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Abstract  

Epigenetic landscapes can shape physiologic and disease phenotypes. We used integrative, high 

resolution multi-omics methods to characterize the oncogenic drivers of esophageal squamous cell 

carcinoma (ESCC). We found 98% of CpGs are hypomethylated across the ESCC genome and two-thirds 

occur in long non-coding (lnc)RNA regions. DNA methylation and epigenetic heterogeneity both 

coincide with chromosomal topological alterations. Gene body methylation, polycomb repressive 

complex occupancy, and CTCF binding sites associate with cancer-specific gene regulation. 

Epigenetically-mediated activation of non-canonical WNT signaling and the lncRNA ESCCAL-1 were 

validated as potential ESCC driver alterations. Gene-specific cancer driver roles of epigenetic alterations 

and heterogeneity are identified.  
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Main Text 

Epigenetic regulation is an important determinant of many biological phenotypes in both physiologic and 

pathophysiological contexts 1. However, epigenetic forces shaping the evolution of complex diseases such 

as cancer remain incompletely defined. Esophageal cancer is the sixth leading cause of cancer-related 

death and the eighth most common cancer worldwide 2. In China and East Asia, ESCC is the most 

prevalent pathohistological type of esophageal cancer 3. Comprehensive analysis by whole-genome and 

whole exome sequencing uncovered the genetic landscape of ESCC 4-9 and multi-region whole-exome 

sequencing revealed intra-tumor genetic heterogeneity in ESCC 10. This intra-tumor genomic 

heterogeneity could serve as a prognostic predictor in esophageal cancer 11 and as a potential foundation 

for improved treatment. Notable and frequently mutated epigenetic modulator genes in ESCC include 

KMT2D, KMT2C, KDM6A, EP300 and CREBBP, and epigenetic perturbations might interact with other 

somatic genomic alterations to promote ESCC. The interplay between epigenetic perturbations and other 

somatic genetic alterations may have a critical role during ESCC tumorigenesis 4.  

 

The Cancer Genome Atlas research group (TCGA) identified ESCC-related biomarkers at a multi-omics 

level (genomic, epigenomic, transcriptomic, and proteomic) and pinpointed 82 altered DNA methylation 

events, along with altered transcriptional targets genomic alterations 9. While genomic and 

transcriptomic-level studies of ESCC produced valuable biological discoveries and resources, the single-

nucleotide resolution of the epigenetic landscape of ESCC, and of most other cancers, at the whole 

genome level remains poorly studied. This knowledge gap is due to the comparatively high cost, 

computational complexity, and technical challenges of capturing genome-wide and single-nucleotide 

resolution of the epigenetic landscape. Consequently, an integrative and causal analysis across orthogonal 

multi-omics datasets remains incomplete.  

 

We addressed this challenge by using an integrated multi-omics study that includes whole genome 

bisulfite sequencing (WGBS), whole genome sequencing (WGS), whole transcriptome sequencing (RNA-
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seq) and proteomic experiments on a cohort of ESCC samples and their adjacent non-tumor esophageal 

tissues along with orthogonal analysis and validation using the large TCGA-esophageal cancer (ESCA) 

dataset. Our goal was to understand the extent and complexity of epigenetic heterogeneity in DNA 

methylation alterations and consequent dysregulation of both protein coding and non-coding gene 

expression.  

 

Results 

Whole genome bisulfite sequencing reveals the epigenetic landscape and heterogeneity in ESCC. 

Different types of cancers exhibit unique epigenetic alterations, particularly in the DNA methylome 12-14. 

We initially collected ten pairs of primary ESCC samples and their adjacent non-tumor tissues 

(Supplementary Fig.1), performed WGBS with over 99% of a bisulfite conversion ratio, and generated a 

mean 15x sequencing depth per sample (Supplementary Table 1, Supplementary Fig. 2). Over 99% of 

CpG dinucleotides were covered and ~95% of CpGs were reliably mapped by more than five reads. To 

ensure the quality of data, bisulfite converted sequencing reads were aligned with TCGA-ESCA Human 

Methylation 450K (HM450K) array (Supplementary Fig. 3a) and showed strong concordance in all 

normal and tumor samples (Pearson r = 0.9644, p-value < 0.01, Supplementary Fig. 3b); the coefficient 

for WGBS-ESCC versus TCGA-ESCC, or TCGA-EAC (esophageal adenocarcinoma) was 0.7570 and 

0.5554, respectively (Supplementary Fig. 3c, 3d). DNA methylation at non-CpG contexts was present in 

less than 0.5% in our samples.  

 

More than 5 million differentially methylated cytosines (DMCs) were identified using a one-way 

ANOVA test (FDR < 5%) (Fig. 1a). Among them, 57.5% were located at known annotated regions, 

42.5% were located at unannotated regions of the genome (Supplementary Fig. 4a). Methylation loss in 

cytosines in ESCC accounted for 97.3% of the DMCs and was mostly confined to intergenic regions of 

the genome. Only 2.7% of the DMCs were gains of methylation in ESCC (proportional test for hyper- and 

hypo-methylation, p value < 2.2e-16, Fig. 1b) and 83.67% of them mapped to gene bodies, promoters, 
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and enhancers with RefSeq annotation (Supplementary Fig. 4b). Of the hypomethylated DMCs in ESCC, 

63.08% were mapped to lncRNA regions with ENCODE annotation (v27lift37), whereas 58.01% of 

hypermethylated DMCs in ESCC were dispersed in antisense RNA regions of the genome 

(Supplementary Fig. 5a and 5b). These DMCs clearly discriminate normal tissues from tumor tissues, as 

measured by unsupervised Principal Component Analysis (PCA) (Fig. 1c), similar to unsupervised 

transcriptome-mediated clustering of normal and tumor samples (PCA in Supplementary Fig. 6a and 

Dendrogram in 6b). In the larger sample set (n=202) of TCGA-ESCA, the differentially methylated CpG 

probes present in the lower resolution Illumina HM450K array were also able to discriminate normal and 

tumor and even subtypes of esophageal cancer using t-distributed stochastic neighbor embedding (t-SNE), 

a nonlinear dimensionality reduction algorithm (Fig. 1d). The data suggest that alterations in DNA 

methylation can characterize the biological features of cellular states of physiologic and pathophysiologic 

phenotypes. 

 

DNA methylation heterogeneity has been observed in other cancer types 14,15 and stochastically increasing 

variation in DNA methylation appears to be a property of the cancer epigenome 16. The clinical 

significance of such inferences remains unclear. We found a higher variance of altered methylation in 

ESCC (275.76 ± 204.01) compared with normal samples (95.67 ± 112.38, two sample t-test p-value » 0) 

in our cohort as well as in the TCGA-ESCC cohort (p < 2.2e-16) (Supplementary Fig. 6c). As a further 

measurement of the level of epigenetic variance, we calculated Shannon’s entropy of methylation levels 

at each CpG locus. We observed increased entropy in ESCC compared with normal samples (two sample 

t-test p-value » 0) (Fig.1e), and this is consistent with the increase in stochastic ‘noise’ (heterogeneity) in 

tumors. Our simulation using the Euler-Murayama method 17 also reflected increased DNA methylation 

heterogeneity in ESCC (Supplementary Fig. 6d). Using the independent TCGA-ESCC clinical cohort, we 

stratified patient samples by their variance of methylation level and found that the group with a higher 

variance (N=49) of methylation levels showed a worse overall survival time (hazard ratio=2.9, 95% 
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confidence interval (1.1~ 7.5), p-value < 0.05) (Fig. 1f). This provides potential clinical relevance of the 

epigenetic heterogeneity that we uncovered in ESCC. 

 

Differentially methylated regions (DMRs) associate with alterations of genome topology and a 

global abnormal functional annotation of the ESCC transcriptome.  

We further defined 299,703 DMRs (p value <= 0.05, FDR < = 0.05) between tumor and normal tissues, 

resulting from a CpG density peak of 4% and a DMR peak size of 200-400 base pairs (bp) (Fig. 2a, 

Supplementary Fig. 7a and 7b). Only 1.8 % of these DMRs are hypermethylated, while 98.2 % of DMRs 

are hypomethylated (proportional test, p-value < 2.2e-16) in tumors relative to normal tissues. DMRs in 

regions of -2990bp ~ +6990bp appear hyper-methylated while gene bodies, intergenic, and non-coding 

regions are in general hypomethylated in tumors (Fig. 2b, Supplementary Fig. 7c,7d). The occupancy of 

each transcription factor (TF) binding consensus varies in the genome (161 TF binding sites from 

ENCODE), with POLR2A (5.23%) and CTCF (3.55%) ranking at the top (Supplementary Fig. 8a, 

Supplementary table 2). We searched CpG content in these TF binding sequence and the top 20 TFs 

affected by methylation alterations in consensus binding sites were identified. Notably, the Polycomb 

Repressor Complex 2 (PRC2) subunits SUZ12 and EZH2 binding sites were substantially affected by 

hypermethylation in the CpGs (Supplementary Fig. 8b-8d). These observations indicated the possibility 

of a paradoxical activation mechanism for PRC2 target genes through loss of PRC2 occupancy in gene 

promoters in tumor cells. 

 

The DMRs were distributed mostly (>6%) in Chromosome (Chr)8, Chr19 and Chr20 after normalization 

to chromosome size (Supplementary Fig. 9a) and DMRs are enriched (>20%) in gene promoters at Chr19  

(Supplementary Fig. 9b). We integrated the most significant DMRs with all CpGs, CpG island, chromatin 

state, and potential TF binding data using the ENCODE dataset 18. We observed Chr8 harbors three large 

genomic regions with unique DMR patterns and these regions contain the SOX17, RGS22, and ESCCAL-1 

(CASC9) gene loci, respectively. For example, around the gene of SOX17 (Chr8:55,360,000-55,400,000), 
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CpG island regions were hyper-methylated but CpG shore regions were hypo-methylated (Fig. 2c). Two 

CpG islands with significant hyper-methylation upstream of the SOX17 gene were observed but there is 

no association with low gene expression (p-value = 0.668, Fig. 2d). In the region 100,650,000-

101,190,000) of Chr8, hypo-DMRs covered all of the gene body of RGS22 (regulator of G protein 

signaling) (Supplementary Fig. 10), which is a putative tumor suppressor 19. The region around the 

lncRNA ESCCAL-1 (Chr8:76,130,000-76,240,000), which was previously identified by us 20, contained 

significantly hypo-methylated DMRs in its promoters and we further investigated the uncharacterized 

biological function of this lncRNA later in this study.  

