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Abstract

This paper describes and evaluates FMRIB’s nonlinear image registration tool (FNIRT),

that is part of the FMRIB software library (FSL). It is a small deformation framework

using sum of squared differences (SSD) as its cost function and Gauss-Newton for

minimisation. The framework uses a joint shape and intensity model that attempts to

explain the observed differences between two images in terms of having different shape

and/or contrast, being differently affected by intensity bias-fields etc. Thus the

estimation of the warps will be relatively unaffected by intensity differences that would

otherwise violate the assumptions behind the SSD cost function. It uses a projection

onto a manifold defined by a specified range of allowed Jacobian determinants to ensure

that the warps are diffeomorphic. The utility of the model is demonstrated on a variety

of simulated and experimental data with good results. FNIRT is also quantitatively

evaluated using previously published datasets consisting of scans from multiple subjects,

all with anatomically defined brain regions that are manually outlined. In this

evaluation FNIRT performs well in comparison to previously published results with

other registration algorithms.
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Introduction 1

Registering images of brains from different subjects is a necessary processing step for 2

many types of analyses such as multi-subject fMRI studies, inter-group comparisons of 3

tissue composition (e.g. VBM [1]), or measures derived from diffusion weighted MR (e.g. 4

TBSS [2]). There is a family of algorithms that attempt to do this in the native 5

“brain-space”, often referred to as “volumetric” (as opposed to “cortical” or surface 6

based). These use different sets of transforms in native brain space between subjects, 7

between a subject and a template in a standard space (atlas) or between longitudinal 8

scans of the same subject. In order of increasingly “local” warps, the transforms can be 9

divided into linear (affine) transforms, small deformation nonlinear transforms and 10

large-deformation nonlinear transforms. The latter are typically framed in a way that is 11

designed to guarantee diffeomorphic (topology preserving) warps. 12

These methods estimate the warps by minimising some scalar function of the 13

parameters that define the warps. The function is designed to gauge how “different” the 14

template is to the warped subject image, with the smaller the value the better the 15

images “match”. One commonly used function is the sum-of-squared differences (SSD), 16

which hinges on the assumption that the images are identical save for geometric 17

differences. This assumption is frequently not fulfilled, e.g. because the two images are 18

acquired with different modalities, have different contrasts due to differences in relative 19

T1/T2-weighting or because the two images are differentially affected by B1 20

inhomogeneity (bias). This has lead to a multitude of different cost functions that all 21

make slightly different assumptions and are designed to fare better when images differ 22

in more respects than just geometry ( [3], [4], [5], [6] and [7]). The question of which 23

cost functions perform the best has been investigated in the context of linear (affine) 24

registration (see [8] for an extensive review). 25

In contrast, the majority of methods for nonlinear registration of brain images use 26

SSD ( [9], [10], [11], 27

[12], [13], [14], [15], [16], [17], [18]), though some have opted for mutual information 28

( [19]). The latter makes less assumptions about the relationship between the images 29

but may potentially be more susceptible to multiple local minima precisely for that 30

reason. The mutual information approach addresses (as does for example correlation 31
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ratio [7]) issues of a global nonlinear relationship between the intensities in the two 32

images, such as for example differences in degree of T1-weighting. 33

In our experience a more severe problem is local intensity changes, commonly caused 34

by spatially varying sensitivity of the receive RF-coil [20]. With a birdcage coil, the 35

dominant type of coil until recently, the intensity changes were of limited magnitude 36

and consisted mainly of a small gradient in the z-direction. Recent developments in 37

parallel imaging [21] have caused coil arrays [22] to become increasingly used, even for 38

non-accelerated sequences. These consist of several small coils (32 coils are not 39

uncommon and commercially available [23]) with highly focused and spatially non 40

stationary sensitivity profiles. When this is combined with an accelerated acquisition 41

and an appropriate reconstruction method (e.g. [24] and [25]) the resulting image will 42

have a comparable scaling across the field of view (FOV) by virtue of the sensitivity of 43

the coils being used in the reconstruction. However, the actual resulting sensitivity 44

(summed over all coils) is typically considerably greater at the edges of the brain than in 45

the centre. This means that when such data is combined with a non-accelerated 46

acquisition followed by a simple sum-of-squares combination of the individual coil 47

images the sensitivity (and hence intensities) will show a pronounced variation along all 48

directions [26]. 49

Furthermore the positioning of the subject inside the coil “helmet” has a substantial 50

impact since the distance between the edge of the brain and the nearest coil will strongly 51

affect the signal intensity. For example we frequently see a factor of 2-3 in intensity 52

variation from posterior to anterior parts of the brain as a consequence of subjects being 53

positioned below the centre of the coil-array in the superior-inferior direction. These 54

intensity variations will invalidate the assumptions behind SSD, correlation ratio and 55

mutual information alike and unless corrected will cause spurious warps in the regions 56

affected by the inhomogeneities. Attempts have been made at addressing this by 57

reformulating correlation ratio ( [27], [28] and [29]) or mutual information ( [30] and [31]) 58

to render them “local” in that only a local region is considered when calculating it. This 59

makes them less sensitive to intensity variations over scales that exceeds that of the, 60

arbitrary, region over which the statistic is calculated. A different approach was taken 61

by [32] who included an explicit bias field in a joint registration-segmentation 62

framework where a set of prior tissue probabilities in standard space were warped so as 63
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to maximise the posterior probability of the segmentation of the registered image. A 64

slight disadvantage of this method is that inter-subject or longitudinal registration will 65

have to be performed by combining two individual transforms into standard space. 66

Present and future high field scanners will also have a problem with inhomogeneous 67

deposition of RF-energy. This is not primarily an effect of inhomogeneous transmission, 68

but rather of the object itself (the head) interacting with the B1-field. It leads to a 69

variation in flip-angle across the FOV that means that the tissue contrast (as opposed 70

to just the intensity) will differ across the FOV (see [33] for equations describing how 71

tissue contrast depends on flip angle). This effect cannot be modelled by a 72

multiplicative bias field (as is often done for RF-receive inhomogeneity) but would need 73

a spatially varying nonlinear mapping of intensities. 74

The choice of cost function will also affect what methods one can use to search for 75

the warps, i.e. to minimise the cost function. Any cost function that attempts to 76

explain the “data” (the reference image in this context) in terms of a model and a 77

normal distributed error lends itself to be minimised by the Gauss-Newton method [34] 78

or one of its variants such as e.g. Levenberg-Marquardt. Both the SSD (where the 79

model is simply the intensities of the image being registered) and the 80

registration-segmentation model used by [32] are examples of cost functions fitting into 81

this framework and where the Gauss-Newton method has been used (e.g. [11], [32], [18] 82

and [35]). Other cost functions such as cross-correlation or mutual information do not 83

fit into that framework and alternative methods have to be used. 84

There is a small conceptual divide between methods that are motivated from a 85

parameter estimation perspective (e.g. [11] and [32]) and those that are formulated in 86

terms of solving a set of partial differential equations PDE (e.g. [9], [10] and [12]) where 87

these latter methods typically work by convolving a force field with some approximation 88

to the Greens function of the differential operator of the PDE and integrating the 89

resulting steps until the force field vanishes. This division is slightly artificial and models 90

formulated as differential equations are in effect also parameter estimation problems 91

that can benefit from methods traditionally used in that domain (e.g. [18]). An 92

advantage of Gauss-Newton type minimisation is that it is often very efficient in terms 93

of the number of iterations needed (even though each iteration can be quite expensive 94

due to the need to calculate the Hessian) and that, through the Hessian, one can obtain 95
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information on the uncertainty of the estimated parameters (deformation fields). 96

In what follows we describe a framework where differences in shape and intensity are 97

modelled simultaneously, thereby preventing the latter to influence or be interpreted as 98

the former. This is done by introducing additional parameters that model intensity 99

differences and by inferring on these at the same time as the parameters for shape. A 100

series of intensity models will be introduced and demonstrated and the context in which 101

each one is suitable is described. Within this framework pairs of images with differing 102

contrast or differentially affected by bias can be registered by minimisation of the 103

residual error, i.e. the SSD. This enables us to use Gauss-Newton type optimisation to 104

find the parameters in an efficient way. We further suggest a multi-stage process where 105

shape and intensity are jointly modelled up to certain warp resolution after which the 106

intensity parameters are held constant and only the shape parameters are further 107

refined at higher resolutions. This allows us to switch to a different optimisation 108

strategy for the higher resolutions where the cost of calculating and storing the Hessian 109

becomes prohibitive. 110

Theory 111

Notation 112

The registration is performed by warping one image (volume) to another. We will refer 113

to the image we want to warp as the “input” image and the stationary image (the 114

image we want to warp it to) as the “reference” image. The reference image will be 115

denoted by f when referred to as a whole and can interchangeably be an lmn× 1 116

column vector or an l ×m× n volume. When referring to a single (scalar) value at a 117

specified index (or voxel coordinate) i = [i j k] we will use fi. The collection of all 118

indicies [i j k] of f is denoted by I so an alternative notation for f would be fI . The 119

warps (the nonlinear transformation) will be parametrised (the details of which can be 120

found in Appendix S1) by a parameter vector w. The input image will be denoted by g 121

when referred to as a whole in its original form. We use gi(w) to denote the value of g 122

at the index i (as defined in the space of f) when warped by the parameters w. The 123

notation g(w) is used to denote the values of g at all indicies I of the reference image f 124
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when applying the transform given by w. The functions gi(w) and g(w) are predicated 125

on a specific interpolation model and they would for example be subtly different when 126

spline interpolation is used compared to when using tri-linear interpolation. 127

