepsy genes (see below). For each disease 

variant set, we compare the performance of CCR, FATHMM, missense badness, missense depletion, MTR, 

and VEST using panel and ClinVar variants with pathogenicity labels. We also build PathoPredictor, an 

ensemble classifier of pathogenicity, and test it with variants from ClinVar not found in our disease panel 

variant sets. To ensure the reliability of ClinVar variant pathogenicity labels, we examine only unambiguously 

pathogenic or benign variants, and split ClinVar into two variant groups: all ClinVar variants and those that 
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have been reviewed. Note that few of these variant collections have an equal amount of pathogenic and 

benign variants, with a drastic imbalance for cardiomyopathy panel variants. 

 

Disease-specific classifier evaluation 

 

We use disease panel and ClinVar datasets to compare pathogenicity classifiers, and to train and test 

PathoPredictor (Figure 2). For each disease, we used panel and ClinVar variants to build precision-recall 

curves using pathogenicity scores from CCR, FATHMM, missense badness, missense depletion, MTR, and 

VEST. These curves were summarized using average precision. To evaluate PathoPredictor, we examined 

each disease panel gene, trained a model using disease panel variants not found in the selected gene, and 

tested the model using panel and ClinVar variants from the gene. By training PathoPredictor with disease-

specific variants, we collect variants that belong to genes that are more likely to share a common biological 

pathway, and might have similar tolerance to variants. 

 

PathoPredictor predicts the pathogenicity of disease panel variants with an average precision higher than that 

obtained with any single feature (Figure 3). The average precision of PathoPredictor is greater than 90% for all 

disease panels. CCR has the highest average precision among the single features. The majority of the time, 

PathoPredictor’s performance is significantly better than that of any single feature in the 24 comparisons made 

across six features and four panel variant sets (18 of the total 24 comparisons in all four panels, p < 0.05). 

PathoPredictor was not significantly better than CCR for the dominant epilepsy genes, where it is expected that 

regional constraint is most critical (see above). The remaining five exceptions were in the RASopathies and 

cardiomyopathy panels, which both had the lowest variant count (Figure 1). However, when evaluating with 

more variants (below), a significant advantage of PathoPredictor over all single features was observed (Figure 

4, p < 0.03). 

 

PathoPredictor’s performance was next evaluated using a larger independent variant set from ClinVar (Figure 

4). For each disease panel, we find that PathoPredictor performs significantly better than any single feature 

when examining all ClinVar variants (p < 0.03). PathoPredictor has similar performance when using all of 
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ClinVar and the reviewed subset of ClinVar, achieving an average precision greater than 95% for all variant 

sets. The poor average precision obtained when using VEST, FATHMM, and missense badness to predict 

cardiomyopathy panel variants was not replicated using ClinVar variants in cardiomyopathy panel genes. This 

discrepancy can be attributed to the lower number of cardiomyopathy panel variants, especially pathogenic 

variants (Figure 1). PathoPredictor showed consistent results for RASopathy ClinVar and panel variants, 

however, given the larger number of ClinVar variants, the improved performance of PathoPredictor was now 

statistically significant in ClinVar (p < 0.004). 

 

As a further test of PathoPredictor, we trained PathoPredictor with ClinVar variants, and evaluated each 

classifier with disease panel variants (Figure 5). For training we used either total ClinVar variants, or those that 

had been reviewed, and restricted ClinVar training variants to genes from the disease panel used for 

evaluation. PathoPredictor achieved an average precision of at least 90% for all evaluations. PathoPredictor 

performed better than each of its six features (p < 0.05), except for missense depletion for cardiomyopathy 

panel variants, CCR, missense badness, and VEST for RASopathy panel variants (most likely due to limited 

cardiomyopathy and RASopathy panel variants), and CCR for dominant epilepsy panel variants. These 

findings are consistent with the disease panel hold-one-gene-out approach in Figure 3. 

