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Abstract

Deep convolutional neural networks (DCNNs) rival humans in object recognition. The

layers (or levels of representation) in DCNNs have been successfully aligned with

processing stages along the ventral stream for visual processing. Here, we propose a

model of concept learning that uses visual representations from these networks to build

memory representations of novel categories, which may rely on the medial temporal

lobe (MTL) and medial prefrontal cortex (mPFC). Our approach opens up two

possibilities: a) formal investigations can involve photographic stimuli as opposed to

stimuli handcrafted and coded by the experimenter; b) model comparison can determine

which level of representation within a DCNN a learner is using during categorization

decisions. Pursuing the latter point, DCNNs suggest that the shape bias in children

relies on representations at more advanced network layers whereas a learner that relied

on lower network layers would display a color bias. These results confirm the role of

natural statistics in the shape bias (i.e., shape is predictive of category membership)

while highlighting that the type of statistics matter, i.e., those from lower or higher

levels of representation. We use the same approach to provide evidence that pigeons

performing seemingly sophisticated categorization of complex imagery may in fact be

relying on representations that are very low-level (i.e., retinotopic). Although complex

features, such as shape, relatively predominate at more advanced network layers, even

simple features, such as spatial frequency and orientation, are better represented at the

more advanced layers, contrary to a standard hierarchical view.

Keywords: categorization model, deep networks, pigeons, ventral stream,

representational hierarchy
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Levels of Representation in a Deep Learning Model of Categorization

Deep convolutional neural networks (DCNNs) excel in image classification

classifiers tasks, having set a new standard in machine learning benchmarks Krizhevsky,

Sutskever, and Hinton (2012). These models are trained to predict category labels (e.g.,

“crow”, “sunset”, “car”) from visual inputs (e.g., photographs) through supervised

learning. After training, DCNNs can generalize to unseen images from a test set

(Russakovsky et al., 2015). DCNNs rival human performance when tested on specific

object recognition tasks (Krizhevsky et al., 2012; LeCun, Bengio, & Hinton, 2015).

These large networks, with tens of layers and thousands of connection weights, build on

a tradition of connectionist modeling in Psychology that dates back to pioneers such as

Rosenblatt (1958), J. A. Anderson (1972), and Rumelhart, Hinton, and Williams (1986).

Unlike the fully connected networks that were popular in 1980s, convolutional

networks are based on general organizational principles of the visual cortex (Fukushima

& Miyake, 1982; Lecun & Bengio, 1995; LeCun et al., 1990; Mozer, 1991). DCNNs

models learn filters (i.e., receptive fields for certain features) that are applied to a

portion of that network layer, corresponding to a location in the stimulus image. For

example, at an early network layer, a learned filter may be somewhat analogous to an

orientation column found in the visual cortex. At more advanced layers, the network’s

receptive fields become more global, covering a greater extent of the image

representation. The features at these more advanced layers can be characterized as

being more abstract, complex, and invariant to lower-level image properties.

One hypothesis is that the layers in DCNNs bear some relationship to different

regions along the ventral stream. In support of this hypothesis, DCNNs offer the best

account of neural activity along the ventral stream with the progression of model layers

roughly corresponding to processing stages along the ventral stream (Cichy, Khosla,

Pantazis, Torralba, & Oliva, 2016; Güçlü & van Gerven, 2015; Khaligh-Razavi &

Kriegeskorte, 2014; Schrimpf et al., 2018; Yamins & DiCarlo, 2016; Yamins et al., 2014).

Beyond accounting for neural measures, DCNNs have also proven to be valuable

theoretically in terms of understanding human behavior (Kubilius, Bracci, & Op de
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Beeck, 2016; Lake, Zaremba, Fergus, & Gureckis, 2015; Ritter, Barrett, Santoro, &

Botvinick, 2017). Thus, DCNNs are a potential bridge that can link levels of

representation in the brain to behavior (Love, 2016).

In this paper, we present a new model of category learning that uses

representations of visual stimuli from a DCNN layer. By using representations from a

DCNN, we are not restricted to the hand-coded representations typically used in

psychological models of category learning (e.g., J. R. Anderson, 1990; Love, Medin, &

Gureckis, 2004; Nosofsky, 1986) and can instead apply the model to naturalistic stimuli

(e.g., Nosofsky, Sanders, Gerdom, Douglas, & McDaniel, 2017). By comparing model

fits that operate on representations from different DCNN layers (e.g., category learning

models using early vs. late DCNN layers), we can infer which types of representations a

learner used.

