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ABSTRACT  

The emergence of Next-Generation Sequencing (NGS) has revolutionized the way of reaching a 

genome sequence, with the promise of potentially providing a comprehensive characterization of DNA 

variations. Nevertheless, detecting somatic mutations is still a difficult problem, in particular when 

trying to identify low abundance mutations such as subclonal mutations, tumour-derived alterations in 

body fluids or somatic mutations from histological normal tissue. The main challenge is to precisely 
distinguish between sequencing artefacts and true mutations, particularly when the latter are so rare 

they reach similar abundance levels as artefacts. Here, we present needlestack, a highly sensitive 

variant caller, which directly learns from the data the level of systematic sequencing errors to 

accurately call mutations. Needlestack is based on the idea that the sequencing error rate can be 

dynamically estimated from analyzing multiple samples together. We show that the sequencing error 

rate varies across alterations, illustrating the need to precisely estimate it. We evaluate the 

performance of needlestack for various types of variations, and we show that needlestack is robust 

among positions and outperforms existing state-of-the-art method for low abundance mutations. 
Needlestack, along with its source code is freely available on the GitHub plateform: 

https://github.com/IARCbioinfo/needlestack. 

 

INTRODUCTION 

Massive parallel sequencing, or next generation sequencing (NGS), has revolutionized the manner in 

which genetic variation can be explored, due to a large increase in throughput and unprecedented 

ability to detect low-abundance variations compared to the traditional Sanger sequencing, and at a 
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greatly reduced cost per sequenced base. However, because these new technologies are prone to 

errors, identifying genetic variants from NGS data remains a considerable challenge (1). This is 

particularly true in heterogeneous samples, where the variant allelic fractions (VAF, the ratio of the 

number of sequencing reads carrying the mutant allele to the total read count) deviate away from the 
expectations of a diploid genome (0%, 50% or 100% for the three possible diploid genotypes), until 

the point where the mutant alleles make up only a small fraction of the sequenced reads, approaching 

the background error rate. Nevertheless, robustly identifying low VAF sequence variants in such 

heterogeneous settings can be highly informative, for example providing insights into the clonal 

evolution of tumours (2), analyzing the cell-free DNA in order to identify tumour-derived molecular 

footprints (3), or evaluating somatic mutations in histologically normal material (4). 

 The error rate of next generation sequencing is known to vary across DNA base pairs and 

even across multiple base changes at the same DNA position (5,6). NGS errors originate from many 
of the steps in the sequencing process, stemming from the quality of the template DNA, its 

subsequent fragmentation, the library preparation, the base calling, or the alignment step subsequent 

to the sequencing of raw reads. Some of these errors have a tendency to reoccur consistently across 

samples whereas others have a more unpredictable appearance. The net effect of NGS being made 

of errors from multiple sources is that they become highly difficult to distinguish or correct (7). Variant 

identification methods that consider this highly variable error pattern may improve our ability to 

robustly detect true sequence variants even when their abundance is low. Most current algorithms 

use a probabilistic model on VAF applied independently across samples to distinguish between 
sequencing artifacts and true variations (8), while methods specifically designed to detect low 

abundance mutation, like shearwaterML (9,10), propose to benefit from the shared knowledge on 

errors across samples, but are limited by the requirement of a prior threshold on the error rate. 

Here, we have explored the approach of using multiple samples analyzed concurrently to develop an 

error model for each potential base change. Sequence variants are identified as outliers relative to 

this robust error model. This method, called needlestack, allows the identification of sequencing 

variants in a dynamic manner relative to the variable error pattern found in NGS data, and is 
particularly appropriate to call variants that are rare in the sequenced material. By combining this 

method with additional laboratory processing for further error correction (11) and very deep next 

generation sequencing, we are able to robustly identify VAFs well below 1% while maintaining 

acceptable false discovery rates. We conducted multiple rigorous performance estimations and 

comparisons with methods for both somatic and germline variant detection. We deployed our pipeline 

focusing on efficiency and robustness using the Domain-Specific Language (DSL) nextflow (12), and 

on reproducibility by providing Docker and Singularity images. Source code is versioned and freely 

available on GitHub (https://github.com/IARCbioinfo/needlestack). 

 

MATERIAL AND METHODS 

Needlestack overview 
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Needlestack estimates for each candidate alteration, i.e. each pair of position and base change (the 

three non-reference nucleotides and each observed insertions and deletions) the systematic 

sequencing error rate across a series of samples, typically more than twenty to ensure a reasonable 

estimation of this metric. Then, for each sample, it computes the p-value for the observed reads under 
the null hypothesis of this estimated model of errors, and transforms this p-value into a Phred-scale 

Q-value reported as a variant quality score (QVAL) for the candidate mutation. As such it measures 

the evidence that the observed mutation is not explained by the error model, and should therefore be 

considered a mutation.  

 Needlestack takes as input a series of BAM files, and is based on three main piped 

processes, the generation of the mpileup file containing read counts at the target positions using 

samtools (13), the reformatting of this file into readable tabulated file and finally the estimation of the 

error model using our R regression script (see below) coupled with the computations of Q-values 
(Supplementary Figure 1). Needlestack is highly parallelizable as input positions are analyzed 

independently. As an output, needlestack provides a multi-sample VCF file containing all candidate 

variants that obtain a QVAL higher than the input threshold in at least one sample, general 

information about the variant in the INFO field (e.g. error rate estimation, maximum observed QVAL) 

and individual information in the GENOTYPE field (e.g. QVAL of the sample, coverage of the sample 

at the position). 

