
A prospectively validated machine learning model for the 

prediction of survival and tumor subtype in pancreatic ductal 

adenocarcinoma  

Georgios Kaissis1, Sebastian Ziegelmayer1, Fabian Lohöfer1, Hana Algül2, Matthias Eiber3, 

Wilko Weichert4, Roland Schmid2, Helmut Friess5, Ernst Rummeny1, Donna Ankerst6, Jens 

Siveke7, Rickmer Braren1¶ 

 
1Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Technical 

University of Munich, Munich, Germany;  
2Department of Internal Medicine II, Faculty of Medicine, Technical University of Munich, 

Munich, Germany; 
3Department of Nuclear Medicine; Faculty of Medicine, Technical University of Munich, 

Munich, Germany;  
4Department of Pathology, Faculty of Medicine, Technical University of Munich, Munich, 

Germany;  
5Department of Surgery, Faculty of Medicine, Technical University of Munich, Munich, 

Germany; 
6Department of Mathematics, Technical University of Munich, Garching, Germany 
7West German Cancer Center, University of Essen, Essen, Germany; 

 

¶ Corresponding author. Author information: 

Rickmer F. Braren 

Attending Physician 

Institute of diagnostic and interventional radiology 

Faculty of Medicine 

Technical University of Munich 

Ismaninger Str. 22 

DE-81675 Munich 

Germany 

E-Mail: rbraren@tum.de 

Phone: +49 89 4140 5627 
  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 20, 2019. ; https://doi.org/10.1101/643809doi: bioRxiv preprint 

https://doi.org/10.1101/643809


Abstract 
 
Purpose: To develop a supervised machine learning algorithm capable of predicting above vs. 

below-median overall survival from medical imaging-derived radiomic features in a cohort of 

patients with pancreatic ductal adenocarcinoma (PDAC). 

Materials and Methods: 102 patients with histopathologically proven PDAC were 

retrospectively assessed as the training cohort and 30 prospectively enrolled patients served 

as the external validation cohort. Tumors were segmented in pre-operative diffusion weighted- 

(DW)-MRI derived ADC maps and radiomic features were extracted. A Random Forest 

machine learning algorithm was fit to the training cohort and tested in the external validation 

cohort. The histopathological subtype of the tumor samples was assessed by 

immunohistochemistry in 21/30 patients of the external validation cohort. Individual radiomic 

feature importance was evaluated. 

Results: The machine learning algorithm achieved a sensitivity of 87% and a specificity of 80% 

(ROC-AUC 90%) for the prediction of above- vs. below-median survival on the unseen data of 

the external validation cohort. Heterogeneity-related features were highly ranked by the model. 

Of the 21 patients for whom the histopathological subtype was determined, 8/9 patients 

predicted by the model to experience below-median overall survival exhibited the quasi-

mesenchymal subtype, while 11/12 patients predicted to experience above-median survival 

exhibited a non-quasi-mesenchymal subtype (Fisher’s exact test P<0.001).  

Conclusion: The application of machine-learning to the radiomic analysis of DW-MRI-derived 

ADC maps allowed the prediction of overall survival with high diagnostic accuracy in a 

prospectively collected cohort. The high overlap of clinically relevant histopathological 

subtypes with model predictions underlines the potential of quantitative imaging workflows in 

pre-operative subtyping and risk assessment in PDAC. 
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Introduction 
 
Pancreatic ductal adenocarcinoma (PDAC) carries among the poorest prognoses of all 

cancers. Tumors exhibit significant heterogeneity on a genetic, transcriptomic and proteomic 

level, which manifests itself in a complex tissue architecture including tumor cells, various 

fibroblast and immune cell populations embedded in a poorly vascularized, dense stroma (1). 

Despite its overall dismal prognosis, recent research has identified specific molecular subtypes 

with distinct therapy response and outcome. Among these, the so-called classical phenotype 

shows improved chemotherapy response and survival compared to the so-called quasi-

mesenchymal or basal-like subtype underlining the urgent requirement for advanced 

techniques for precise pretherapeutic patient stratification (2,3). This is key to both, adequate 

patient management, based on informed decision processes, clinical trial design and outcome 

interpretation. 