Previous work in the cognitive neuroscience of category learning has relied on

stimulus representations specified by the experimenter (Davis, Love, & Preston, 2011,

2012). Using these stimulus representations, an array of cognitive models have been

evaluated as high-level accounts of how the brain acquires concepts, including the

exemplar model used here (Mack, Love, & Preston, 2016; Mack, Preston, & Love,

2013). One basic hypothesis is that learning novel categories depends on structures in

the Medial Temporal Lobe (MTL), including the hippocampus, that work in concert

with medial prefrontal cortex (mPFC) to identify category-relevant information (Love &

Gureckis, 2007; Mack et al., 2016; Mack, Love, & Preston, 2018; Mack, Preston, &

Love, 2017). Although this characterization is human centric, there may be general

categorization processes shared across species (Smith, Minda, & Washburn, 2004; Soto

& Wasserman, 2012).

In some senses, research in category learning focuses of learning mechanisms that

sit atop of the ventral stream and, therefore, can be viewed as complementary to work

in deep learning that has been related to the ventral stream. Category learning models

aim to capture how people and animals rapidly acquire novel concepts based on small

set of examples. To accomplish this feat, they require useful stimulus representations of
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the visual input. Setting the final layer of a DCNNs aside, which is not used in the

simulations reported here, a DCNN’s job in object recognition ends where a category

learnng model’s job begins. In terms of implementation, these two models classes are

hypothesized to rely on non-overlapping brain regions for the most part.

Thus, it’s natural from a neural computational perspectve to combine the

strengths of these two models to characterize concept learning with real-world stimuli.

The strength of the DCNNs are in building visual representations at multiple levels (or

layers) from prior training on hundred of thousands of ecologically-valid stimuli that

approximate the natural image statistics from a lifetime of visual experience. The

strength of category learning models is capturing how agents rapidly detect and store

patterns of experiences to acquire novel concepts. DCNNs can characterize the inputs

to category learning models, allowing for an end-to-end account of categorization

behavior and its neural underpinnings.

We do not discount the possibility of lifelong tuning of visual representations, but

instead assume that the ventral stream does not radically change over the course of a

brief categorization learning study. Thus, for the simulations reported here, we treat the

DCNN model as fixed. All learning takes place within the category learning model

which take visual representations from the DCNN as input. For example, in learning

two classify sparrows and robins, the exemplar model would store away experiences in

its memory using visual representations provided by the DCNN. The DCNN provides

the coding of these stimuli, which spares the experimenter from hand-coding stimuli in

terms of features (e.g., “red", “has wings", “small", etc.).

Likewise, we do not discount that visual representations in the ventral stream can

be modulated by top-down influences during category learning. Indeed, relevant aspects

of visual representations are accentuated in the ventral stream during category learning

(Bobadilla-Suarez, Ahlheim, Mehrotra, Panos, & Love, 2019; Braunlich & Love, 2018;

Folstein, Palmeri, Van Gulick, & Gauthier, 2015).

At this early juncture in this research program, we do not address these

non-feedforward processes. As will become clearer, one advantage of setting these
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important questions aside for the moment is that we can better characterize the

representational biases present across DCNN layers absent top-down task modulation.

In summary, we use DCNNs as models of the ventral stream that provide visual

representations that we take to reflect a lifetime of visual experience. These visual

representations serve as inputs to an exemplar model of categorization (proposed to rely

on the MTL and mPFC) that can rapidly learn novel concepts over a handful of trials.

As discussed below, our work allows us to characterize the nature of visual

representations at various layers of DCNNs and evaluate how they contribute to novel

concept learning through fits of the exemplar model. Below, is an overview of the

simulations.

First, we adopted this approach to understand children’s shape bias, that is their

tendency to generalize according to shape as opposed to other stimulus dimensions such

as color (L. B. Cohen & Cashon, 2003; Gershkoff-Stowe & Smith, 2004; Landau, Smith,

& Jones, 1992, 1988; Quinn & Eimas, 1996; Rakison & Butterworth, 1998; Samuelson,

Horst, Schutte, & Dobbertin, 2008; Samuelson & Smith, 1999, 2000). Working with

naturalistic stimuli, we found that the shape bias is consistent with use of visual

representations from more advanced network layers. In this fashion, rather than simply

conclude that the shape bias may in part be attributable to the statistics of visual

experience, we can instead make inferences about which statistics are key (e.g.,

statistics that involve higher-level visual features).