 

The Needlestack algorithm  
 

Let i=1...N be the index of the sample taken from an aligned sequenced panel of size N, j the genomic 

position considered and k the potential alteration, with 𝑘 ∈ (A,T,C,G,ins,del), ins and del covering 

respectively every insertion and deletion observed in the data at position j. Let DPij denote the total 

number of sequenced reads at position j for the sample i, AOijk the reads count supporting alteration k 

and 𝑒jk the corresponding error rate. We model the sequencing error distribution using a negative 

binomial (NB) regression (without intercept): 

AOijk~NB9𝜇ijk,σjk< 

with 𝜎kj the over-dispersion parameter and 𝜇ijk=ejk ∗ DPijk corresponding to the expected number of 

reads supporting alteration k across samples with a coverage 𝐷ijk. A robust negative binomial 

regression method (14) is employed to ensure that the outliers from this error model, such as true 

mutations, are not biasing the regression parameters estimates. This model is based on a robust 

weighted maximum likelihood estimator (MLE) for the over-dispersion parameter 𝜎jk. We modified the 

original implementation of this regression to fit the need of our model here with: (i) a linear link 

function, (ii) a zero intercept, as a null coverage will exhibit a null read count, and (iii) an 

approximation of the bounding functions to allow the MLE to run efficiently for high coverage data 

(see Supplementary Methods). 
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For each position j and alternative k, we perform this robust negative binomial regression to estimate 

parameters 𝑒jk and 𝜎kj. We then consider a sample i as carrying a true mutation k at the position j 

when being an outlier from the corresponding error model. We calculate for each sample a p-value for 

being an outlier using the estimated parameters that we further transform into q-values using the 

Benjamini and Hochberg procedure (15) to account for multiple testing and control the false discovery 
rate. 

Importantly, because true mutations are identified as the outliers from the error model fitted using a 

robust regression, this approach is more suited to detect low-abundance mutations. Common 

mutations (for example germline SNPs with common allele frequencies) will be observed in the error 

model and therefore not detected as outliers by needlestack. In practice we found that mutations with 

a minor allele frequency below 10% can be accurately detected (see below). Additionally, while 

allowing over-dispersion, our model assumes that the error rate 𝑒jk is homogeneous across samples 

for a given alteration.  This means that it should be applied to a homogeneous series of samples (that 

is prepared using comparable laboratory techniques and sequencing machines etc.). Importantly 
other types of errors that have less tendency to reoccur uniformly across samples are identified by 

needlestack as outliers. 

 

Sequencing data for performance evaluation 
 

125 cell-free DNA (cfDNA) samples from healthy donors were used to study the distribution of error 

rates estimated by needlestack and to estimate its accuracy to detect low VAF using in-silico 
mutations. We also sequenced 46 cfDNA samples from 18 small-cell lung cancer (SCLC) patients 

and 28 squamous-cell carcinoma (SCC) patients, two cancer types that harbour a high prevalence of 

TP53 mutations (respectively 99% (16) and 81% (17) ). In order to validate in the tumour the low VAF 

mutations identified by needlestack in the cfDNA, we also sequenced tumour samples for these 

patients. Each of the cfDNA samples was sequenced for the TP53 exonic regions (exons 2-11, which 

corresponds to 1,704 base pairs with a median coverage of around 10,000X) using the IonTorrent 

Proton technology, in two technical independent duplicates in order to account for potential errors 

during library preparation. Details about cfDNA sequencing steps and tumour sequencing method are 
provided in the Supplementary Material.  

 Additionally, we performed whole-exome sequencing (WES) from the blood of 62 samples 

from an independent cohort in order to estimate the performance of needlestack on germline 

mutations. As a gold standard, we used genotypes derived from Illumina SNP array (Illumina 5M 

beadarray) that were available for 33 of these 62 samples.  

 

Comparison with other variant callers  
 
We used BAMsurgeon software (18) to introduce single nucleotide variations (SNVs)  at varied VAF in 

the 125 cfDNA samples in TP53 in order to benchmark and compare the method through in-silico 

simulations. BAMsurgeon presents the advantage of synthetic benchmarking methods that allow the 
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simulation of mutations for which gold standards don’t exist to evaluate the performance (here low 

VAF, that are in addition challenging to validate), while maintaining the real data background such as 

the true error profiles. We introduced 1000 SNVs at random positions in the gene in random samples, 

and we replicated this process in ten batches. As each sample has been sequenced twice, we 
introduced each in-silico mutation in the two technical duplicates of a sample. We took benefit from 

the variable coverage among samples and genomic positions to study the sensitivity of our method 

down to VAF=10-4. For each mutation m, the VAF was simulated using a log-uniform distribution: 

VAFC=10FG with 𝑢~uniform(0,4). Mutations were only introduced at positions where at least five 

mutated reads would be observed. This means that a mutation with a VAF=10-4 would be introduced 

only in positions with a coverage of at least 50,000X. To compare needlestack with a similar variant 
caller, we ran ShearwaterML (4,10) on the same ten batches (see Supplementary Methods). 

ShearwaterML is based on a beta-binomial regression and requires an a-priori threshold t for the error 

rate. ShearwaterML excludes each sample having a number of alternative bases higher than 

t*coverage, aiming at removing potential true mutations that act as outliers in the regression to 

robustly estimate the error rate. To compute the global performance of both methods, the ten 

simulation batches were merged, and only mutations detected in both technical duplicates were 

considered. In-silico simulations were repeated for 1-base pair insertions and deletions (indels) for 

needlestack. In this case, the total number of in-silico mutations was reduced to minimize the potential 
alignment artifacts created by the introduction of two indels close together. For that, using the same 

initial data, 100 insertions and 100 deletions were added again in ten simulations batches (total of 

twenty batches).  

 To estimate the ability of needlestack to detect rare germline variations, we used the 62 WES 

from blood samples. Needlestack variant calling was performed using our germline recommendations 

(see Supplementary Methods). GATK variant calling was performed using HaplotypeCaller best 

practice workflow (19) (see Supplementary Methods). From the 3,446,898 bead array non-reference 
genotypes (0/1 or 1/1) distributed over 113,232 positions in the 33 individuals, we selected 20,439 

genotypes with a sufficient coverage (see Supplementary Methods). In a second part, to account for 

possible bias in the array, variant calls from both needlestack and GATK were compared 

independently of the array data, on a total of 44,314,972 exonic positions. To compare only rare 

germline variants, we removed common variants from each calling set (bead array, GATK calling and 

needlestack calling, see Supplementary Methods).  

