Title: Co-occurring alterations in the RAS-MAPK pathway limit response to MET inhibitor treatment in *MET* exon 14 skipping mutation positive lung cancer

Authors: Julia K. Rotow¹,², Philippe Gui¹,², Wei Wu¹,², Victoria M. Raymond³, Richard B. Lanman³, Frederic J. Kaye⁴, Nir Peled⁵, Ferran Fece de la Cruz⁶, Brandon Nadres⁶, Ryan B. Corcoran⁶, Iwei Yeh²,⁷, Boris C. Bastian²,⁷, Petr Starostik⁸, Kimberly Newsom⁸, Victor R. Olivas¹, Alexander M. Wolff⁹, James S. Fraser⁹, Eric A. Collisson¹,², Caroline E. McCoach¹,², D. Ross Camidge¹⁰, Jose Pacheco¹⁰, Lyudmila Bazhenova¹¹, Tianhong Li¹², Trever G. Bivona¹,²,¹³ and Collin M. Blakely¹,²,¹³

¹Department of Medicine, University of California, San Francisco, ²Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, ³Guardant Health, Inc, ⁴Department of Medicine, University of Florida, ⁵Soroka Medical Center, Ben-Gurion University, Beer-Sheva, Israel ⁶Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, ⁷Departments of Dermatology and Pathology, and Clinical Cancer Genomics Laboratory, University of California, San Francisco, ⁸Department of Pathology Immunology and Laboratory Medicine, University of Florida, ⁹Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, ¹⁰University of Colorado, ¹¹University of California, San Diego, ¹²Department of Internal Medicine, University of California, Davis, ¹³Co-corresponding authors.

Correspondence to: Collin M. Blakely (Collin.blakely@ucsf.edu) or Trever G. Bivona (trever.bivona@ucsf.edu)
600 16th Street, Room N232
San Francisco, CA 94143
Phone 415-502-0237

Running Title: RAS-MAPK pathway at MET TKI resistance in *METex14* NSCLC

Statement of Translational Relevance: This report describes targeted sequencing of the largest reported cohort of advanced-stage non-small cell lung cancers (NSCLCs) with a *MET* exon 14 skipping (*METex14*) mutation. While MET tyrosine kinase inhibitors (TKIs) are active in *METex14*-mutated NSCLC, response rates are lower than those seen to TKI therapy in other forms of oncogene-driven NSCLC. The data presented here uncover enrichment for both primary and acquired RAS-MAPK pathway alterations in *METex14*-mutated NSCLC, events that may limit initial response magnitude or duration to MET TKI treatment. Combined MET plus MEK inhibitor treatment can overcome RAS-MAPK pathway-mediated resistance, suggesting a novel polytherapy strategy for evaluation in prospective clinical trials.
Disclosures: B.C.B is a consultant to Lilly. E.A.C. is a consultant/advisor to Celgene, Qiagen, Guardant Health and Takeda and has received research funding from Merck KgA, Ignyta, Gilead, and Daiichi Sankyo and is a shareholder in Clara Health, Illumina, Guardant Health, Tatara Therapeutics and Pacific Biosciences. C.E.M has received honoraria from Honoraria from Guardant, Takeda, and Novartis. C.M.B. is a consultant to Revolution Medicines and Jazz pharmaceuticals, and has received research funding from Novartis, AstraZeneca, MedImmune, Ignyta, Mirati, Spectrum, and Clovis Oncology. J.S.F. is a consultant, has received research funding, and has a financial stake in Relay Therapeutics. R.B.C. is a consultant/advisory board member for Amgen, Astex Pharmaceuticals, Avidity Biosciences, BMS, Fog Pharma, Genentech, LOXO, Merrimack, N-of-one, Roche, Spectrum Pharmaceuticals, Symphogen, Taiho, and Warp Drive Bio and has received research funding from AstraZeneca and Sanofi. JP is a consult to AstraZeneca and Novartis. Has received honoraria from Genentech and Takeda. Has received research funding from Pfizer. T.L. has received honoraria from Foundation Medicine and research funding from Pfizer, Hengrui, and Merck. T.G.B is a consultant/advisor to Novartis, AstraZeneca, Revolution Medicines, Takeda, and Array Biopharma and has received research funding from Novartis, Revolution Medicines, and Ignyta. V.M.R. and R.B.L are employees and shareholders of Guardant Health, Inc.