Subsequently, we conducted simulations with a well-controlled stimulus set to

better understand how various types of features are encoded at different network layers.

We concluded that, while abstract shape features are relatively more important at

advanced network layers, all features, even basic features like orientation and spatial

frequency, are best encoded at later network layers.

Our finding that a range of features are best encoded at later network layers

contrasts with classical hierarchical views of visual object representation, which assume

that feature encoding follows a strict ordering with low-level features preceding

higher-levels features without both feature types coexisting at the same representational

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 22, 2019. ; https://doi.org/10.1101/626374doi: bioRxiv preprint 

https://doi.org/10.1101/626374
http://creativecommons.org/licenses/by/4.0/


LEVELS OF REPRESENTATION IN A DEEP LEARNING MODEL OF
CATEGORIZATION 7

layer. For example, according to a strict hierarchical view, simple visual features, like

lines and colors, are combined to form increasingly more complex features (Serre &

Poggio, 2010).

However, our findings are in agreement with findings from visual neuroscience.

Although there is evidence that low-level visual properties, such as orientation,

frequency, and position are encoded in early visual areas (Hubel, 1963; Hubel & Wiesel,

1962; Watson, Hartley, & Andrews, 2014) and features invariant to differences in these

lower-level features are encoded in latter downstream areas (Bracci & Op de Beeck,

2016; M. A. Cohen, Alvarez, Nakayama, & Konkle, 2016; Grill-Spector et al., 1999;

Haushofer, Livingstone, & Kanwisher, 2008; Op de Beeck, Torfs, & Wagemans, 2008),

these findings alone are not uniquely supportive of a strict hierarchical account. Indeed,

these findings are consistent with our simulations, as are recent finding demonstrating

that even lower-level features are encoded, in some cases better, in latter brain regions

(Ahlheim & Love, 2018; Hong, Yamins, Majaj, & DiCarlo, 2016; Lescroart & Gallant,

2019; Lu et al., 2018; Rice, Watson, Hartley, & Andrews, 2014). These findings and our

results suggest that functionally there is an inverted pyramid in which more features are

encoded at more advanced network (and brain) layers.

Finally, with this better understanding of how DCNN encode visual features, we

applied our model to a visual categorization study involving pigeons. The pigeons were

trained to classify medical images and, impressively, they reach performance levels

matching those of human expert technicians (Love, Guest, Slomka, Navarro, &

Wasserman, 2017). However, our modeling demonstrates that the pigeons may be

relying on representations that are very low-level (i.e., retinotopic statistics) to base

their decision-making. These results highlight how our categorization model using

DCNN visual representations could be used to understand the information (statistics)

that a learner relies upon. We will characterize what is represented at various levels in

the DCNN, and then use our model to understand the level of representation used in a

given categorization task. Before presenting these results, we first present the formalism

for the DCNN and our categorization model which makes use of these representations.
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Modeling Categorization using DCNN Representations

We model categorization using an exemplar approach with exemplar

representations coming from a pre-trained DCNN (see Figure 1), as opposed to relying

on hand-coded representations from the experimenter. In this section, we formalize this

approach, which we later use to understand shape bias and characterize how pigeons

classify complex visual stimuli.

DCNN Details

The DCNN is used as a way to extract features from realistic stimulus

representations, e.g., photographs. The convolutional network used herein is

Inception-v3 GoogLeNet, a DCNN classifier (Szegedy, Liu, et al., 2015; Szegedy,

Vanhoucke, Ioffe, Shlens, & Wojna, 2015). The output layer is trained to represent very

high-level conceptual categories (1000 mutually exclusive classes, e.g., sunglasses,

moped, jellyfish, etc., Russakovsky et al., 2015). Although these output classes do not

contain options for the specific stimuli we use, the network provides a distributed

answer across these 1000 units/categories thus being able to solve a classification task of

unknown categories. In the following sections, we will use the activations of each layer

(e.g., the output layer, as well as all layers below it) to embed each input stimulus.

Each embedding space has a similarity structure matching the distinction in the inputs,

i.e., functional smoothness holds, for the deeper layers (e.g., roughly two thirds depth

and onwards; Guest & Love, 2017). Thus, if items are similar in behavioral ratings

space, e.g., a lion and a tiger, their representations will be similar in the appropriate

layers’ embedding spaces.