 

A link between hypo-methylated blocks, variable gene expression, and large heterochromatin domains 

such as Large Organized Chromatin lysine (“K”) modification (LOCK) or lamina-associated domains 

(LAD) was previously reported in cancer 21. Nevertheless, the relation between significant DMRs and 

Topologically Associating Domains (TADs), or self-interacting genomic regions 22 is largely 

uncharacterized in ESCC. Genome-wide chromosome conformation capture followed by massively 

parallel DNA sequencing (Hi-C) showed increased TAD abundance and reduced TAD size in the ESCC 

cancer genome relative to the normal genome (Supplementary Fig.11a). The interactions between 

chromosomes was altered during ESCC tumorigenesis (Supplementary Fig.11b). Closer interactions 

between Chr16 through Chr22 were observed in ESCC compared with normal esophageal cells (Fig. 2e 

and 2f). Using the Hi-C data, we inferred two compartments: open euchromatin of transcriptionally active 

states (compartment A) and closed chromatin of transcriptionally silent states (compartment B) 22. We 

observed 22.61% of the compartment shift (AàB or BàA) during ESCC tumorigenesis (Supplementary 

Fig. 11c). The Aà B shifted regions contain 0.5~9% DMRs with Chr10 and Chr19 showing the most 

DMR occupancy (Supplementary Fig.12a-d). In contrast, the BàA shifted regions have 0.5~20% DMRs 

with a higher percentage of DMR in Chr3 (Supplementary Fig.13a-d). This suggests that a functional link 

exists in ESCC between DMR alterations and shifts in genomic architecture.  
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Significant methylation changes were identified by WGBS at 5085 gene promoter regions (-4500bp 

~500bp relative to a TSS). Gene set enrichment analysis (GSEA) analysis of these target genes harboring 

promoter hypomethylation indicated an over-representation of WNT/β-catenin signaling, whereas gene 

promoters harboring hyper-methylation were enriched for KIT signaling genes (Supplementary Fig. 14a). 

In parallel, GSEA analysis for differentially expressed genes (DEGs) from the RNAseq dataset indicated 

enrichment for genes regulating cell cycle pathways and metallopeptidase activity (Supplementary Fig. 

14b). Hence, the DMRs associated with alterations of genome architecture appear to shift the gene 

regulatory networks during ESCC tumorigenesis.  

 

Aberrant DNA methylation in promoter regions mediates transcriptional dysregulation in ESCC. 

DNA methylation at regulatory regions influence transcript expression levels 23. From our WGBS 

analysis, we identified 5085 promoter regions (-4500bp ~ +500 bp to TSS) of coding and non-coding 

genes whose CpGs were significantly differentially methylated (FDR < 0.01) and focused on the 4768 

significantly differentially expressed transcripts in ESCC relative to the adjacent normal tissues from the 

RNA-seq dataset. We then identified 694 genes that showed significant differential methylation alteration 

in promoters and concomitant dysregulation of gene expression (Fig. 3a). The genes were systematically 

classified into four distinct clusters (denoted as C1, C2, C3 and C4) according to methylation (met) and 

gene expression (ge) pattern. C1(HmetLge) showed hypermethylated promoters with decreased ge; 

C2(LmetHge) showed hypomethylated promoters with increased ge; C3(HmetHge) contained 

hypermethylated promoters with increased ge; C4(LmetLge) denoted hypomethylated promoters with 

decreased ge. C1 and C2 followed the well-documented canonical model, showing anti-correlation in 

promotor methylation and gene expression 13; in contrast, genes in C3 and C4 showed a non-canonical 

pattern in that promotor methylation and gene expression were positively correlated (Fig. 3b, 3c, 

Supplementary Fig. 15, Supplementary table 3). Among the 694 genes, only 1.5% of them harbor non-

synonymous mutations from our selected cases of WGS (Supplementary Fig. 16) and no copy number 

changes of these genes were inferred from RNA-seq (Supplementary Fig. 17). Therefore, the majority 
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(98.5%) of these dysregulated genes in cluster C1~C4 appear to occur via epigenetic dysregulation 

(epimutation) 24. This phenomenon is also seen in the independent TCGA-ESCC (n=96) sample cohort, 

by analysis of the available multi-OMICs dataset (Supplementary Fig. 18a-d).  

 

The underlying mechanisms of the divergent regulation of gene expression are complex and involve DNA 

methylation, chromatin remodeling, and DNA accessibility 25. We explored a potential explanation for the 

non-canonical patterns in C3 and C4 across epigenetic regulatory features. First, we cross-referenced 

13,000 TCGA-ESCA chromatin accessible regions as determined by ATAC-seq 25 to the regulatory 

regions of the 694 genes. Accessibility in promoter regions was highly associated with gene expression in 

C2 and C3 (Supplementary Fig. 19a, b). Second, methylation in defined promoter regions and in gene 

bodies showed a differential phenotype between C1 and C3 (but not between C2 and C4): methylation 

levels in gene bodies were higher in C3 (-5.4587 ± 26.3450) than C1 (-26.8551 ± 16.4716, p < 0.05) (Fig. 

3d). Third, hyper-methylation at cohesion and CCCTC-binding factor (CTCF) binding sites could 

compromise binding of this methylation-sensitive insulator protein and result in gene activation 26. Thus, 

we searched for CTCF binding sites within promoter regions of the 694 genes and observed that the 

CTCF binding sites were enriched in C3 (Fig. 3e), which could partially explain the phenotype of high 

promoter methylation and high gene expression. Fourth, the compartment shift regions inferred from Hi-

C data showed that 53.24% of the genes in C3 shifted from a closed state to an active state 

(Supplementary Fig. 20). The data also indicated that the promoters of genes in C4, despite being 

hypomethylated in the tumor, were inaccessible. This highlights both impotence of accessibility and 

absence of methylation as linked features of the gene expression pattern in the C4 cohort.  

Gene enrichment analysis of the 694 genes was performed using multiple databases (KEGG 27, 

WikiPathways 28, ENCODE 18, ChEA29) and showed PRC2 subunits (EZH2 and SUZ12)-mediated 

polycomb repressive gene sets were enriched in the non-canonical clusters C3 and C4 (Fig. 4a). We 

searched for ENCODE-defined EZH2 and SUZ12 binding sites across gene promoters in C1-C4 and 

observed that EZH2 occupancy was enriched in C3 (1.5970 ± 1.2316) and C4 (0.6000 ± 0.7684) 
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compared with C1(0.9167 ± 0.8464) and C2 (0.2336 ± 0.5870), respectively (p-value < 0.001) (Fig. 4b). 

SUZ12 occupancy was higher only in C3 gene promoter regions (1.5522 ± 1.7946), (Fig. 4c). To 

understand the functional mechanism that is responsible for differential methylation at target gene 

promoters, we performed unsupervised hierarchical clustering of ENCODE-defined known TF binding 

sites in the DMRs of the 694 gene promoters. The analysis showed that EZH2 binding sites were enriched 

in genes in C3 compared to other clusters (Fig. 4d, Supplementary Fig. 21). In addition, we performed a 

correlation analysis between gene expression difference (expression fold change) and corresponding 

promoter methylation level difference (methylation Δ) of genes in C3. WNT2 was identified as the top 

non-canonical gene in C3 (Fig. 4e). The collective data show the non-canonical gene expression pattern 

(C3) appears to arise via de-repression of the EZH2-mediated suppressor effects on promoter regions of 

genes in C3 to increase gene expression, which we experimentally validate later.  

 

DNA methylation gain at the promoter region activates WNT2/ β-catenin pathway in ESCC. 

Epigenetics dysregulation of the components of MAPK, AKT and WNT pathway can promote aberrant 

activation of these pro-growth pathways in ESCC 30. We extracted known components of these genes 

from published literature 30,31 ,32 and compared their gene expressions between tumor and normal samples. 

The gene expression analyses of the component genes in MAPK, AKT and WNT pathway identified only 

WNT2 in WNT pathway was significantly highly expressed in the tumor samples compared to normal 

samples (Supplementary Fig. 22a, b). These data indicate selective and specific upregulation WNT2 in 

ESCC tumors through a putative non-canonical epigenetic regulatory mechanism. WNT2 belongs to the 

structurally related WNT family of genes that functions as secretory ligands for the WNT signaling 

pathway 33. Canonical WNT signaling pathway results in stabilization of the transcriptional co-regulator 

β-catenin and subsequent upregulation of downstream target genes 33. 
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To gain mechanistic insight into the epigenetic regulation of WNT2 promoter, we queried our 

transcription-factor target gene hierarchical clustering analysis for genes in C3 and found that the EZH2 

binding site, along with SUZ12 binding sites, are present at the WNT2 promoter region compared to other 

transcription factors (Fig. 4d). EZH2 and SUZ12 are subunits of PRC2, which has histone 

methyltransferase activity to primarily tri-methylate histone H3 on lysine 27 (H3K27me3) 34. We also 

found that the EZH2 biding site at WNT2 promoter overlap with the hyper CpG methylation sites at 

WNT2 promoter region in cancer cells (Figure 5a). 

