
1 Supplementary Note S1: Derivation of Bayes
factors for a set of risk factors

In this note, we derive a closed form expression for the Bayes factor that quan-
tifies the evidence for a particular model (one risk factor or set ofmultiple risk
factors) to have a causal effect on the outcome compared to the Null model,
which includes no risk factor and no intercept.

Building on the 2-sample MR approach [1] our work is based on summarised
data, where genetic variants are used as instrumental variables. In univariable
MR, we observe for each genetic variant i = 1, ..., n the association of variant i
with the risk factor X measured by the beta-coefficient βXi from a univariable
regression where the genetic variant i is regressed on the risk factor X, and the
association of variant i with the outcome Y measured by the beta-coefficient
βYi where the genetic variant i is regressed on the outcome Y , respectively. The
causel effect θ of risk factor X on Y can be estimated using the IVW estimate
or equivalently the following weighted regression without an intercept

βYi = θβXi + εi, εi ∼ N (0, se(βYi)
2). (1)

The same causal effect θ can be derived using a 2-stage least squares approach
[2]. In fact, the beta-coefficients are estimates of the genetic association, but we
omit the ”hat” notation and treat the beta-coefficient as observations. A further
assumption for this approach is that the genetic variants are independent (or
uncorrelated) which can be controlled in the selection process of the genetic
variants. Extension for correlated variants are for example described in [2].

In order to consider multiple risk factors jointly in one model multivariable
MR was introduced in [3]. In the following, we consider j = 1, ..., d risk factors.
Assume βX = {βX1

, ..., βXd} to be a matrix of dimension n × d, where d is
the number of risk factors and n is the number of genetic variants. Again each
individual element βXi,j of the predictor matrix is derived from a univariable
regression where the genetic variant i is regressed on the risk factor Xj . Multi-
variable MR can be cast as a weighted linear multivariable regression model

βYi = θ1βXi1 + θ2βXi2 + . . .+ θdβXid + εi, εi ∼ N (0, se(βYi)
2), (2)

where the dependent variable is the association with the outcome βY measured
on i = 1, ...., n instrumental variables and the predictors are the j = 1, ..., d
genetic associations with the d risk factors. In matrix notation this can be
written as

βY = βXθ + ε, εi ∼ N (0, se(βYi)
2). (3)

In other words, the risk factors represent the variable space and the genetic
variants used as instrumental variables are treated as observations. In practise,
we standardise each observation of both, βYi and βXi by dividing by se(βYi)
before the analysis and we assume in the following derivations that βY and βX

are standardised.
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We use Bayes factors [4] in order to quantify the evidence for a particular
model. By model we refer to the set of risk factors which have a causal effect
on the outcome of interest. In order to formalise which risk factors are part of
a specific model Mγ and consequently have a causal effect on the outcome we
introduce a binary indicator γ of length d that indicates which risk factors are
selected and which ones are not

γj =

{
1, if the jth risk factor is selected,

0 otherwise.
(4)

The indicator γ encodes a specific regression model Mγ that includes the risk
factors as indicated in γ. Accordingly, we define βXγ as the design matrix of
the risk factors included and θγ as the respective causal effects.

The computation of the Bayes factor for model Mγ against the Null model
M0, i.e. including no risk factor and no intercept, as presented in the Methods
section of the main article requires two ingredients: First the marginal proba-
bility of βY given βXγ of model Mγ and second, the marginal probability of βY
given the Null model M0, which we derive as follows:

1. pγ(βY | βXγ ): the marginal probability of βY given βXγ

In order to model the correlation between risk factors we base our likeli-
hood on a multivariate Gaussian distribution

βY | βXγ ,θγ , τ ∼ N(βXγθγ ,
1

τ
). (5)

Following Servin and Stephens’ D2 prior [5] we use the following conjugate
prior assumptions for the causal effects θγ , the residual ε and the precision
τ

θγ | τ ∼ N(0,ν/τ),

ε ∼ N(0,
1

τ
),

τ ∼ Γ(κ/2, λ/2), (6)

where A | B is defined as A conditional on B. Further we can derive
analytically the joint posterior distribution for θγ and τ as

τ | βY ,βXγ ∼ Γ((n+ κ)/2, 1/2(βtY βY −ΘtΩ−1Θ + λ)),

θγ | βY ,βXγ , τ ∼ N(Θ,
1

τ
Ω),

where
Θ︸︷︷︸
d×1

= Ω︸︷︷︸
d×d

βXγ

t︸ ︷︷ ︸
d×n

βY︸︷︷︸
n×1

, (7)

Ω = (ν−1 + βt
Xγ

βXγ )−1︸ ︷︷ ︸
d×d

. (8)
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Next we integrate out the causal effects θγ . To begin with, we sort the
equation so that the integral contains only terms dependent on θγ

pγ(βY | βXγ , τ) =

∫ ∞
−∞

pγ(βY | βXγ ,θγ , τ)pγ(θγ | τ)

pγ(θγ | βY ,βXγ , τ)
δθγ

=

∫ ∞
−∞

(2π)−
n
2 τ

n
2 exp

{
− τ2 (βY − βXγθγ)t(βY − βXγθγ)