 
Error rate estimation 
 

To estimate the error rate variability across positions, we computed with needlestack the sequencing 

error rates from two data sets of the TP53 gene sequenced with two different technologies (on the 62 

blood samples and on the 125 cfDNA samples). Error rates were estimated at each position of the 

gene and for each substitution, totaling 1704*3=5,112 values. We were then interested in estimating 

the contribution of each possible nucleotide change on the error rate. We therefore computed, for 
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each error-rate range e in [{10-5,10-4};{10-4,10-3};{10-3,10-2};{10-2,10-1}] and for each possible base 

change b in  [G>T, C>A, ..., A>C, T>G]:  

𝑝𝑟𝑜𝑏S,T =
#𝐸𝑅S,T
#𝐸𝑅S

 

with #𝐸𝑅S,T being the number of estimated error rates in the class e observed for a base change b, 

and #𝐸𝑅S being the total number of estimated error rates in the class e. 

In the case of the Ion Torrent sequencing, we observed a sufficiently high number of single nucleotide 

variations (SNVs) (n=5,112) to also compute the distribution of error rate depending on the 96 
possible SNVs taking into account the preceding and following bases to evaluate the effect of the 

sequence context. Similarly, the high number of insertions (n=7,662) and deletions (n=1,724) 

detected allowed us to also compute the distribution of estimated error rates (i) as a function of the 

length of the inserted/deleted sequences; and (ii) as a function of the length of homopolymer regions 

for the insertion/deletion of one base pair.  

 

cfDNA and matched tumour analysis for validation 
 
Observed deleterious mutations in the TP53 gene of a cfDNA lung cancer patient are generally 

expected to be derived from their tumour (but see Fernandez-Cuesta et al. 2016 Ebiomedicine) (20). 

Therefore we used the tumour samples as a proxy for validation of the identified cfDNA mutations. To 

limit our false discovery rate, samples that harbored a high number of raw mutations (>100) in at least 

one of the two technical replicates were excluded. This removed 4 SCC and 7 SCLC from the 46 

matched samples. We considered only cfDNA mutations that passed post-calling filters, i.e. a RVSB 

(Relative Variant Strand Bias) (20) lower than 0.85, no high-VAF variant (i.e. a VAF ten times higher 

than the candidate mutation) within 5 base-pairs upstream or downstream, and a VAF higher than 
10% if the mutation is found in a low confidence base change (i.e. where technical duplicates don’t 

cluster together; see Supplementary Methods). We independently performed the needlestack variant 

calling on the cfDNA samples and the matched tumour samples. 

 

RESULTS 

Sequencing error rates depend on the alteration type 
 

Globally, 95% of the error rates across alterations were estimated as lower than 10-2.5 in both 

sequencing technologies (Figure 1A). Nevertheless, the error rates varied importantly across the 

target sequences and alterations. For the amplicon-based Ion Torrent sequencing, transitions had 5-

fold higher error rates than transversions (Figure 1A), on average, although not clearly influenced by 

the sequence context when considering the flanking 3′ and 5′ bases (Supplementary Figure S2). For 
exome-capture sequencing, a bulk in the distribution of transversion-like errors is observed at an error 

rate in the order of 10-2.5 (Figure 1A). When looking at the proportion of different nucleotide 

substitutions across multiple ranges of sequencing error rates (Figure 1B), we observed that in this 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 21, 2019. ; https://doi.org/10.1101/639377doi: bioRxiv preprint 

https://doi.org/10.1101/639377
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

range (10-2 – 10-3) the majority of substitutions correspond to G>T transversions, previously reported 

and suggested to be related to DNA sonication(21).  

As previously reported, we observed a large number of indels (9,389) in the Ion Torrent sequencing 

data (22). We found that the error rate is dependent of their length: long indel (with a size greater than 
3bp) error rates are around 100-fold lower than 1bp indel error rate (Supplementary Figure S3A). As 

previously reported (22), the error rate also increases with the length of homopolymer region, 

reaching 1% for repetitions of four nucleotides (Supplementary Figure S3B). 

 

Variant detection limit depends on the error rate 
 

Importantly, errors identified in the previous section are classified as such by needlestack, and not as 

potential variants, even when the error rate is high, as opposed to traditional variant callers which 
consider samples individually and that rely mostly on the VAF (21). Figure 2A illustrates a position at 

which needlestack identifies a high error rate (𝑒jk = 3.8) without reporting any variant, even though 

alternate reads are observed in individuals VAF’s up to ~ 9%.  Figure 2B illustrates a position with a 

very different estimated error rate (𝑒jk = 10F[) where a putative very rare variant is identified. It is 

also noteworthy that the variant identified in Figure 2B has a VAF ten times lower (10F\) than the 

error rate estimated in Figure 2A, indicating that the sensitivity to detect a variant is considerably 
improved at the site with the lower error rate, highlighting the need to quantify the error rate 

distributions for each candidate mutation independently.  

 

Technical replicates reduce low VAF false calls 
 

We noted that the majority of variants detected by needlestack in the cfDNA of healthy patients 

harbour a particularly low VAF, typically under 0.5% (Figure 3A, black solid line). Importantly, the 

majority of these variants are not present in a second library preparation (a technical duplicate) of the 
same sample (Figure 3A, blue lines). Such variants illustrate an additional type of errors found in NGS 

data that do not consistently re-occur in the samples and that are not validated when sequencing a 

technical replicate of the sample, for example those introduced by polymerase chain reaction (PCR) 

amplification errors. These non-systematic artefacts are not expected to be captured by our error 

model and should be detected by needlestack as outliers (see Figure 2C for such an example). 