 

Assessing the gene-wise performance of PathoPredictor is challenging because most genes have a small 

variant sample size. However, some genes with high variant count were found to best demonstrate the utility of 

PathoPredictor (Figure 6A). When using the hold-one-gene-out approach for training and evaluation on 

disease panel data, PathoPredictor had an accuracy of 95% for the 27 pathogenic and 10 benign variants in 

KCNQ2. When training on panel variants, and validating with ClinVar variants, PathoPredictor had a 96% 

accuracy for 41 pathogenic and 6 benign ClinVar variants in KCNQ2. High accuracies were also observed for 

RAF1, SCN2A, SCN5A, and STXBP1. 

 

Comparing PathoPredictor with MPC and REVEL 
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REVEL is a state-of-art ensemble classifier of pathogenicity. Built using 18 prediction scores, it has more 

features than PathoPredictor, but does not contain recent genomic constraint features like CCR and missense 

depletion. MPC is a recent classifier of pathogenicity that was trained to combine genomic constraint features 

with PolyPhen-2 scores using missense pathogenic ClinVar variants and a benign variant set constructed 

using missense variants with 1% or higher ExAC frequencies. We utilized the set of de novo variants to 

compare PathoPredictor, MPC, and REVEL (Figure 6B, see Methods). We focused on our PathoPredictor 

epilepsy classifiers, as they were expected to be most relevant to the neurodevelopmental and autism disorder 

variants from the validation de novo dataset. We found that the dominant epilepsy trained PathoPredictor 

achieved more than 94% average precision which was significantly higher than that of REVEL or MPC (p < 

0.05, Figure 6C). Both PathoPredictor classifiers achieved a greater average precision than REVEL (p < 0.05, 

Figure 6C). 

 

Discussion 

 

We have shown that the efficacy of variant pathogenicity prediction varies by disease, whereby each disease 

dictates a unique combination of classifier features. We have also presented PathoPredictor, a new missense 

variant pathogenicity predictor trained with variants from clinical sequencing results to produce pathogenicity 

scores from disease-specific combinations of regional constraint and variant features. PathoPredictor achieves 

an average precision greater than its components: CCR, FATHMM, missense depletion, missense badness, 

MTR, Pfam domain status, and VEST. FATHMM, Pfam domain status, and VEST capture regional constraint 

by using domains and protein families, while CCR, missense depletion, missense badness, and MTR locate 

genomic regions with less natural population variants than expected by null models of variation.  

 

The evaluation of PathoPredictor and other variant classification tools is limited by available data describing 

pathogenic and benign variants. Ideally, this data would come from unbiased functional, mechanistic, tissue-

based studies. Since these dataset do not exist in large quantities, we have chosen to utilize ClinVar and 

established variant interpretation protocols to determine a ground truth for variant pathogenicity. The 
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performance of ParhoPredictor is dependent on the quality of these annotations, and additional functional 

studies are needed to construct better databases for the training and evaluation of pathogenicity classifiers. 

 

CCR was determined to be the most useful feature for classification, replicating results from the CCR 

manuscript (Havrilla et al. 2019). Consistent with a recent survey of pathogenicity predictor performance using 

ClinVar variants (Ghosh, Oak, and Plon 2017), we find that VEST outperforms FATHMM for ClinVar variants. 

Missense depletion and badness were consistently the worst performing classification scores. The differing 

performance of these tools by disease panel demonstrates the utility of constructing PathoPredictor as a 

disease-specific combination of tools. 

 

To construct PathoPredictor, we introduced a unique variant dataset derived from clinical panel sequencing 

results for cardiomyopathy, epilepsy, and RASopathy patients. A benefit of this dataset compared to ClinVar is 

that the variants are labeled and obtained in a more homogeneous way, which helps remove data biases. 

Furthermore, the variant labels followed clinical interpretation standards similar to the ACMG/AMP guidelines, 

making the dataset more similar to real world clinical use cases. The clinically classified (pathogenic and 

benign) variants incorporated several pieces of evidence, mainly segregation, variant effect, functional, and 

allele frequency data, with limited reliance on computer predictions (or none) thus ensuring that there are no 

biases towards any one prediction tool. To avoid any further biases in our training and test datasets, we 

removed all variants previously used to train any of the component features. However, this significantly 

reduced the number of variants to optimize and evaluate PathoPreditor. Further testing and optimization, with 

larger clinically curated variant datasets, is required to confirm PathoPredictor’s superior performance, and its 

utility in a clinical setting. An additional limitation of PathoPredictor, and other pathogenicity scores mentioned 

here, is that they are trained and evaluated using missense variants, ignoring synonymous variants that may 

impact splicing. 