 

WNT2 promoter region (Chr7: 116,960,000-116,965,000) was hypermethylated but paradoxically WNT2 

gene expression was increased in tumors (Supplementary Fig. 23 from our WGBS dataset, Supplementary 

Fig. 24 from TCGA-dataset). We reasoned that de-repression of EZH2 occupancy may cause non-

canonical methylation-mediated activation of WNT2 gene expression in ESCC, we validated EZH2 

occupancy on the differentially methylated regions of WNT2 promoter by performing Chromatin 

ImmunoPrecipitation sequencing (ChIP-seq) in normal immortalized esophageal epithelial cells (Het-1A) 

and the patient-derived ESCC cell line, EC109. The ChIP-seq analysis showed EZH2 binding peaks at 

WNT2 promoter region in normal cells compared to minimal binding peaks in the ESCC cells (Fig. 5a). 

Furthermore, we confirmed the promoter region of WNT2 was hypermethylated in three esophageal 

cancer cell lines (EC9706, EC109, and EC1) while no methylation was detected in normal esophagus 

epithelial cells (Het-1A) (Fig. 5b). In addition, WNT2 mRNA and protein expression was also higher in 

independent ESCC samples (Fig. 5c, 5d).  

 

To identify downstream effector genes of WNT/β-catenin signaling that might promote ESCC, the GSEA 

of differential expression from proteomic data and RNAseq data found extracellular matrix organization 

(Supplementary Fig. 25) and extra-cellular metalloproteins MMP3 and MMP9 (known β-catenin targets) 

35 gene set (Supplementary Fig. 26) are enriched in tumor samples. We validated that both MMP3 and 

MMP9 transcripts and proteins were highly expressed in ESCC relative to normal tissues (Fig. 5e).  
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To test whether WNT2-mediated signaling was required for tumor cell growth, we suppressed WNT2 

expression using two independent short interfering (si)RNAs in two different patient-derived ESCC cell 

lines (EC9706 and EC109). WNT2 knockdown significantly inhibited ESCC cell growth (p-value < 0.01) 

(Fig. 5f). These data place WNT2 as an essential gene for ESCC cancer cell growth. Furthermore, since 

MMPs are known downstream targets of WNT/β-catenin signaling activation, we tested the effect of 

WNT2 knockdown on MMP3 and MMP9 expression. We found baseline WNT2 expression in ESCC cell 

lines to be significantly higher than normal cell lines (Supplementary Fig. 27a). Furthermore, WNT2 

knockdown decreased MMP3 and MMP9 expression (Fig. 5g). Since matrix metalloproteinases (MMPs) 

can promote tumor invasion and metastasis 36, we next tested whether WNT2 knockdown abrogates the 

migratory and invasive potential of ESCC tumor cells. In two patient-derived ESCC cell lines (EC9706 

and EC109), silencing of WNT2 significantly reduced cellular invasion and migration (Fig. 5h, p-value < 

0.01, Supplementary Fig. 27b, c, d, e, f). We also found that β-catenin protein expression encoded by 

CTNNB1 gene is significantly higher in ESCC tumors (Supplementary Fig. 27g). Knockdown of WNT2 

remarkably reduced protein level of β-catenin (Supplementary Fig. 27h). These data show that a 

WNT2/β-catenin/MMP3/9 signaling axis was not only required for tumor cell growth, but also for tumor 

cell migration and invasion in ESCC. Taken together, our data demonstrate a novel non-canonical 

mechanism for increased WNT2 expression in the absence of EZH2-PRC2 occupancy of the WNT2 

promoter with hypermethylated CpG. The data delineate specific downstream targets of WNT2-mediated 

signaling and their functional consequences in ESCC (Fig. 5i).  

 

Epigenetic activation of the lncRNA ESCCAL-1 is a novel ESCC cancer driver gene. 

Increasing evidence indicates dysregulation of lncRNAs during cancer progression and metastasis, but the 

mechanisms of dysregulation and of action of lncRNAs in cancer are relatively poorly understood 37. Our 

WGBS analysis revealed that hypomethylated DMCs are significantly enriched in genomic regions 

harboring annotated lncRNAs (Fig. 6a). In the canonical cluster C2, gene expression was strongly anti-
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correlated with gene promoter CpG methylation levels (Fig. 6b). Previously, we showed that the lncRNA 

ESCCAL-1 was overexpressed in ESCC 20, and overexpression of its ESCCAL-1 has been reported in 

other cancer types 38-41. The mechanism underling ESCCAL-1 upregulation in cancer is unknown. We 

found ESCCAL-1 is one of the most notable candidates for DNA methylation loss-mediated increased 

gene expression in C2 (Fig. 6b). One DMR in the promoter of ESCCAL-1 showed decreased CpG 

methylation in cancer, leading to increased transcription of lncRNA ESCCAL-1 (Fig. 6c) 42. There is no 

mutation or copy number variation of ESCCAL-1 reported or observed in TCGA-ESCA genomic dataset 

or in our WGS data of three ESCC patients (Fig. 6c, top panel). Independent verification of the 

methylation status of the ESCCAL-1 promoter region showed 62.5% (20/32) hypomethylation in ESCC 

tumors versus 71.8% (23/32) hypermethylation in adjacent normal tissues, chi square test p-value < 0.01 

(Fig.6e, f). In agreement, ESCCAL-1 expression was significantly higher in ESCC compared to adjacent 

normal tissues (p-value = 0.00113, FDR <0.05) (Fig. 6d from RNAseq). We corroborated these 

observations by analysis of an independent cohort of 73 ESCC tissues relative to their normal 

counterparts (Fig. 6g). We also noted a hypermethylated ESCCAL-1 promoter region in normal 

esophageal cells (Het-1A), whereas methylation was not detected in three ESCC cell lines (EC1, EC109 

and EC9706) (Fig. 7a). ESCCAL-1 expression was substantially overexpressed in ESCC cell lines 

compared with normal cells Het-1A (Fig. 7b). Furthermore, increased expression of ESCCAL-1 was a 

biomarker of worse overall survival time and progression-free survival time in ESCC patients (Fig. 7c, d). 

Knockdown of ESCCAL-1 reduced growth of patient-derived ESCC cells in vitro (Supplementary Fig. 

28) and in vivo (Fig. 7e, f).  

 

To identify a possible mechanism of ESCCAL-1 upregulation, we examined sequence motifs of known 

TFs in the ESCCAL-1 hypomethylated promoter region and found a predicted binding site for YY1 from 

the ENCODE project. YY1 is a TF belonging to the GLI-Kruppel class of zinc finger proteins and 

contributes to tumorigenesis 43. Using ChIP-PCR, we validated YY1 binding at the hypomethylated 
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promoter region of ESCCAL-1 (Fig. 7g). siRNA knockdown of YY1 expression led to decreased 

expression of ESCCAL-1 (Fig. 7h), indicating YY1 transcriptionally regulates ESCCAL-1 in ESCC. 

 

Since the downstream mechanism of ESCCAL-1’s contribution to ESCC pathogenesis is not clear, we 

performed a “guilty-by-association” co-expression analysis using RNAseq from ten pairs of normal and 

tumor samples. The ESCCAL-1 related gene expression modules are enriched in cell cycle pathways, 

RNA binding and the Myc pathway (Fig. 7i and Supplementary Fig. 29a, b). In order to explore the 

causative roles of ESCCAL-1 in ESCC progression, we conducted RNAseq in EC9706 cells with 

ESCCAL-1 knockdown by shRNA (or with shControl). We hypothesized that depletion of ESCCAL-1 

could reverse the phenotype of cells alike to a normal cell state, thus we also use RNAseq from a normal 

cell line, Het-1A. We identified the 210 significantly differentially expressed genes (DEGs) between 

shControl expressed EC9706 and shESCCAL-1 expressed EC9706 and Het-1A (normal) (gene list in 

Supplementary table 4) using an iterative clustering approach 44. Gene enrichment analysis on these 

identified DEGs exhibit an enrichment of “RNA binding”, “ribosomal proteins”, and Myc target gene sets 

(Fig. 7j, Supplementary Fig. 30). These results indicate that ESCCAL-1 participates in the biological 

process of Myc-mediated regulation of genes, which extends current knowledge on the potential role of 

Myc signaling in ESCC 45. Thus, beyond WNT2-mediated WNT pathway activation, other aberrant 

signaling pathways activated by ESCCAL-1 upregulation also contribute to ESCC tumorigenesis. 

Therefore, epigenetic dysregulation promotes ESCC through divergent and multi-factorial mechanisms 

(diagram in Fig. 8).  

 

Discussion 

The development of ESCC is a complex dynamic biological process that involves multiple steps of 

genetic and epigenetic alterations. Numerous genetic studies of ESCC at whole genome and exome levels 

revealed recurrent genetic alterations and related altered pathways such as cell cycle, p53, and 

AKT/mTOR signaling pathways and Hippo signaling pathways 4,6,8,46,47. It remains unclear in ESCC and 
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most other cancer types whether and how the epigenetic landscape contributes to cancer pathogenesis. We 

performed WGBS, RNA-seq, and proteomic analyses on matched normal and tumor samples along with 

analysis of TCGA-ESCA datasets and Hi-C sequencing on esophageal normal and tumor cell lines. We 

observed global hypomethylation (98%) and local hypermethylation across the ESCC genome, consistent 

with previous studies in colon cancer and other types of cancers 12,48. The DMCs alone can discriminate 

cellular states between tumor and normal conditions, and histological subtypes of esophageal cancer. 

DNA methylation is a defining feature of cellular identity and is essential for cell development 49. Hansen 

et al. identified cancer-specific differentially methylated regions in colon cancer and showed that such 

stochastic methylation variations distinguish cancer from normal 13 and can be a potential epi-biomarker 

for early tumor diagnosis or a predictive epi-biomarker for therapeutic outcome. We revealed the 

heterogeneity of DNA methylation alteration is greater in ESCC relative to normal esophageal tissues 

and, was a biomarker of inferior clinical outcome. Our findings provide new insight into the potential 

clinical relevance of epigenetic dysregulation and heterogeneity as a molecular biomarker of clinical 

outcome in cancer.  