Categorization Model

The pattern of activity elicited by a stimulus in the DCNN layer of interest

provides the exemplar representation of a stimulus. A standard exemplar model of

categorization (cf., Medin & Schaffer, 1978; Nosofsky, 1986, utilizes these

representations).
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Formally, the exemplar model determines the probability that stimulus Si is in

category j by calculating the similarity sim(Si, Sj) to exemplars from j and those of the

contrasting categories,

p(Rj|Si) =

 ∑
j∈CJ

sim(Si, Sj)
γ

m∑
K=1

 ∑
k∈CK

sim(Si, Sk)
γ (1)

where CJ denotes category J , m is the number of categories the model has learned, and

γ is a decision parameter (based on: Maddox & Ashby, 1993; Nosofsky, 1986; Nosofsky

& Zaki, 2002). When γ is set to values greater than 1 the model computes a max

response (e.g., yes or no) and when it is set to 1 more fine grained responses will be

given (e.g., a probability). The decision parameter γ can be fit to the data as done in

previous work using the classic generalized context model (GCM; Maddox & Ashby,

1993; Nosofsky & Zaki, 2002). To avoid negative similarities (Guest & Love, 2017),

Pearson correlation plus 1 is used as the similarity function,

sim(Si, Sj) ≡ ρ(Si, Sj) + 1. (2)

We leave consideration of attention-weighted similarity measures for future work (cf.

Lindsay & Miller, 2018; Nosofsky & Zaki, 2002).

Shape Bias Simulations

The shape bias refers to children’s tendency under certain circumstances to

generalize according to shape (L. B. Cohen & Cashon, 2003; Gershkoff-Stowe & Smith,

2004; Landau et al., 1992, 1988; Quinn & Eimas, 1996; Rakison & Butterworth, 1998;

Samuelson et al., 2008; Samuelson & Smith, 1999, 2000). We assessed shape bias using

a triplet task (see Figure 2a) in which participants, or models in our case, are asked to

choose whether the shape or color match stimulus is more similar to the probe stimulus.

We used this triplet task to assess shape (or color) bias in DCNNs, which in turn

we can use to infer the types of statistics that humans rely upon when they exhibit

related biases. Our simulations conceptually replicate and extend those by Ritter et al.
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A

B

?

a b

Figure 1 . A schematic of the DCNN-plus-exemplar model. On the left in a), a stimulus

is presented to the pre-trained DCNN, which leads to pattern of activity at the network

layer of interest. This pattern provides the exemplar representation for that stimulus.

On the right in b), the exemplar model has two previously stored exemplars, one each

from category “A” and “B”. For a typical learning task, there would be many more

exemplars stored (one for each training trial). The similarity between the current

stimulus and all stored exemplar representations determines how the current stimulus is

classified.

(2017) which focused on the outputs of DCNNS. Our key extension is to consider all

DCNN layers such that we can characterize the entire range of network representations

from pixel-based (akin to the retina) to higher-level representations (akin to

inferotemporal cortex).

Thus, the task was modeled according to the preceding equations, but with

different simulations relying on representations from different DCNN layers for

computing similarity (i.e., Equation 2). The two match stimuli, see Figure 2a, were

considered training examples of contrasting categories, whereas the probe stimulus was

used as the test stimulus. To simplify analysis, the max choice was taken as the model’s

response, which corresponds to setting the γ response parameter to positive infinity.
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Stimulus Set

The stimuli consist of a set of 50 triplets, 10 unique objects photographed with 5

different backgrounds by Linda Smith’s lab (referred to as the CogPsyc dataset in

Ritter et al., 2017). An example triplet with the “green leaf” background is shown in

Figure 2a. The set is available to download at

http://www.indiana.edu/~cogdev/SB_testsets.html (as document files, containing a

number of images per page) as well as in the OSF repository: https://osf.io/jxavn/ (as

individual image files).

Results and Discussion

For early network layers, the probe stimulus was similar to the color match than

the shape match, whereas at layer 13 this preference reversed with the network

displaying a shape bias (see Figure 2b). There is a clear transition in bias, delineated by

the gray band shown in Figure 2b, between the early versus the late layers which is

statistically reliable, χ2(1, N = 1300) = 63.34, p < 0.0001. These results indicate that

shape bias is likely driven by higher-level statistics and that reliance on lower-level

representations can lead to other biases, such as a color bias.
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Figure 2 . The stimuli used and the max choice accuracy in the triplet task. a) Stimuli

used in the triplet task. On the leftmost column is the probe or standard item, while to

its right are the objects that share the same shape (middle column, shape match) and

color (right column, color match).

b) Preference for shape over color match in the triplet task for each layer of the

network. At the early layers, to the left of the vertical gray line there is a significant

preference for the stimulus that matches the probe in color. At the later layers, to the

right of the vertical gray line, the network prefers to categorize using shape.
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Systematic Study of Deep Learning Representations

In the previous simulations, we found that shape matches are more consequential

than color matches using representations from more advanced network layers. In this

series of simulations, we use well-controlled stimuli to systematically evaluate the

coding and relative influence of various types of features, such as shape, size, and color,

across network layers. We also consider how positionally independent the network’s

representations are. The purpose of these simulations is to better characterize the

representations at various network layers.