Word Count: 2570

Figures: 4
Abstract:

PURPOSE: While patients with advanced-stage non-small cell lung cancers (NSCLCs) harboring MET exon 14 skipping mutations (METex14) often benefit from MET tyrosine kinase inhibitor (TKI) treatment, clinical benefit is limited by primary and acquired drug resistance. The molecular basis for this resistance remains incompletely understood.

METHODS: Targeted sequencing analysis was performed on cell-free circulating tumor DNA obtained from 289 patients with advanced-stage METex14-mutated NSCLC.

RESULTS: Prominent co-occurring RAS-MAPK pathway gene alterations (e.g. in KRAS, NF1) were detected in NSCLCs with METex14 skipping alterations as compared to EGFR-mutated NSCLCs. There was an association between decreased MET TKI treatment response and RAS-MAPK pathway co-occurring alterations. In a preclinical model expressing a canonical METex14 mutation, KRAS overexpression or NF1 downregulation hyperactivated MAPK signaling to promote MET TKI resistance. This resistance was overcome by co-treatment with crizotinib and the MEK inhibitor trametinib.

CONCLUSION: Our study provides a genomic landscape of co-occurring alterations in advanced-stage METex14-mutated NSCLC and suggests a potential combination therapy strategy targeting MAPK pathway signaling to enhance clinical outcomes.

Introduction:

Somatic MET mutations leading to splicing-mediated loss of exon 14 and subsequent MET overexpression are an emerging therapeutic target present in 2-4% of lung adenocarcinomas (1,2). MET tyrosine kinase inhibitor (TKI) treatment was associated with improved overall survival in a retrospective study of patients with METex14-mutated NSCLC (3). In ongoing prospective studies, response rates of 32%, to the multi-kinase inhibitor crizotinib, 41%, to the MET TKI tepotinib, and up to 72% for treatment-naïve patients to the MET TKI capmatinib have been reported (4-6). Crizotinib has recently received FDA breakthrough designation for use in the treatment of METex14-mutated NSCLC.

While MET remains an attractive therapeutic target, both primary and acquired resistance limit the long-term survival of patients with METex14-mutated NSCLC. Second-site MET mutations and downstream signaling reactivation via acquired KRAS amplification have been reported at acquired resistance to MET TKI therapy, and may inform treatment decisions (7-10). By contrast, the mechanisms mediating both primary MET TKI resistance and tumor cell persistence during initial MET TKI treatment remain largely undefined, as does the full landscape of alterations promoting acquired resistance.

Recent studies show that advanced-stage NSCLCs often harbor multiple oncogenic alterations, which may impact response to targeted therapies (11-13). Analysis of cell-free circulating tumor DNA (cfDNA) utilizing next-generation sequencing (NGS) provides one avenue to describe the genomic landscape within a cancer patient and offers the potential to capture genomic changes reflecting heterogeneity across distinct metastatic...
tumor sites (11,14). A more detailed understanding of the mutational landscape that co-
exists with oncogenic \textit{MET} alterations in NSCLC may facilitate an improved
understanding of the determinants of MET TKI response and identify rational polytherapy
strategies to improve clinical outcomes.

Here, we describe the spectrum of co-occurring genomic alterations observed within the
cfDNA of patients with \textit{METex14}-mutated, advanced-stage NSCLC and identify
prominent co-alteration of RAS pathway genes as a contributing factor to disease
progression.

\textbf{Results:}

\textbf{Co-occurring genomic alterations are common in advanced-stage METex14-
mutated lung cancer}