 

We validated a prominently epigenetically altered coding and noncoding gene from the non-canonical 

cluster (C3) and canonical cluster (C2), respectively, that we defined. The WNT pathway appears to be 

epigenetically regulated via inactivation of negative regulators (SFRP1/2/4/5 and WIF1) in ESCC 30. Our 

data identified high WNT2 expression in ESCC, along with a highly methylated promoter region. 

HM450K methylation array and RNA-seq of TCGA ESCA analysis showed high promotor methylation 

and high gene expression of WNT2. The collective data suggest EZH2-mediated PRC2 repression of 

WNT2 expression in normal cells. By contrast, we show hypermethylation-mediated de-repression of 

WNT2 activates the WNT pathway in ESCC. Our data provide new insight into the mechanism of 

epigenetic dysregulation via non-canonical gene expression regulation in cancer and new insight into the 

underlying molecular events promoting WNT pathway activation in ESCC.  
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LncRNA dysregulation is an emerging but poorly understood feature of oncogenesis 37. We reported 

ESCCAL-1 overexpression in ESCC 20. Additional studies showed that this lncRNA is overexpressed in 

multiple types of cancers 38-40. Overexpression of this lncRNA promotes cancer cell growth 50, invasion51 

and metastasis 52. Here, we discovered that methylation loss of its promoter is a principle molecular 

mechanism of ESCCAL-1 dysregulation in ESCC. We show that ESCCAL-1 has an epigenetically-

mediated causal role in tumor growth and is a biomarker of worse survival of ESCC patients. 

Interestingly, overexpression of ESCCAL-1 is also related to other types of cancer and it is correlated to 

drug resistance in lung cancer 38. Whether ESCCAL-1 is similarly regulated via epigenetic mechanisms in 

other cancer types beyond ESCC remains to be investigated in future studies. Nevertheless, suppressing 

ESCCAL-1 expression, potentially using anti-sense RNA 53 or CRISPR-based strategies 54, may be a 

promising therapeutic approach in ESCC and other cancer types.  

 

Our study provides a rationale and a roadmap for delineating the landscape and functional roles of 

epigenetic dysregulation in cancer at genome-wide high resolution. Further analysis will be required to 

fully understand the impact of epigenetic dysregulation and heterogeneity on various cancer-associated 

phenotypes and treatment responses 14. Multi-regional WGBS or single cell DNA bisulfite sequencing 

could facilitate addressing this opportunity in the future.  
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Figure legends 

Figure 1. Whole genome bisulfite sequencing (WGBS) unveiled global hypomethylation and 

heterogeneity in esophageal squamous cell carcinoma (ESCC). (a) The asymmetric density 

distribution of all CpG methylation statuses in the normal esophageal tissues versus ESCC. ESCCs lose 

methylation which leaves most CpGs partially methylated. (b) Circos plot of 5 million differentially 

methylated CpGs (DMCs) between ESCC tumor and adjacent normal tissue. DMCs are substantially 

hypomethylated in ESCC (97.3%). Only 2.7% are hypermethylated in ESCC. (c) Principal Component 

Analysis (PCA) shows DMCs discriminate tumor samples from normal samples. (d) t-Distributed 

Stochastic Neighbor Embedding (t-SNE) showed CpG methylation profiling of TCGA-esophageal cancer 

from human methylation 450K analysis clustered into either normal tissue (green circles) or ESCC (red 

circles) or esophageal adenocarcinoma (black circles) subtypes. (e) Entropy analysis of all CpGs showed 

variations per CpG in normal esophageal tissues (blue bars) and ESCC (red bars). The entropy of CpGs in 

ESCC was higher than in normal samples. (f) Kaplan-Meier survival analysis demonstrated TCGA-ESCC 

patients (N=73) with higher variance (the sum of squared distance of each CpG methylation from the 

mean) of CpG methylation in tumors showed worse survival time than those with lower variance. Log-

rank p-value=0.02.  

 

Figure 2. Differentially methylated regions (DMRs) and their functional impacts on the ESCC 

genome. (a) A DMR identification algorithm from DMC was developed using two criteria: (1) two 

flanking DMCs should be close (150 base pairs, bp) given the minimum size of CGI 150bp; and (2) the 

methylation pattern should be consistent, either hypomethylated or hypermethylated within a DMR. Our 

algorithm revealed the landscape of DMRs in terms of DMR size and CpG density. Both distributions of 

DMR size and CpG density are asymmetric and have long tails as DMR size increases in length and CpG 

density is more compact. The peak of DMR size is 200-300bp and the peak of CpG density is 

approximately 4%. (b) Methylation level of CpGs within 15,000 bp upstream and downstream relative to 

a TSS were assessed in ESCC and normal esophagus separately. Overall methylation conversions 
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between normal esophagus tissue and ESCC were observed. CpGs in ESCC tend to be hypermethylated 

between 3,000 bp upstream and 7,000 bp downstream of a given TSS. The arrow indicates the p value for 

the specific region of significant methylation changes. (c) A representative genomic region at 

chr8:55,360,000-55,400,000 with hypermethylation in CpG island and hypomethylation in the CpG 

shore. (d) SOX17 expression is decreased in ESCC tumors (T) relative to normal tissue (N). (e-f) The 

chromosomal interaction changes during tumorigenesis as detected by genome-wide chromosome 

conformational capture assay (Hi-C). There are closer interactions among chr16 through chr22 in tumor 

compared to normal tissue. 

 

Figure 3. Integrative analysis of WGBS and RNAseq uncovered methylation-mediated diverse gene 

regulation based on promoter methylation levels. (a) A total of 694 genes were selected for the 

methylome-transcriptome association analysis. The selected genes have statistically significant DMRs 

(FDR <= 0.001) in promoters, defined as 4500 base pair (bp) upstream and 500bp downstream relative to 

transcription start sites, and are statistically significant DEGs (Differentially Expressed Genes) (FDR <= 

0.05). (b-c) Further association of promoter methylation and expression of the 694 genes identified. There 

are four clusters: C1: Genes that are hypermethylated in the promoter with low expression level in ESCC; 

C2: Genes that are hypomethylated in the promoter with high expression in ESCC; C3: Genes that are 

hypermethylated in the promoter with high expression in ESCC; C4: Genes that are hypomethylated in 

the promoter with low expression in ESCC. Genes in C1 and C2 fit the canonical model of regulation, 

while genes in C3 and C4 are not well explained by current understanding. Representative genes are listed 

in each cluster. (d) The quantification of CpG methylation in gene promoters and gene bodies in C3 is 

significantly higher than in C1, p < 0.001. (e) CTCF binding sites are significantly higher in C3, 

indicating hypermethylation of inhibitors leads to de-repression to promote gene expression. 

 

Figure 4. DNA methylation at regulatory protein consensus protein binding sites and impacts on 

gene expression. (a) Gene Set Enrichment Analysis (GSEA) analyses for the four distinct methylation-
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transcriptome clusters. Lists of genes in C2, C3 and C4 were subjected to GSEA using hypergeometric 

statistics for gene sets collected from multiple databases (ENCODE, CHEA, KEGG, WikiPathways, 

Reactome, GO molecular function, Panther, BIOGRID etc.). The significance of the hypergeometric 

analysis is indicated as –Log10 (p-value) in the form of a horizontal histogram where bar heights represent 

level of significance. Bars are color coded based on their inclusion in each cluster. GSEA revealed gene 

pathways or GO terms in different clusters, including polycomb repression complex2 (PRC2) subunit, 

EZH2 (Ester of Zinc Finger Homolog 2), and SUZ12 (Polycomb Repressive Complex 2 Subunit) binding 

sites significantly enriched in C3, suggesting hypermethylation of PRC2 de-represses gene expression. 

Genes in C1 have no significant gene set enrichment. (b-c) In silico analysis of EZH2 and SUZ12 binding 

sites in each cluster and gene promoters show more significant binding scores in C3 than in other groups, 

p-value < 0.001. (d) The probability of the top 20 transcription factor consensus binding sites in C3 

showed EZH2 has the highest binding scores in a subset of genes in C3, including WNT2. The heatmaps 

for C1, C2, and C4 are in Supplementary Figure 21. (e) In non-canonical gene cluster C3, WNT2 is 

significantly hypermethylated in the promoter (FDR=6.6005e-03) and highly expressed in ESCC 

(FDR=0.0039). WNT2 also shows the highest fold change in gene expression in ESCC relative to 

adjacent normal tissues. 

 

Figure 5. Non-canonical hypermethylation in the WNT2 promoter leads to high WNT2 expression 

in ESCC.  (a) Chromatin immunoprecipitation by EZH2 protein binding followed by high-throughput 

DNA sequencing (ChIP-seq) showed enriched reads on WNT2 promoter region in normal cells, but not in 

ESCC cells. (b) The WNT2 promoter region is hypermethylated in ESCC cell lines by methylation 

specific PCR analysis. M: methylation detection. U: unmethylation detection. PC: positive control. NC: 

negative control. HET-1 cells are an immortalized normal esophageal epithelial cell line. EC9706, EC109 

and EC1 are patient-derived ESCC cell lines. (c) WNT2 is overexpressed in the tumor samples. Ten 

paired tumor and normal tissue samples were collected and lysed for western blot analysis for the 

indicated proteins using SDS-PAGE. (d) Band intensity quantification for the western blot results are 
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indicated on the left as a bar diagram. On the right, normalized fragment per kilobase of transcript 

(FPKM) value indicative of the RNA abundance for 10 pairs of normal and tumor samples are indicated 

as a bar graph. Significance for comparison between the two cohorts was measured using an unpaired 

student's t-test (p-value < 0.01). (e) MMP3 and MMP9 are highly expressed in the tumors. Five paired 

tumor and normal tissue samples were collected and lysed for western blot analysis for MMP3, MMP9 

expression. (f) WNT2 depletion with two independent siRNAs inhibits growth in the ESCC cell line 

EC9706. The MTT assay was performed in siControl and WNT2-silenced samples and represented as a 

line plot showing normalized optical density (OD) values as a representation of cell numbers at serial time 

points. Significance between the two cohorts was measured using a paired student's t-test (p-value < 

0.01). Data are representative of three independent experiments. (g) Two independent siRNAs for WNT2 

knockdown decrease MMP3 and MMP9 expression. Cells were harvested from control and WNT2-

depleted cells and expression of the indicated proteins was measured using SDS-PAGE and Western blot. 