Stimulus Set

Overlapping Stimuli and Category Structure. The stimuli, shown in

Figure 3, have three binary-valued dimensions: shape (square or circle), color (red or

blue), and size (big or small). The stimulus set is referred to as overlapping because

each stimulus is spatially centered in the middle of the image. We also consider an

alternative stimulus set in which the color dimension is replaced by monochrome light

gray or dark grey stimuli. This stimulus set is akin to those used in studies of human

category learning. However, whereas each stimulus would be coded by experimenters

and modelers as a vector with three binary-valued dimensions, here we work with

directly with the uninterpreted pixel-values as shown in Figure 3.

Each category is centered around a prototype and the two category prototypes

display contrasting values on each dimension. In the case where, for example, the big

blue square is assigned as the “prototype” for category A (denoted by a gray outline in

Figure 3) then the members of A will be the items which share 2 out of 3 dimension

values with the prototype, shown on the top row of Figure 3. By the same token, the

members of category B are defined, shown on the bottom row of Figure 3. Given we

defined A’s prototype and that the two categories’ prototypes must have nothing in

common, the prototype of category B can only be the small red circle. The prototype

role can be played by any stimulus, resulting in 4 unique possible permutations for the

two categories.
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Training consists of only two training items, the two prototypes. The remaining 6

items are used as test (generalization) items from which we evaluate model

performance. As a reminder, for all simulations, it is the exemplar category learning

model that learns during these brief tasks using the visual representations provided by

the DCNN that previously has been trained on hundreds of thousands of real-world

stimuli, which we take to reflect a lifetime of visual experience.

A

A

B

Figure 3 . The 3-dimensional binary-valued stimulus set. Stimuli are members of the

category for which they match the prototype on 2 or more of the three features (size,

shape, and color). The prototype for each category is shown with a gray outline in the

first column.

Non-overlapping Stimuli and Category Structure. The non-overlapping

stimuli are identical to the overlapping set with the exception that the spatial overlap

between training and test items is removed. In particular, one prototype is presented on

the left side of the image and the other on the right. Test items are presented in a

non-overlapping position in the center of the image. These stimuli allow us to assess

whether network representations are positionally invariant or are determined by

low-level (pixel) overlap.

Results and Discussion

Figure 4b shows that with non-overlapping stimuli, whether they are color or

greyscale, that accuracy on test items rises as one ascends network layers. In contrast,
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Figure 4 . Accuracy (with the γ decision parameter set to 1) for the exemplar model

using various network layers to provide exemplar representations. In the top row,

accuracy is shown: a) when using the overlapping pattern set in both grayscale and

color and b) when using the non-overlapping pattern set in both grayscale and color. In

the middle row, accuracy is by dimension match to the category prototype for c) color

overlapping stimuli, d) color non-overlapping, e) grayscale overlapping, and f) grayscale

non-overlapping stimuli.

for overlapping stimuli (see Figure 4a) there is a U-shaped pattern with performance

dipping and then finally rising at more advanced network layers. For both overlapping

and non-overlapping stimulus sets, there is a curious pattern in which the colored

stimuli have an advantage over the grayscale stimuli even though both are

binary-valued and therefore appear informationally equivalent.

These basic results can be examined at a finer-grain by considering performance

for individual stimuli that match their prototype along particular stimulus dimensions.
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For example, if shape matches were more consequential than color matches at advanced

network layers, then shape-matched stimuli should display higher accuracy. All stimulus

sets show a shape advantage at advanced network layers (see Figure 4). However, the

overlapping stimulus sets show a shape disadvantage at early network layers. This

suggests that biases for dimensions other than shape may occur for overlapping stimuli

when lower-level representations are relied upon.

Overall, these results confirm those of the previous shape-bias simulations with

two important additions. First, advantages for non-shape dimensions may be driven by

reliance on low-level representations that are not location invariant. Second, color has a

peculiar advantage over grayscale values even though there does not appear to be any

informational reason for this difference.