In heterogeneous tumors such as PDAC, biopsies carry a significant risk of tissue 

undersampling. In contrast, imaging inhabits a unique niche in precision medicine in that it can 

provide volumetric information non-invasively. Radiomics, the process of derivation of 

quantitative analytics from medical imaging data (4) represents a significant advance over 

traditional image-analysis workflows as it leverages data science and machine learning 

techniques to exploit non-intuitive image content and integrate it with clinical information to 

create a generalizable model capable of predicting e.g. biological features or the course of 

disease (5).  

Since PDAC is a relatively rare tumor entity, typically only treated in specialized 

interdisciplinary centers, there is still a paucity of radiomic studies aiming to assess pertinent 

metrics such as patient survival or histopathological subtypes. Our study aims to contribute to 

this field by applying a standardized, reproducible radiomic workflow pipelined to an efficient 

and explainable machine learning model capable of predicting overall survival and showing 

highly significant correlation with relevant histopathological subtypes, retrospectively trained 

and prospectively validated on a cohort of PDAC patients. 
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Methods 
Study design 

Data collection, processing and analysis were approved by the institutional ethics committee 

(Ethics Commission of the Faculty of Medicine, protocol numbers 180/17 and 5573/12). The 

study was designed as a retrospective cohort study with a prospective validation cohort. The 

requirement for written consent was waived for the retrospective cohort and written consent 

was obtained for the prospective cohort. All procedures were carried out in accordance to 

pertinent laws and regulations.  

We considered patients with final histopathological diagnosis of PDAC of the head and body 

for inclusion in the study. Patients who did not have a final diagnosis of PDAC, had undergone 

treatment such as chemotherapy or resection prior to enrolment, refused treatment or study 

inclusion, died within the first 2 months of follow-up (to limit bias from postoperative 

complications), did not undergo the full imaging protocol or did not have technically sufficient 

imaging available, were excluded. For inclusion in the training cohort, we retrospectively 

considered 206 consecutive patients, who presented at our institution between 2008 and 2013 

and underwent imaging at the department of radiology with a suspected finding of PDAC. The 

follow-up interval was defined as 5 years post-imaging. Follow-up was handled by the 

departments of surgery and internal medicine. A total of 102 patients were included in the study 

as the training cohort. 

Prospective patients were accrued from 2013 onwards. Participants underwent PET/MRI 

evaluation at the time of diagnosis. Of 62 consecutive patients who were considered for 

inclusion, 30 patients fulfilled the enrolment criteria and designated as the external validation 

cohort. 

Clinical data was sourced from the clinical information system. Radiomics data was generated 

during data analysis. For exclusion of bias, data analysis was performed in pseudonymized 

form and handled by separate individuals (G.K. and S.Z.). Data analysis was performed 

starting in June 2018. Patient flowcharts and the complete STROBE checklist can be found in 

the supplementary material. 

 

Clinical variables 

The following clinical data was collected for patients in the training and external validation 

cohorts: age at diagnosis, sex, p/cTNM, R, G, tumor volume (from the final histopathological 

report or calculated from the segmentation volume), ECOG-state and chemotherapy regimen. 

Where applicable and available, pre-operative CA19-9 levels and lymph-node ratios (LNR) 

were noted. Overall survival was defined as the time from diagnosis to disease-related death. 
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Imaging data acquisition 

The 102 training cohort patients underwent magnetic resonance imaging (MRI) at 1.5T 

(Siemens Magnetom Avanto, release VB17). The protocol included the following sequences: 

axial and coronal T2-weighted spin echo (SE) images at 5mm; axial T1w gradient echo (GE) 

images at 5mm before contrast media injection and during the arterial, pancreatic 

parenchymal, portal-venous, systemic venous and delayed phases (as determined by testing 

bolus injection); axial unidirectional diffusion-weighed imaging at b-values of 0, 50, 300 and 

600 with echo-planar imaging (EPI) readout and ADC map calculation. ADC map 

reconstructions were 5.5x5.5x5 mm (xyz) to a 192x192 voxel matrix. Furthermore, single-shot 