Importantly, we showed that this high number of calls not validated in a technical replicate of the 

sample is not dependent on our method (Figure 3A, blue lines). Subsequently, here, for the evaluation 
of needlestack’s ability to detect efficiently low VAF mutations, we added the condition that variants 

are also detected in the technical duplicates to account for this type of error (Figure 3A, blue line). 

 

Performance evaluation using in-silico simulation of somatic mutations 
 

From the 10,000 mutations introduced by BAMsurgeon, needlestack detected 5% of mutations with a 

VAF lower than 0.1%, 51.4% of mutations with a VAF between 0.1% and 1%, and 99.4% of mutation 
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with a VAF higher than 1%. As expected, the sensitivity of needlestack is highly dependent on the 

sequencing error rate. Indeed, needlestack does not call a mutation if the sequencing error rate for 

that alteration is greater than or in the same range as the VAF of the candidate mutation (Figure 4). 

As an example, needlestack detected 0%, 6.5%, and 47.8% of SNVs with a VAF of 0.1% at positions 
where the sequencing error rate was higher than 0.1%, between 0.1% and 0.01%, and lower than 

0.01%, respectively. When comparing needlestack and shearwaterML, we found that globally 

needlestack sensitivity was higher than that of ShearwaterML, and, for example, ShearwaterML 

detected 7.7% of all inserted mutations with a VAF at 10-3 whereas needlestack detected 16.8% of 

these mutations. Given t the shearwaterML a-priori threshold on the sequencing error rate (Figure 3B 

red line) and e the observed sequencing error rate, we showed that the false positive rate of 

shearwater is markedly increased when t>e, whereas needlestack’s false positive rate is stable 

across the whole range of error rates (Figure 3B).  
 

Detection of tumour-derived mutations from cell-free DNA 
 

Next, we tested needlestack’s ability to detect very low VAF mutations in a biologically relevant 

setting.  For this we screened cfDNA extracted from plasma samples from 35 lung cancer patients 

where the matched tumour sample was analyzed concurrently, and considered the concordance 

between the identified variants. A total of 22 TP53 mutations from 18 samples (9 SCLC and 9 SCC) 

where identified in the cfDNA. 16/22 (70%) mutations were called in the tumour of the same patient. 
All the 12/22 cfDNA mutations considered as deleterious (i.e indels, non synonymous SNVs with a 

REVEL score higher than 0.5, stopgain or stoploss variants) (23) were present in the tumour. cfDNA 

and tumour VAF were found to be moderately correlated, which is concordant with previously 

reported results (24) (Pearson correlation coefficient ρ equals to 0.59, Supplementary Figure S4A). 

Details of the 22 cfDNA mutations and corresponding observations in the tumour matched samples 

are provided in Supplementary Table S1. The needlestack plots of a low VAF cfDNA mutation 

validated in the tumour are shown in Supplementary Figure S4B. 

 

Application to germline variant calling 
 

For rare germline variants from 33 whole exomes, needlestack has a sensitivity of 95.64% to detect 

non-reference genotypes when using bead array data as a gold standard, which is quite similar to the 

GATK-HC Haplotype Caller results (95.48%).  GATK-HC and needlestack variants concordant with 

the bead array (19,515 of the 20,439 variants) had VAF distributed around 50% and 100%, as 

expected for germline variants (Figure 5A). Most of the few calls that were not validated in the array 

were also centred around 50% and found by both variant callers, implying that they certainly contain 
additional heterozygotes that the SNP array failed to detect. Finally, the majority of variants not 

identified with NGS had no sequencing reads supporting the alternative allele detected by the array 

(841/892 variants), suggesting that these variants are potentially false positive results from the SNP 

array (Figure 5A).  
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Because SNP arrays are biased toward sites amenable to the design of Illumina BeadArrays (25), we 

also undertook needlestack and GATK germline genotyping of SNVs and indels calls across 62 

exomes. Respectively 97.3% and 70.3% of the SNV and indel calls were concordant (Figure 5B-C) 

with VAFs around 50%, whereas the genotypes identified uniquely by one of the two methods tended 
to have low VAF. For indel calling, 46% of calls unique to needlestack and 34% of calls unique to 

GATK are more than 10bp long, compared to only 12% of common calls. This suggests that 

discrepancies among the methods can be partially explained by longer indels that are difficult to align 

and call. For 66% of uniquely called indels by GATK-HC, no alternate reads were present in the BAM 

file used by needlestack, suggesting divergences in the assembly steps (haplotyper Caller versus 

ABRA). Interestingly, for 52% of the SNVs detected by GATK-HC and not by needlestack, 

needlestack estimated an error rate higher than 1%, pointing to possible false positives in the GATK 

calls (Supplementary Figure S6).  
 

DISCUSSION 

The needlestack method is based on the notion that, as error rates strongly vary along the genome, 

their dynamic estimation from multiple samples, for each potential base change at a given DNA 

position, may assist in accurately identifying sequence variants. Here, we have demonstrated that, 
even within a single gene (TP53), and even if the sequencing error rate is generally low, it varies 

importantly across positions and base changes (Figure 1). Needlestack implements a robust negative 

binomial regression for this purpose, and the ability of the method to identify variants will be 

dependent upon the error rate at that particular site and for that base change. By identifying sequence 

variants as outliers relative to the error model, needlestack maximizes the sensitivity to detect variants 

in a dynamic manner relative to the error rate in that particular setting. As such, low allelic fraction 

variants are identified from sites with low errors rates, whereas in settings where error rates are high, 

needlestack maintains reasonable false discovery rates (Figures 3 and 4).  
 We have benchmarked our method using both simulated and real data from different 

sequencing platforms. First, we have tested our method on low VAF mutations using BAMsurgeon to 

generate in-silico mutations and have compared our findings to variants identified by a similar rare 

variant orientated algorithm shearwaterML (9,10). We have shown that our method outperforms 

shearwaterML for VAF lower than 10-2 and that the performance of shearwaterML highly depends on 

the difference between the error rate e and the error rate a-priori threshold t (see methods for details). 

