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Abstract9

AEGIS (Ageing of Evolving Genomes In Silico) is a versatile population-genetics numerical-simulation tool10

that enables the evolution of life history trajectories under sexual and asexual reproduction and a wide variety11

of evolutionary constraints. By encoding age-specific survival and reproduction probabilities as discrete ge-12

nomic elements, AEGIS allows these probabilities to evolve freely and independently over time. Simulation13

of population evolution with AEGIS demonstrates that ageing-like phenotypes evolve in stable environments14

under a wide range of conditions, that life history trajectories depend heavily on mutation rates, and that sexual15

populations are better able to accumulate high levels of beneficial mutations affecting early-life survival and16

reproduction. AEGIS is free and open-source, and aims to become a standard reference tool in the study of17

life-history evolution and the evolutionary biology of ageing.18

Introduction19

Species in nature vastly differ in life histories, with dramatic variation in maturation rate, lifespan, and fecun-20

dity. In general, age-dependent mortality increases as a function of age while age-dependent fecundity declines,21

a phenomenon known as ageing or senescence. However, in some organisms mortality decreases or remains22

constant through life, while fecundity remains constant or increases (Jones et al., 2014). These difference in23

demography can have important effects on fitness, giving rise to dramatic differences in lifetime reproductive24

output between species.25

The evolution of age-dependent changes in mortality and reproduction has been an important object of the-26

oretical investigation since the dawn of population genetics, giving rise to a number of theories to explain the27

widespread occurrence of senescence in nature. Work from Haldane, Medawar, Hamilton and others predicts28

that the declining force of natural selection after reproductive maturation should inevitably lead to the accumu-29

lation of deleterious gene variants, resulting in increased mortality later in life (Haldane, 1941; Medawar, 1952;30

Hamilton, 1966; Charlesworth, 2000). While these mutation-accumuation theories of ageing explain ageing as31

a fundamentally non-adaptive process, other evolutionary theories of ageing suggest senescence could evolve32
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as an antagonistic side-effect of positively-selected traits (Williams, 1957), or even as a kin- or group-selected33

adaptation in its own right (Longo et al., 2005; Lohr et al., 2019).34

Up to now, the evolution of life-history traits, including age-dependent changes in survival and reproduc-35

tion, has primarily been performed using analytical approaches (Hamilton, 1966; Charlesworth, 1994; Fisher,36

1930); while some simple numerical models exploring the evolution of ageing have been proposed (Penna,37

1995; Dzwinel et al., 2005; Werfel et al., 2015), there remains a need for a flexible simulation tool to model the38

evolution of ageing. In particular, a model which permits independent evolution in both mortality and fecundity39

at different ages could capture a wider range of possible life histories and so provide a particularly powerful40

tool for simulating the evolution of ageing.41

Here, we present and release AEGIS (Ageing of Evolving Genomes In Silico), a ready-to-use numerical42

model of genome evolution that simulates how age-dependent changes in survival and reproduction evolve43

under a range of different ecological and demographic scenarios.44

New Approaches45

AEGIS is a Python-based platform implementing and extending a discrete-time, non-spatial numerical model46

of genome evolution (Šajina et al., 2016). In this model, each individual is represented by a diploid bit-string47

genome, which is divided into age-specific survival and reproduction loci specifying the baseline survival and48

reproduction probabilities of that individual at the appropriate age (Fig. 1A), where “age” designates the number49

of discrete-time stages since the individual was added to the population. These probabilities scale linearly50

between user-specified bounds (pmin, pmax) based on the additive sum L of the bit values in the appropriate loci51

across both chromosomes:52

P(survival at age i) = psurv
min +

psurv
max− psurv

min
2 ·h

·Lsurv
i (1)

P(reproduction at age i) = prepr
min +

prepr
max− prepr

min
2 ·h

·Lrepr
i (2)

where h is the number of bits per locus per chromosome. The survival and reproduction probabilities are53

therefore lowest when all bits in the corresponding loci are equal to 0, and highest when they are all equal to 1.54

In addition to survival and reproduction loci, the genome also contains some number of neutral loci without a55

phenotypic effect, which serve to track the effects of neutral evolution on genome composition.56

Upon initialisation, the population consists of some number of new individuals with uniformly-distributed57

genome composition and age values. The population is then permitted to evolve freely in discrete time, with58

individuals reproducing and dying at each stage according to the probabilities specified by their genomes59