 

We demonstrated the utility of PathoPredictor using missense variants from ClinVar and a variant set of de 

novo variants previously used to compare REVEL and CCR. PathoPredictor performs significantly better than 

its constituent features when evaluated with ClinVar. However, a recent study of ClinVar variants concluded 
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that while ClinVar has improved over time, it contains incorrect pathogenic labels for some endocrine tumor 

syndrome variant labels (Toledo and NGS in PPGL (NGSnPPGL) Study Group 2018), as an example. While 

this ClinVar problem could affect our results, we also find that PathoPredictor has a significantly higher 

average precision than REVEL when testing with the de novo variants, which is consistent with CCR’s 

improvement over REVEL using this same dataset (Havrilla et al. 2019). 

 

In conclusion, we recommend using PathoPredictor scores to predict missense variant pathogenicity for 

cardiomyopathy, epilepsy, and RASopathies. Predictions for all possible missense variants for disease panel 

genes are located in Supplemental Table S2. 

 

 

Methods 

 

Classifier 

 

We used Python’s scikit-learn machine learning library to train a logistic regression model to predict the 

pathogenicity of missense variants from clinical panels. Variants were classified by two well known clinical 

laboratories, GeneDx (Gaithersburg, MD) and the Laboratory for Molecular Medicine (Harvard Medical School, 

MA), using variant interpretation protocols that are well within the most recent 2015 ACMG/AMP guidelines. 

Pathogenic and likely pathogenic variants were assigned values of one, while benign and likely benign variants 

were assigned values of zero. During training, we used L2 regularization with a regularization strength of one. 

Our model included six features corresponding to measures of pathogenicity, one Pfam domain indicator, and 

all pairwise combinations of features. All model terms were standardized by removing the mean and scaling by 

the standard deviation with scikit-learn. 

 

Pathogenicity scores as classifier features 
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We used seven features in our classifier: CCR, FATHMM, missense depletion, missense badness, MTR, 

VEST, and Pfam protein domains. FATHMM and VEST can provide multiple scores for one variant, depending 

on isoforms. VEST scores were taken as the minimum VEST v3.0 score provided by dbNSFP v2.9 (Liu, Jian, 

and Boerwinkle 2013). FATHMM scores were taken as the negative minimum FATHMM v2.3 score provided 

by dbNSFP v2.9. FATHMM scores were negated so that their interpretation would match the other features. 

CCR scores were taken as the CCR percentile (ccr_pct) from the CCR BED file v1.20171112 (Havrilla et al. 

2019). Missense depletion and badness scores were taken from the constraint MPC VCF file v2 as obs_exp 

and mis_badness, respectively (Samocha et al. 2017). Missense depletion was negated so that its 

interpretation would match the other features. The MTR manuscript authors provided chromosome-specific tab 

delimited text files containing MTR scores and associated metrics for single genomic positions. We extracted 

MTR scores, negated them so that their interpretation would match the other features, and constructed BED 

files where each line corresponded to a region of consecutive positions with identical MTR scores. A BED file 

of Pfam domain locations was downloaded from the UCSC Genome Browser. We assigned each variant a 

Pfam score of one if its position fell within a domain, and zero otherwise. Note that we omit this simple Pfam 

domain feature from figures comparing feature classification performance because we do not expect it to 

perform well by itself. Feature values were assigned to variants as described below in the variant annotation 

and filtering pipeline. 

 

For each disease dataset we used Python’s scikit-learn library to standardize each feature by removing its 

mean and scaling by its standard deviation. Disease panel, ClinVar, and de novo variants for the same disease 

were processed together so that their features would be on the same scale. 