Contrary to shearwaterML, needlestack’s false discovery rate is not dependent on the sequencing 
error rate. In addition, needlestack also considers indel mutations. For this type of variant, the 

sensitivity of needlestack is slightly reduced compared to SNVs (Supplementary Figure S5A-B). This 

is potentially due to the increased complexity of the assembly step around indels compared to SNVs. 

Moreover, needlestack detects a high number of indels replicated in the two technical duplicates that 

were not in-silico introduced (around 8 by samples in average), whereas TP53 is not expected to 

harbour many indels in healthy patients. These mutations can be moderated using a filter on the 

strand bias, as previously reported (Supplementary Figure S5C-D) (26).  
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 The true specificity of needlestack cannot be achieved with BAMsurgeon simulations, due to 

a probably very low presence of true mutations in the cfDNA of healthy patients that is difficult to 

determine a priori (20). We therefore have estimated the validation rate in the tumour of deleterious 

cfDNA mutations identified by needlestack in 35 lung patient cfDNA samples. All of these 12 
mutations were validated in the tumour.  

 Finally, we have benchmarked needlestack on germline mutations using SNP array data to 

validate the mutations detected in WES of 33 individuals, and showed an excellent concordance 

when results are compared with both a SNP array as a gold standard set and calls from GATK 

HaplotypeCaller (19). This illustrates that needlestack, even if based on a totally different approach to 

detect variants, can reach similar performance to state-of-the-art germline variant callers. 

 The needlestack method nevertheless has several limitations. Even though needlestack is 

extremely sensitive, it is suited to detect rare mutations rather than common germline variants or 
highly re-occurring hotspot mutations. Adding an a-priori threshold for the error rate (extra_robust 

mode – see Supplementary Methods) can partially offset this limitation, but is only applicable to 

particular situations for the reasons explained above. More importantly, the inherent logic of the 

needlestack approach corrects for errors that have a tendency to reoccur, as such errors that are 

rarer are identified as outliers in the regression.  Following this, needlestack does not correct for 

sample-specific artifacts such as (i) (sample specific) stochastic alignment errors and we recommend 

to use it in conjunction with an assembly based re-alignment method (27); (ii) polymerase errors 

introduced in PCR amplification step; (iii) complex errors leading to features like strand bias. Such 
errors remain a feature in NGS data (Figures 2C and 3A), thus additional error correction (28,29) 

and/or validation techniques are needed. This can be achieved with hard filtering on the output 

statistics such as the VAF or the strand bias, but also with machine-learning-based approaches 

applied to multiple variant summary statistics when validated data are available to inform the model. 

Here we have controlled for these errors by undertaking technical duplicate of each sample and 

conditioning on the requirement that the variant must be present in each preparation.   

 Our pipeline is implemented using nextflow (12), to facilitate its scientific reproducibility but 
also efficient parallel computations. Needlestack is also provided with Docker (30) and singularity (31) 

containers to avoid installation of dependencies and produce perfectly reproducible results. 

Needlestack is a user-friendly pipeline that can be run in one command line. In addition, needlestack 

implements a power calculation to estimate if the coverage is sufficient to call a mutation (see 

Supplementary Methods for details). Using this power analysis, it can predict the germline or somatic 

status of a mutation when applied to tumour-matched normal mode. This also allows needlestack to 

flag mutations with an “unpredictable” status (when the coverage is to low) to accurately control the 

false discovery rate. Source code is available on GitHub and is versioned using a stable git branching 
model.  Importantly, this approach is relatively computationally efficient and parallelisable. This allows 

error models to be built even across large target stretches of DNA, enabling applications at the exome 

level, genome levels or to most forms of sequencing data. As an example, needlestack takes around 

20 hours to analyze 100 WES when launched on 100 CPUs. 
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In summary, needlestack uses a robust model of sequencing errors to accurately identify DNA 

mutations potentially in very low abundance. The model takes the advantage of batch sequencing of 

multiple samples to precisely estimate the error rate for each candidate alteration. Needlestack can 

be applicable to various types of studies such as cfDNA, histological normal tissue investigation or 
high precision tumour subclonality estimation by providing a high sensitivity for low allelic fraction 

mutations. 

 

AVAILABILITY 

needlestack is an open source software and is available in the GitHub repository 

(https://github.com/IARCbioinfo/needlestack). 
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TABLE AND FIGURE LEGENDS 
 

Figure 1: Sequencing error rates estimated by needlestack across the TP53 gene. (A) Distribution of 

sequencing error rates in log-10 scale across the 1,704 positions accounting for a total of 5,112 

values. Results are stratified by type of base change: transition or transversion (x-axis) and by 

sequencing technology (IonTorrent Proton amplicon-based data in violet and Illumina exome capture 

data in yellow). Horizontal black lines correspond to the 5% quantiles of each of the sequencing error 

rate distribution. (B) Contribution of each of the 12 possible base changes on the estimated error rate. 

Error rates are stratified by ranges ([10-5,10-4];[10-4,10-3];[10-3,10-2];[10-2,10-1], x-axis). Base change 
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contributions are colored according to DNA strand equivalences (e.g. G to T and C to A are both 

colored in blue).  

 

Figure 2: Needlestack regression plot for three independent genomic alterations. Each dot 
corresponds to a sequencing library of a sample and the dots are colored according to the Q-values 

attributed by needlestack. Red dots are libraries identified as carrying the mutation by needlestack 

(their Q-values are higher than 50). Dotted lines correspond to 99% confidence interval around the 

estimated error rate. (A) Example of a G to T transversion from exome-hydrid capture Illumina 

sequencing where the sequencing error rate is estimated as 3.8x10-2 and no variant is detected. (B) 

Example of a validated mutation (i.e. found in the two technical replicates of the same sample) with a 

VAF around 10-3 with a corresponding sequencing error rate estimated around 10-4. (C) Example of a 

non-validated mutation with a VAF at 10-4 in the positive library.  Each dot corresponds to the library 
of a sample and the dots are colored according to the Q-values attributed by needlestack. Red dots 

are libraries identified as carrying the mutation by needlestack (their Q-values are higher than 50). 