(Fig. 1B). In asexual reproduction, each parent individual gives rise to one offspring per stage in which it60

reproduces, whose genome is first copied from the parent and then mutated. The rates of positive (0→ 1)61

and negative (1→ 0) mutations are specified separately; since mutations with a negative effect on fitness are62

much more common in real-world systems, the former probability is typically lower than the latter. In sex-63

ual populations, parent individuals are grouped randomly into pairs, the chromosomes of each parent undergo64

recombination with each other (Supplementary Material), and one chromosome is selected from each parent65

(assortment) to produce the child genome, which is mutated as above. In both cases, the allele composition of66

the new generation is drawn from that of the previous generation, and successive generations overlap within the67

population.68

To limit the size of the population and impose competition between individuals, a resource limit is imposed69
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Figure 1: AEGIS workflow. (A) Each individual in an AEGIS population has a diploid bit-string genome
comprising survival, reproduction and neutral loci. The sum L of bits across both chromosomes at a given
locus position determines the probability of survival or reproduction at the appropriate age. a denotes the
age of reproductive maturation for the population. (B) At each stage n of an AEGIS simulation, individuals
increment their ages, then reproduce and die based on their ages, genomes and the starvation status of the
population.

on the population. By default, an initial resource level is set which remains constant throughout the simulation;70

if the size of the population exceeds this threshold, the survival probability of each individual is subjected to71

a compounding starvation penalty until the population falls below the resource limit. This typically leads to a72

rapid fluctuation of population size around the set value (Fig. 2A), as populations sequentially overshoot the73

resource limit and die back to a smaller size (Fig. 2B).74

One particularly important aspect of the model of evolution implemented by AEGIS is the manner in which75

it enables explicit calculation and comparison of fitness values. Because the baseline survival and reproduction76

probabilities of each individual are directly specified by its genome, the fitness of any individual (defined as77

its expected lifetime reproductive output) can be directly computed for any given set of probability bounds and78

starvation regime:79

Fitness = v ·
M

∑
i=0

[
P(reproduction at age i)

i

∏
j=0

P(survival at age j)

]
(3)

where M is the maximum lifespan of the population and v (equal to 1 for asexual populations and 0.5 for sexual80

ones) denotes the relative genetic contribution of a parent to its offspring. In the case of so-called genotypic81

fitness, this value is calculated directly using the baseline survival and reproduction probabilities specified by82

the individual’s genotype sums and user-specified probability bounds, without any starvation penalties. The83

distribution of individual and mean population fitness values can then be compared between populations to84

investigate the evolution of fitness in response to different conditions.85
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Figure 2: Population fluctuations in AEGIS simulations. (A) Trace of population size during 10,000 stages of
an AEGIS run under sexual reproduction, showing cyclical fluctuations around a set resource level (horizontal
red line), above which the population enters starvation. (B) Close-up trace of 100 stages from the same run,
showing repeated cycles of population growth, starvation, and collapse.

The runtime of an AEGIS simulation depends primarily on the number of stages, the population size (as86

determined by the resource limit), the genome size, and whether reproduction is sexual or asexual. Sexual re-87

production is more computationally demanding, primarily due to the complexity of the recombination process.88

For example, a 256-GB-RAM machine with 8 CPUs per task was able to complete a one-million-stage simu-89

lation with the default genome size and asexual reproduction in 2 h 40 min when the resource limit was 100090

and 2 d 17 h 31 min when the resource limit was 20000; with sexual reproduction, the runtimes were roughly91

double this.92

Following run completion, AEGIS can save a wide range of data in a cross-compatible CSV format. Some93

simple metrics, such as population size, are recorded at every stage of the run, while more complex information94