We analyzed a cohort of 289 patients with advanced-stage NSCLC who had a \textit{METex14}
mutation identified upon cfDNA analysis of 68 cancer-relevant genes using a clinically
validated assay (Guardant360). This is the largest reported cohort to-date describing the
genomic landscape of advanced-stage \textit{METex14}-mutated NSCLC. We evaluated the
frequency with which \textit{METex14} mutations co-occur with other cancer-associated
mutations (Supplemental Table 1) (11,15). Synonymous mutations and those with
predicted neutral or unknown functional impact were excluded, as previously described
(11), as were mutations previously associated with clonal hematopoiesis (16). 86.5% of
samples contained co-occurring genomic alterations, with a mean of 2.74 alterations per
sample (range 0-22), in addition to the \textit{METex14} mutation. The most commonly altered
genes, co-occurring with the \textit{METex14} mutation in at least 10% of patients, were
\textit{TP53} (49.5\% of patients), \textit{EGFR} (16.3\%), \textit{NF1} (\textit{neurofibromatosis-1}) (15.6\%), \textit{BRAF} (10.7\%),
and \textit{CDK4} (10.4\%). Additional \textit{MET} gene alterations were also common in this patient
population, in which 9.3\% of patients had co-occurring \textit{MET} copy number gain and 12.5\%
had a co-occurring second-site \textit{MET} mutation (Figure 1A).

Seventeen of 34 second-site \textit{MET} mutations were located in the tyrosine kinase domain.
All identified \textit{MET} second-site mutations, regardless of predicted functional impact, were
included in this analysis. Of these, fourteen (G1163R, L1195V/F, F1200I, D1228H/N/Y,
and Y1230H/S) were located at residues previously associated with MET TKI resistance
(7-9,17-19). Nine of these occurred in patients with known prior MET TKI exposure and
five in patients with unknown prior treatment history. The remaining three mutations
(H1094Y, R1336W, and I1084L) occurred in patients without available prior treatment
history. While the \textit{MET} H1094Y mutation is known to lead to MET activation (20), the
effects of the other two \textit{MET} mutations remain uncharacterized.

The co-occurrence of other established oncogenic driver alterations (\textit{KRAS}, \textit{EGFR}, \textit{ALK},
\textit{ROS-1}, \textit{BRAF}) was uncommon except for the presence of activating \textit{KRAS} mutations in
5.2\% of patients (G12C/D/S/V 3.5\%, G13C 1\%, Q22K 0.3\%, and Q61H 0.3\%), canonical
\textit{EGFR}-activating mutations in 3.5\% (del19 3.1\%, L858R 0.7\%, T790M 2\%), and an \textit{ALK}
gene rearrangement in 0.7\%. In addition, a \textit{HER2} exon 20 insertion was detected in one
In a patient with known clinical outcomes data, with both EGFR del19/EGFR T790M mutations and a METex14 mutation, there was partial response (RECIST 1.1) to treatment with the EGFR TKI osimertinib, which lasted 13.8 months. While in the overall dataset the METex14 mutation detected was predominantly clonal (80.6% of samples), in samples with a detectable co-occurring oncogenic driver alteration the METex14 alteration was more likely to be subclonal (21.4% of samples clonal, p-value <0.0001). The converse was also true; co-occurring established oncogenic driver mutations that were detected were more likely to be clonal than the other detected co-occurring genomic alterations (68.6% versus 46.3%, p-value = 0.0144) (Supplemental Figure S1).

RAS pathway alterations are more common in METex14-mutated NSCLC than in EGFR-mutated NSCLC

To understand how the genomic landscape in advanced-stage METex14-mutated NSCLC compares to NSCLCs with a different targetable oncogenic driver mutation associated with high upfront response rates to TKI therapy, we used identical cfDNA profiling to compare a cohort of patients with known METex14-mutated NSCLC to a previously unpublished, independent cohort of 1653 samples from 1489 patients with advanced-stage EGFR-mutant (del19, L858R) NSCLC (Supplemental Table 1). This comparison demonstrated differential frequency of co-occurring genomic alterations in 17 genes (Figure 2A). In the METex14-mutated cohort, co-occurring alterations in NF1, CDK4, STK11, ALK, KRAS, ATM, CDKN2A, NRAS, TSC1, and ESR1 were more commonly identified. In the EGFR-mutated cohort, co-occurring alterations in AR, ERBB2, CCNE1, PIK3CA, BRAF, CTNNB1, and MYC were more commonly identified, independently validating our prior findings identifying these as common co-occurring alterations in EGFR-mutated NSCLC (11). Among the 10 genes with a greater frequency of co-occurring genomic alteration in patients with a METex14 mutation, three (NF1, KRAS, and NRAS) are key components of the RAS-MAPK signaling pathway.