T2w magnetic resonance cholangiopancreatography (MRCP) was performed and 

reconstructed as a radial maximum intensity projection (MIP) series. The 30 external validation 

cohort patients underwent MRI on a 3T clinical PET-MRI scanner (Siemens Biograph mMR, 

VB18) at the hospital's nuclear medicine department. The protocol was performed as above 

with the following alterations: ADC-map reconstructions were 5.1x5.1x5.1 mm (xyz) to a matrix 

of 192x192 voxels; furthermore an axial spectral adiabatic inversion recovery (SPAIR) fat-

suppressed post-contrast sequence at 5 mm and a whole-body positron emission tomography 

scan after application of 18F-Fluordesoxyglucose (FDG) were included. The imaging protocols 

used, and the technical hardware specifications of the MRI machines remained unaltered 

during the data acquisition period. 

 

Data segmentation 

Pseudonymized datasets were exported from the hospital picture archiving system (PACS) 

onto a radiological workstation and segmented under reporting room conditions by consensus 

reading of 2 experienced observers (G.K. and S.Z.) and quality-controlled by an abdominal 

radiologist with >10 years of experience in pancreatic MRI (R.B.). Segmentation was 

performed manually in the b=600 images and transferred to the ADC maps. All other 

sequences were available to observers for anatomical correlation. 

 

Inferential statistical modeling 

For assessing potential clinical confounding parameters introducing bias to the survival 

prediction, survival time was modeled in both cohorts using a multivariate Cox proportional 

hazards model. The distributions of clinical variables were compared between groups using 

Fisher’s exact test. For subsequent machine learning modeling, the two cohorts were 

dichotomized by median overall survival to yield two sub-cohorts of equal size. ROC-

thresholds were evaluated with the Kolmogorov-Smirnov-statistic. Biostatistical modeling was 

performed in SPSS Version 25. For all inferential statistical procedures, a P-value of <0.05 

was considered statistically significant. 
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Image postprocessing, radiomic feature extraction and machine learning modeling 

All steps of image postprocessing, feature extraction, feature preprocessing, feature 

engineering and machine learning modeling are detailed in the supplemental material. In brief, 

radiomic features were derived using PyRadiomics (v. 2.1 (6)) yielding a total of 1688 features, 

of which 504 were retained after preprocessing. A Random Forest (7) classifier was fit in a 

supervised fashion with survival above versus below median serving as label to the training 

cohort radiomic features and tested for predictive sensitivity, specificity and ROC-AUC in the 

external validation cohort. Feature importance was assessed to derive significant radiomic 

features for the model. All analyses were carried out using the Python programming language.  

 

Histopathological workup of tumor samples 

Histopathological staining and immunohistochemical workup were performed as described in 

(8). In brief, staining for the markers HNF1a and KRT81 was carried out and tumors 

categorized into three subtypes: classical, exocrine and quasi-mesenchymal. Tumors not 

positive for either marker were designated unclassifiable. Classical, exocrine and 

unclassifiable tumors are onwards referred to as non-quasi-mesenchymal. 
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Results 
The distribution of clinical parameters did not differ significantly between the training and the 

external validation cohorts. Among the clinical parameters, the choice of chemotherapy 

regimen (gemcitabine vs. FOLFIRINOX) was significantly associated with overall survival in 

the training cohort but not in the testing cohort and the percentage of patients receiving each 

regimen was identical (with ~70% of patients receiving gemcitabine in each cohort, Fisher’s 

exact test P=1.0). Metastatic status at baseline was significantly associated with diminished 

survival in both cohorts and was also identically distributed (~25% of patients, Fisher’s exact 

test P=.81) in both cohorts. The results of multivariate Cox analysis and crosstabulations can 

be found in the supplementary material.  

 

The Random Forest algorithm achieved a sensitivity of 86.7%, a specificity of 80.0%, a positive 

predictive value of 81,2% and a negative predictive value of 85,7% (Fisher’s exact test 

P=0.0007). The area under the ROC curve calculated on the external validation cohort data 

was 0.90 (Fig. 1). Further model evaluation metrics can be found in the supplementary 

material.  
 