Registration as a nonlinear optimisation problem 128

Our optimisation problem can formally be described as 129

min
arg w

O(w;g, f) (1)

i.e. given g and f , find the set of parameters w that yield the minimum value for the 130

cost function O. 131

Newton’s Method 132

Newton’s method for minimising O is based on a first-order Taylor expansion of O 133

around some initial point w0, i.e. 134

O(w0 + ∆w) ≈ h(w0 + ∆w) = O(w0) + ∇O|w0
∆w +

1

2
∆wT H|w0

∆w (2)

where ∇O is a column vector where the ith element is ∂O/∂wi and H denotes the 135

Hessian matrix where the ijth element is ∂2O/∂wi∂wj . The notation |w0
indicates that 136

the adjacent entity was calculated at the point w0 in parameter space. Note that we 137

have now defined a linear function h(w) that is an approximation of O(w) in some 138

neighbourhood around w0. A necessary requisite for a minimum of O(w) is that 139

∇O = 0. Hence, given some starting estimate w0 we wish to find the step ∆w that 140

yields ∇O(w0 + ∆w) = 0. However, there is no direct way to calculate that step so 141

instead we use our approximate function and calculate the step ∆w that yields 142

∇h(w0 + ∆w) = 0. From equation 2 we get 143

∇h(w0 + ∆w) = ∇ O|w0
+ H|w0

∆w (3)

and by setting it to 0 and solving for ∆w we obtain 144

∆w = − H|−1w0
∇ O|w0

(4)
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Since h(w) is an approximation of O(w) it is likely that 145

∇h(w0 + ∆w) 6= ∇O(w0 + ∆w), especially if ∆w is large (which implies that we are a 146

long way away from w0 around which the approximation is valid). Therefore, to find 147

the point where ∇O truly is 0 one uses an iterative scheme of updates to w where 148

wk+1 = wk − H|−1wk
∇ O|wk

(5)

This is the update rule for Newton’s method for nonlinear optimisation, and the 149

theoretical foundation for a multitude of derived methods. 150

From this point on we will simplify the notation by removing the |wi
whenever it is 151

obvious from the context at which point the pertinent entity has been calculated. 152

The Gauss-Newton approximation 153

There is a modification of Newton’s method, known as the Gauss-Newton method, that 154

can be used when O(w) is of the form oT(w)o(w) where o is some N -dimensional 155

vector-valued function. If one defines J as the matrix whose ijth entry is ∂oi/∂wj 156

(where oi is the ith element of o and wj the jth element of w) one can write 157

∇O = 2JTo and H = 2JTJ + R. The Gauss-Newton method is based on 158

approximating H with 2JTJ, i.e. ignoring R. An explanation for why this is feasible 159

can be found in [34]. 160

Levenberg-Marquardt for increased robustness 161

Even though the Gauss-Newton approximation tends to be more robust than Newton’s 162

method there is still a risk that a Gauss-Newton step can lead to a point with a higher 163

value for O(w). A solution to this is to modify JTJ so that is becomes more diagonal 164

dominant whenever this happens. One such scheme is known as the 165

Levenberg-Marquardt algorithm, which adaptively varies its behaviour between that of 166

gradient-descent and Gauss-Newton [34]. 167

Alternative methods that do not need H 168

Even though it is typically, and definitely in the case of registration, faster to calculate 169

JTJ than the full H it is still a substantial task when the number of parameters (the 170
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length of the vector w) is large. Methods have therefore been developed that are also 171

based on Eq 2 but which avoid calculating, and in some cases representing, H. The 172

Conjugate Gradient methods find a set of direction pi of the form 173

pk+1 = −∇O(wk+1) + αpk (6)

where a line-search is performed along each direction pi. 174

The Scaled Conjugate Gradient (SCG) method [36] is a further development that 175

calculates also a step-length along pk, eliminating the need for a line-search. 176

Analogously to the Levenberg-Marquardt algorithm it adjusts the step-length based on 177

the outcome of the previous iteration. 178

When is it an advantage to actually know/calculate H? 179

There exist problems for which knowing (calculating) H offers little advantage over and 180

above just knowing ∇O, and there are other problems for which it is crucial and where 181

convergence would take a very long time without it. But which are which? The Hessian 182

tells us for how long the derivative is “valid”. Let us say we have some function O(w) 183

and let us say that the ith element of the gradient ∇O is large. That means that when 184

taking our next step it should have a large component of (the negation of) the ith 185

element, and we would consequently expect O to decrease a lot. But what if Hii is also 186

large, how would that influence what direction we want to go in? That would mean that 187

even though O changes rapidly as we move along the ith direction it will soon stop 188

changing so rapidly, and we may therefore not want to go very far. This consideration is 189

executed by the multiplication with a small value for
[
H−1

]
ii

(assuming a diagonally 190

dominant H). Likewise, if Hij is large one would opt to go less distance in either the 191

ith or the jth direction than one would otherwise do. 192

When using a method without explicit knowledge of H one will instead perform 193

consecutive line minimisations along some set of directions in parameter space. The 194

execution time will depend on the number of line minimisations one needs to perform. 195

This will in turn depend on one’s choice of directions (i.e. minimisation algorithm), but 196

more fundamentally it will also depend on the structure of the underlying (unknown) 197

Hessian. If the Hessian is spherical the gradient will point towards the minimum and a 198
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single line minimisation would take one there. The other extreme would be when the 199

Hessian is very complex with highly heterogeneous values both on and off the diagonal. 200

In the worst case one may then need to perform as many line minimisations as there are 201

directions (parameters), i.e. in the case of nonlinear registration several thousands to 202

millions which would in practice not be realistic. 203

In between these extremes are cases where the Hessian divides up the 204

parameter-space into a number of subspaces each of which is spherical, and one can 205

then (at best) get away with performing as many line minimisations as there are such 206

sub-spaces. 207

In the context of nonlinear registration the form of H depends on how the 208

displacement fields are modelled. When using a basis-set with global support (such as 209

e.g. the discrete cosine transform [11]) H will have a very complex structure and 210

attempting to minimise a cost function without knowledge of H would result in a very 211

large number of line minimisations and hence long execution time. In contrast a 212

basis-set with local support (e.g. B-splines or “free-form” displacements) yields a 213

diagonal dominant Hessian with a limited number of non-zero off-diagonal elements, 214

which means that it is feasible to use a minimisation method without explicit use of H. 215

The sum of squared differences cost function 216

The sum of squared differences (SSD) cost function is predicated on the model 217

g(w) = f + e where e ∼ N(0, σ2I) (7)

which gives a likelihood that is maximised when 218

O(w;g, f) =
1

N

∑
i

(gi(w)− fi)2 (8)

is minimised. To minimise this with the Gauss-Newton method we need to be able to 219

calculate ∇O at any point w in parameter space. If we assume that the displacements 220

are modelled by some basis-set parametrised by w then ∇O is a vector of the same size 221
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as w where the jth element is given by 222

∇Oj =
∂O
∂wj

=
2

N

∑
i

(gi(w)− fi)
∂gi
∂wj

(9)

In vector-matrix notation ∇O can be written as 223

∇O =
2

N
JT(g(w)− f) (10)

where J is the Jacobian matrix of g(w), i.e. the matrix whose ijth element is ∂gi/∂wj . 224

Using the same notation we can express the Gauss-Newton approximation of the 225

Hessian as 226

H =
2

N
JTJ (11)

The details of how to calculate J depends on the basis-set that is used to represent the 227

warps and will be relegated to Appendix S1. 228

Simultaneous modelling of shape and intensities 229

The SSD has the advantage that it makes it straightforward to calculate ∇O and H, 230

but it has the disadvantage that the underlying assumption that f and g are identical 231

save for some difference in shape is almost always wrong. The assumptions of other cost 232

functions, like e.g. Mutual Information, on the other hand are much more likely to be 233

fulfilled. The disadvantage of those is that the elements of ∇O and H will have to be 234

calculated numerically making the former very time consuming and the latter in 235

practice infeasible. 236

The main contribution of this paper is to suggest a cost function that retains the 237

advantages of SSD (straightforward analytical calculation of ∇O and H) while relaxing 238

the very strict assumption that g(w) = f + e where e ∼ N(0,Σ). We do this by 239

introducing a function Ei(b; fi) that yields the “estimated” intensity at the location i 240

given some set of parameters b. The simplest example of such a model would be where 241

b is a scalar global scaling factor in which case Ei(b; fi) = bfi. We have defined and 242

implemented a hierarchy of such intensity models where the “lower level” models are 243

special cases of those higher on the hierarchy. These are: 244
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None 245

As indicated by the name this implies no intensity modelling at all, i.e. 246

Ei(b; fi) = fi (12)

This may be useful for registration of “quantitative” images such as e.g. Fractional 247

Anisotropy (FA). 248

Global linear scaling 249

Here 250

Ei(b; fi) = bfi (13)

For this to be useful f and g should have been acquired with identical (or very similar) 251

sequences (resulting in very similar contrasts) and both be unaffected by any RF 252

inhomogeneity. 253

Local linear scaling 254

For this model 255

Ei(b; fi) = Bi(b)fi (14)

where Bi(b) refers to the value of some scalar field B(b) at the location given by i. The 256

mapping b→ B is in principle arbitrary but will in our case be a set of continuous 257

basis-functions with b as the coefficients. This is useful when f and g have similar 258

contrast but are affected by RF inhomogeneity in different ways. 259

Global nonlinear scaling 260

A polynomial of order n− 1 is used to model the intensities so that 261

Ei(b; fi) =
n∑

j=1

bjf
j−1
i (15)