This curious color advantage over grayscale is due to the confluence of how color is

represented in images and how similarity is calculated in the exemplar model. Each

pixel location is represented by a triplet of RGB values, somewhat analogous to the

three different cone types in human retina. For example a blue pixel is represented as

[ 0 0 1 ], whereas a gray pixel is [ 0.5 0.5 0.5 ]. In the similarity function (Equation 2),

differences across vectors with this color representation are more consequential (i.e.,

affect similarity more) than differences in greyscale values, because the exemplar

model’s similarity function relies on Pearson correlation, which is based on angle

differences like vector cosine does. These model properties prove useful in a later

simulation to capture advantages pigeons show in categorizing color stimuli.

A Hierarchy of Visual Features or an Inverted Pyramid?

In the previous section, shape was found to be more consequential than other

features at more advanced network layers as representations became more location

invariant. One possibility is that higher-level features like shape are represented at more

advanced network layers whereas more basic features are represented lower in the

hierarchy. An alternative possibility is that all features are more strongly manifested at

more advanced network layers in absolute terms and that certain features, like shape,
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only dominate in relative terms.

To help shed light on these questions, we consider two stimulus dimensions that

are considered very low-level, namely orientation and spatial frequency, that can be

continuously manipulated. Using Gabor patches (see Figure 5) varying across many

possible values of orientation and spatial frequency, we evaluate whether these stimuli

form a two dimensional representational space in each layer of the network. To

foreshadow, they do and the pattern is present at all layers.

To evaluate at which network layer orientation and frequency are most precisely

represented, we evaluate how well a Gabor patch matches a non-spatially overlapping

version of itself and find that the degree of match increases across network layers. This

result is inconsistent with the idea that lower-level features are represented at lower

network layers. Instead, we find that precise representations of orientation and

frequency are found at more advanced network layers.

a

b

Figure 5 . Examples of the Gabor patch stimuli that are non-overlapping. The Gabor

patch on top in a) has a higher spatial frequency and more vertical orientation than the

Gabor patch in b) shown below.
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Stimulus Set

The stimuli used here are 81 Gabor patches with varying frequency and

orientation. In the first simulation, Gabor patches were centered and spatially

overlapped. In the second, simulation they were non-overlapping as shown in Figure 5.

Results and Discussion

To evaluate whether each network contained a two-dimensional representational

space of orientation and frequency, we performed a Principal Components Analysis

(PCA) on the activation patterns of all 81 stimuli. Specifically, this PCA was done on a

matrix in which each row corresponds to a stimulus and each column contains the

corresponding activations of DCNN units.

We considered the first two components of the PCA solution for each layer and

correlated each vector of coordinates with the experimenter determined coding of

orientation angles (1–81) and frequency (10–90), resulting in 4 correlations. The two

highest correlations also involved separate pairs of vectors (e.g., component 1 with

frequency and component 2 with orientation). Those top 2 correlations are plotted in

Figure 6.

At every network layer, orientation and frequency are represented. Using a

permutation test, all correlations were statistically significant, ppermuted < 0.001. The

null distribution for the permutation test was performed by repeatedly shuffling the

stimulus labels and carrying out the analysis procedure.

The previous results indicate that frequency and orientation representations exist

across all network layers. These features are not relegated to lower network layers. A

second simulation assesses how precise orientation and frequency information is

represented at each layer.

Using Gabor patches that do not spatially overlap (see Figure 5), we considered

how similar a Gabor patch presented on the left side of an image was to each of the 81

possible Gabor patches presented on the right. Ideally, a Gabor patch would be most

similar to the exact version of itself translated to the right. As shown in Figure 7, at
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Figure 6 . Network activity resulting from viewing Gabor patches varying in orientation

and frequency was subjected to PCA. The correlation between the first two components

and the frequency and orientation value of the stimulus is plotted, along with the mean

of the null distribution. The results indicate that information about frequency and

orientation is represented at all network layers.

more advanced network layers the left- and ride-side version of a Gabor patch tended to

be most similar to each other. These results suggest that putatively lower-level features,

such as orientation and frequency, are most precisely represented at more advanced

network layers.

Are Pigeons Using Lower- or Higher-level Representations when

Categorizing?

We have established that shape, which is a complex feature, relatively dominates

in the DCNN at advanced layers, whereas more basic features, like color, relatively

dominate at lower network layers. In absolute terms, all features appear to be more

precisely coded at advanced network layers. We have also observed and have a plausible

explanation for why color stimuli can lead to better performance than

informationally-equivalent grayscale stimuli.