(such as genotype-frequency distributions) is recorded for a pre-specified number of “snapshot” stages evenly95

distributed throughout the run. The data output by AEGIS can be used for a wide variety of downstream96

analysis and visualisation purposes.97

A detailed tutorial for AEGIS installation and use is provided along with example configuration files at98

github.com/valenzano-lab/aegis.99

Ageing evolves differently in sexual and asexual populations100

One of the most fundamental applications of the AEGIS simulation tool is in investigating the evolution of101

age-dependent survival and reproduction across different conditions. Starting from an initial genome contain-102

ing uniformly-distributed 0’s and 1’s, we find that ageing-like phenotypes reliably evolve across a wide range103

of population sizes, mutation rates and reproductive strategies (Fig. 3A to 3C). When mutation rates are suf-104

ficiently low, loci determining survival and reproduction in early life accumulate large numbers of beneficial105

mutations, resulting in low baseline (i.e. non-starvation) mortality rates before and immediately after repro-106

ductive maturation and high fecundity levels in early adulthood. Following reproductive maturation, survival107

and reproduction rates progressively decline as the genotype sums of the corresponding loci accumulate pro-108

gressively larger numbers of deleterious mutations. Remarkably, the genotype sums of loci affecting older age109

groups consistently converge on the mean genotype value of the neutral loci in the genome, indicating that110

selection is relaxed towards neutrality in genes affecting late-life.111

While ageing-like phenotypes consistently evolved across a wide range of initial conditions, the specific112
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outcome of the simulation depended heavily on the mutation rate and reproductive strategy imposed on the113

population (Fig. 3C). At very low mutation rates, pre-reproductive-maturation survival rates evolve to near-114

maximal levels, and very high baseline survival and reproduction probabilities often persist for extended periods115

following maturation. As mutation levels increase, the pre-maturation survival rates and the post-maturation de-116

cline in survival and reproduction shift to progressively earlier ages. At very high mutation rates, the increased117

survival and reproduction of early ages is completely abrogated, and the entire genome behaves similarly to118

the neutral loci. Hence, as the mutation rate increases, the level of selection required to maintain a favourable119

genotype increases, resulting in a shift towards more rapid ageing and shorter expected lifespans.120

In addition to the effect of mutation rates, the choice between sexual and asexual reproduction has dramatic121

effects on the evolution of ageing in the AEGIS model. Under the rates of mutation and recombination used122

in Fig. 3, asexual populations consistently exhibit lower pre-maturation survival rates and more rapid post-123

maturation declines in survival and reproduction rates than sexual populations (Fig. 3C). As a result, survival124

and reproduction rates in sexual populations typically exceed those of asexual populations evolving under125

similar conditions, and the transition from a condition of elevated early-life fitness to one in which the entire126

genome appears to evolve neutrally occurs at lower mutation rates when reproduction is asexual.127

As a result of these differences in life history evolution, the average genotypic fitness of individuals in128

sexual populations consistently evolves to a higher level than in asexual populations, with the size of the gap129

increasing as the mutation rate declines (Fig. 3D); only at very high mutation rates, at which both reproductive130

strategies give rise to near-neutral reproduction and survival phenotypes at most loci, do the fitnesses of sexual131

and asexual populations converge. Investigating genotypic fitness at different points in time under intermediate132

mutation rates (Fig. 3E) reveals the kinetics of this divergence: although both sexual and asexual populations133

begin at the same average genotypic fitness, in sexual populations the genotypic fitness progressively increases134

to a high equilibrium value, while in asexual populations a small initial increase is followed by progressive135

decay, in a manner compatible with the accumulation of irreversible mutations predicted by Muller’s ratchet136

(Muller, 1964; Felsenstein, 1974).137

Why would sexual and asexual populations evolve such different life histories under shared environmental,138

genetic and phenotypic constraints? One plausible explanation is the Hill-Robertson effect (Hill et al., 1966),139

whereby recombination and assortment enable beneficial mutations occurring in different lineages to accumu-140

late on the same chromosome. In contrast, each asexual individual is restricted to mutations occurring within its141

single line of ancestors, and improvements to population fitness can only occur through competition between142

autarkic asexual lineages. As a result, sexual populations are able to accumulate larger numbers of beneficial143

mutations in loci affecting early-life survival and reproduction relatively rapidly, and can sustain higher rates144

of survival and reproduction in the face of a given rate of negative mutations. Under this explanation, the145

differences between life histories evolved by sexual and asexual populations are therefore driven primarily by146

differences in positive, rather than purifying, selection.147

Discussion148

The evolutionary mechanisms underlying the widespread occurrence of senescence across taxa have long been a149

topic of interest among evolutionary biologists, population geneticists, and biogerontologists. Genomic surveys150

in unusually long- or short-lived species have attempted to identify the genetic changes underlying differences151