Data are representative of three replicates. Significance for band intensity comparison between the 

siControl and WNT2 knockdown cohorts was measured using an unpaired student's t-test (p-value < 

0.01). (h) Two independent siRNAs to silence WNT2 expression reduced the invasion and migration of 

ESCC cells relative to siRNA controls. p-value < 0.001. (i) Schematic representation of the mechanism of 

EZH2/PRC2-WNT2-MMP signaling upregulation in ESCC. 

 

Figure 6. Hypomethylation-mediated upregulation of long non-coding RNAs (lncRNAs) in ESCC. 

(a) DMCs are mapped to functional annotated regions. 58.01% of hypermethylated DMCs overlap with 

antisense RNA (asRNA), whereas 63.08% of hypomethylated DMCs overlap with lncRNAs. (b) In 

canonical gene cluster C2, ESCCAL-1 is significantly hypomethylated in the promoter (FDR=1.7386e-

04) and highly expressed in ESCC (FDR=0.01). ESCCAL-1 also shows the most significant and 

substantial methylation difference between normal esophageal tissues and ESCC among the lncRNAs in 

C2. (c) Loss of CpG methylation at the ESCCAL-1 promoter region in ESCC (chr8:76,135,639-

76,236,976 of GRCh37/hg19). WGS (Whole Genome Sequencing) of three ESCC patients shows no 
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mutation or copy number variations detected at the above indicated region. This is validated by TCGA 

ESCA data (N=186), where no mutation or copy number variations were observed 

(http://firebrowse.org/?cohort=ESCA). Whole Genome Bisulfite Sequencing (WGBS) reveals tens of 

DMRs around ESCCAL-1. DMRs around Transcription start sites (TSSs) of the two isoforms showed 

extensive differentiation between ESCC and normal samples. (d) ESCCAL-1 was significantly 

differentially expressed and highly abundant in ESCC samples (p-value = 0.0013, FDR=0.0044 by one-

way ANOVA). (e) Methylation status of the ESCCAL-1 promoter region was verified on an independent 

32 matched normal and ESCC tumor samples using a methylation-specific PCR (MS-PCR) assay; four 

representative PCR results are shown. M: PCR with methylation primers, U: PCR with unmethylation 

primers. (f) Quantification of MS-PCR results in the 32 paired normal and tumor samples. Chi square 

analysis tested for significance between groups. p-value < 0.01. (g) ESCCAL-1 expression is significantly 

higher in ESCC tumors in an independent cohort of 73 matched normal and tumor samples. *** p-value < 

0.005 

 

Figure 7. Oncogenic functions of ESCCAL-1 in ESCC. (a) Hypomethylation at ESCCAL-1 promoter 

regions was confirmed in three different ESCC cell lines using methylation specific PCR. M: PCR with 

methylation primers, U: PCR with unmethylation primers. Het-1A: an immortalized esophageal epithelial 

cell line. EC1, EC109 and EC9706: patient-derived ESCC cell lines. (b) ESCCAL-1 expression was 

significantly higher in three ESCC cell lines (EC1, EC109, and EC 9706) relative to a normal esophageal 

epithelial cell line (Het-1A). p-value < 0.05. (c-d) ESCC patients with higher expression of ESCCAL-1 

exhibit worse overall (OS) and disease-free survival time (DFS), risk ratio=2.56. p-value < 0.005. (e-f) 

shRNA knockdown of ESCCAL-1 inhibited tumor growth in a tumor xenograft mouse model (N=6, p-

value = 0.001). (g) Chromatin immunoprecipitation by YY1 transcription factor protein-directed antibody 

followed by a standard Polymerase Chain Reaction (PCR) assay in ESCC cancer cells (EC109) and 

normal esophageal cells (Het-1A). IgG was used as negative control. H3 was used as positive control. (h) 

Three independent siRNAs targeting various transcript regions of YY1 were transfected into ESCC cell 
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line, 72 hours post-transfection, the total cell lysates were subjected to Western blot assay. Total RNAs 

were extracted to measure ESCCAL-1 expression using RT-PCR. (i) Nested Gene Set Enrichment 

Analysis (GSEA) network for ESCCAL-1 gene regulatory network module. Hypergeometric GSEA for 

gene regulatory network modules (Supplementary Figure 30) was conducted using multiple curated 

databases (BIOGRID, ENCODE, KEGG, Reactome, GO molecular function). The gene sets are 

represented as nodes and node size represents the significance of the hypergeometric analysis. Gene sets 

were further subjected to a hypergeometric test for overlap among them and edges represent significance 

of overlap; higher the significance for the overlap is indicated by node proximity. 2D projection of 3D 

network clustering using edge weights were performed using edge-directed spring embedded network 

layout in Cytoscape 3.2. Ellipses were drawn manually for visualization to demarcate the clusters and 

nodes were further color coded manually based on their molecular properties. Overexpression of 

ESCCAL-1 correlated with dysregulation of the cell cycle, DNA repair, RNA binding processing and 

Myc pathway activation. (j) RNAseq was performed in duplicate in the normal esophageal cell line Het-

1A, ESCC cancer cells EC9706 with control siRNA, or EC9706 with a siRNA against ESCCAL-1. 

Unsupervised hierarchical clustering of differential gene clusters between the three conditions is shown. 

Differentially expressed genes were selected based on an iterative clustering approach selecting for genes 

with the top 5% of the most variable and differential gene expression. 210 genes were identified and 

subjected to GSEA analysis using hypergeometric test in multiple databases as in Figure 4a.  

 

Figure 8. The scheme of multi-omics utilization for defining coding and non-coding driver events in 

esophageal squamous carcinoma. Each technique for epigenome (genome-wide, high resolution DNA 

methylome), genomic interaction (interactome), transcriptomic (transcriptome), and proteomic 

(proteome) analysis define unique alterations during cancer development and progression. The integration 

of these components in cancer cells with multi-dimensional space measured by orthogonal multi-OMIC 

analyses informs the understanding of the interplay between genetic and epigenetic dysregulation in 
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ESCC. The datasets facilitate the identification of gene regulatory networks mediated by coding and non-

coding transcripts that promote critical tumor phenotypes such as proliferation, invasion, and migration. 

 

METHODS 

Primary esophageal squamous carcinoma (ESCC) specimens 

Matched clinical samples of esophageal squamous carcinoma and adjacent normal esophageal tissue are 

obtained from ten patients (Linzhou Cancer Hospital) as fresh frozen specimens at Translational Medical 

Center, Zhengzhou Central Hospital, affiliated to Zhengzhou University, China (Supplementary Fig. 1). 

All samples were surgical resections. The collection of human samples and the protocols for the 

investigations were under the approval of the Institutional Ethics Committee of Zhengzhou, Henan 

Province. These specimens were used for sequencing and different assays; WGBS (n=20), WGS (n=6), 

RNA-seq (n=20) and iTRAQ proteomic assay (n=20). For validation, independent 73 matched ESCC and 

adjacent normal samples with clinical follow-up were prepared for gene expression analysis. 

 

Cell cultures 

Human ESCC cell lines (EC-109, EC-9706, EC-1) and immortalized esophageal epithelial cell line Het-

1A were purchased from the Shanghai Institutes for Biological Science (Shanghai, China). All cell lines 

were cultured in DMEM medium supplemented with 10% fetal bovine serum (Hyclone, Logan, UT, 

USA) and maintained at 37°C in a humidified 5% CO2 incubator. 

 

Cell transfection 

ESCCAL-1 siRNA, WNT2 siRNA, YY1 siRNA, and their control siRNAs, were synthesized from 

GenePharma (Shanghai, China). Transfection for EC-109 and EC-9706 cells were previously described 1 

using Lipofectamine™ 2000 (Invitrogen, Carlsbad, CA, USA) according to manufacturer’s instructions. 

Transfection efficacy was validated by RTq-PCR.  
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Transwell Migration/Invasion Assay 

Cell migration and invasion assays were carried out in transwell chambers (Costar, Lowell, MA, U.S.) 

inserted into 24-well plates. For invasion assay, upper chamber of the transwell plate was coated with 

matrigel and allowed to solidify at 37 ℃ and 5% CO2 incubator for 30 min. The transfected EC109 and 

EC9706 cells were trypsinized, resuspended in serum-free culture medium and adjusted to 2× 106 

cells/ml, added 200 μl cell suspension and 500 μl DMEM containing 10% FBS to the lower chamber. 

After incubation for 48 h, the transwell chamber was fixed with 10% methanol, followed by the staining 

with crystal violet. Cells were counted under an inverted microscope. The protocol used for migration 

assay was similar to the invasion assay without the need to coat the upper chamber of the transwell with 

matrigel. Each experiment was conducted in triplicate. 

 

Mouse xenograft experiment 

Six-week old male BALB/c immunodeficient mice were purchased from the Shanghai Experimental 

Animal Center, Chinese Academy of Sciences (Shanghai, China). Animal experimental procedures were 

carried out according to the Ethical Committee of Zhengzhou University. Mice were housed under a 12 h 

light/dark cycle and automatically given food and water. The EC9706 cells expressing with ESCCAL-1-

siRNA or siControl were subcutaneously injected into back flank of mice as the Knock-down group (n 

= 6) or the control group (n = 6). The tumor volumes were calculated as length × width2 × 0.5 from day 

13 to day 23 every two days, the mice were sacrificed at day 23 after injection. 