This can, within reason, model differences in amount of T1/T2-weighting between the 262

two images. 263

May 14, 2019 11/44

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2019. ; https://doi.org/10.1101/646802doi: bioRxiv preprint 

https://doi.org/10.1101/646802
http://creativecommons.org/licenses/by/4.0/


Global nonlinear scaling with bias field 264

This is a combination of the two preceding models where 265

Ei(b; fi) = Bi(b
(l))

ng∑
j=1

b
(g)
j f j−1i (16)

where b = [b(l) b(g)], i.e. has been divided into a local and a global part. This models 266

both differences in T1/T2-weighting and a bias field caused by differences in RF 267

inhomogeneity. 268

Local nonlinear scaling 269

This model encompasses all the previous ones and models Ei(b; fi) as 270

Ei(b; fi) =
n∑

j=1

Bi(b
(j))f j−1i (17)

where b has now been divided into n sub-vectors, i.e. b = [b(1) b(2) . . . b(n)], each 271

defining a field B of polynomial coefficients. Each coefficient will have a unique value at 272

every voxel, but a given coefficient (say for example the second order coefficient) varies 273

smoothly over space. Hence this model allows different nonlinear mappings (between 274

the intensities in f and g) for different voxels. 275

It may seem superfluous with more than one model given that the model given by 276

Eq 17 encompasses the other ones. However, the higher level models have more 277

parameters which translates into longer execution times and potentially more local 278

minima for a minimisation algorithm to fall into, i.e. a true geometric/anatomical 279

difference my be modelled as an intensity difference if the intensity model is “too 280

permissive”. As we will see later the opposite is also true, i.e. if the intensity model fails 281

to explain the “true” intensity differences it will be modelled as geometric differences 282

leading to non-sensical warps. 283

It should further be noted that even though the b→ B mapping (in Eqs 14, 16 and 284

17) is in principle arbitrary it has to be such that the resulting field B is smooth 285

compared to the resolution of (the image) f . 286
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∇O and H when adding intensity modelling 287

When one simultaneously models shape and intensity there are two sets of parameters; 288

w which parametrises the geometric warps and b which models intensity differences. 289

Therefore ∇O changes so that 290

∇O =


dO
dw

dO
db

 (18)

where dO/dw is a columnvector whose ith element is ∂O/∂wi and dO/db is one whose 291

ith element is ∂O/∂bi and H changes so that 292

H ≈ 2

N
JTJ =

2

N

 JT
wJw −JT

wJb

−JT
bJw JT

bJb

 (19)

where Jw is the Jacobian of the w→ g mapping g(w) and Jb is the Jacobian of the 293

b→ E mapping E(b; f). In Appendix S1 we derive expressions for ∇O and H for the 294

different intensity models. 295

It should also be noted that the magnitude of the elements of dO/dw and dO/dp 296

are very different, and hence JT
wJw, JT

bJw and JT
bJb are of different orders of 297

magnitude. That means that this is an example of when it is crucial to know, and use, 298

H for the minimisation. 299

High resolution warping 300

A disadvantage of explicitly using and representing H is the memory requirements. Let 301

us say we have an image volume with an 180× 220× 180mm FOV and that we want to 302

estimate warps with a resolution of 4mm. That means that w alone (i.e. ignoring b) 303

consists of ∼ 355500 elements which means that H is a 355500× 355500 matrix with 304

potentially ∼ 6.3 · 1010 unique elements requiring ∼ 500GB if one stores them with 305

double precision. This number can be decreased considerably by choosing a suitable 306

representation of the warps such that one can take advantage of the ensuing sparsity 307

and symmetries, but it is nevertheless the case that calculating and representing H is 308

the main difficulty when estimating high resolution warps. On the other hand, as 309
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indicated in the previous section, we need to know H when performing the joint warp 310

and intensity modelling. 311

However, it is likely that the intensity parameters (b) can be estimated, using a 312

Gauss-Newton-based algorithm, with “sufficient accuracy” together with a 313

low/medium-resolution set of warps (w). These (b) could then be used as constants in 314

a subsequent estimation of w at higher resolution. The elements of w are now the only 315

parameters and, with a suitable representation of the warps, this means that H has a 316

structure that is “close to” spherical and that it is feasible to use e.g. the SCG 317

algorithm described above to find the warps. 318

Regularisation 319

Given a large enough set of parameters w (and b) it is in principle possible to obtain an 320

exact match between g(w) and f , but that might mean that the coordinate transform 321

makes little sense with nearby points in the original space mapping to widely separated 322

points in the target space, and vice versa. Additionally there may be a large set of 323

different transforms that all yield similar values for O(w) and one needs a way of 324

deciding which of those is the “best”. This is obtained by combining the SSD cost 325

function with a regularisation term that is a scalar function S(w), which has a higher 326

value for “less likely” fields, i.e. one that penalises non-smooth warp fields. This is 327

equivalent to using a Normal prior on w so that w ∼ N(0, λ−1C−1) where 328

S(w) = λwTCw. Hence, the cost function becomes 329

O(w,b;g, f) =
1

Nσ2

∑
i

(gi(w)− Ei(fi,b))
2

+ λS(w) (20)

where σ2 is the sample variance and λ is an arbitrary factor that determines the relative 330

weight of the regularisation. In the present paper σ2 could have been lumped into λ 331

since it is an empirically determined “fudge-factor”. It is, however, still convenient to 332

keep as a separate factor since it facilitates empirically determined values for λ that are 333

valid over a range of different σ2 (i.e. different SNR). It also means that at earlier 334

iterations when the estimated σ2 is large the regularisation is given more weight which 335

helps avoiding local minima. 336

In addition, the intensity models described by Eqs 14, 16 and 17 all model maps 337
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representing either B1− or B1+ fields, both of which are smooth and relatively slowly 338

changing. Including this yields 339

O(w,b;g, f) =
1

Nσ2

∑
i

(gi(w)− Ei(fi,b))
2

+ λS(w) + γS(b) (21)

where S(b) is a function of the same form as S(w) operating on one (Eqs 14 or 16) or 340

more (Eq 17) fields. As implemented in FNIRT S(w) and S(b) can be either 341

“membrane energy” or “bending energy” (see e.g. [11]), though all experiments in this 342

paper was performed using “bending energy”. 343

Diffeomorphic mapping 344

What is a diffeomorphic mapping 345

Let us say we have two spaces u and v and that there is an <3 → <3 mapping from u to 346

v. A diffeomorphic mapping is one which is “one-to-one”, meaning that each point in u 347

maps onto a unique point in v, and “onto” which means that for every point in v there 348

is some point in u that maps to it. Failure of the first condition is signalled by the 349

Jacobian (the Determinant of the Jacobian matrix) of the mapping being ≤ 0 350

somewhere in the domain of u, while a failure of the second is more difficult to detect 351

(and is typically ignored). The regularisation helps, but does not ensure that this 352

condition is fulfilled. By giving the regularisation a large weight one can be almost 353

guaranteed a diffeomorphic mapping, but that will, on the other hand, mean that the 354

warped image (g(w)) will still be quite dissimilar to f . We will have what is commonly 355

known as a “small deformation transform”. 356

Projection onto a diffeomorphic surface 357

There are methods that (almost) guarantee diffeomorphic mappings by virtue of the 358

way in which they combine many small (diffeomorphic) deformations (see 359

e.g. [15], [16], [18] or [35]). In the present paper we opted for a different solution, as 360

proposed by [37]. We allow the field to become non-diffeomorphic for a limited number 361

of iterations after which it is projected onto the “closest” diffeomorphic field. The 362

partial derivatives of the fields (i.e. ∂φx/∂x, ∂φx/∂y,..., ∂φz/∂z) are explicitly 363
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manipulated/changed to ensure that the Jacobian determinant lies within a defined 364

range. Following that, there are three derivative-maps for each component-field, that 365

could each be used to calculate that component-field (i.e. φx could be calculated from 366

either of ∂φx/∂x, ∂φx/∂y or ∂φx/∂z), but because of the changes that have been 367

performed it is possible that the resulting fields are inconsistent (i.e. integrating ∂φx/∂x 368

in the x-direction may yield a different result from integrating ∂φx/∂y in the 369

y-direction. This potential inconsistency is resolved by Fourier-transforming the 370

derivative maps, performing the projection onto the set of consistent gradient images in 371

Fourier-space and transforming back into image-space. 372

Materials and methods 373

Implementation 374

The cost functions described above have been implemented in C++ in an application 375

called FNIRT as part of the FSL software package (http://www.fmrib.ox.ac.uk/fsl). 376

It has a command-line interface and is, in addition, an integral part of FEAT, FSL-VBM, 377

TBSS and FDT. Some implementation details are given in Appendix S1. Here we will 378

limit the description to say that there is a choice between the Levenberg-Marquardt 379