These findings are interesting and valuable in their own right. Additionally,

understanding these basic characteristics of DCNN representations makes our
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Figure 7 . How similar identical, but non-spatially overlapping, Gabor patches are to

one another relative to other stimuli. The 50th percentile indicates chance performance

in which the matching Gabor patches are as similar to each other as would be expected

for randomly selected stimuli.The 100th percentile indicates perfect discrimination.

categorization model (see Figure 1), which utilizes these representations, potentially

more informative. In particular, we can assess whether an individual or some

population is relying on lower- or higher-level visual representations with some

understanding of what that would imply.

In this section, we consider whether pigeons rely on lower-level or higher-level

image representations when categorizing. Pigeons are excellent at classifying visual

stimuli (Bhatt, Wasserman, Reynolds, & Knauss, 1988). For example, pigeons trained

to discriminate between medical images of normal and cancerous breast tissue

generalized to novel stimuli and attained human-level accuracy (Levenson, Krupinski,

Navarro, & Wasserman, 2015). However, it is an open question what the basis for this

performance is. Are pigeons relying on very low-level pixel-like information or are they

extracting and using higher-level abstract shape information? We will address this

question by applying our model to a study conducted by Wasserman and colleagues.

Pigeons were trained to discriminate cardiograms (see Figure 8) as normal or abnormal

and then were transferred to novel stimuli during testing. These data are reported in

Love et al. (2017).

We applied our model to the same images the pigeons viewed and report how the
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a b

Figure 8 . Two examples cardiogram stimuli: a) a normal cardiogram without any

perfusion damage; and b) an abnormal cardiogram with total perfusion damage 20 (of a

maximum of 51).

model performs on novel test cardiogram images, qualitatively comparing the model’s

performance to that of the pigeons. Pigeons were trained under three conditions: 1 )

Pigeons trained on colored cardiograms and tested on colored cardiograms performed

best. 2 ) Pigeons trained on informationally equivalent grayscale cardiograms and tested

on grayscale cardiograms performed second best. 3 ) Pigeons trained on color

cardiograms and tested on grayscale cardiograms performed worst. This ordering of

conditions is the basic qualitative pattern of results we hope to capture with our model.

Additionally, the model should, like the pigeons, show a gradient of responding to

cardiograms depending on the level of perfusion damage. In particular, images with a

higher-level of damage should be more likely to be classified as abnormal.
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Figure 9 . Accuracy of our model on each network layer when trained and tested in a

manner analogous to the pigeons. The qualitative pattern of performance observed at

the lowest network layers mirrors the performance of the pigeons. In panel a), γ is set to

1, whereas in panel b) an optimal boundary (determined from the training set) is used.
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Stimuli

The stimuli used here consist of medical images, cardiograms, in one of two

classes: healthy or abnormal, see Figure 8. They have been provided by Wasserman and

colleagues, who used them to train their pigeons on the same classification task as our

model in this section (Love et al., 2017). There are two sets of cardiogram stimuli:

colorized and grayscale. It is important to note that the output of the cardiograph is a

grayscale image which is then subsequently colorised — this is a preference of the

medical technicians involved in reading cardiographs. No new information is present in

the colorized images as their pixels have been mapped losslessly from the original

grayscale output to a colorized space.
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Figure 10 . When relying on very low-level DCNN representations, the model, like the

pigeons, shows a gradient of responding depending on the level of damage. As shown by

the regression lines, the model displays the same difficulty ordering when generalizing to

novel test stimuli. Training and testing on color stimuli leads to the best performance,

whereas training on color stimuli and testing on grayscale stimuli leads to the worst

performance.
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Results and Discussion

Our model’s performance on the three training and test conditions is shown in

Figure 9 (where the optimum accurancy is shown too to control for response bias,

showing what is possible working with training set). Working with DCNN

representations in pixel space (the lowest-level representations, akin to retinal), our

model matches the qualitative difficulty ordering that the pigeons displayed across the

three training and test conditions. Both pigeons and the model (when using lower-level

DCNN representations) perform best when trained and tested on colored cardiograms.

Training and testing on greyscale is intermediate. Training on color and testing on

graysale is worst. The model, like the pigeons, shows a continuum of responses

depending on the level of damage in the cardiogram (see Figure 4).