in life histories across species, typically by identifying genes exhibiting significant sequence changes in partic-152

ular taxa (Keane et al., 2015; Kim et al., 2011; Seim et al., 2013; Valenzano et al., 2015) potentially associated153

with positive selection. While experimental work of this kind has identified specific genes and conserved154
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Figure 3: Life-history evolution in the AEGIS model. (A) Explanation of genotype plots in subsequent panels.
Loci coding for survival from age 0 to maximum lifespan, M, are plotted in order on the left, while loci coding
for reproduction probabilities from reproductive maturation, a, to maximum lifespan are shown on the right of
the solid vertical line. The dashed vertical line indicates the transition from pre-maturation to post-maturation
survival loci. The red horizontal line shows the mean value of neutral loci across all populations shown on
a given pair of axes. (B) Genotype plot of a sexual population under a negative mutation rate of 0.3 per
chromosome per generation and a resource level of 10,000, showing the progressive evolution of an ageing
phenotype over 100,000 stages. (C) Grid of genotype plots showing the state of sexual and asexual populations
under a variety of resource and mutation conditions after 1 million stages. (D) Plot of average genotypic
fitness values for the same populations after 1 million stages, showing the decline in genotypic fitness with
increasing mutation rate. (E) Plot of average genotypic fitness of a sexual and an asexual population under a
negative mutation rate of 0.3 and a resource level of 10,000, over the first 100,000 stages of a simulation. In all
subfigures, a = 21, M = 70, and the rate of positive mutations is equal to 20% of the rate of negative mutations.
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molecular pathways impacting ageing and lifespan in particular species (Tacutu et al., 2017), little is known155

about how differences in life history evolve between natural populations. To date, except for a few simple156

models (Stauffer, 2007), there has been a general lack of numerical tools for simulating the evolution of life157

histories, impeding the investigation of how ageing and lifespan evolve under different selective conditions.158

AEGIS is intended to fill this gap, providing a versatile and accessible numerical tool to simulate the159

evolution of lifespan and ageing under a wide range of genetic, selective and demographic constraints. The160

AEGIS software is simple to install and use, can run on both personal computers (for simple runs) and high-161

performance clusters (for large, intensive runs) and provides ready-to-use graphical visualisations and cross-162

platform output for downstream investigations. Since survival and reproduction probabilities are explicitly163

encoded in the genomes of AEGIS populations, the model allows accurate calculation of individual and mean164

population fitness, enabling the investigation of time-dependent changes in allele frequency under different165

selective constraints.166

While AEGIS exceeds previous models in its flexibility and power, there are nevertheless a number of167

important extentions and improvements that could be made. The current AEGIS model contains no scope168

for inter-population competition, freely-evolving mutation rates, or the multi-age-affecting loci that would be169

needed to test theories of ageing relying on epistatic or pleiotropic effects. Future work on the model, both by170

the current authors and other contributors to the open-source AEGIS project, will fill these gaps and further171

improve our ability to use numerical simulation to interrogate the evolution of ageing.172
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Supplementary Material217

The AEGIS run218

Initialisation219

Every AEGIS simulation is initialised from a configuration file, which specifies the population and run param-220

eters for that simulation (the config file for Fig. 3B, for example, is shown in Fig. S1). Upon run initialisation,221

the parameters in the config file are used to derive a range of other parameters, such as the survival and re-222

production probabilities corresponding to each possible genotype, the number of loci, and the length of each223

chromosome in bits. The per-bit probability m+ of positive mutations is determined based on the user-specified224

probability m− of negative mutations and the specified positive:negative mutation ratio ν :225

m+ = ν×m− (S1)