 

Variant sets 

 

We utilized three missense variant sources in this study: disease panels and ClinVar for model training and 

validation (using unique variant sets), and neurodevelopmental patients for comparing PathPredicor to MPC 

and REVEL. 
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GeneDx provided clinical sequencing panel results for epilepsy, while the Laboratory for Molecular Medicine 

provided their clinically curated data for cardiomyopathy and RASopathies. The number of patients 

investigated differed by gene. The maximum number of patients observed was 5466 for cardiomyopathy, 8583 

for epilepsy, and 3022 for RASopathies. No gene was shared between the three datasets. Variants were 

provided in Human Genome Variation Society (HGVS) c. notation (Dunnen et al. 2016), and were converted to 

VCF files of hg19 based variants using Mutalyzer (Wildeman et al. 2008) and custom scripts. To construct 

variant sets for our classifier, we discarded variants of uncertain significance. We formed a benign set of 

variants using “benign” and “likely benign” variants. Similarly, our pathogenic variant set consisted of 

“pathogenic” and “likely pathogenic” variants. These labeled variants were used for training disease-specific 

classifiers (see below). Diseases panel variants and labels were deposited into Supplemental Table S1. 

 

Variants from ClinVar were chosen as a validation set. We restricted ClinVar genes to those found in the 

disease panels, and removed any ClinVar genomic position found in the disease panels, producing an 

independent variant set. The hg19 ClinVar VCF file was downloaded on February 25, 2018, and limited to 

unambiguously pathogenic or likely pathogenic and benign or likely benign variants with no conflicts according 

to CLINSIG (Landrum et al. 2016). We considered ClinVar variants with any review status as one test set, and 

consulted CLNREVSTAT (Landrum et al. 2016) to produce a second ClinVar test variant set restricted to 

reviewed variants. 

 

As in the CCR paper, we compared PathoPredictor, REVEL, and MPC using de novo missense variants from 

5,620 neurodevelopmental disorder patients and 2,078 unaffected siblings of autism spectrum disorder 

patients (Samocha et al. 2017; Havrilla et al. 2019). De novo variants from patients were considered 

pathogenic, and de novo variants from unaffected siblings were considered benign. HGVS formatted variants 

were uploaded to VariantValidator (Freeman et al. 2018), and a VCF file was constructed from the results. This 

file was normalized with vt (Tan, Abecasis, and Kang 2015). To avoid evaluating with any tool’s training data, 

we removed disease panel variants, ClinVar variants, and benign variants present in more than 1% of ExAC 

(MPC’s benign training data).  
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Disease-specific classifier evaluation 

 

We compared estimated pathogenicity probabilities produced by our trained models with each pathogenicity 

score used as a model feature via precision-recall curves and average precision, as implemented in scikit-

learn. Precision-recall curves and average precision are useful here due to the possibility of imbalances 

between pathogenic and benign variant counts. Average precision is an approximation of the area under the 

method’s precision-recall curve. We ran three experiments with disease panel and ClinVar variants to evaluate 

the performance of PathoPredictor. First, we used cross validation with disease panel variants. Second, we 

trained a model with disease panel variants, and validated it with ClinVar variants. Third, we trained a model 

with ClinVar variants, and validated it with disease panel variants. Comparisons were conducted in a leave one 

gene out manner. We iterated over all genes in a disease, holding out the gene of interest, and training a 

model using variants from all remaining genes. This model was applied to variants from the gene of interest, 

ensuring that a given gene was never used for training and validation. ClinVar variant datasets were restricted 

to variants not found in the disease panel results. Precision-recall curves and average precision scores were 

made for each pathogenicity score by aggregating the results from each gene evaluation. The DeLong test as 

implemented in R’s pROC package (Robin et al. 2012) was used to compare areas under receiver operating 

characteristics curves produced by predictors. We used this test to gauge the significance of differences 

between classifiers. 