A propensity towards genomic alterations promoting downstream hyperactivation of the RAS pathway may favor primary resistance to TKI therapy and help explain the comparatively lower TKI response rates in METex14-mutated NSCLC. Examination of the subset of cfDNA samples obtained from patients with METex14-mutated NSCLC prior to known MET TKI treatment (n=61) demonstrated high rates of genomic alterations capable of promoting RAS-MAPK pathway activation (Figures 2B, 2C). When compared to a previously published cohort (11) of cfDNA samples from TKI-naïve patients with EGFR-mutated NSCLC (n=20), RAS-MAPK pathway alterations that were detected before treatment remained more common in METex14-mutated NSCLC (35.2% vs 10%, p-value = 0.042).

Both MET second-site mutations and RAS pathway alterations are newly detectable following MET TKI treatment.
We identified twelve patients with cfDNA obtained following treatment with crizotinib and an available matched sample obtained prior to known crizotinib exposure (Figure 3A, B, Supplemental Table 3). Details regarding one patient (patient #5) in this dataset have previously been published by other groups (7,9).

Newly detectable MET second-site mutations (Y1230H/S, D1228H/N, F1200I, L1195V) were detected in four of twelve patients following MET TKI treatment (Figure 3C, Supplemental Table 3). While some of these mutations have been reported at acquired MET TKI resistance (7-9,17-19), the MET F1200I has not yet been described in a patient sample. Identification of specific acquired second-site mutations at resistance to MET TKI therapy may inform treatment decisions. MET TKIs can be classified as type I TKIs (e.g. crizotinib, capmatinib) or type II TKIs (e.g. cabozantinib) based on the kinase domain conformation to which they bind and differ in their activity against second-site MET mutations. For example, the MET Y1230X and D1228X mutations develop at resistance to type I MET TKIs and may predict response to subsequent type II MET TKI treatment (7-9,17-19). Conversely, the MET L1195V mutation has been reported at resistance to type II MET TKI treatment (7).

The development of acquired MET F1200 mutations as a resistance mechanism to MET TKIs has previously been predicted in a preclinical drug resistance screen, in which MET F1200 mutations were the dominant resistance mechanism to a type II MET TKI and were observed, though less common, at resistance to a type I MET TKI (21). Molecular modeling studies suggest that MET F1200I alters the conformation of the kinase domain such that it interferes with both the binding of type II MET TKIs within the DFG-out binding pocket, and to a lesser extent, may promote type I MET TKI resistance through disruption of an autoinhibitory MET conformation (Supplemental Figure S2) (7). Moreover, the F1200 residue is conserved across multiple tyrosine kinases, including ALK, ROS1, NTRK, and ABL, in which mutations at the corresponding residue have been linked to TKI resistance (Supplemental Table 4) (21-27).

In contrast, parallel and downstream pathway alterations with the potential to provide alternative input for RAS-MAPK pathway signaling were newly detectable in eight of twelve patients following MET TKI treatment as compared to cfDNA samples obtained prior to MET TKI treatment (Figure 3C, Supplemental Table 3). In addition to two patients with KRAS amplification (Figure 4), which was recently implicated in MET TKI resistance (10), an NF1 frameshift mutation, and copy number gain in EGFR and KIT were identified. In one patient with acquired KRAS amplification, addition of the MEK inhibitor trametinib to crizotinib treatment rapidly decreased detectable circulating tumor cfDNA. In the second patient with acquired KRAS amplification, an activating KRAS G12D mutation was also present within a progressing lesion on crizotinib. Further details regarding the two patients with acquired KRAS amplification are presented in Supplemental Figure 3.
MEK inhibition overcomes crizotinib resistance induced by RAS-MAPK pathway alterations

The clinical data suggested that preexisting or acquired genomic changes leading to RAS-MAPK pathway activation (e.g. in KRAS, NF1) may limit response and induce resistance to MET TKI treatment in METex14-mutated NSCLC. In one patient with KRAS amplification detectable at acquired resistance to crizotinib treatment, combination treatment off-label with both crizotinib (250 mg po BID) and trametinib (2 mg po daily) resulted in rapid loss of both detectable METex14 and KRAS amplification by cfDNA suggestive of treatment response. However, despite molecular evidence of tumor response this combination therapy was poorly tolerated in the context of overall clinical decline, with fatigue, fluid retention, and diarrhea. Despite dose reduction to trametinib 2 mg every other day, the patient expired before radiographic response assessment (Figure S3).