A single genome layout is defined for all individuals, and is randomised at the start of the simulation to226

misimise the impact of interlocus linkage effects. Finally, the starting population of individuals is initialised:227

by default, the starting genomes of the population are drawn from a discrete uniform distribution with sample228

space {0,1}, while the starting age of each individual is sampled randomly from the set {0,1, ...,M}, where M229

is the maximum lifespan.230

In the case of the simulations presented in Fig. 2 and 3, the user-defined bounds on survival and reproduction231

probability (from which age-dependent probabilities are derived via Equations 1 and 2) were defined such that232

firstly, the population does not regularly go extinct over the course of the simulation, and secondly, almost all233

individuals die out before reaching maximum lifespan.234

Stage progression235

Following initialisation, the run progresses in discrete time stages. At the start of each stage, the age of each236

individual increments by 1. The available resources are then updated, and the starvation state of the population237

is determined based on the population size and the available resource level: by default, resources are constant238

and the population enters starvation if the population size exceeds the set resource level. If starvation occurs,239

the survival and reproduction probabilities corresponding to each genotype sum value are penalised based on240

the number of turns the population has been in starvation; by default the probability of death trebles each turn241

during starvation, while reproduction probability remains constant. The imposition of a starvation penalty in242

this manner limits the size of the population, and thus ensures the simulation remains practically computable,243

while also imposing competition for resources between individuals.244

Following resource updating, the population enters the reproduction phase. For each individual, the prob-245

ability of parental status is determined based on its age, the genotype sum of the reproduction locus corre-246

sponding to that age, and the user-specified probability bounds (Equation 2). Each parent is then randomly247

and independently classified as a parent or non-parent based on this probability. In asexual populations, the248

population of parents is then duplicated to generate a population of children, each of which is assigned an age249

of 0. The genome of each child is then mutated according to the probabilities of positive and negative mutations250

determined during initialisation: each 0-bit is independently mutated to a 1-bit with probability m+, and each251

1-bit is independently mutated to a 0-bit with probability m−. Finally, the population of children is then added252

to the overall population.253

In sexual populations, the population of parents is grouped into mating pairs at random; in the event of an254

odd number of parents, one parent is selected at random and does not reproduce. The two chromosomes of255
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####################################
## AEGIS v.2.1 CONFIGURATION FILE ##
####################################

## CORE PARAMETERS ##
random_seed = "" # If numeric , sets random seed to that value before execution
n_runs = 1 # Total number of independent runs
n_stages = 100000 # Total number of stages per run [int/"auto"]
n_snapshots = 101 # Points in run at which to record detailed data
path_to_seed_file = "" # Path to simulation seed file , if no seed then ""

# see README for which parameters are inherited from seed , which are
# defined anew in this config file

max_fail = 10 # Maximum number of failed attempts tolerated for each run

## OUTPUT SPECIFICATIONS ##
output_prefix = ’sex -p_10000 -m_0.3-snaps -r_init ’
output_mode = 0 # 0 = return records only , 1 = return records + final pop ,

# 2 = return records + all snapshot populations
age_dist_N = "all" # Window size around snapshots stage/generation for no_auto/auto

# for which to record age distribution [int/"all"]
# "all" saves age distribution at all stages

## STARTING PARAMETERS ##
repr_mode = ’sexual ’
res_start = 10000
start_pop = res_start # Starting population size

## RESOURCE PARAMETERS ##
res_function = lambda n,r: r # Function for updating resources; here constant
stv_function = lambda n,r: n > r # Function for identifying starvation
kill_at = 0 # stage/generation for no_auto/auto repectively at which to force

# dieoff , 0 if none

## PENALISATION ##
pen_cuml = True # Is the penalty cumulative? If True the function compounds ,

# otherwise it is always applied on the default value
surv_pen_func = lambda s_range ,n,r: 1-(1-s_range)*3
repr_pen_func = lambda r_range ,n,r: r_range

## AUTOCOMPUTING GENERATION NUMBER ##
deltabar = 0.01 # Relative error allowed for the deviation from the stationary

# distribution
scale = 1.01 # Scaling factor applied to target generation estimated for deltabar
max_stages = 500000 # Maximum number of stages to run before terminating

## SIMULATION FUNDAMENTALS: CHANGE WITH CARE ##
surv_bound = [0.98 , 0.99] # min and max death rates
repr_bound = [0,1]

n_neutral = 5 # Number of neutral loci in genome
n_base = 5 # Number of bits per locus
max_ls = 70 # Maximum lifespan (must be > repr_offset) (-1 = infinite)
maturity = 21 # Age from which an individual can reproduce (must be <= max_ls)

r_rate = 1.0 / ((2* max_ls -maturity+n_neutral)*n_base) # Recombination rate (if sexual)
m_rate = 0.3 / ((2* max_ls -maturity+n_neutral)*n_base) # Rate of negative mutations
m_ratio = 0.2 # Ratio of positive to negative mutations

g_dist = {"s": 0.5, # Proportion of 1’s in survival loci of initial genomes
"r": 0.5, # reproductive loci
"n": 0.5} # neutral loci

repr_offset = 100 # Offset for repr loci in genome map (must be <= max_ls)
neut_offset = 200 # Offset for neut loci (<= repr_offset + max_ls - maturity)