 

Whole genome sequencing (WGS) of three matched tumor and normal tissues  

DNA was extracted using the QIAamp DNA Mini Kit (QIAGEN), fragmented using Bioruptor® Pico. 

Libraries were constructed using VAHTSTM Universal DNA Library Prep Kit for Illumina V3 ND607-

02 (Vazyme, Nanjing). Libraries were sequenced with an Illumina HiSeq 4000 to obtain 150 base pair 

paired-end reads. Base calling was performed with the Illumina Real Time Analysis version 2.7.7 and the 

output was demultiplexed and converted to FastQ format with the Illumina Bcl2fastq v2.19.0.316. The 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 18, 2019. ; https://doi.org/10.1101/641357doi: bioRxiv preprint 

https://doi.org/10.1101/641357


 28 

FastQC package (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) was used to check the 

quality of the sequencing reads. Sequencing adapters were trimmed from raw reads with Trimmomatic 2. 

We performed mapping, marking duplicates marking, and mutation calling with bcbio-nextgen 3, a 

community developed platform for variant calling. Specifically, Reads were mapped to the human 

reference genome assembly GRCh37 using BWA-MEM in the BWA package (version 0.7.17) with the 

default parameters 4,5. Duplicates were marked using the tool Sambamba version 0.6.6 6. Somatic 

mutations include single nucleotide variants (SNVs), small insertions and/or deletions (indels), and 

structural variants (SVs). The detection of somatic mutations was performed using tumor and matched 

normal whole genome BAM files generated in the steps described above. We used a series of software 

packages including VarDict 7, MuTect2 8 and Strelka2 9 to detect somatic SNVs and indels, and packages 

including LUMPY 10, Manta 11, CNVkit 12 and MetaSV 13 to detect SVs. 

 

Whole Genome Bisulfite sequencing (WGBS) 

Genomic DNA was extracted with QIAmp DNA Mini kits (Qiagen) from fresh frozen tissue samples. 1μg 

gDNA was fragmented by sonication with a base pair peak of 300 bp for the resulting fragment, and 

adaptors were then ligated to both ends of the fragments.  Bisulfite conversion was performed to whole 

genomes of ten pairs of ESCC and matched normal tissues, where converts cytosine residues of the 

dinucleotide CpG to uracil but leaves methylated cytosine unaffected 14. PCR amplification and 

purification were carried out. The uracil-binding pocket of KAPA HiFi DNA Polymerase has been 

inactivated, enabling amplification of uracil-containing DNA. The high quality of the library was 

estimated by The Qubit® 3.0 Fluorometer. Bisulfite conversion success ratio is 99.18% and 99.49%, 

respectively in normal and ESCC samples (Supplementary Tables 2-3). 

The WGBS library was sequenced on an Illumina HiSeq2500 sequencers and generated 400M of paired-

end reads (2x125bp).  

 

Whole transcriptome sequencing (RNA-seq) 
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The RNA was extracted with TRIzol from ten pairs of fresh frozen tissue samples. The input material for 

total RNA-seq library preparation was 2 μg per sample. Sequencing libraries were generated using 

NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (#E7530L, NEB, USA) following the 

manufacturer’s recommendations. Index codes were added to attribute sequences to each sample. Briefly, 

mRNA was purified from total RNA using poly-T oligo-attached magnetic beads. Fragmentation was 

carried out using divalent cations under elevated temperature in NEBNext RNA First Strand Synthesis 

Reaction Buffer (5X). First strand cDNA was synthesized using random hexamer primer and RNase H. 

Second strand cDNA synthesis was subsequently performed using buffer, dNTPs, DNA polymerase I and 

RNase H. The library fragments were purified with QiaQuick PCR kits and elution with EB buffer. 

Terminal repair, A-tailing, and adapter ligation were implemented. The aimed products were retrieved by 

agarose gel electrophoresis followed by PCR, then the library was completed. RNA concentration of 

library was measured using Qubit® RNA Assay Kit in Qubit® 3.0 to preliminary quantify and then 

diluted to 1ng/µl. Insert size was assessed using the Agilent Bioanalyzer 2100 system (Agilent 

Technologies, CA, USA), and qualified insert size was accurately quantified using StepOnePlus™ Real-

Time PCR System (Library valid concentration＞10 nM). The clustering of the index-coded samples was 

performed on a cBot cluster generation system using HiSeq PE Cluster Kit v4-cBot-HS (Illumina) 

according to the manufacturer’s instructions. After cluster generation, the libraries were sequenced on an 

Illumina Hiseq 4000 platform to 2x150 bp paired-end reads. 

  

Proteomic assay and data analysis (Isobaric tag for relative and absolute quantitation, iTRAQ) 

Reduced and tryptic digested peptides from samples were labeled with 8 isoberic iTRAQ reagent for an 

individual run and mixed at an equimolar ratio. Resuspended labeled peptides were pH optimized and 

separated through strong cation ion chromatography. Samples prepared as such were run through reverse 

phase LC-MS. The isobaric labeling and LC-MS quantifications were operated in Beijing Genomics 

Institute (BGI) using optimized quantitative MS-MS protocols 15. 
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For Protein identification and data analysis, IQuant was used16. For improved protein identification, a 

Mascot Percolator and Mascot Parser, a customized post-processing tool was used. The signal to noise 

ratio was decreased by variance stabilization normalization (VSN). Due to the low abundance or low 

ionization of peptides, missing the reporter ions is a common phenomenon in isobaric data, and may 

hinder downstream analysis. A missing reporter was imputed as the lowest observed values to avoid 

estimation bias. Nonunique peptides and outlier peptide ratios are removed before quantitative calculation 

17. The weight approach proposed is employed to evaluate the ratios of protein quantity based on reporter 

ion intensities 18. The ratio between normal and tumor samples were generated for each match control 

pairs. This way three distinct datasets were generated for ten pairs of tumor and normal samples. Sample 

number 7 (for both tumor and normal, T7 versus N7) was run in each time to standardize among three 

datasets. For dataset integration, each dataset was normalized by the T7/N7 ratio for the abundance of the 

protein in all datasets. Dataset normalized as such was represented as a matrix so that protein abundance 

(row-wise) can be compared across ten different samples as tumor versus normal quantitative ratios 

(column-wise) generated from three separate runs. 

  

Hi-C sequencing 

The fixed cells (Het-1A, EC109) were resuspended in 1ml of lysis buffer (10 mM Tris-HCl pH 8.0, 10 

mM NaCl, 0.2% Igepal CA-630, 1/10 vol. of proteinase inhibitor cocktail (Sigma)), and then incubated 

on ice for 20 minutes. Nuclei were pelleted by centrifugation at 4 °C, 600x g for 5 minutes, and then 

washed with 1 ml of the lysis buffer, followed by another centrifugation under similar conditions. After 

washing twice with restriction enzyme buffer, the nuclei were resuspended in 400μl of restriction enzyme 

buffer and transferred to a safe-lock tube. Next, the chromatin is solubilized with dilute SDS and 

incubation at 65 ℃ for 10 min.  After Quenching the SDS by Triton X-100 overnight digestion was 

applied with 4 cutter restriction enzyme (400 units MboI) at 37℃ on the rocking platform. The next steps 

are Hi-C specific, including marking the DNA ends with biotin-14-dCTP and performing blunt-end 

ligation of crosslinked fragments. The proximal chromatin DNA was re-ligated by ligation enzyme. The 
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nuclear complexes were reversely crosslinked by incubating with proteinase K at 65℃. DNA was 

purified by phenol-chloroform extraction. Biotin-C was removed from non-ligated fragment ends using 

T4 DNA polymerase. Fragments were sheared to a size of 200-600 base pairs by sonication. The fragment 

ends were repaired by the mixture of T4 DNA polymerase, T4 polynucleotide kinase and Klenow DNA 

polymerase. Biotin-labeled Hi-C sample was specifically enriched using streptavidin C1 magnetic beads. 

The fragment ends were adding A-tailing by Klenow(exo-) and then adding Illumina paired-end 

sequencing adapter by ligation mix. At last, the Hi-C libraries were amplified by 12-14 cycles PCR, and 

sequenced in Illumina HiSeq platform. Sequencing interacting pattern was obtained by Illumina HiSeq 

instrument with 2×50bp reads. 

 

Hi-C data analysis 

HiC-Pro algorithm (V2.7.8) was used to process Hi-C data from raw reads to normalized contact maps 19. 

Briefly, (1) valid paired reads were used for the analysis of inter-(Cis) and intra-(Trans) chromosomal 

interactions. Chromatin interaction frequencies (Ifs) were used to measure the strength of interaction 20. 

The observed/expected number of contacts between all pairs of whole chromosomes were normalized. 

The interaction between chromosomes was blotted with heatmap (log10(valid reads pair) or Circos plot 

(bin of strongest 1000 pairs). (2) For compartments analysis, Iced+Observed/Expected normalization was 

used 21. Normalized bin pairs were computed Pearson correlation, then the first eigenvector was used to 

define A/B compartments. (3) Topologically associated domains (TADs). The Insulation method 22was 

used to define the TAD boundary. The TAD heatmap shows at 40kb scale.  

 

Chromatin Immunoprecipitation (ChIP) with massively parallel DNA sequencing (ChIP-seq) 

ChIP assays were performed according to the protocol supplied with the kit (catalog no. 9003) from Cell 

Signaling Technology. Briefly, EC109 and Het-1A cells were cross-linked with 37% formaldehyde at a 

final concentration of 1% at room temperature for 10 min. Fragmented chromatin was treated with 

nuclease and subjected to sonication. Chromatin immunoprecipitation was performed with anti-
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KMT6/EZH2 antibody (ab195409, Abcam),Anti-Histone H3 (acetyl K27) antibody ChIP Grade 

(ab4729,Abcam), Anti-YY1 antibody (ab38422,Abcam), rabbit anti-histone H3 (a technical positive 

control; 1:50) (catalog no. 4620; Cell Signaling Technologies), and normal rabbit IgG (a negative control; 

5 μg) (catalog no. 2729; Cell Signaling Technologies). After reverse cross-linking and DNA purification, 

ChIP-Seq libraries were prepared and sequenced on a HiSeq 4000 sequencer (Illumina, San Diego, CA). 