To assess the functional impact of RAS-MAPK pathway hyperactivation on sensitivity to MET TKI treatment, we engineered a new Ba/F3 cell-based system. The IL-3 dependent Ba/F3 cell line, while not of epithelial origin, is an established system to assess oncogenic capacity and putative drug resistance mechanisms (28,29). Stable expression of human METex14 in Ba/F3 cells in the presence of the MET ligand human HGF (Hepatocyte Growth Factor) induced IL-3-independent growth and increased downstream Erk phosphorylation compared to expression of wild type MET (Figure 4D, 4F). METex14-mutant expressing cells were sensitive to treatment with crizotinib, as measured by reduced cell growth in standard cell viability assays (Figure S4).

Overexpression of wild type KRAS or knockdown of wild type NF1 in METex14-expressing Ba/F3 cells induced resistance to crizotinib (Figure 4A, 4D). Overexpression of wild type KRAS increased the IC50 (inhibitory concentration of drug that decreases cell viability to 50%) to crizotinib from 0.16 μM to 1.68 μM (p-value < 0.001) (Figure 4A, 4G) and NF1 downregulation increased the IC50 to crizotinib from 0.16 μM to 0.75 μM (p-value < 0.001) (Figure 4D, 4H). Treatment of cells harboring both METex14 and KRAS overexpression with the combination of crizotinib and the MEK inhibitor trametinib in order to block both MET signaling and downstream MAPK pathway signaling restored sensitivity to treatment (crizotinib IC50 of 1.68 μM in the absence of trametinib versus 0.25 μM with trametinib co-treatment, p-value < 0.001) (Figure 4B, 4G). Similarly, co-treatment of cells harboring both METex14 and NF1 downregulation with both trametinib and crizotinib restored sensitivity to treatment (crizotinib monotherapy IC50 0.75 μM versus 0.18 μM upon addition of trametinib, p-value < 0.001) (Figure 4E, 4H). The selected trametinib dose modestly reduced but did not eliminate cell growth in the absence of crizotinib (Figure S4). Immunoblotting demonstrated sustained Erk phosphorylation despite crizotinib treatment in samples with KRAS overexpression or NF1 downregulation, which was abrogated by the addition of trametinib (Figure 4C, 4F). In both genomic contexts, combination treatment was associated with increased levels of
cleaved PARP, indicative of apoptosis, which was absent with monotherapy (Figure 4C, 4F).

Discussion:
The challenge of therapeutic resistance in patients harboring METex14 mutations is of increasing clinical relevance given the emergence of MET-targeted therapies into the clinic. While off-label use of MET TKI therapy has demonstrated clinical activity, objective reported response rates of approximately 30-70% as reported in early studies (4-6) are generally lower than those seen in response to TKI treatment in NSCLC driven by other canonical oncogenes (EGFR, ALK), where response rates greater than 80% have been reported (30,31).

RAS-MAPK pathway hyperactivation has an established role in promoting resistance to EGFR, ALK, BRAF, and ROS1 targeted therapies via diverse mechanisms including KRAS amplification and KRAS, BRAF, and NF1 mutations (32-40). While KRAS amplification has also recently been reported at acquired MET TKI resistance in METex14-mutated NSCLC (10), the broader role of compensatory genomic events providing signaling pathway re-activation remains less well-understood in METex14-mutated NSCLC. Here, we describe frequent co-occurring RAS-MAPK pathway alterations in METex14-mutated NSCLC as compared to EGFR-mutated NSCLC. RAS-MAPK pathway alterations were detected even in TKI-naïve patients; our preclinical and clinical data suggest these co-occurring alterations may promote resistance to MET TKI therapy. More specifically, RAS-MAPK pathway alterations when present as co-occurring genomic events in METex14-mutated NSCLC prior to MET TKI treatment may induce not only primary resistance but also contribute to tumor cell persistence, thus limiting response magnitude and potentially duration during initial treatment. This notion is supported by our findings in the Ba/F3 preclinical system we engineered. We also describe the spectrum and relative frequencies of newly detectable genomic alterations following MET TKI treatment as measured by cfDNA, which included alterations within the RAS-MAPK pathway or within RTKs upstream of the RAS-MAPK pathway (41) in two thirds of patients. While our reported dataset is limited by lack of complete clinical outcomes data, it highlights the importance of developing future patient cohorts incorporating outcomes data to link the understanding of the genomic landscape to treatment response and prognosis, particularly for those patients with less common or emerging driver mutations.