The exemplar model using DCNN representations provides a tool to which to

assess the nature of the representations used by learners, in this case pigeons. The

modeling analysis suggests that the pigeons could be using very low (pixel-level)

representations to support their performance. The modeling does not prove this

conclusion, but does support it and demonstrates that such an account is plausible. The

pigeon results diverge from our simulations of the shape bias in children (see Figure 2)

which suggested that children rely on higher-level image statistics. Applying our model

to such datasets provides insights not only into the populations considered, but into the

types of knowledge required to perform well in various tasks.

General Discussion

In this paper, we proposed an exemplar model of categorization that uses

representations from a particular layer of a DCNN. Different model variants can be

defined by relying on different DCNN layers. This approach has two primary strengths.

First, by using representations from the DCNN, modelers do not need to rely on

handcrafted and brittle representations. Instead, real-world stimuli, such as

photographs, can be considered. Second, by comparing model variants, one can test

hypotheses concerning the level of representation (i.e., which layer within the DCNN) a
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learner relied upon. Because the layers of DCNNs have been put in rough

correspondence with processing stages of the ventral stream, these hypotheses extend to

neural computation.

To make these model-based inferences stronger, we attempted to characterize the

nature of the representations at various network layers. Our first simulation of the

shape bias revealed that this bias relies on higher-level statistics. Indeed, when

representations from lower layers of the DCNN were used, a color bias was observed.

A second set of simulations systematically evaluated the relative efficacy of various

features at various network layers, as well as the importance of positional (i.e., location)

overlap in images. From these simulations, we confirmed that shape becomes more

prominent in network representations at more advanced layers, whereas stimulus

dimensions like size and color relatively dominate at lower network layers. Many of

these lower-level advantages are driven by positional overlap. At more advanced

network layers, representations become increasingly invariant to location. Interestingly,

we discovered that our model displays a preference for color over greyscale stimuli

because of the similarity function used. Overall, these results are consistent with the

idea that lower network layers are closely bound to the image whereas advanced layers

can support more abstract representations.

In light of these results, one possibility is that higher-level features, such as shape,

are represented at more advanced network layers whereas more basic features are

represented lower in the hierarchy. An alternative possibility is that all features are

more strongly manifested at more advanced network layers in absolute terms and that

certain features, like shape, only come dominate in relative terms. In a third set of

simulations with Gabor patches, we found support for the latter conclusion — although

basic features first appear at lower network layers, they remain present in advanced

network layers, as if the network operates as an inverted pyramid in which the range of

represented features increases as one traverses layers.

With this understanding of network representations in hand and its relation to

neuroscientific findings, we applied our model to a study in which pigeons learned to
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classify cardiograms as normal or abnormal. The goal was to determine whether

pigeons relied on lower- or higher-level representations. We found that the pigeons

performance was consistent with the use of very low-level representations that could be

characterized as retinal. Our formal analysis parallels concerns of others with respect to

pigeons’ (and other animals’) categorization limitations (e.g., Dittrich, Adam, Ünver, &

Güntürkün, 2010; Lea et al., 2018; Linke, Bröker, Ramscar, & Baayen, 2017), despite

what appears on the surface to be impressive feats of categorization. These results

contrast with our shape bias simulations, which suggested human children rely on

higher-level information. Interestingly, our model was able to predict pigeons’

preferences for colored cardiograms (in accord with human radiologists) based on the

interaction between the multiple channel representation of color and the model’s

similarity function. These simulations also serve to highlight the model’s utility in

understanding what type of information is required to perform a task, which could be

useful to experimentalists when aiming to design informative studies.

Although DCNNs can be treated as purely black-box solutions, our analyses

suggest greater insight into behavior and the supporting neural representations can be

gained by examining the bases for these networks’ performance (cf. MondragÃşn,

Alonso, & Kokkola, 2017). Here, we focused on characterizing the information encoded

at various network layers. We confirmed some intuitions, such as that shape relies on

higher-level representations, whereas other conclusions were surprising. For example, we

found support for the idea that purported lower-level features are retained at advanced

network layers, a possibility that should be further pursued by neuroscientists (Ahlheim

& Love, 2018; Hong et al., 2016; Lescroart & Gallant, 2019; Lu et al., 2018; Rice et al.,

2014). The results presented here suggest a wealth of hypotheses that can be tested by

comparing network representations to brain measures. Additionally, previous results in

the literature aligning network representations and brain measures should be revisited

in light of these new insights about network representations. Finally, our categorization

model, which relies on DCNN representations, opens up a number of possibilities for

learning studies using real-world stimuli.
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