Furthermore, the algorithm’s predictions enabled statistically significant stratification of above- 

vs. below-median overall survival in the external validation cohort (log-rank-test P <0.001, 

predicted median survival for the below-median 17.0 months vs. 31.3 months for the above-

median group) with the resulting predicted survival curves showing near-perfect overlap with 

the actual survival times of the patients (Fig. 2). 

 

The histopathologic subtype of the tumor samples could be determined for 21 of the 30 patients 

in the external validation cohort. The quasi-mesenchymal histopathological tumor subtype was 

greatly overrepresented in the patient collective predicted by the algorithm to experience 

below-median survival with 8 out of 9 patients having quasi-mesenchymal subtype tumors. 

The opposite also held true, with 11 out of 12 patients predicted by the algorithm to experience 

above-median survival having non-quasi-mesenchymal subtype tumors (Fisher’s exact test 

P<0.001, Table 1).  
 

Feature importance evaluation yielded 8 highly important features (Fig. 3). Seven of these 

features (GLCM Difference Variance, GLZSM Zone Entropy, GLCM Cluster Tendency, First 

Order Entropy, GLDM Dependence Non-Uniformity Normalized, GLRLM Run Length Non-

Uniformity and NGTDM Busyness) are associated with image heterogeneity and one (Large 

Area Low Gray Level Emphasis) is associated with the proportion of large zones with low gray 

values within the image (9,10) . 
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Discussion 
In this work we present a prospectively validated machine learning algorithm, which enables 

the prediction of overall survival and shows strong association with histopathologically defined 

molecular subtypes recently identified in PDAC. Several of the most important imaging 

features belong to a class of heterogeneity related features, offering explainable insights into 

the algorithm. 

 

The potential of radiomics in non-invasive prediction of clinically relevant parameters, such as 

response to a specific therapy or expected overall survival has been shown in recent literature: 

For example, CT-derived radiomic signatures were shown to enable prediction of local disease 

control and overall survival in PDAC (11,12) or tumor grading in pancreatic neuroendocrine 

tumors (13). The large-scale implementation of such tools thus has the potential to become a 

game changer in medical image interpretation and individualized patient care. 

 

Post mortem analyses of terminal stage PDAC specimens have shown higher tumor cellularity 

compared to resectable PDAC specimens, which likely represent earlier tumor development 

stages (14). In line with this observation we previously demonstrated that higher regional tumor 

cellularity identified in PDAC resection specimens was associated with a significantly worse 

overall survival and that the pre-operative DW-MRI-derived ADC parameter could serve as a 

non-invasive marker thereof (15,16). Upholding these findings, the current analysis identified 

the radiomic feature Large Area Low Gray Level Emphasis, representative of cohesive zones 

with low ADC values, as one of the 8 most important features for survival classification. The 

restriction of the pre-trained model to this single feature applied to the prediction of survival in 

the external validation cohort still yielded clear, albeit statistically nonsignificant separation of 

above and below-median predicted survival cases (see Kaplan-Meier plot and associated 

metrics in the supplementary material). 

 

Several of the features ranked highly by our model (GLCM Difference Variance, Entropy, Non-

uniformity, Busyness) represent the local heterogeneity of the image. Entropy-related and 

Cluster Tendency features were described in the very recent publication by Khalvati et al. as 

predictive of overall survival in PDAC (12). Entropy has furthermore been found to represent 

a highly reproducible and consistent imaging feature in several tumor entities and across 

modalities (17). The discovery of such reproducible parameters is a key part of the radiomic 

process and it is encouraging to see the same radiomic markers emerge not only across 

pancreatic cancer studies but also in other tumor entities and across different MRI systems 

and field strengths, supporting assumptions of overarching ontologies such as tumor 

heterogeneity and paralleling the notions of pathway- as opposed to tissue-specific therapy 

approaches (18).  
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Until proven thoroughly in large prospective trials, the inclusion of machine learning-derived 

predictions in a clinical decision process is ethically unjustified. However, machine-learning 

derived information could already be integrated into the clinical work-up of PDAC patients by 

back-projection of relevant radiomic features into the image space as has been demonstrated 

in the prostate (19) and shown in domains outside medical imaging for deep convolutional 

neural networks (20). Such visualizations would both aid model explainability and offer 

guidance for invasive tumor sampling in PDAC. The introduction of machine learning as a 

clinical decision support tool would also profit from the ability of machine learning algorithms 

to predict e.g. molecular signatures such as KRAS amplification status (21), that may then help 

stratify patients in clinical routine. Such radio-genomic approaches could complement 

histomorphology-derived tumor subtype prediction techniques demonstrated here, and 

advance the role of radiomics in precision medicine. 