Clinically, while many MET second-site mutations acquired during type I MET TKI (e.g. crizotinib) treatment may be overcome by use of type II MET TKIs (e.g. cabozantinib) (7-9), the genomic alterations favoring RAS-MAPK pathway activation described here will likely require a combination therapy strategy. In our METex14-mutated preclinical model system, RAS-MAPK pathway hyperactivation via KRAS overexpression or NF1 downregulation induced MET TKI resistance that was overcome by the addition of the
MEK inhibitor trametinib. Changes in the cfDNA profile suggested early evidence of molecular response to treatment with a crizotinib and trametinib combination therapy in a patient with acquired KRAS amplification, but treatment was poorly tolerated. Future efforts to develop combination therapies against these targets will require attention to agent selection, dosing, and scheduling to achieve both tolerability and efficacy.

This study enhances the understanding of the role of co-occurring genomic alterations in METex14-mutated NSCLC, with implications for the development of personalized therapeutic strategies to enhance the initial response magnitude and duration to MET TKI and delay or overcome acquired resistance to improve clinical outcomes. Given the prominence of genomic alterations favoring RAS-MAPK pathway hyperactivation, the addition of a MEK or potentially an ERK inhibitor to MET TKI therapy is a promising combination therapy strategy which warrants further prospective study.

Methods:

Patients: Patient samples were obtained and analyzed in accordance with IRB-approved protocols. The cfDNA analysis included 332 consecutive samples from 289 patients with advanced (stage IIIIB/IV) non-small cell lung cancer with a METex14 mutation obtained between October 2015 and March 2018, and 1653 consecutively tested samples from 1489 patients with EGFR-mutated NSCLC (L858R and del19) obtained between April 2016 and May 2017, as well as a previously published (11) cohort of TKI-naïve EGFR-mutated NSCLC.

Cell lines and reagents: Ba/F3 cells were purchased from ATCC (ATCC® HB-283™) and maintained in culture for a total of approximately 2-3 months in DMEM supplemented with 1 ng/mL IL-3 (Peprotech). Mycoplasma testing was not performed. Retrovirus was generated using TransIT-LT1 transfection reagent (Mirus). Cells were infected with filtered retrovirus, expressing either mCherry, human MET^{WT} or human MET^{ex14} in a pBABE-puro vector backbone as previously described (9) and selected in puromycin (2 μg/mL). Expression was confirmed by immunoblotting. KRAS-overexpressing cells were obtained by retroviral infection with a pBABE-hygro KRAS4B construct and selected in hygromycin (800 μg/mL). Knockdown of NF1 was achieved by lentiviral transduction of the following sequence: 5'-CCGGGCAACCTTAACCTCTCTTATCTCGAGATTAGAGGTATGTTGCTATTG-3', expressed from a pLKO.1-hygro plasmid backbone (Addgene #24150). Three days after lentiviral transduction, cells were selected via treatment with hygromycin B and knockdown was confirmed by immunoblotting. All drugs were purchased from Selleck Chemicals.

Transformation and cell proliferation assays: Transformation assay was performed by removing IL-3 through centrifugation and adding 50 ng/mL human HGF (Peprotech 100-39H). For proliferation assays cells were seeded in 96-well plates at 5,000 cells/well.
and the following day were exposed to crizotinib (Selleck Chemicals, #S1068) at 0 to 10
µM and/or trametinib (Selleck Chemicals, #S2673) at 0.01 µM. After 72 hours of drug
exposure, CellTiter-Glo (Promega) reagent was added and luminescence was measured
on a Spectramax spectrophotometer (Molecular Devices, Sunnyvale, CA, USA)
according the manufacturer's instructions. Data are presented as percentage of viable
cells compared with control cells (vehicle treatment).