 

Figure 3: Needlestack and shearwaterML variant calling false discovery overview from in-silico 

simultations with BAMsurgeon on 125 duplicated samples of circulating cell-free DNA from healthy 

individuals. (A) Cumulative number of detected mutations that were not introduced by BAMsurgeon as 

a function of the VAF (in log10 scale) of the mutations, for both methods (needlestack in solid lines 

and shearwaterML in dotted lines).  This number is computed as the average per library when 
considering all mutations (black lines) and as the average per sample when considering validated 

mutations (i.e. found in the two technical replicates of the same sample blue lines). (B) False positive 

rate (per alteration) for both needlestack and shearwaterML, depending  on the estimated error rate at 

the position (in log10 scale). The red line corresponds to the error rate threshold t used for 

shearwaterML (0.005). ShearwaterML uses this threshold to remove a-priori true variants, i.e. 

samples with a VAF>t, to then estimate the error rate.   

 
Figure 4: Performance of needlestack for somatic mutation calling using simulated data. The 

sensitivity of needlestack is shown for multiple values of VAF (in log10 scale, x-axis) of in-silico 

simulated mutations. A total of 10x1,000 SNVs were introduced using the BAMsurgeon software, on a 

set of 125 samples sequenced at the TP53 gene with the IonTorrent Proton technology. Needlestack 

sensitivity was computed independently for different error rate ranges (e, red, blue and green lines). 

Black line corresponds to the global sensitivity for all the mutations independently of the sequencing 

error rate. Global sensitivity of shearwaterML for the same data is shown in grey. 

 
Figure 5: Germline variant calling comparison between needlestack and GATK-HC across 62 

samples. Both distributions of the VAF and Venn diagrams showing the concordance of called 

mutations are shown. VAF distributions are colored according to the Venn diagram. (A) Comparison 

between both methods and an Illumina bead array containing gold standard genotypes available for a 
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total of 33 samples. (B) and (C) Comparison between needlestack and GATK-HC called mutations 

without any reference gold standard for both SNVs (B) and indels (C). 
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Figure 1. 
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Figure 4. 
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Figure 5. 
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SUPPLEMENTARY MATERIAL 
 
SUPPLEMENTARY METHODS 
 

Robust Negative Binomial regression  
The original method (1) was established on falls data where the predictor variable took values from 0 
to a couple of hundreds. Here we need to take into account cases where we sequenced deeply and 

therefore the predictor variable DP can be up to hundreds of thousands. The first model uses 

integrals of bounding functions for the maximum likelihood estimation (MLE) of 𝑒jk to keep 

robustness, which can take a very long time for high coverage data. To save computing time, we 

approximate the calculation of integrals required for the MLE of 𝑒jk. Instead of computing the sum of 

all values corresponding to the integral, we interpolate the points using the spline function in R, and 

compute the sum of a set of sampling points with a reasonable size (default is 100).  

The initial estimation of 𝑒jk for the MLE algorithm is based on a Poisson model, and because of a lack 

of robustness the following MLE of 𝜎jk can take a lot of time. We thus define our initiation of 𝑒jk as the 

mean of observed 𝑒ijk after passing the Tukey's outlier filter, i.e an observed 𝑒ijk is taken into account 

for the mean computation if and only if it verifies 𝑒ijk ≤ 𝑄( + 1.5 ∗ IQR, with Qi=ithquartile and 

IQR=Q( − 𝑄;.  

 

Implementation 
Needlestack is implemented as one major process, which can be executed in parallel for multiple 

input chunks, each corresponding to a set of genomic positions. This process is defined as a chain of 

piped commands: firstly, it runs samtools mpileup utility to compute, for each of the input BAM files, 

the list of read nucleotides overlapping the input positions. Then, it translates the samtools output into 

an easier to process format through a custom C++ tool (mpileup2readcount). Finally, needlestack 

uses its own R script to run the variant calling independently at each position and for each observed 
alternative base change, and produces a resulting VCF file that will be merged with other created 

VCF if run in parallel mode. See Supplementary Figure 5 for details on the pipeline. Needlestack is 

written in the nextflow (2) domain-specific language, allowing high scalability and reproducibility, but 

also efficient parallel execution. Needlestack source code is freely available on Github (3), and a 

Docker container image is hosted on DockerHub (4). This docker image is based on conda and 

Bioconda (5), a sustainable and comprehensive collection of bioinformatics software that help to 

easily install workflow dependencies. 

 
Tumour-Normal pairs method 
We have implemented, in addition to our basic model, a method to classify any observed variant as 

somatic or germline when needlestack is launched in tumour-normal pairs mode (Supplementary 

Table S2). For this, for each variant detected only in either the normal or tumor sample, needlestack 

estimates the power to detect it in the other sample. Indeed, not observing a variant in the other 
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sample could be due to the lack of power to detect it, in particular when the depth of coverage is not 

sufficient. Our power metric is based on the expected Q-value of the variant if truly present, which 

depends on the observed coverage of the sample at the site, the expected allelic fraction and the 

error model estimated by Needlestack. If this Q-value is below the user-chosen threshold, we report a 
lack of power. For a particular individual sequenced for a tumour-normal pair, needlestack classifies 

its variants as follows: if a variant is observed in the tumour sample, it is classified as “somatic” if not 

observed in the normal although the power was sufficient, and as “unknown” in a case of a lack of 

power in the normal sample. If a variant is observed in the normal sample, it will be labeled as 

“germline”, and sub-labeled as “confirmed” if also found in the tumour, “unconfirmed” if not found in 

the tumour whereas power was satisfactory, and “unconfirmable” if there was not enough power in the 

tumour to detect it if present. 