To ensure the accuracy of subsequent bioinformatics analysis, the original sequencing data was filtered to 

obtain high-quality sequencing data (clean data). Quality control of the sequencing data was performed 

using Sickle (https://github.com/najoshi/sickle) and SeqPrep (https://github.com/jstjohn/SeqPrep). The 

sequencing output raw reads were trimmed by stripping the adaptor sequences and ambiguous nucleotides 

and reads with quality scores less than 20 and lengths below 20 bp were removed. The cleaned reads were 

aligned to human reference genome hg19 using BWA. MACS2 (model-based analysis of ChIP-seq) 

algorithm23 was used for peak calling. The reads of EZH2 binding on WNT2 promoter region were 

visualized using Integrative Genomics Viewer (IGV, Broad Institute). 

 

WGBS Data preprocessing 

Bisulfite-treated DNAs are further sequenced using Illumina HiSeq 2500 system. Approximately 400M of 

paired-end reads (125bpx2) and 100 Gbp per sample are generated except one sample (N15). The reads 

are sent out to the pipeline. Our pipeline consists of four steps (Supplementary Fig. 2a). Firstly, we 

trimmed using Trim Galore! (v0.4.1) to remove Illumina adaptors with the options of ' --paired --length 

50 --clip_R1 6 --clip_R2 6 '. After trimming, around 90 Gbp of data remained per sample. Then trimmed 

reads were aligned to the HG19 reference genome using BSMAP (v2.89) with the option of '-p 8 -R'. 

Then SAMtools (v. 1.3.1) was used to sort by genomic coordination and make a bam file index. Picard 

Tools (v.1.92) is used to remove PCR duplicates. After deduplication, ~70Gbp remained per sample. 

Lastly, we ran MOABS (v. 1.3.4) to compute the methylation ratio per CpG with the option of '--

cytosineMinScore 20  --skipRandomChrom 1 -p 4 --keepTemp 0 --processPEOverlapSeq 1 --

requiredFlag 2 --excludedFlag 256 --minFragSize 110 --reportCpX G --qualityScoreBase 0 --
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trimRRBSEndRepairSeq 0  --trimWGBSEndRepairPE1Seq 5 --trimWGBSEndRepairPE2Seq 5'. Around 

95% of CpGs are covered by at least one read. 

  

WGBS Data Matrix 

Given the methylation ratio and coordination computed, we built a data matrix, whose columns are 

samples and rows are CpGs. The normal tissue WGBS of sample 15 (N15) has generated a small amount 

of volume (~4.5Gbp), which is just 6% compared to average (72Gbp) and covers the half of CpGs with 

notably low coverage (1.58X) than other samples (~15X). Thus, we decided to eliminate N15 for the 

further downstream analysis. As a result, we have ten ESCC samples and nine normal esophageal tissue 

samples. For more robust analysis, we applied the minimum threshold 5X and also selected CpGs that all 

samples have its methylation ratio. This screening process gave 13 M of CpGs with confident methylation 

ratio (Supplementary Table 6-7). 

  

Data quality assurance by TCGA ESCA 

To assure our WGBS data (N=19) quality, we aligned our data with TCGA ESCA data (N=202). The 

methylation data of TCGA ESCA exploited Illumina Infinium HumanMethylation450 Beadchip to 

measure methylation level for 202 samples; 186 esophageal cancer tissue samples, and 16 esophageal 

normal tissue samples. To compare TCGA ESCA HM450 methylation ratio and WGBS methylation ratio 

of our data, we computed the mean methylation ratio of the tumor and normal samples per CpG for both 

TCGA and our WGBS data. Around 300K of CpGs are in the intersection of TCGA ESCA HM450 and 

WGBS. We computed the Pearson correlation coefficient (PCC) to measure the representative power in 

our data set albeit a rather small sample size. First, we calculated the PCC of the tumor and normal from 

TCGA ESCA HM450 and WGBS. The highest PCC (=0.9674) is between TCGA ESCA normal and 

WGBS normal since normal tissues are relatively homologous. The PCC (0.9639) between TCGA ESCA 

tumor and WGBS tumor was followed due to tumor heterogeneity but still showed a high correlation. The 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 18, 2019. ; https://doi.org/10.1101/641357doi: bioRxiv preprint 

https://doi.org/10.1101/641357


 34 

third and fourth PCCs are between TCGA ESCA tumor and WGBS normal (=0.9512), and TCGA normal 

and WGBS tumor (=0.9468) due to the difference between tumor and normal esophageal tissues. 

  

We further assessed how sensitively WGBS could separate ESCA subtypes; ESCC (esophagus squamous 

cell carcinoma) and EAC (esophagus adenocarcinoma) despite its small sample size and low coverage. 

We downloaded clinical annotation to match the histological type of each sample. All of the WGBS data 

is ESCC. The PCC (0.757) between TCGA ESCC and WGBS ESCC is higher than the PCC (0.5554) 

between TCGA EAC and WGBS ESCC. The PCC between TCGA normal samples and WGBS normal 

samples is higher than those of tumor samples because of tumor heterogeneity. Overall our WGBS data is 

as informative as TCGA ESCA HM450 data regarding ~500K CpG loci and possibly can hold more 

information about other CpG loci since it covers more CpGs up to 27M. 

  

Data processing of RNA-seq 

RNA-Seq reads were mapped to the HG19 reference genome using STAR (Spliced Transcripts Align to a 

Reference, v2.4.2a). The expression level of transcript per million (TPM) reads were quantified using 

RNA-Seq by Expectation-Maximization algorithm (RSEM v1.2.29). The quantified gene expressions of 

26,334 transcripts (including coding genes and non-coding genes) were processed in Rstudio console with 

R programme (v 3.4). Differentially expressed genes between tumor and normal samples were identified 

using the EdgeR algorithm.  

 

The algorithm to get DMC (Differentially Methylated CpG) 

Among 13M of CpGs, we computed the F-statistics from one-way analysis of variance (ANOVA) to 

identify confident CpGs. Almost half of them has very low p-values (<0.05). The p-values are further 

adjusted by Benjamini-Hochberg procedure to compute FDR. 5 M of CpGs has q-values less than 0.05. 

The 5 M of DMCs is used for the downstream study in this paper. Among 5M of DMCs 97.29% are 
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hypomethylated in ESCC samples while only 2.71% are hypermethylated in ESCC samples 

(Supplementary Table 8-12). 

  

Entropy Analysis 

Entropy is computed per CpG in both ESCC and normal esophageal cohorts separately as a measure of 

variance. The 'entropy' function was used in the 'stats' package of SciPy (v 0.19.1) on top of python3 (v 

3.5.2). The bin size was 10%. The distribution of CpG entropy was plotted using MatLab (v. 9.2) ‘plot’ 

and ‘histogram’ function with the default option.  

 

DMC enrichment analysis with genomic annotation 

We annotated the regulatory elements of the confident DMCs. The genomic coordination of exons an 

introns were downloaded from UCSC Genome Browser 

(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/refGene.txt.gz). The promoter is computed 

4.5kbp upstream and 500bp downstream given TSS. The genomic coordinates of enhancers are 

downloaded from VISTA Enhancer Browser (https://enhancer.lbl.gov). We learned that hypomethylated 

DMCs outnumbers hypermethylated DMCs in ESCC, 4.95M vs. 138K, respectively. Among 

hypermethylated in DMCs in ESCC, 83.67% has overlapped with regulatory elements while only 56.77% 

of hypomethylated DMCs has overlaps. Such overlaps were further dissected into enhancers, promoters, 

exons, and introns (Supplementary Fig. 4).  

  

DMC enrichment analysis with functional annotation 

We performed functional annotation on the confident DMCs except for protein-coding RNAs. Functional 

annotation includes long noncoding RNA (lncRNA), antisense RNA, Micro RNA (miRNA), small 

nuclear RNA (snRNA), small nucleolar RNA (snoRNA), small cytoplasmic RNA (scRNA), ribosomal 

RNA (rRNA), vaultRNA and Mt_tRNA. The functional annotation was downloaded from the 

GENCODE project (https://www.gencodegenes.org/releases/27lift37.html). The composition of the 
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functional annotation is illustrated. (Supplementary Fig. 5). We deconvoluted functional mapping of 

hypermethylated DMCs and hypomethylated DMCs. The majority of the hypermethylated DMCs are 

mapped to antisense RNAs (58.01%) followed by lncRNA (39.28%) while that of the hypomethylated 

DMCs are mapped to lncRNAs (63.08%) followed by antisense RNA (29.89%). 

  

Transcription factor binding site analysis 

Transcription factors and their binding sites annotation were downloaded from the ENCODE project 

(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeRegTfbsClustered/). First of all, 

we computed the proportion of each transcription factor. With regard to base-pair counting, POLR2A the 

largest contributor to the composition, followed by CTCF (Supplementary Fig. 8a). We mapped DMCs to 

transcription factor binding sites and calculated the composition of transcription factors both in DMCs 

and HG19. Enrichment was computed as a ratio of the proportion of TFBS mapped to DMCs over TFs in 

HG19 (Supplementary Fig. 8b). Relatively DMC are most enriched in SUZ12 followed by EZH2, which 

are the component of the Polycomb Repressive Complex 2 (PRC2) (Supplementary Fig. 8c). Methylation 

type has been studies among top 20 TFs that DMCs are enriched. Hypomethylated DMCs dominated in 

the most TFs except for three TFs; SUZ12, EZH2 and CTBP2, which is related to endometrial cancer 

pathway and WNT pathway (Supplementary Fig. 8d). 