(LM) and the Scaled Conjugate Gradient (SCG) methods for minimisation. The former 380

explicitly calculates and uses the Hessian (JTJ) and is hence quite memory hungry for 381

high resolution (many elements in w). The latter does not explicitly use the Hessian 382

and therefore needs less memory. The flip-side is that the SCG method cannot be used 383

for simultaneous estimation of warp (w) and intensity (b) parameters since the implicit 384

approximation of H is too poor in that case. FNIRT is able to take w and b as input, 385

providing an initial guess for both. Therefore our strategy for achieving high resolution 386

warps is to run FNIRT to a medium resolution ( 8–10mm knot spacing) with 387

simultaneous estimation of intensity parameters b. A second run is then performed 388

using the warp and intensity parameters from the first run as input, refining the former 389

by going to a higher warp resolution but keeping the latter fixed. 390
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EXPERIMENTS 391

Demonstration of intensity models 392

A set of simple simulations was performed to demonstrate the utility of the different 393

intensity models. The “phantom” consisted of a set of geometric shapes: spheres, 394

circular disks and a circular bowl. These were combined in such a way that when cut at 395

a certain level in the z-direction it would resemble either a smiley or grumpy face when 396

viewed in the xy-plane. These shapes were “imaged” using a 64× 64× 64 matrix with a 397

1× 1× 1mm voxel size. Intensities were assigned to the face, eyes and mouth to mimic 398

those of white and grey matter and CSF respectively. To ensure that we assigned 399

“realistic” intensities to the different tissue types, and also to introduce realistic intensity 400

differences due to sequence differences and variable flip-angle, we used the signal 401

equations for an MPRAGE sequence as outlined in [33]. For all simulations we used a 402

relative proton density of 0.75/0.65/1.0 for grey matter/white matter/CSF. For the 403

smiley face we used a TR of 9.2ms, TI of 0.9s, a delay time (TD) of 0.56s, 80 partitions 404

per acquisition block (n) and a flip-angle (α) of 8 degrees, these being parameters that 405

are commonly used at our lab, and T1 values of 1.61/0.84/4.3s for grey matter/white 406

matter/CSF (relevant for 3T according to [38]). The same parameters were used for one 407

of the grumpy faces to provide an image for registration with identical intensities. For 408

the remaining grumpy faces we used 10ms/1s/0.5s/176/12◦ for TR/TI/TD/n/α 409

respectively and T1 values of 1.2/0.65/4.3s for grey matter/white matter/CSF (relevant 410

for 1.5T according to [38]). The second grumpy face was created using these parameters 411

with homogeneous B1− (receive B1 field) and B1+ (transmit B1 field) fields. An 412

inhomogeneous field was created as a quadratic spline field with a knot spacing of 413

20mm where selected coefficients were set to 0.5 while the remaining ones were kept a 1. 414

Quadratic splines were used so that the field should not be created with exactly the 415

same basis as we use to model it (though it is admittedly very similar). This field was 416

applied as a B1− field to the third grumpy face (by element-wise multiplication) and as 417

a B1+ field to the fourth grumpy face (by letting it modulate α in the signal equations 418

in [33]). In all, this gives one smiley face to use as the target for all registrations and 419

four grumpy faces whose intensities are successively more different from that of the 420

smiley face. 421
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The images generated by the simulations are shown in Fig 1. For display purposes 422

they have been scaled such that the intensity in white matter (the face) is unity in all 423

images. It can be noted that, as intended, the middle image has a different contrast 424

from the two leftmost ones, mainly noticeable as a higher intensity in gray matter (the 425

eyes). The second image from the right suffers from an additional inhomogeneous 426

receive B1 field (B1−) leading to a local, multiplicative, reduction in intensities. The 427

rightmost image was simulated with an inhomogeneous transmit B1 field (B1+) yielding 428

a spatially varying flip-angle leading to a spatially varying contrast. This can be 429

appreciated from the visually detectable increased contrast of the left eye to the 430

surrounding face in the rightmost image compared to the one on its left. 431

Fig 1. Phantoms simulated with intensities as if acquired with an MPRAGE sequence.
The face consists of “white matter”, the eyes of “gray matter” and the mouth of “CSF”.
The data was simulated with parameters as described in the main text. In short the two
leftmost phantoms were simulated with parameters as used at the FMRIB and the three
rightmost with parameters as described in [33]. The middle images is simulated with
homogeneous transmit and receive B1 fields, the second from right is simulated with an
inhomogeneous receive B1 and the rightmost with an inhomogeneous B1 transmit field
(leading to a spatially varying flip-angle).

Registration of a single subject to the MNI152 template 432

A healthy 28 year-old female subject (F) was scanned on a Siemens Trio syngo system 433

using an MPRAGE sequence with TI/TE/TR 900ms/4.53ms/2200ms respectively and 434

an 8 degrees flip angle. The imaging matrix was 160× 192× 192 with an isotropic 1mm 435

resolution and two repeats were collected. Data was collected using an 8-coil coil-array 436

and images were reconstructed individually for each coil and combined in a 437

sum-of-squares sense [26]. This is a representative example of a typical structural scan 438

at the FMRIB centre. It has an easily visible bias in the anterior-posterior direction, 439

with higher intensities towards the posterior. Most subjects will be located closer to the 440

posterior part of the coil than to the anterior part, which is the cause of this quite 441

typical bias. The scan was registered to the MNI152 template (the ICBM 18.5-43.5 442

template described in [39]) using the configuration file for T1 to MNI152 registration 443

that is part of the FSL-package (to a final knot spacing of 10mm) and a high resolution 444

T1 to MNI152 configuration file (to a 2mm knot spacing). Both registrations were 445

performed using an intensity model given by Eq 16 (i.e. modelling a global nonlinear 446
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relationship between the intensities in the two images and a smoothly changing bias 447

field) and for comparison by Eq 13 (i.e. a “standard” sum-of-squared-differences cost 448

function). For this registration the warps were not projected back onto a diffeomorphic 449

surface, instead the Jacobians were allowed to take negative values. This was done to 450

demonstrate the role of intensity bias in causing non-diffeomorphic warps. 451

Registration of one subject to another 452

A healthy 42 year-old male subject (M) was scanned using the same sequence as the 453

female subject above, with the distinction that the matrix size was now 208× 256× 192. 454

The considerably larger head of this subject (and also slight, unintentional, rotation of 455

the head around the z-axis) resulted in a different bias field where the intensities were 456

highest in the lower-left and the upper-right quadrants (as seen in an axial slice) of the 457

brain. This was a consequence of these two parts being closest to the coil-array. F was 458

registered to M using a configuration file for T1 to T1 registration. The registration was 459

run to a knot spacing of 10mm and to a knot spacing of 2mm, both with intensity 460

modelling given by Eq 16 and by Eq 13. The registration was also reversed so that M 461

was registered to F using the same parameters as above. As in the case above warps 462

were allowed to become non-diffeomorphic. 463

Registration of atrophied subject to the MNI152 template 464

A healthy female 84 year-old subject was scanned on a Siemens Allegra 3T system using 465

an MPRAGE sequence with TI/TE/TR 1000ms/3.49ms/2150ms respectively and a 7 466

degrees flip-angle. The imaging matrix was 144× 214× 200 with an isotropic resolution 467

of 1.1mm. The subject exhibited moderate atrophy consistent with her age and the 468

images were affected by a B1− field with, unusually, higher intensities in the centre. 469

The subject was registered to the MNI152 template using the FSL standard 470

configuration for FNIRT (final knot spacing of 10mm and using Eq 16 for intensity 471

modelling) followed by a high resolution step (to a final resolution of 2mm). The 472

resulting warps were used to resample the subject into the MNI152 space and in 473

addition it was inverted (see Appendix S1 for details) and the inverse warps were used 474

to resample the MNI152 template into the subject space. 475
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Generation of a group template 476

Fifty-seven healthy volunteers with ages ranging between 20 and 62 years had structural 477

scans as part of the fMRI protocol in studies they participated in. They were scanned 478

on a 3T Siemens Trio using a clinical MPRAGE sequence with voxel sizes in the range 479

0.92× 0.92× 0.92mm to 1× 1.09× 1.09 with the majority having the size 1× 1× 1. 480

Other scanning parameters (TI, TE and TR) were not completely consistent across the 481

group, but were in the same general domain as described for the female volunteer above. 482

All scans were affected by B1− bias fields with gradients primarily in the y- and 483

z-directions ranging from moderate (a factor of 1.5 across the brain) to severe (a factor 484

of 3 across the brain). Generation of the template was started by registering all subjects 485

to the MNI152 template after which the initial a group template was created as the 486

average of these initial registered images. This template was refined by four more 487

iterations of registering all subjects to the group mean followed by re-generation of the 488

group mean. After one set of four refinements the knot spacing (warp resolution) was 489

reduced and another four iterations were performed. This was repeated for three 490

resolutions so that there were four refinements each with knot spacings of 10, 6 and 491