}
(2π)−

1
2
‖Ω‖−1/2

‖τ‖−1/2 exp
{
− τ2 (θγ − Θ)tΩ−1(θγ − Θ)

}
× (2π)−

1
2
‖ν‖−1/2

‖τ‖−1/2
exp

{
− τ

2ν
θt
γθγ

}
δθγ

= (2π)−
n
2 τ

n
2
‖Ω‖1/2

‖ν‖1/2
exp

{
−τ

2
(βtY βY −ΘtΩ−1Θ)

}
×
∫ ∞
−∞

exp

{
−τ

2

(
−2θt

γβ
t
Xγ
βY + θt

γ(βt
Xγ

βXγ −
1

ν
)θγ−

θt
γΩ−1θγ + 2θt

γΩ−1Θ
)}

δθγ ,

where ‖X‖ denotes the determinant of a matrix X and ∞ infinity. Note
that the final line in the integral can be simplified to

− 2θt
γ(A − D) + θt

γ(B − C)θγ , (9)

where

A = βt
Xγ
βY

B = (βt
Xγ

βXγ −
1

ν
)

C = Ω−1

D = Ω−1Θ (10)

By completing the square in θγ and integrating out θγ the final integral
equals 1.

Overall, this simplifies to

pγ(βY | βXγ , τ) = (2π)−
n
2 τ

n
2
‖Ω‖1/2
‖ν‖1/2 exp

{
− τ2 (βtY βY −ΘtΩ−1Θ)

}
.(11)

Next we integrate out the precision τ

pγ(βY | βXγ ) =

∫ ∞
0

pγ(βY | βXγ , τ)p(τ)δτ (12)

= (2π)−
n
2
‖Ω‖1/2

‖ν‖1/2

×
∫ ∞

0

τ
(n+κ)

2 −1 exp

{
−1

2
(βtY βY −ΘtΩ−1Θ + λ)τ

}
δτ.
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The above integral is the normalisation constant of a Gamma distribution

with shape α = (n+κ)
2 and rate β = 1

2 (βtY βY −ΘtΩ−1Θ + λ). Thus the
above simplifies exactly to

pγ(βY | βXγ ) = (2π)−
n
2
‖Ω‖1/2
‖ν‖1/2 (λ2 )

κ
2

Γ(n+κ
2 )

Γ(κ2 ) (13)

×
{

1
2 (βtY βY −ΘtΩ−1Θ + λ)

}−(n+κ)
2 . (14)

2. p0(βY ): the marginal probability of βY given the Null model M0

Next, we derive the marginal probability of the Null model, i.e. where no
risk factor and no intercept is included. Under the Null we assume

βY |
1

τ
∼ N(0,

1

τ
) (15)

with an expectation fixed at zero, which is a consequence of the missing
intercept.

First, we integrate out the precision τ

p0(βY ) =

∫ ∞
0

p0(βY | τ)p(τ)δτ

= (2π)−
n
2

∫ ∞
0

τ
(n+κ)

2 −1 exp

{
−1

2
(βtY βY + λ)τ

}
δτ. (16)

Again the above integral is the normalisation constant of a Gamma dis-

tribution with shape α = (n+κ)
2 and rate β0 = 1

2 (βtY βY + λ). Thus the
above simplifies to

p0(βY ) = (2π)−
n
2 (
λ

2
)
κ
2

Γ(n+κ
2 )

Γ(κ2 )

(
1

2
(βtY βY + λ)

)− (n+κ)
2

. (17)

The Bayes factor for model Mγ against M0 is defined as the ratio of the
marginal probability of βY given model Mγ (13) over the marginal probability
of βY given the Null model (17)

BF (Mγ) =
pγ(βY | βXγ )

p0(βY )

=

‖Ω‖1/2
‖ν‖1/2

(
1
2 (βtY βY −ΘtΩ−1Θ + λ)

)−(n+κ)/2(
1
2 (βtY βY + λ)

)−(n+κ)/2

=
‖Ω‖1/2

‖ν‖1/2

(
βtY βY −ΘtΩ−1Θ + λ

βtY βY + λ

)−(n+κ)/2

. (18)

Next we consider the limit as κ, λ → 0. κ and λ are the shape and scale
parameter of the Gamma Distribution, which is the conjugate distribution for
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precision. In the limiting case the expectation of the error precision would
converge towards a point mass at zero. A precision that converges to zero
translates into an error variance that converges to infinity. Thus the limiting
case represents a dominant error noise and no variance explained by the model,
which is a conservative prior assumption. Moreover, the limit λ → 0 leads
to the invariance property of the posterior for θ, ie the posterior of θ changes
appropriately with shifts and scaling (for example inverse-variance weighting)
operations on βy.

In limit, the Bayes Factor simplifies to the following closed form expression

BF (Mγ) =
‖Ω‖1/2

‖ν‖1/2

(
βtY βY −ΘtΩ−1Θ

βtY βY

)−n/2
. (19)

These Bayes factors are then used in the model averaging to quantify the
evidence for a model and together with the prior are used to evaluate which
model or set of risk factors has the largest support to have a causal effect on
the outcome.
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