  

TSS Methylation level analysis 

The methylation ratio was summarized in every 200-bp window relative to transcription start site (TSS). 

Then the methylation ratio per bin was normalized and averaged for both ESCC and normal cohorts. 

Methylation conversion is observed both upstream and downstream given TSS. The normalized 

methylation ratio of ESCC samples is higher between around -3000bp to 7000bp given TSS. The graph 

was made by R with spline interpolation with default options. 

  

Differentially Methylated Region (DMR) calls and landscape in whole genome 
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DMR was computed from 5Ms of confident DMCs. The window size is flexible as long as any two CpGs 

locate in 150bp and have consistent methylation pattern either keeping hypermethylated or 

hypomethylated. The criteria make sure the minimum CpG density is at least 0.01. DMRs peak size is of 

150-350bp and CpG density peak is of 0.04-0.05 (Supplementary Fig. 7a, b). The overall distribution of 

DMRs in HG19, genomic annotation and functional annotation is illustrated in Supplementary Fig. 7c, 

7d. 

  

Integrating and clustering methylome and transcriptome data 

To integrate methylomic and transcriptomic data, we focused on methylation in the promoter regions 

which are defined 4.5Kbp upstream and 500bp downstream given TSS. We aligned DMRs that are 

identified previously with q value < 0.01 to the promoter regions of all genes. We also increased the 

promoter size up to 11 Kbps to see if any level of extension of promoter size can affect the final gene set 

whose promoters hold any DMRs, but that added only four more genes. As a result, we learned that 5085 

genes have significant DMRs in their promoter regions. High-throughput transcriptome sequencing 

(RNA-Seq) was conducted. Around 20,000 gene expression levels are estimated for both normal and 

ESCC pairs of ten patients. Significantly differentially expressed transcriptomes between two cohorts are 

selected given p value < 0.05. Total 4768 genes are significantly highly expressed in the ESCC cohort or 

the normal cohort. 

The number of genes in the intersection, in other words, genes whose promoters are differentially 

methylated and expressions are significantly different between normal and ESCC cohorts, are 694 in total. 

We categorized those genes into four groups; (1) C1: Hypermethylated in their promoters with low gene 

expression in ESCC (2) C2: Hypomethylated in their promoters with high gene expression in ESCC (3) 

C3: Hypermethylated in their promoters with high gene expression in ESCC (4) C4: Hypomethylated in 

their promoters and low gene expression in ESCC. The genes in the former two groups (C1 and C2) are 

explained by canonical promoter methylation and gene expression model while the genes in the latter two 

groups (C3 and C4) are not. The gene list of the four groups is in the Supplementary Table 13-16. The 
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heat map with dendrograms is made using ‘clustergram’ command of MatLab v9.4 with parameters of 

'Standardize', 'Row', 'Colormap', 'redgreencmap'. 

 

CTCF analysis in gene promoter and gene body  

The genomic coordination of CTCF was retrieved from ENCODE Project 

(https://www.gencodegenes.org/releases/27lift37.html). We identified the number of CTCF binding site 

overlapped with promoter regions by BEDTools (v2.26.0) with 'intersect -wa -wb -a -b' option. The 

CTCF ratio in the gene promoter region is highest in C3 (2.2).  

 

Gene body methylation level analysis 

DMCs (FDR<=0.05) in the gene body and promoter region is selected for C1 and C3 to search hypothesis 

of noncanonical correlation in C3, where promoters are hypermethylated with high gene expression. 

Overall gene body is hypomethylated for both C1 and C3, but such reverse methylation between promoter 

and gene body is much prominent in C1 genes.  

 

Copy number alteration inferred from RNAseq 

CNVkit-RNA 24 was used to infer copy number alterations from RNAseq reads. The segments and 

recurrent copy number gains or loss across samples were generated and plotted using GISTIC 2.0 

algorithm (Supplementary Fig.17). 

 

Simulation of CpG methylation heterogeneity  

Simulations of Ornstein-Uhlenbeck processes have been performed for CpG islands at selected promoter 

regions in both normal and cancer samples 25. These simulations model the epigenetic landscape as highly 

regulated stochastic processes in normal tissues, where methylation levels deviate only minimally around 

the equilibrium mean (like a ball in a narrow valley). In cancer tissue, the regulation is disrupted, and 

methylation levels are stochastically driven away from the equilibrium (a ball is in a broader valley). This 
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allows us to understand changes beyond mean differential methylation levels. Hypermethylated and 

hypomethylated regions can be explained by a change in equilibrium methylation levels together with an 

increase in stochastic deviation. Additionally, this model helps to understand variation in low-to-low and 

high-to-high differentially methylated regions. For the data in this study, the model works well for regions 

with single-peaked or broad methylation distributions. The histogram shows methylation variation by the 

stochastic simulation if more samples collected (Supplementary Fig. 6d). 

 

Co-expression analysis of RNAseq 

Co-expression analysis was conducted in R environment using RedeR package 26. RedeR package has a 

strong statistical pipeline for several network analysis. Here, we have used co-expression analysis, 

computing a null distribution via permutation and returning the significant correlation values. We 

performed 1000 permutations to build the null distribution and used Pearson correlation. We considered 

correlations with p-value less than 0.01 with FDR adjustment as significant. The hierarchical clustering 

analysis used the complete method and considers the distances of each individual component to 

progressively computing the clusters until it finds a stable state.  The final result is a dendrogram 

presenting hierarchical leaves, which has been used to plot the network. To clear the visualization, 

clusters ware nested using the fourth level of dendrogram to build the nests (Supplementary Fig. 29). 

 

Methylation-specific polymerase chains reaction (msPCR) for ESCCAL-1 and WNT2 validation. 

DNA was extracted from cells using the AllPrep DNA mini kit (Qiagen) according to the manufacturer’s 

instructions and was quantified by NanoDrop analysis. Bisulfite modification was carried out on 200-500 

ng of DNA using the EZ DNA Methylation-Gold Kit (Zymo Research) according to the manufacturer’s 

instructions. Methylation-specific PCR (MS-PCR) analysis at BioRad T100TM Thermal Cycler with 20 

μL reaction mixtures. Primers for modified methylated sequences and modified unmethylated sequences 

were listed below. The PCR reactions were carried out under the following conditions: 95 °C for 10min, 

95 °C for 30 s, 48.5(51) °C for 30 s and 72 °C for 30 sec for a total of 45 cycles, 72 °C for 10min. 5ul 
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PCR product was used for electrophoresis on 2% agarose gel, the methylated strip and unmethylated strip 

were analyzed by gel imaging analyzer. 

Representative results showing the ECSSAL-1 promoter methylation status identified by MS-PCR in 

ESCCs. Lanes M and U indicate the amplified products with primer recognizing methylated and 

unmethylated sequences, respectively. NC, negative control; PC, positive control. 

Primers for msPCR: 

WNT2:  

Methylated Forward: CGCGCCCGTGCGCGTGGACTTA 

Unmethylated Forward: TGTGTTTGTGTGTGTGGATTTA 

Methylated Reverse: CGCATGGCGCCCGCACACGGAGT 

Unmethylated Reverse: CGTATGGTGTTTGTATATGGAGT 

 

ESCCAL-1: 

Methylated sense: TGCGCCAGCCGAAGCAGGGCGA 

Unmehylated sense: TATATTAATTAAAATAAAATAA  

Methylated antisense: CGAGACTCCGTGGGCGTA  

Unmethylated antisense: TAAAATTTTATAAATATA  

 

Gene enrichment analysis 

Curated gene sets were collected from multiple curated databases such as ENCODE, CHEA, EnrichR, 

KEGG, WikiPathways, Reactome, GO molecular function, Panther and BIOGRID. Overlapping between 

differentially methylated and/or expressed genes were estimated for significance using hypergeometric 

statistics. P values were adjusted to Bonferroni correction. -Log10(p-value) for significance was measured 

and compared. 

 

ChIP-PCR 
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Chromatin immunoprecipitations were performed using digested chromatin from EC-109 cells or Het-1A 

cells and the indicated antibody YY1. The antibody Histone H3 (D2B12) as a positive control. Purified 

DNA was analyzed by standard PCR methods using SimpleChIP® Human RPL30 Exon 3 Primers and 

ESSCAL-1 primers. equal amounts of total genomic DNA (Input) were used for immunoprecipitation in 

each condition.  

Primers for YY1 ChiP-PCR were: 

ESCCAL1-YY1 Forward: TTTGAAATAATGAGTTATGAG 

ESCCAL1-YY1-Reverse: AGGGAACTCCCTGACCCCTTGC 

Statistics 

The student t-test was used for two group mean comparison. One-way ANOVA was used for multiple 

groups comparison. Hypergeometric test was used in gene set enrichment analysis. Multiple hypothesis 

test was adjusted with Benjamini-Hochberg method.  Th standard α = 0.05 was used as cutoff, the null 

hypothesis is rejected when p-value < 0.05. Different significant levels were used: * p-value < 0.05; ** p-

value < 0.01; *** p-value < 0.005; **** p-value < 0.001. The 95% confidence interval (CI) for the 

median duration of PFS and overall survival were computed with the robust nonparametric Brookmeyer 

and Crowley method. Hazard ratio with 95% CI and p-values were calculated with the 'Cox proportional-

hazards regression model with survival' package in R.  

 

Computational resources and code sharing for reproducibility 

Most of the analysis was done using SCG4 cluster of the Genome Sequencing Service Center by Stanford 

Center for Genomics and Personalized Medicine Sequencing Center. The SCG4 cluster has 20 compute 

nodes, each with 384 GB RAM, 56 CPUs each, and 40 compute nodes with 16 and 48 CPUs and 10GbE 

connectivity. It shares 4+ PB of storage NIH dbGaP compliant and have 350+ software packages 

installed.  
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