 

We selected the Random Forest model over the frequently-used linear models such as logistic 

regression for its capability of modeling both linear and non-linear relationships between 

features and outcomes, robustness to overfitting by design, and inbuilt insights into feature 

importance aiding model parsimony and explainability. Random Forests have also been shown 

to yield excellent results in previously published radiomic studies (22).  

As part of any radiomic study, feature preprocessing and stability checking is required to obtain 

reproducible results, resulting in the majority of derived features being discarded before 

modeling begins (23). These discarded features are therefore rendered useless for the 

modeling process. To obtain more usable features, standardized acquisition and feature 

extraction is necessary. Recent initiatives aim to homogenize acquisition protocols between 

sites to enable further sequences to be included in analyses (24). We adhered to (and strongly 

support) the standards set by IBSI/PyRadiomics (6,10), which provide a robust post-

processing platform entirely based on open-source tools, thus laying the foundation for open 

and reproducible radiomic science.  

 

Our work is a proof of concept contribution to the fast-developing field of machine learning in 

medical imaging. Notable limitations include training cohort size, due to which the model could 

not reach its full potential performance (see the training curve in the supplemental material). 

The age of the imaging material in the retrospective training cohort also impacted results with 

several patients being excluded due to technical image quality. The quality of MRI acquisitions 

has since considerably improved and our results could benefit from the application of state-of-

the art abdominal imaging including high resolution protocols, such as reduced field-of-view 

DWI (25–27). We eliminated all features that were classified unstable between the two MRI 

systems and recent research has provided evidence that the quantitative nature of ADC maps 
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results in large numbers of stable features in different tumor entities and across different field 

strengths and MRI systems (28). Despite that, the impact of switching MRI systems between 

the two cohorts cannot yet be conclusively resolved. Lastly, although rigorously quality-

controlled, our approach still relies on manual tumor segmentation, since recent fully-

automated segmentation algorithms fail to match human observers in pancreatic tumors (29). 

We believe that future work will result in optimized algorithms that enable a higher level of 

automation -and thus standardization- of this task. 

 

In conclusion, we show the promise of machine learning-based radiomic analyses in PDAC. 

We encourage the validation of the identified radiomic parameters in larger, prospectively 

accrued cohorts to lay the foundation for therapeutic interventions based on quantitative 

imaging biomarkers. 
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Figures and Tables 

 
Fig. 1: ROC curve of model performance on the external validation cohort. The classification threshold 

was 0.5, resulting in a ROC-AUC of 0.9. N=30 patients.  

 

 
Fig. 2: Kaplan Meier curves showing the predicted survival (blue and green curves) and the true survival 

(dotted curves) for patients in the external validation cohort. Log-rank-test between predicted survival 

curves: P<0.001, N=30 patients total. 
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 Quasi-mesenchymal 

subtype 

Non-quasi-mesenchymal 

subtype 

Predicted survival >Median 1/12 (9%) 11/12 (91%) 
Predicted survival <Median 8/9 (89%) 1/9 (11%) 

 
Table 1: Overlap between predicted survival groups and histopathological subtypes. The quasi-

mesenchymal subtype was highly overrepresented in the group with predicted below-median survival 

and the non-quasi-mesenchymal subtypes in the group with predicted above-median survival. Fisher’s 

exact test P<0.001, N=30 patients. 

 

 
Fig. 3: Bar plot of the 8 most important features for overall model performance as determined by the 

Random Forest Model. Feature importance has been normalized to the most important feature. The 

features, in order of descending importance are (from 1-8): GLCM Difference Variance, GLZSM Zone 

Entropy, GLCM Cluster Tendency, First Order Entropy, GLDM Dependence Non-Uniformity Normalized, 

GLZSM Large Area Low Gray Level Emphasis, GLRLM Run Length Non-Uniformity and NGTDM 

Busyness. 
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