# Size of sliding windows for recording averaged statistics:
windows = {"population_size": 1000, "resources":1000, "n1":n_base}

Figure S1: An example AEGIS config file.
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each parent undergo recombination (see below), shuffling corresponding genome segments between the two256

chromosomes. After recombination, one chromosome is selected at random from each parent, and the two257

chromosomes are concatenated in a random order to generate a new child individual (assortment). Each child258

produced in this way is assigned age 0, and the genome of the child population is mutated as in the asexual case259

before being added to the overall population.260

Following reproduction, the final phase of each stage is death of individuals. As in reproduction, the261

survival probability of each individual is determined based on its age, the genotype sum of the corresponding262

locus, and the user-specified probability bounds (Equation 1), and each individual is independently classified263

as surviving or dying based on these probabilities. The population of survivors is retained for the next stage of264

the simulation, while the remaining individuals are discarded.265

The complete code of the AEGIS simulation software, including the functions for all the above operations,266

is available at github.com/valenzano-lab/aegis.267

Recombination268

Conceptually, recombination involves aligning the homologous chromosomes of an individual and randomly269

exchanging corresponding portions of sequence between each chromosome pair. Computationally, this process270

can be simulated by randomly determining recombination sites along the length of the chromosome (with271

some independent probability r for each position to be selected as a recombination site) and exchanging the272

corresponding sequence on each chromosome between each site and the end of the chromosome (Fig. S2A).273

However, rather than actually performing a large number of exchange operations, it is computationally far274

more efficient to simply count the number of recombinations affecting each position along the chromosome275

and exchange only those portions affected by an odd number of recombination events (Fig. S2B).276

In order to avoid a directional bias in recombination (in which, for example, positions at the end of the277

chromosome are much more likely to be transferred between chromosomes than positions at the beginning),278

it is also important to randomly determine the orientation of each recombination event, such that some events279

affect sequence between the recombination site and the end of the chromosome and others affect sequence280

between the start of the chromosome and the recombination site (Fig. S2C).281

In AEGIS, therefore, recombination in sexual populations is implemented as two independent processes,282

one producing forward-oriented recombination events and the other reverse-oriented ones. At the beginning283

of the recombination process, forward and reverse recombination sites are determined randomly, with each284

site having an independent r
2 probability of being selected as a forward site and the same probability of being285

selected as a reverse site. Each event affects all chromosome positions between the recombination site and the286

appropriate end of the chromosome, inclusive of the recombination site. The number of recombination events287

affecting each chromosomal position is then quantified, and regions of sequence affected by an odd number of288

events are exchanged between the two chromosomes (Fig. S2B and S2C).289

At present, interference between recombination sites is not implemented in AEGIS. Modification of the290

recombination algorithm to permit different interference functions could be implemented in a future extension291

of the software.292

Analytic behaviour of the neutral loci293

A locus in the AEGIS genome without a phenotypic (i.e. reproduction or survival) effect is referred to as294

neutral. As these loci are not affected by selection on survival or reproduction rates, their evolution over time is295

relatively easy to model analytically, especially in the asexual case, and provides some useful predictions about296
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A
* ** * ** * *** **

B
* ** * *** **

10 2 3

C
* ** * ** * ** * **

Figure S2: Recombination in the AEGIS model. (A) In a naïve implementation of chromosomal recombination,
recombination sites are determined at random and corresponding chromosomal sequences are exchanged at
each site in turn. (B) In a more efficient implementation, the number of recombination events affecting each
chromosomal position is counted, and regions affected by an odd number of events are exchanged. (C) In
order to avoid directional bias in the probability of a given chromosomal position being exchanged between
chromosomes, forward- and reverse-oriented recombination events must occur with equal probability.

the behaviour of the model over time.297

Unlike with survival and reproduction loci, the sum over the bits in a neutral locus has no phenotypic298

effect; as a result, in the absence of linkage, the evolution of each bit in the locus can be assumed to evolve299

independently.300

Let µ denote the rate of negative (1→ 0) mutations and ν the ratio of positive to negative mutations.301