2mm. The full procedure was run for linear scaling (intensity model given by Eq 13) 492

and for nonlinear scaling with bias field (Eq 16). In addition the template was created 493

either by averaging the registered images or by averaging the registered bias corrected 494

images so that, in total three different schemes were employed. 495

Registration of surface coil Macaque data to a Macaque template 496

Six Macaque monkeys were scanned on a commercial full bore 3T scanner 497

(manufacturer intentionally withheld) scanner using an MPRAGE sequence and a 498

custom built four channel phased-array coil. The placement of the coils was restricted 499

by the monkey being placed in the sphinx position, leading to high sensitivity (intensity) 500

in lateral cranial parts and lower sensitivity elsewhere. The inhomogeneity of the 501

resulting B1− field was very severe with roughly a factor of ten between the brightest 502

and the darkest parts of the brain and with the extracerebral tissue closest to the coils 503

having intensities several times higher still. The inhomogeneities were severe enough to 504

make it impossible to use FAST [40] despite it containing an explicit model for the bias 505
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field. All scans were first registered, with a 5mm knot spacing, to the MNI Macaque 506

atlas [41] after which an initial population mean was created. The scans were 507

re-registered to the population mean using the same registration parameters as for the 508

registration to the MNI space. Following this five more iterations were performed of 509

registering all scans to the population mean and re-generating the population mean. At 510

each new iteration the knot spacing was decreased and/or the regularisation was 511

decreased until the final iteration was run with a 1mm knot spacing. One such set of 512

iterations was performed using Eq 13 (“standard” scaled sum-of-squared differences) 513

and one set using Eq 16 (global nonlinear intensity mapping with a multiplicative bias 514

field) for intensity mapping. 515

Demonstration of projection onto a diffeomorphic surface 516

To demonstrate the effects of restricting the range of Jacobians to positive values 517

(specifically to the range 0.01–100) we allowed registrations to run to their final 518

resolution without any restrictions and compared that to the default strategy for 519

FNIRT (which is to project the warps onto a diffeomorphic surface after each step in a 520

multi-resolution–multi-regularisation execution). For this test we used the single female 521

subject above and registered to the MNI152 template. 522

Registration of NIREP data 523

The Non-Rigid Image Registration Evaluation Project (NIREP, [42]) consists of 524

skull-stripped, apparently bias-corrected, high quality T1-weighted MR images from 16 525

healthy subjects. For each subject there are 32 manually edited gray matter, mainly 526

cortical, regions. Each subject was registered to each other subject, starting with an 527

affine registration using FLIRT [43] followed by a medium resolution (10mm isotropic 528

knot spacing) nonlinear FNIRT registration with simultaneous intensity modelling (Eq 529

13, single scaling factor). Finally a high resolution (1mm isotropic warp resolution) 530

registration was performed while keeping the scaling factor constant. For each 531

registration all 32 regions were resampled and thresholded at 0.5 to yield binary label 532

images. These were compared to the pertinent original labels for the target subject and 533

the Relative Overlap Metric (or the Jaccard coefficient) as suggested in [42] was 534

calculated (see definition in Appendix S1) and reported for each region. In addition we 535

May 14, 2019 21/44

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2019. ; https://doi.org/10.1101/646802doi: bioRxiv preprint 

https://doi.org/10.1101/646802
http://creativecommons.org/licenses/by/4.0/


computed a modified version of the Inverse Consistency Measure also suggested by [42]. 536

It was modified to use the norm, rather than the square of the norm, of the differences 537

between the forward and backward mappings thus yielding a measure in mm that is 538

more intuitive to interpret. The details of the modification are described in Appendix 539

S2. 540

The regions appear to be very carefully defined and compared to, for example, the 541

LPBA40 dataset the regions are more narrow, being restricted to gray matter voxels, 542

yielding relatively large surface areas to volume ratios which should be more difficult to 543

register and hence better discriminate between different registration algorithms. 544

Comparison to results in Klein et al. (2009) 545

This was performed mainly for comparing how the released version of FNIRT compares 546

to what [44] reported for an early beta version. We have relegated most of the methods 547

and results of this to Appendix S4. In short, in [44] the information contained in the 548

pial surface of the cortex was not used by FNIRT in contrast to all the other methods, 549

which used this information (see footnote 4 on page 799 of the [44] paper). Therefore we 550

re-ran the experiments in [44] on the data sets LPBA40 [45] and MGH10 [44] with 551

identical settings except for now using the information from the pial surface of the 552

cortex. In addition, we ran it to a 1mm knot spacing, a resolution that was not possible 553

with the beta release that was evaluated in [44]. 554

Results 555

Demonstration of intensity models 556

The results of the registrations of the simulated phantoms are summarised in table 1 557

and Fig 2. One of the main results that can be gathered from table 1 is that in every 558

case the pertinent intensity model perform of the best, e.g. Eq 17 performed best for the 559

data with inhomogeneous B1+. Another obvious result is that one pays a price by using 560

a more complicated/permissive intensity model than is motivated given the nature of 561

the data. Both Eqs 16 and 17 performs worse than the simpler models when there is no 562

bias field. There is also a price in terms of computational expense: and e.g. modelling 563
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intensities using Eq 17 with a bias field knot spacing of 10mm more than doubled 564

execution time compared to linear scaling using Eq 13. A final thing to notice is that 565

failing to model a nonlinear mapping of intensities has very little effect compared to not 566

modelling inhomogeneous B1− or B1+ fields. Compare for example the performance of 567

nonlinear scaling (Eq 15) and linear scaling (Eq 13) when registering images “acquired” 568

with different sequence parameters (i.e. the two leftmost entries on the second row of 569

table 1 and Fig 2). Even though the “correct” model performs slightly better, as 570

assessed by the mean difference in displacements, the difference is very small and hardly 571

detectable by a visual inspection of the images (though one can just about detect a 572

difference along the left edge of the left eye). Contrast that to a comparison between 573

the models that do not incorporate a bias field (be it B1− or B1+) to those who do (i.e. 574

compare the two leftmost images to the two rightmost in either of the lower two rows) 575

where vast misregistration results from not modelling the bias field. 576

Fig 2. Results of registering simulated grumpy faces to a happy face. The organisation
of the figure is the same as in table 1 with each row corresponding to a different
simulated image and each column to a different intensity model.

Table 1. Mean difference in warp displacements (in mm) between “ideal” registration and that obtained for
the pertinent combination of data and intensity model. The registration of identical intensity images
without any intensity modelling was considered “ideal”. The best result for each dataset is highlighted in
bold.

Data/Intensity Model Linear Scaling nonlinear Scaling nonlinear scaling Local nonlinear
with bias field scaling

Identical Sequence 0 0.46 0.96 0.95
Different Sequence 0.97 0.80 1.01 1.07
... with B1− field 5.20 5.40 1.13 1.31
... with B1+ field 5.28 5.46 1.42 1.32

Registration of a single subject to the MNI152 template 577

The results, shown in Fig 3, confirm those obtained with the simulated data. The visual 578

appearance of the registration is very good when modelling the intensities using Eq 16, 579

but considerably poorer when using just linear scaling (Eq 13). When looking at the 580

distribution of Jacobian determinant values one notes that “extreme” values are an 581

order of magnitude more prevalent when not modelling intensities, indicating that 582

intensity differences unrelated to anatomy is a crucial source of such values. 583
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Fig 3. The upper left panel shows the MNI152 standard brain. The lower left panel
shows the brain of a healthy female volunteer affinely registered to the MNI152 brain.
Note that there is an appreciable intensity difference between the frontal and occipital
parts of the brain. The lower middle panel shows the same volunteer after FNIRT
registration with a 2mm knot spacing using the intensity model given by Eq 16. The
image in the lower right panel has been registered to the same resolution (2mm) but
using a simpler intensity model (global linear scaling). Note that the intensity model
has no been used to “correct” the images, which are shown with their original intensities
to demonstrate the level of inhomogeneity. The upper right panel shows the distribution
of Jacobian determinants (in log-lin scale) for the intensity model given by Eqs 16 (blue)
and 13 (red). N.B. that in order to demonstrate the effect of the intensity modelling the
projection onto a diffeomorphic surface was turned off for this registration, and that
normally there would be no Jacobian values outside the prescribed range.

Registration of one subject to another 584

The subject→subject registration demonstrates (Fig 4) a similar behaviour with respect 585

to intensity modelling as did the subject→MNI152 registration. The presence of a bias 586

field severely disrupts the registration leading to superfluous warps when not explicitly 587

modelled. In contrast the warps look sensible and the range of Jacobians is much 588

reduced (reducing the number of voxels with a Jacobian determinant≤ 0 by 50%) when 589

modelling a nonlinear global intensity relationship and a multiplicative bias field (Eq 590

16). 591

For the subject↔subject registration we also demonstrate the non-symmetrical 592

results that FNIRT yields by showing subject F transformed to the space of subject M 593

using the warps calculated from an F→M registration (Fig 5, middle column) and also 594

using the inverse of the warps obtained from an M→F registration (see Appendix S1 for 595

a description of how we calculated the inverse). It is easily seen that the two solutions 596

are slightly different, though surprisingly it is not obvious which of the two is “better”. 597

Fig 4. The left column shows the two target brains, the male volunteer (M) on the
upper row and the female volunteer (F) on the lower. The second column in the top row
shows F affinely registered to M. The third and fourth columns show F nonlinearly
registered to M using Eqs 16 and 13 respectively for intensity modelling.
Correspondingly the second column in the bottom row shows M affinely registered to F
and columns 3 and 4 show M nonlinearly registered to F using intensity models given by
Eqs 16 and 13 respectively. Note the superfluous warps in the fourth column caused by
unmodelled intensity variations. All the nonlinear registrations were run to a knot
spacing of 2mm.
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Fig 5. This figure is intended to show the degree of lack of inverse consistency with
FNIRT. The leftmost panel shows the male volunteer (M) in native space. The middle
panel shows the female volunteer (F) nonlinearly registered to M using a knot spacing of
2mm and the intensity model given by Eq 16. The rightmost panel shows F registered
to M using the inverse of the warps obtained by registering M→F, i.e. the inverse of the
warps that were used in the lower row of figure 4.