To obtain the expected Q-value of a variant, the first step is the computation of the minimum expected 
alternative read count (6) in the other sample (tumor or normal). The expected AO of a (germline) 

variant in the normal sample is computed as follows: 

AOnormal=C99[NB(µ,σ)] 
with C99 the 99th centile, NB=negative binomial distribution, μ=0.5 x coverage at the position, and 

σ=dispersion parameter (by default=0.1). 

The expected AO of a variant in the tumor sample is computed as follows: 

AOtumor=c99[𝐵(n,p)] 
with C99 the 99th centile, B=binomial distribution, n=coverage at the position, and p=minimum variant 

allelic fraction expected (by default=0.01). 

Then, given this expected AO, we compute the expected p-value that corresponds to the probability to 

belong to the error model that needlestack has estimated. Finally, we transform this p-value into a 
Phred-scale Q-value to obtain the expected Q-value of the variant. 

 

cfDNA and tumour sequencing for in-silico simulations and tumour validation 
CfDNA was extracted from 0.8-1.3 mL of plasma using the QIAamp DNA Circulating Nucleic Acid kit 

(Qiagen) following manufacturer’s instructions. CfDNA was eluted into 100 μL of elution buffer and 

quantified with the Qubit DNA high-sensitivity assay kit (Invitrogen Corporation). Twenty-one 

amplicons of 150 bp in size were designed (Eurofins Genomics Ebersberg, Germany) to cover exons 

2 to 11 of TP53. The GeneRead DNAseq Panel PCR Kit V2 (Qiagen) was used for target enrichment. 
A validated in-house protocol was used to set up multiplex PCRs in 10 μL reaction volume, containing 

5 ng cfDNA, 60 nM of primer pool and 0.73 µL of HotStarTaq enzyme. The experiments were carried 

out in two physically isolated laboratory spaces: one for sample preparation and another one for post-

amplification steps. Amplification was carried out in a 96-well format plates DNA engine Tetrad 2 

Peltier Thermal Cycler (BIORAD) as follows: 15 min at 95oC and 30 cycles of 15 seconds at 95oC and 

2 min at 60oC and 10 min at 72oC. Two technical duplicates were undertaken for each cfDNA sample 

including amplification, library preparation, and sequencing. Each technical duplicate pair was 
assessed on two separate plates to limit the possibility of a contamination. 
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 For the tumour sequencing, eighty nanograms of each DNA sample was used as template to 

set up four separate PCR reactions (20ng/pool) using the Qiagen GeneRead DNAseq Panel PCR Kit 

V1 and primer mix (Qiagen), following manufacturer's instructions. The amplified PCR products were 

then pooled, purified with the Serapure magnetic beads and subjected to library preparation including 
adapter ligation, purification, and amplification using the NEBNext Fast DNA Library Preparation Kit 

(New England Biolabs). About 200 ng of individual libraries were pooled into a single tube and size 

selection (230~250 bp) of pooled libraries was performed using 100µL aliquot of pooled libraries onto 

a 2% agarose gel and MinElute Gel Extraction Kit (Qiagen).  

 Template preparation was done on the Ion OneTouch2 instrument using the Ion PGM 

Template OT2 200 Kit, followed by sequencing on an Ion Torrent PGM sequencer using the Ion PGM 

Sequencing 200 Kit v2 (Life Technologies), aiming for mean depth of 500X. 

 
Bioinformatics processing 
Short reads from NGS sequencing were aligned to the hg19 human reference genome using the 

Torrent Suite software (v4.4.2) with default parameters. Somatic mutations were detected with 

needlestack using the version 1.0 and a QVAL threshold at 50. As recommended by Martincorena et 

al. (7), we used a threshold of 20 for the shearwaterML statistic. 

  Only cfDNA mutations detected in a high confidence base change were considered. A high 

confidence base change satisfied P<0.05 with P the probability that the number of duplicated 

mutations  under the null hypothesis would be greater than or equal to the observed number of 
duplicated mutations, and is given by: 

P= P 𝐶R

Rmax

p=pobs

 

with Cp corresponding to the probability of observing p pairs when randomly picking k elements from a 

total of 2N paired elements calculated as: 

𝐶R =VW𝑘 − 2𝑖2 [
R\;

i=]

^ V (2𝑁 − 2𝑗)
a\R\;

j=]

b
1

p!k! W2𝑁𝑘 [
 

with N the number of sequenced samples in duplicates (2N sequenced libraries in total), k the number 
of libraries with a mutation called by needlestack, pobs the number of duplicated called mutations, and 

pmax the total number of possible pairs when picking up k elements from a total of N pairs of elements.  

The detailed source code for cfDNA mutation analysis including all quality filtering step description is 

available on GitHub at: https://github.com/IARCbioinfo/target-seq. 

 For the germline analysis, GATK-HC variant calling was performed using version 3.4 and the 

HaplotypeCaller algorithm, followed by the joint genotyping step (8). Finally, Variant Quality Score 

Recalibration following the GATK best practices was applied, using dbSNP 138, HapMap 3.3, 1000 

Genomes phase 1 and OMNI 2.5 databases. Options provided were “-tranche 100 -tranche 99.9 -
tranche 99.0 -tranche 90.0” for both INDEL and SNP modes. GATK-HC variant calls were filtered on 

PASS and on Phred-scaled likelihood (8) larger than 20 and on VAF>0.1. BAM files were locally 

reassembled with ABRA version 1.0 (9) before launching the variant calling by needlestack. 
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Needlestack germline calling was launched using our default germline parameters, i.e. QVAL>20, 

VAF>0.1 and the option –-extra-robust. This option helps needlestack to correctly estimate the error 

rate by excluding common germline variants (defined when more than 10% of the samples with a VAF 

higher than 20%) that tend to bias this estimation towards high values. For each of these base 
changes independently, this process first eliminates these germline samples and then estimates the 

error rate on remaining samples. In this germline analysis, both positions and variants with 

respectively a median coverage and an individual coverage less than 50 were removed from the 

whole analysis. Coverages were computed with samtools mpileup, counting only reads with a 

mapping quality higher than 20 and a base quality higher than 13. We considered as variant 

frequency the maximum proportion of samples carrying the variant estimated by both methods and 

then filtered out germline variants with a frequency higher than 10% to consider only rare variations. 