 

Comparing PathoPredictor with MPC and REVEL 

 

We applied our epilepsy variant trained PathoPredictor (using all or dominant epilepsy genes) to de novo 

missense variants. For the evaluation of PathoPredictor, MPC, and REVEL, we used 54 pathogenic missense 

variants located in the epilepsy panel genes. Limiting the benign missense dataset to epilepsy genes produced 

only 6 benign variants for evaluation, so we randomly selected 48 variants from the full benign missense 

dataset of 969 variants not located in epilepsy genes so that the pathogenic and benign evaluation sets would 

have the same size. PathoPredictor, MPC, and REVEL scores were compared using precision-recall curves, 

average precision, and the DeLong test. 
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Variant annotation and filtering pipeline 

 

Our pipeline began with VCF files containing 6,382 de novo, 345,849 ClinVar and 7,840 disease panel variants 

labeled as benign, pathogenic, or VUS. Snpeff v4.3.1T (Cingolani et al. 2012) was used to determine variant 

effects in GRCh37.75. SnpSift v4.3 (Cingolani et al. 2012) was used to annotate variants with allele 

frequencies from the ESP, FATHMM scores, and VEST scores from dbNSFP. We annotated variants with 

values from BED (CCR and Pfam) and VCF (missense badness and depletion and calculated ESP frequencies 

from ESP6500SI-V2) files using vcfanno v0.2.8 (Pedersen, Layer, and Quinlan 2016). The ESP frequencies 

are needed next when remove the training data used for VEST. 

 

We next removed variants that had been used to train FATHMM (~49,500 disease variants and ~37,000 

putatively neutral variants) or VEST (~45,000 disease variants and ~45,000 putatively neutral variants), 

ensuring that these features would not have an advantage when comparing pathogenicity scores, and that our 

validation datasets would not overlap with any variants used for training. Both FATHMM and VEST were 

trained with damaging mutations from HGMD, but they differed in their choice of neutral missense variant set. 

FATHMM was trained with neutral variants from UniProt (The UniProt Consortium 2017) and VEST was 

trained with missense variants from ESP achieving an population frequency of 1% or higher. 

 

We then removed variants found in the set of 154,257 DM (damaging mutation) in HGMD Professional 2016.1. 

To address frequent ESP variants, we took the variant frequency as the maximum of dbNSFP fields 

ESP6500_EA_AF, ESP6500_AA_AF, and the total ESP allele frequency determined using vcfanno. We 

discarded variants (68 for ClinVar, and 59 disease panel) when this maximum value reached at least 0.01. To 

remove neutral UniProt variants, we used “Polymorphism” annotations to build a list of neutral codons relative 

to hg38. Polymorphism annotations were downloaded from www.uniprot.org/docs/humsavar.txt, and joined 

with hg38 codon coordinates from UniProt. Both were downloaded on April 5th, 2018. We used liftOver 

(Hinrichs et al. 2006) to convert these to hg19, and removed any variant found in any of 921,722 neutral 

codons. 
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Final variant sets were taken as missense variants with CCR and missense depletion, and MTR scores to 

avoid missing data issues. After applying all the above filters, 666 disease panel, 1,159 ClinVar, and 108 de 

novo missense variants were used in this study. 

 

Software availability 

 

Source code for this manuscript is available at https://github.com/samesense/pathopredictor, and included as 

Supplemental Code. A docker image for running PathoPredictor is available at 

https://hub.docker.com/r/samesense/pathopredictor/. Diseases panel variants and labels were deposited into 

Supplemental Table S1. Predictions for all possible missense variants for disease panel genes are located in 

Supplemental Table S2. 
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Figure Legends 

 

Figure 1. Study datasets. Missense variant and gene counts are shown by disease panel and ClinVar variant 

set. We only use ClinVar variants from panel genes, and consider either any ClinVar variant (Total ClinVar), or 

ClinVar variants that have been reviewed (ClinVar w/ Evidence). ClinVar variants are restricted to those with 

no conflicting pathogenicity assignments, and any genomic position from the panel data is removed from the 

ClinVar variant sets. 