Registration of an atrophied subject to the MNI152 template 598

Fig 6 shows the results of registering an elderly, female, moderately atrophied, subject 599

to the MNI152 standard brain. It can be seen from the upper row that FNIRT, run to a 600

knot spacing of 2mm, is able to register brains with this degree of atrophy with 601

seemingly good results. The bottom row shows the MNI152 template warped into the 602

native space of the subject using the inverse of the subject→MNI152 transform. The 603

latter result was included to give some indication that even with brains this different 604

(and the ensuing large deformations) there is a unique inverse that gives results that 605

appear reasonable to a visual inspection. It should also be noted that this subject is in 606

no way “selected”, but was obtained by asking around the lab for “the most atrophied 607

subject from your study”. Our desire to stay with this “random” selection meant that it 608

was included even though it has quite pronounced intensity changes from small vessel 609

disease [46] which are visible periventricularly in the top middle panel and which are a 610

possible cause of the slight, but discernible, misregistration of the white-grey matter 611

junction of the pre-frontal cortex. 612

Fig 6. This figure shows results from registering an elderly (84 year-old), atrophied,
subject to the MNI152 standard brain. The top left panel shows a slice from the MNI152
template, the top middle panel shows the same slice from the elderly subject after affine
(FLIRT) registration and the top right panel after nonlinear (FNIRT) registration to a
warp resolution of 2mm. The lower left panel shows the elderly subject in her native
space. The lower middle and right panels show the MNI152 template transformed by
the inverses of the affine and nonlinear transforms of the upper row respectively.

Generation of a group template 613

The group template started drifting and did not converge when using linear scaling. In 614

contrast it converged to a plausible group average when modelling the bias field (using 615

Eq 16), and this was true regardless of if we used the bias corrected images for 616

re-calculating the average or not. 617
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An example of one slice of the group average is shown in Fig 7 together with the 618

warped images from three of the subjects constituting this average. As can be seen, the 619

visual agreement is very good. 620

Fig 7. On the left is the group average with a red square indicating the part that is
shown in the subsequent panels. The first of those shows again the group average,
zoomed in to concentrate on a part containing ACC, Caudate, Insula and prefrontal
cortex. This area was chosen as it contains the relatively “easy” structures Caudate and
insular cortex, but also structures of intermediate and high difficulty such as ACC and
PFC respectively. The rightmost three panels show the warped scans of three of the 57
subjects constituting the average. These were the three first subjects in alphabetical
order and have not been selected as being particularly well registered. It should also be
noted that the dark streak across the white matter between the Caudate and the ACC
in the third subject does not imply a non-diffeomorphic warp, but is clearly visible in
the original scan of this subject.

In Fig 8 we demonstrate how potentially interesting structure emerges from a group 621

average created using high resolution warps even though it is not possible to discern in 622

any of the individual images despite these being of reasonably high quality. 623

Fig 8. The leftmost panel shows the group average zoomed in at the region of the
Thalamus and the three subsequent panels show the same area for the same three
subjects as in figure 7. Note how the group map reveals a structure in the Thalamus
that would not be evident by looking at an individual image. However, with knowledge
of the group map this structure can actually be recognised also in the individual images,
as well as the fact that this structure has been aligned across subjects.

Registration of surface coil Macaque data to a Macaque 624

template 625

When using linear scaling (Eq 13) the registered images were severely distorted and the 626

population average did not converge. This was a consequence both of the severe B1− 627

field and also of the hyper-intense vessels that were present in all the scans. In contrast, 628

when using nonlinear scaling with a multiplicative bias field (Eq 16) the registration was 629

successful and the population mean converged to a very sharp image (Fig 9). The 630

success of the registration can also be seen from the individual images after registration 631

(Fig 9). 632
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Fig 9. The top left panel shows an example of an axial slice of one of the Macaque
scans. One can deduce the approximate placement of the four coils simply by looking at
this image. The second panel from the left in the top row shows a partial axial slice of
the population average of the six monkeys after registration. The remaining panels show
the same area of the six individual scans after registration. It can be seen that even
with a limited FOV within a slice the intensity variations are severe. In each of the
displayed sections there are gray matter voxels with higher intensity than some white
matter voxels, and in four of them there are gray matter voxels with intensity more
than twice as high as some white matter voxels. Despite this it can be seen that the
registration is good across the six subjects.

Demonstration of projection onto a diffeomorphic manifold 633

A comparison of subject F registered to the MNI152 template with and without 634

projection onto a specified Jacobian range (0.01–100 in this example) shows subtle 635

differences. If allowed to run to 2mm knot spacing without any restrictions there were 636

9030 voxels with Jacobian determinants ≤ 0, while if using restrictions all Jacobians 637

were in the range 0.01–100. Visual inspection of the registered image shows very subtle 638

differences when restricting the range of the Jacobians compared to when not. It may 639

seem counterintuitive that changing the displacements in excess of 9000 voxels should 640

result in subtle, hardly noticeable by eye, changes in the registered images. However, 641

the vast majority of non-positive Jacobians have values between -1 and 0 and typically 642

the changes that need to be made to the displacement fields to bring these Jacobians 643

into the required range are actually very minor. 644

The changes demonstrated in Fig 10 are the most obvious ones anywhere in that 645

dataset. This is a typical finding and in no case have we come across any large or 646

obvious changes in the registered images as a consequence of restricting the Jacobian 647

range. 648

Fig 10. The top row shows a partial sagittal view of subject F after registration to the
MNI152 template without and with restriction of the Jacobians in the left and right
panels respectively. Note in particular the difference along the junction between the
occipital lobe and the cerebellum. The second row shows the z-component of the
displacement-field (scaled to -3–5mm). Note how the Jacobian restriction has
widened/smoothed the relatively thin strip of positive displacements in the left panel.
The third row shows the Jacobian determinants (scaled to 0–4.5). The voxels where the
Jacobian was ≤ 0 are shown in yellow. Note how the Jacobian restriction has affected
mainly the narrow strip of negative Jacobians in the left panel, rendering them to be
within the prescribed range (0.01–100).
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Registration of NIREP data 649

The registration of every subject to every other subject resulted in 240 different 650

pair-wise registrations for each of the three strategies (affine/FLIRT, FNIRT to 10mm 651

knot spacing, FNIRT to 1mm knot spacing). An example of the overlap achieved in one 652

of these registrations is demonstrated in Fig 11 for affine and for high resolution 653

nonlinear registration. Fig 11 can also be used to get an impression for what (visual) 654

overlap maps onto what Jaccard coefficient. It should be clear from the lower panel of 655

Fig 11 that the overlap is quite good and still the Jaccard coefficient is no greater than 656

0.70, demonstrating the severity (and hence also efficiency) of it as a measure to gauge 657

registration accuracy. The resulting overlaps, as assessed by the Jaccard coefficient, are 658

shown in Fig 12. It should be noted that each box in Fig 12 represents the results of 240 659

registrations, each of which results in an overlap of the kind seen in Fig 11. It can be 660

seen that, as expected, the nonlinear registration resulted in a significant improvement 661

over the affine registration and also that the 1mm registration performed consistently 662

better than the 10mm registration. 663

Fig 11. The right parahippocampal gyrus overlayed onto the scan of the target subject.
The red color shows the voxels where the structure is defined in the target subject, but
there is no overlap with the registered structure from the input subject. Voxels where
the target is not designated as part of the structure but the registered image does
designate it as belonging to the structure are shown in purple. The green voxels are
those where the target and registered structure overlaps. The top row demonstrates the
results for affine (FLIRT) registration and the lower row for nonlinear registration with
1mm knot spacing. For the affine case the Jaccard and Dice coefficients are 0.45 and
0.62 respectively. For the nonlinear case the corresponding numbers are 0.70 and 0.83.

Our Modified Inverse Consistency Error (MICE) is shown in Fig 13. As expected 664

the consistency is significantly worse for the nonlinear registration than for the affine 665

Fig 12. Jaccard coefficient (Relative Overlap Metric) for the 32 regions of the NIREP
database, averaged across left and right sides, for affine (red) and nonlinear registration
(green: 10mm knot spacing, blue: 1mm knot spacing). The line in the boxes denotes the
median, the boxes extend from the 25th to 75th percentile, the whiskers indicate the
total range of “non-outlier” data and outliers (approximately defined as outside ±2.7σ)
are represented as red crosses. Each box represents 240 values (registrations). It can be
seen that for all regions the nonlinear registration is a considerable improvement over
the linear, ranging from 50% relative improvement for less convoluted regions with
thick cortex (e.g. Insula and Parahippocampal gyri) to 100% for more difficult regions
(e.g. pre- and postcentral gyri). There is also a consistent, albeit smaller, improvement
when increasing the warp resolution from 10mm to 1mm.
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registration. It should be kept in mind though that performing no registration at all 666

would result in a perfect consistency. It is interesting to note that the MICE actually 667

decreases (for most regions) when going from 10 to 1mm knot spacing. This, together 668

with the higher overlap scores, is a strong indication that the increased resolution really 669

results in a more “correct” registration. The voxel wise MICE averaged across all 670

registrations is shown in Fig 14. Note how the MICE is largest in the parietal cortex. 671

This is consistent with the subjective impression that the variability in location (and 672

even existence) of sulci is greater here than in the rest of the brain. 673

Fig 13. Modified Inverse Consistency Error (MICE) averaged within the 32 regions
and across left and right sides for affine (red) and nonlinear registration with 10 (green)
and 1mm (blue) knot spacing. The line in the boxes denotes the median, the boxes
extend from the 25th to 75th percentile, the whiskers indicate the total range of
“non-outlier” data and outliers (approximately defined as outside ±2.7σ) are represented
as red crosses. Each box represents 18 values (subjects), each of those values being an
average across 17 registrations. The pattern here is partly the opposite from for the
overlap criteria, with the linear registration having considerably smaller error for all
regions. It can also be seen that for the “easier” regions such as the Insula and
Parahippocampal regions both the errors and the difference between linear and
nonlinear registration is small, while it is large for “difficult” regions. However, the
pattern is not “just” the opposite of that for the overlap criteria in that a “difficult”
area such as the pre- or post-central gyrus has a smaller MICE than e.g. the Superior
or Inferior parietal lobules. Note also that the MICE tends to be smaller for
registration with 1mm knot spacing than with 10mm knot spacing.