The rate of positive (0→ 1) mutations is then given by µ · ν . These transition probabilities are memoryless:302

conditional on the state of the bit, the probability of a transition is independent of its past states. The evolution303

of each bit in the neutral locus can therefore be modelled as a two-state discrete-time Markov chain, with304

transition matrix305

A =

[
1−β β

α 1−α

]
(S2)

where α = µ , β = µν , the first row and column indicate state 0 and the second row and column indicate state306

1. At generation k, the state distribution of the Markov chain is therefore given by307

ϕk = ϕo ·Ak = ϕ0 ·

(
1

α +β

[
α β

α β

]
+

(1−α−β )k

α +β

[
β −β

−α α

])
(S3)

After many generations of mutation, the second term within the parentheses tends towards zero, and the Markov308

chain approaches its limiting distribution:309

ζ =
[

α

α+β
, β

α+β

]
(S4)

As a result, the expected value of the bits in a neutral locus converges over time to310

N = E(bit value) = 0 · α

α +β
+1 · β

α +β
=

β

α +β
=

µν

µ +µν
=

ν

1+ν
(S5)

The equilibrium mean value of neutral loci, therefore, is independent of the mutation rate, and depends only311

on the ratio between positive and negative mutations. When ν = 0.2, for example, N converges to a value of312

1
6 ≈ 0.167, as can be observed in the genotype plots in Fig. 3C.313

We can go further and calculate the degree to which the average value pk of the neutral locus at any gener-314
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ation k deviates from this equilibrium value N :315

pk = (ϕk)1 =

(
ϕ0 ·

(
1

α +β

[
α β

α β

]
+

(1−α−β )k

α +β

[
β −β

−α α

]))
1

=

(
1

α +β
·
[
1− p0 p0

]
·

[
α β

α β

])
1

+

(
(1−α−β )k

α +β
·
[
1− p0 p0

]
·

[
β −β

−α α

])
1

=

(
1

α +β
·
[
α β

])
1
+

(
(1−α−β )k

α +β
·
[
(1− p0)β − p0α p0α− (1− p0)β

])
1

=
β

α +β
+

(1−α−β )k · (p0α− (1− p0)β )

α +β

(S6)

⇒ |pk−N |=
∣∣∣∣ β

α +β
+

(1−α−β )k · (p0α− (1− p0)β )

α +β
− β

α +β

∣∣∣∣
=

∣∣∣∣(1−α−β )k · (p0α− (1− p0)β )

α +β

∣∣∣∣= 1
α +β

∣∣(1−α−β )k · (p0α− (1− p0)β )
∣∣

=
1

α +β
· |1−α−β |k · |p0(α +β )−β |

=
1

µ +µν
· |1−µ−µν |k · |p0(µ +µν)−µν |

=
1

1+ν
· |1−µ(1+ν)|k · |p0(1+ν)−ν |

(S7)

For any deviation δ between p0 and N , therefore, we can calculate the earliest generation K for which |pk−316

N |< δ :317

1
1+ν

· |1−µ(1+ν)|K · |p0(1+ν)−ν |< δ

⇒ |1−µ(1+ν)|K < δ
1+ν

|p0(1+ν)−ν |

⇒ K · log(|1−µ(1+ν)|)< log
(

δ
1+ν

|p0(1+ν)−ν |

)
⇒ K > log

(
δ

1+ν

|p0(1+ν)−ν |
− |1−µ(1+ν)|

)
(S8)

Unlike the value of N itself, therefore, the number of generations required for pk to converge to within a given318

distance of N does depend on the mutation rate µ , with higher values of µ resulting in faster convergence319

times.320

The above calculations provide an alternative method for specifying the number of stages in an AEGIS321

run: rather than explicitly specifying a total number of stages, one can specify the desired value of δ , and the322

simulation will run until all individuals in the population are at least K generations removed from the starting323

population, then stop. In principle, this provides a more reliable method for ensuring that the population324

has evolved to a sufficient state of equilibrium; however, for simplicity, and due to the extra complications325

introduced by the sexual case (which are not covered here), we have restricted ourselves in this publication to326

simulations running for a fixed number of stages.327
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