 

Figure 2. Method description. Our goal is to build disease-specific classifiers of missense variant pathogenicity 

using variants from clinical panels. For all genes in a disease panel, we trained a model using variants from all 

other genes except the gene in question, and tested the model using variants from that gene of interest. We 

then used ClinVar variants from the gene of interest as an independent test set. Test results were summarized 

as average precision scores. 

 

Figure 3. Disease-specific classifier performance using disease panel cross-validation. For each disease 

panel, we used a hold-one-gene-out approach to evaluate a logistic regression model’s ability to predict 

pathogenicity. For all genes in a disease panel, we trained PathoPredictor using variants from all other genes, 

and tested the model using variants from the gene of interest. Using the held-out gene variant prediction 

scores, we A) computed a precision-recall curve and B) summarized the curve as the average precision. We 

then computed a precision-recall curve for each individual feature using untransformed scores. The numbers of 
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pathogenic (p) and benign (b) variants investigated are shown at the bottom left of each panel in B). For all 

epilepsy variants, PathoPredictor performs significantly better than any single feature (p < 10-4), and 

PathoPredictor only failed to be significantly better in 6 of the 24 total feature comparisons (CCR, VEST, and 

missense depletion for RASopathies, CCR for dominant epilepsy genes, and missense depletion and MTR for 

cardiomyopathy).  

 

Figure 4. Disease-specific classifier performance using disease panel data for training and ClinVar data for 

testing. For each disease panel, we applied the hold-one-gene-out models from Figure 3 to ClinVar variants 

from the held-out gene to obtain pathogenicity prediction scores. We compared PathoPredictor to each feature 

using A) a precision-recall curves and B) average precisions summarizing each curve. We used either all 

ClinVar variants (Total ClinVar), or ClinVar variants with a review status that included at least one submitter or 

an expert panel (Clinvar w/ Evidence). The numbers of pathogenic (p) and benign (b) variants investigated are 

shown at the bottom left of each panel in B). PathoPredictor performs significantly better than any single 

feature when examining all ClinVar variants (p < 0.03). 

 

Figure 5. Disease-specific classifier performance using ClinVar data for training and disease panel data for 

testing. For each disease panel, we collected ClinVar variants in panel genes, using either all ClinVar variants 

(Total ClinVar), or reviewed ClinVar variants (ClinVar w/ Evidence). PathoPredictor training and evaluation for 

each disease panel proceeded with a hold-one-gene approach. Disease panel variants from the gene of 

interest were used for evaluation, and ClinVar variants from all remaining disease panel genes were used for 

training. Using the held-out gene variant prediction scores, we A) computed a precision-recall curve and B) 

summarized the curve with its average precision. We then computed a precision-recall curve for each 

individual feature using untransformed scores. The numbers of pathogenic (p) and benign (b) variants 

investigated are shown at the bottom left of each panel in B). PathoPredictor performed better than each of its 

six features (p < 0.05), except for missense depletion for cardiomyopathy panel variants, CCR, missense 

badness, and VEST for RASopathy panel variants, and CCR for dominant epilepsy panel variants. 
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Figure 6. PathoPredictor performance. A) Precision-recall curves are shown for select genes evaluated during 

cross-validation with the disease panel dataset and tested with ClinVar variants. The curve for RAF1 closely 

follows, and is obscured by that of SCN2A. For KCNQ2, PathoPredictor has an accuracy of 95% for panel 

variants and 96% for ClinVar variants. B) PathoPredictor epilepsy-specific classifiers were compared to REVEL 

and MPC. De novo missense variants in epilepsy panel genes were used as pathogenic variants. Epilepsy 

panel gene missense variants from unaffected siblings of autism spectrum disorder patients were used as 

benign variants. PathoPredictor was trained as in Figure 4, but only utilizing the full and dominant epilepsy 

datasets. Variants were filtered using the same methods applied to ClinVar variants, and additional filters were 

applied to remove training data for MPC. C) We summarized each scoring metric’s precision-recall curve as 

the average precision. Both PathoPredictor classifiers achieved a greater average precision than REVEL (p < 

0.05), and the dominant epilepsy classifier performed better than MPC (p < 0.05). P: pathogenic; b: benign. 
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