Fig 14. Map of Modified Inverse Consistency Error (MICE), as defined in Appendix
S2, averaged over all 16 subjects of the NIREP database. The MICE was calculated for
each subject (in the space of that subject) based on forward and backward registrations
(to a knot-spacing of 1mm) to the other 15 subjects. The subject specific MICE maps
were then registered to the MNI space using an affine transform and averaged across all
subjects. It has been thresholded so that MICE <2mm is not color coded and values
for 2mm < MICE < 6mm are coded from light blue to bright orange. The maps have
been overlayed on the 1mm MNI152 template to aid anatomical orientation. Note how
the consistency errors are large in the parietal and prefrontal cortices, smaller in
primary sensory and visual cortices and smallest in central structures.

Comparison to results in Klein el at. (2009) 674

The results from the re-analysis of the LPBA40 and MGH10 data confirmed that 675

FNIRT performed significantly better when using the information from the outer 676

cortical surface. It also showed that running FNIRT to a knot spacing of 1mm further 677

improved the results. The exact ranking of the different methods depended a little on 678
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what overlap measure was used and on the details of how the ranking was performed. 679

For the LPBA40 data the top methods were ranked FNIRT-HR, ART/SyN, 680

FNIRT-LR/JRD-fluid, where for example “ART/SyN” indicates that ART and SyN 681

would alternate for second and third rank depending on overlap measure and where 682

ART, SyN and JRD-fluid refer to the metods described in [47], [29] and [48] respectively. 683

FNIRT-HR and FNIRT-LR refer to FNIRT run to a knot spacing of 2mm and 10mm 684

respectively. For the MGH10 data the top methods were ranked SyN/FNIRT-HR and 685

ART/FNIRT-LR with no other method achieving a rank among the top four. 686

The full set of results is presented in Appendix S4. 687

Discussion 688

Modelling intensities 689

The novel aspect of the present work is the simultaneous modelling of image intensities 690

and geometric warps. As we have demonstrated with both simulations and example 691

data the impact on the estimated warps from unmodelled intensity variations can be 692

substantial. The data presented in this paper and our experiences of using FNIRT 693

indicates that it is primarily local variations from inhomogeneous B1− and B1+ fields 694

that is an issue. Global nonlinearities in intensity matching, such as differences in 695

degree of T1-weighting, seem to have a considerably smaller impact. It is not yet clear if 696

it is necessary to make the distinction between the effects of a B1− and a B1+ field (i.e. 697

if it is generally useful to use Eq 17 instead of Eq 16) and as of present the 698

recommendation is to use Eq 16. More experience of data from very high field scanners 699

(where B1+ inhomogeneity is a greater problem) will allow us to investigate this in more 700

detail in the future. 701

Our evaluations indicate that the simultaneous modelling renders the method very 702

robust to the severe bias fields resulting from “sum-of-squares” reconstruction of data 703

acquired with coil arrays (as opposed to bird cage coils that result in more homogeneous 704

images). This is an increasingly important property of a registration algorithm as coil 705

arrays with increasing number of coils are becoming more common even in clinical 706

settings. An alternative to explicit modelling of the intensity mapping would be to use 707

May 14, 2019 30/44

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2019. ; https://doi.org/10.1101/646802doi: bioRxiv preprint 

https://doi.org/10.1101/646802
http://creativecommons.org/licenses/by/4.0/


pre-processing such as histogram equalisation [49] and bias correction (e.g. [50]). We 708

have opted for a different strategy mainly because we believe the two processes jointly 709

inform each other. If we know the true (global and local) mapping of intensities we can 710

perform an accurate registration. Correspondingly if we know the true spatial mapping 711

it would be easy to find the intensity mapping. Hence none of the problems can be said 712

to precede the other in any meaningful sense and they benefit from being addressed 713

simultaneously. 714

Comparison to other methods 715

The published strategy that is most similar to ours is the combined 716

segmentation-registration framework in SPM [32]. Similar to our model, theirs includes 717

an explicit representation and modelling of a bias field. In the segmentation model each 718

brain tissue class (gray and white matter and CSF), and some classes intended to 719

represent extracerebral tissue, is represented by a mean and dispersion. The registration 720

is achieved by warping population based tissue priors to the subject’s data so as to 721

maximise the posterior probability. This gives it even greater flexibility than our 722

polynomial model in how intensities are globally matched between two images. Any 723

image, regardless of contrast, can be registered to a set of prior probability maps. On 724

the other hand the segmentation does potentially discard useful information from 725

differential intensities within a given tissue class that FNIRT is able to utilize. For 726

example subcortical gray matter structures will have a different T1 compared to cortical 727

gray matter [38], and the central sulcus has been implicated as having a different T1 728

than other cortical areas [51]. Additionally, some subcortical areas have structure that 729

can potentially be used to guide registration (see figure 8) but that is unused in a joint 730

segmentation-registration framework. It will also be a disadvantage to have to perform 731

two registrations to a set of tissue priors when registering two scans of the same subject 732

in longitudinal studies. A consequence of the choice of basis-function in [32] is that they 733

are limited to a rather crude warp resolution ( 20mm), but when a higher resolution is 734

called for they augment that with a DARTEL registration [18] of gray and white matter 735

segments. This is similar to our strategy of fixing the intensity model for the final 736

resolution steps when estimating the warps. 737

A different strategy is represented by methods such as those by [30] and [29] where a 738
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“global” cost function has been rendered local by sampling it locally. Both these groups 739

show promising results, and the latter has additionally performed very well in a recent 740

comparison of nonlinear image registration methods (see [44] and section ) though the 741

specific problem of locally varying intensities (bias field) was not addressed in that 742

study. 743

Quantitative evaluation: The NIREP data 744

The main quantitative evaluation was performed on the NIREP data [42], though we 745

did also use the LPBA40 [45] and MGH10 [44] data. The regions constituting the 746

NIREP database appear (to a visual inspection) to be very carefully defined and follow 747

both the pial cortical and the white matter surface faithfully. It is our subjective 748

impression that it is superior to other databases of the same type (e.g. LPBA40 [45] or 749

MGH10 [44]) which is the reason it was our main choice for the quantitative evaluation. 750

There is a limited amount of reported results using the NIREP database, but our results 751

compare favourably to those we have found (i.e. [52]). In the main body of the paper we 752

graphically present some results for the Jaccard coefficient (Relative Overlap in [42]) 753

and for our modified ICE index. In the Appendix S3 we also present tabulated values 754

for overlaps and consistency error that might be useful for comparison to future 755

studies/methods. 756

Limitations of datasets for quantitative evaluation 757

These datasets (NIREP, LPBA40 and MGH10) had all been highly “massaged” and 758

were all bias field corrected (though this is not explicitly stated for the NIREP data) 759

and skull-stripped. This means that data that is used for evaluation of registration 760

methods is not necessarily representative of the kind of data that a widely used 761

registration software tool might expect to encounter. In particular, the manual 762

skull-stripping introduces a very sharp (and supposedly accurate) edge in the images 763

that will be driving registrations. Non skull-stripped data makes the problem 764

considerably more difficult for two reasons. Firstly, T1-sequences used for brain imaging 765

are expected to give a high gray/white matter contrast and the parameters are typically 766

tuned for that. Considerably less attention is given to the intensities in extra-cerebral 767
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tissue such as the meninges and the spongy bone of the skull. The consequence of that 768

is that the intensity in these parts can vary considerably between scans from different 769

scanners and/or sequences. This is especially problematic for the meninges since that 770

intensity is right next to the pial surface of the brain. In different T1-weighted scans we 771

have seen intensities in this tissue ranging from much lower than in gray matter to 772

roughly equal to gray matter to higher than gray matter. This causes problems when 773

attempting to register two scans with different intensities in the meninges and it is not 774

unusual to see the edge of the meninges in one scan registered to the pial cortical 775

surface in the other. Secondly, the sharp edge coinciding with the pial surface of the 776

cortex in skull-stripped data may or may not be present in non-stripped data depending 777

on the intensities in the meninges. For cases when that edge is weak or absent the 778

alignment of the cortical surface is likely to be worse. 779

This means that quantitative results from data like these will reflect a best case 780

scenario and that both overlap and inverse consistency are worse in the “normal” 781

clinical or scientific laboratory setting. It also means that when comparing methods, 782

that aspect of how they deal with these kind of real world problems is not addressed. 783