 
Computation of ShearwaterML statistic used in the BAMsurgeon in-silico simulations  
We launched the shearwaterML algorithm on the simulation data sets to compare its global 

performance with needlestack. As recommended by Martincorena et al. (7), we used a threshold of 20 

for the shearwaterML statistic. We used default thresholds except that we increased maxvaf  to 1 to 

call all mutations, and set truncate to 0.005 to avoid true mutations present initially at low VAF to enter 

the background error model and potentially reduce the sensitivity, as recommended in Martincorena 

et al. (7). ShearwaterML produced p-values instead of the shearwater Bayes factor, that we corrected 

for multiple testing using the Benjamini-Hochberg method which produces then Q-values that we 
finally transformed into Phred scale Q-values (QVAL). 

 

Using needlestack to compute the error rate distribution 
Needlestack can be forced to compute the error rate for the three possible single nucleotide changes 

at every query position (i.e. to output the results of the error model even when no variants are 

identified). This can be achieved by launching needlestack with parameters --all_SNVs, --min_ao 0 

and --min_dp 1. This way, in our analysis, the 5112 error rates across the TP53 gene were computed. 
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SUPPLEMENTARY TABLE AND FIGURE LEGENDS 
 

Supplementary Figure 1: needlestack workflow description. The first step corresponds to the creation 

of a BED file containing the DNA positions on which the calling should be launched using the fasta 
index of the input reference genome; this step is optional, only performed if target positions are not 

provided by the user. The second step splits the BED file into multiple sets of positions to run the 

algorithm independently on each set in parallel; the number of position sets is given as an input by the 

user. The third step runs the variant calling from three piped substeps: (i) the mpileup file building 

using samtools, (ii) the parsing of the mpileup to produce count data per sample in a tabulated 

readable file, (iii) and the robust regression in R on each tested mutation. The fourth and last step 

merges VCF files previously produced in parallel and outputs the global result. Workflow orchestration 

is done thanks to the nextflow domain specific language.  
 

Supplementary Figure 2: estimated error rate distributions from amplicon-based sequencing of TP53 

gene (median coverage around 10,000X). Distributions of error rates are shown for each of the 96 

possible base variation (with flanking 3’ and 5’ bases), and are colored by DNA base changes. 

 

Supplementary Figure 3: estimated error rate distributions for both SNVs and indels from the same 

data as used in supplementary Figure 2. (A) Error rate distributions are shown as a function of the 

type of SNV (yellow for transversions and green for transitions), the length of the insertion (pink) and 
the length of the deletion (blue), with n indicating the total number of error rates used to compute the 

distribution. (B) Error rate distributions restricted to insertions and deletions, as a function of the size 

of the homopolymer region (i.e. depending on the number of repeated nucleotides) at the position.  

 

Supplementary Figure 4: validation of cfDNA mutations in the matched tumour sample for a total of 11 

SCLC cases and 24 SCC cases. (A) Correlation of cfDNA and tumour VAF for deleterious validated 

mutations (total=12). Pearson correlation coefficient ρ was estimated as 0.59. Grey dashed line 
corresponds to the fitted linear regression characterized by the values a (slope) and b (intercept). (B) 

Needlestack regression plots of a validated deleterious SNV (red dot in A). Left panel corresponds to 

cfDNA data and right panel to tumour data. 

 

Supplementary Figure 5: sensitivity of needlestack as a function of the VAF for the in-silico simulated 

insertions (A) and deletions (B), depending on the error rate for the alteration. Cumulative number of 

false discoveries per sample is shown for insertions (C) and deletions (D) per sample, depending on 

the VAF of the detected mutation. This number was computed firstly for all detected indels (the result 
is per library) and secondly for indels validated in the second library (the result is per sample). Dashed 

lines correspond to the number of indels not introduced by BAMsurgeon that are however not in 

strand bias (RVSB<0.85). 
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Supplementary Figure 6: (A) Distribution of the sequencing error rates for SNVs detected by GATK-

HC but not detected by needlestack from 62 WES samples (total of 1385 mutations), estimated using 

kernel density estimation. (B) Needlestack regression plots for one particular position where GATK 

called 3 variants (in purple). Needlestack estimated a high sequencing error rate (around 1%) for this 
mutation and therefore did not call it, highlighting the fact that estimating the systematic error rate 

across multiple sample should reduce the false discovery rate of the method.  

 

Supplementary Table S1: description of the 22 mutations identified by needlestack in the cfDNA of 35 

lung cancer patients.  

 

Supplementary Table S2: variant status and genotype attributed by needlestack as a function of 

variant detection and the power to detect variants in tumour and matched normal samples. 
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Supplementary Figure 1. 
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Supplementary Figure 2. 
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Supplementary Table 1. 

See attached Excel file  
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Supplementary Table 2. 

 

Variant in
Normal

Power to de-
tect variant
in Normal

Variant in
Tumor

Power to de-
tect variant
in Tumor

STATUS Normal
GT

Tumor
GT

no no no no . ./. ./.
*

no no no YES . ./. 0/0
*

no no YES YES or no UNKNOWN ./. 0/1 or 1/1

no YES no no . 0/0 ./.
*

no YES no YES . 0/0 0/0
*

no YES YES YES or no SOMATIC
†

0/0 0/1 or 1/1

YES YES or no no no GERMLINE_UNCONFIRMABLE 0/1 or 1/1 ./.

YES YES or no no YES GERMLINE_UNCONFIRMED 0/1 or 1/1 0/0

YES YES or no YES YES or no GERMLINE_CONFIRMED 0/1 or 1/1 0/1 or 1/1

*
power is computed using a binomial distribution with mean power_min_af (default value is 0.01)

†
only in Tumor; Normal STATUS is “."

1
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