What resolution warps should FNIRT be run at? 784

Despite the concerns expressed above, one thing was learned from the quantitative 785

evaluation. That is, what resolution warps are supported by scalar structural data, i.e. 786

what resolution warps is meaningful to try to estimate given typical data. The results 787

from the validations yield slightly different answers, where the LPBA40 and MGH10 788

datasets indicate that there is little gain in going from 10mm to 1mm resolution 789

whereas for the NIREP set there seems to be a significant advantage. Our 790

interpretation is that the data itself (the MR scans) are of similar quality in the three 791

sets but that the regions have been more carefully delineated in the NIREP set, and 792

that because of this it is possible to validate the results to a higher warp resolution than 793

10mm. For the two other datasets (LPBA40 and MGH10) the regions appear to be less 794

carefully defined and therefore less suitable for demonstrating the advantage of high 795

resolution warps. Hence we believe that, if the application motivates it, it is meaningful 796

to run FNIRT to a higher resolution than 10mm. 797

The motivation for using lower resolution is often to decrease execution time [53] or 798
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memory requirements ( [11] and [32]). If that is not an issue we have found it 799

advantageous to run the warps to a high resolution and regulate the smoothness by λ 800

(as defined in Eq 20). To enforce smoothness by setting a fixed knot spacing greater 801

than the voxel size leads to unwanted consequences since not all warps can be 802

represented. This often leads to “compromises” where the images appear identical, the 803

sum-of-squared differences are (close to) identical but where the warps represented by 804

the larger knot spacing are non-diffeomorphic while the warps generated from a smaller 805

knot spacing are diffeomorphic. There seems to exist a misunderstanding that 806

representing the warps by a set of smooth basis-functions helps protect against negative 807

Jacobians, and that a larger knot spacing (or lower cut-off frequency) offers a better 808

protection. This is not the case and a larger knot spacing simply means that the regions 809

containing non-diffeomorphic warps are bigger and that there is smooth transition from 810

the diffeomorphic to the non-diffeomorphic regions. 811

Hence our recommendation would be that, as long as execution time is not an issue, 812

one runs FNIRT to the highest resolution supported by the reference image and then 813

uses the regularisation to tailor the smoothness of the warps to the particular 814

application (it may, for example, be advantageous to use a greater smoothness when 815

registering fMRI group studies). 816

Diffeomorphic by construction: are there any practical 817

advantages? 818

For some years there has been a tendency towards methods that are “diffeomorphic by 819

construction”, i.e. methods that update the warps in such a way that if the update itself 820

is diffeomorphic then the resulting new warps are too. This means that (e.g. by 821

performing enough iterations) one can realise displacements (warps) of an arbitrary 822

magnitude while still being (almost) guaranteed diffeomorphic warps as long as each 823

update is sufficiently small/regularised. In contrast, our method uses what is known as 824

a small deformation framework, a framework that has been perceived as not being able 825

to produce large deformations without incurring a non-invertable field. Another 826

difference between the two strategies is that in “diffeomorphic by construction” 827

methods regularisation is typically applied to each update instead of to the resulting 828
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field. This means that one does not “build up tensions” in the warps which can 829

therefore grow to any magnitude without incurring any cost. In contrast, small 830

deformation methods typically regularise the warps themselves, using that as a means 831

to prevent non-invertible warps but at the same time limiting the warps that can be 832

accommodated. 833

Despite these purported limitations we opted to develop our method within a small 834

deformation framework. The reason for this was our desire to include a simultaneous 835

intensity model that would allow us to address imperfections in real data such as bias 836

fields and the difficulties in estimation the gradient and Hessian of such a model within 837

a “diffeomorphic by construction” framework. So, in order to attempt to overcome the 838

disadvantages of the small deformation model we implemented a multi-resolution, 839

multi-regularisation scheme with projection onto a diffeomorphic warp after every few 840

iterations. 841

In the present paper we demonstrate that this has yielded a method that achieves 842

equally good/better overlap of manually delineated regions compared to other methods 843

(based on the comparisons with the results in [44]) and which still only produces 844

diffeomorphic transformations. Given this, it is unclear to us what advantages the 845

“diffeomorphic by construction” framework has to offer (besides mathematical elegance) 846

by comparison with the projection framework used here. 847

More difficult applications 848

All the data which we have used for “proper” numerical validation and comparison 849

(NIREP, LPBA40 and MGH10) have consisted of scans of young to middle-aged healthy 850

volunteers. Our results indicate that for registration within these kinds of populations a 851

small deformation framework along with careful implementation and projection onto a 852

diffeomorphic manifold is sufficient to obtain good results. It is possible that for more 853

difficult applications, e.g. for registering severely atrophied to healthy brains, or 854

monkeys to humans [16], diffeomorphic by construction algorithms may have an 855

advantage. This is however something that remains to be demonstrated and, as 856

demonstrated in figure 6, we have used FNIRT for registration of atrophied subjects 857

with seemingly good results while still producing diffeomorphic mappings. The 858

examples that are often used to demonstrate the advantages of “diffeomorphic by 859
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construction” methods, such as the patch-to-a-C example [9] or moving a control point 860

through a line/plane defined by other control points [16], are somewhat contrived and 861

not necessarily representative of anything one would ever encounter while registering 862

scans of brains. 863

Inverting and composing warps 864

When calculating a diffeomorphic warp in an Eulerian framework it is trivial to 865

calculate also its inverse and, possibly more important, one can also calculate the 866

gradient and Hessian of the cost function for both forward and backward warps [18]. 867

This means that it is feasible to estimate exactly inverse consistent warps (e.g. [18] 868

and [29]), something that would not be possible in a small deformation framework. This 869

is a potentially important point since the constraint imposed by inverse consistency 870

when warping one scan to another is a highly reasonable and unequivocal one, unlike, 871

for example, the regularisation model that is arbitrary (i.e. membrane energy, bending 872

energy or linear elastic energy) and chosen more for computational convenience than for 873

empirical reasons. 874

It is, however, feasible to calculate a good approximation the inverse of warps 875

obtained with a small deformation framework [54], and it can be done in a few tens of 876

seconds (see Appendix S1). Hence, the implicit assumption in [18] that the inverse 877

warps in a small deformation setting is typically approximated by x− d(x) is neither 878

necessary nor common. 879

Comparison to the results reported by Klein et al. (2009) 880

Our re-evaluation of the data used in [44] confirmed our hypothesis that FNIRT would 881

perform better if using the information in the pial edge of the cortex. All the evaluations 882

in [44] were performed on skull stripped data. Skull stripping introduces an artificial 883

sharp edge of non-zero to zero voxels where the skull stripping algorithm/observer 884

locates the cut, which means that the accuracy of a subsequent registration will depend 885

crucially on the accuracy of the skull stripping. For this reason we usually recommend 886

that FNIRT is run on non-skull stripped (original) data unless one has a very good 887

reason to believe that the skull stripping has performed perfectly. If, for some reason, 888
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only skull stripped data is available we usually recommend that one runs FNIRT with a 889

switch that tells it to regard zero values as missing data, thus ignoring the artificial edge 890

(as long as one is not 100% confident in the accuracy of the stripping). For these 891

reasons we initially recommended these settings (ignoring zeros) for the evaluations 892

performed by [44], unlike all the other methods that used the artificial edge. 893

What we did not consider at the time was that it didn’t matter if the brains were 894

poorly extracted or not since the extraction was based on the union of all manually 895

labeled regions. This means that if one wants to perform well in terms of aligning these 896

regions one should definitely use the information in the artificial edge since it pertains 897

directly to the measure that is used for the evaluation. Unfortunately this creates a 898

strong dependence between the “data” (the skull stripped scans) and the “ground truth” 899

(the manually defined labels). These should of course ideally be independent. 900

Paradoxically this means that the it would be more “valuable” to use the information 901

contained in a brain↔zero junction than to use any other internal junction regardless of 902

how “objectively wrong” the former is. 903

Despite these reservations regarding the evaluation of registration algorithms on 904

data of this kind we find it encouraging that FNIRT performed so well in comparison to 905

other methods. Both the data (LPBA40 and MGH10 906

(https://www.synapse.org/#!Synapse:syn3207203)) and the software 907

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation) are publically available for anyone 908

wishing to confirm our findings. 909

It should be noted that FNIRT was not the only method that was a beta release at 910

the time and it is conceivable that some of the other methods would also perform better 911

if their finished, released, versions were used (see e.g. [35] for a re-evaluation of 912

DARTEL). 913

Conclusion 914

We have described the implementation of a method/framework for small-displacement 915

nonlinear registration of brain MR images. The results look promising and on “ideal” 916

data compare favorably to the methods included in [44]. However, we believe that the 917

main advantage of the presented method is on the “imperfect” data commonly 918
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encountered in a clinical or neuroscience setting, especially with respect to bias fields 919

commonly seen in modern coil array acquisitions. 920

Future work will focus on a multivariate framework where the intensity modelling is 921

extended to a general model-driven transfer function. 922

Supporting information 923

Appendix S1 Additional information about the method. Additional 924

information about the details of the implementation and a description of a fast method 925

for calculating the inverse of a warp. 926

Appendix S2 Evaluation criteria. Definition of the metrics used in the 927

quantitative evaluation. 928

Appendix S3 Additional results from the NIREP evaluation. Tables and 929

figures with results from the NIREP evaluation not included in the main text. 930

Appendix S4 Comparison to results from Klein et al. (2009). Results from 931

re-analysis of two of the datasets used in [44] (the MGH10 and LPB40 data sets) using 932

different parameters for FNIRT. 933
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