Immunoblotting: Cells were washed in PBS and lysed with 25 mM Tris-HCL (pH 7.6),
150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS supplemented with Halt
Protease Inhibitor Cocktail (Thermo Fisher Scientific) and Halt Phosphatase Inhibitor
Cocktail (Thermo Fisher Scientific). Lysates were separated in a 4%–15% SDS-PAGE
gel and transferred onto a nitrocellulose membrane (Bio-Rad). Membranes were blocked
with 5% fetal bovine serum (FBS) in Tris-buffered saline (TBS) containing 0.1% Tween
and incubated with the appropriate antibodies. Detection was performed via ECL Prime
(Amersham Biosciences). Antibodies against the following were obtained from Cell
Signaling Technology (Danvers, MA, USA) and were used at a dilution of 1:1000: MET
(#3148), p-MET Y1349 (#3121), pMEK S217/221 (#9121), ERK1/2 (#3493), p-ERK1/2
T202/Y204 (#9106), HSP90 (#4874), PARP (#9546), NF1 (#14623), horseradish
peroxidase (HRP)-conjugated anti-mouse (#7076) and HRP-conjugated anti-rabbit
(#7074). The following antibody was obtained from EMD Millipore (Burlington, MA, USA):
RAS (05-516, 1:2000 dilution). Detection was performed via ECL Prime (Amersham
Biosciences).

Cell-free DNA analysis: Samples were shipped to a Clinical Laboratory Improvement
Act (CLIA)-certified, College of American Pathologists–accredited laboratory (Guardant
Health, Redwood City, CA). cfDNA was extracted from whole blood collected in 10-mL
Streck tubes. After double centrifugation, 5–30 ng of cfDNA was isolated for digital
sequencing of either a 70 or 73-gene panel (Supplementary Table 6) as previously
described (15). Only those genes in common to these two panels were included in
subsequent analysis. Nonsynonymous mutations were further processed with the R
statistical computing program (version 3.3). Variants with unknown or neutral predicted
functional significance were filtered prior to analysis as previously described (11).
Mutations previously reported as associated with clonal hematopoiesis were also
excluded (16). Assignment as clonal or subclonal was performed by normalized
mutational allele frequency to percentage detected using a cut off of 0.2 as previously
described(11). Residue numbering was standardized to MET UniProtKB-P08581.

Next Generation Sequencing: Tumor sample next generation sequencing (NGS) was
performed in CLIA-approved laboratories. The Foundation One and Foundation ACT
assays are commercially available assays which were used in the clinical standard-of-
care setting. The UCSF500 assay sequences 479 cancer-associated genes to target
200X coverage, utilizing sequencing of a PBMC sample, target 100X coverage, as a
control. The University of Florida GatorSeq NGS assay, utilized for both tumor tissue and
PBMC analysis, performs sequencing of 76 cancer-associated genes with target 500X
coverage (Supplemental Table 2). Germline mutations were subtracted utilizing sequencing of buccal swab samples to a target depth of 100X.

Droplet Digital PCR: Isolated genomic DNA extracted from FFPE was amplified using ddPCR Supermix for Probes (Bio-Rad) using KRAS and MET assays (PrimePCR ddPCR Mutation Assay, Bio-Rad, and custom-designed). DNA template (8 µL) was added to 10 µL of ddPCR Supermix for Probes (Bio-Rad) and 2 µL of the primer/probe mixture. This 20-µL reaction mix was added to a DG8 cartridge together with 70 µL of Droplet Generation Oil for Probes (Bio-Rad) and used for droplet generation. Droplets were then transferred to a 96-well plate (Eppendorf) and then thermal cycled with the following conditions: 5 minutes at 95°C, 40 cycles of 94°C for 30 seconds, 55°C for 1 minute followed by 98°C for 10 minutes (ramp rate 2°C/second). Droplets were analyzed with the QX200 Droplet Reader (Bio-Rad) for fluorescent measurement of FAM and HEX probes. Gating was performed based on positive and negative controls, and mutant populations were identified. The ddPCR data were analyzed with QuantaSoft analysis software (Bio-Rad) to obtain fractional abundance of the mutant DNA alleles in the wild-type (WT)/normal background. The quantification of the target molecule was presented as number of total copies (mutant plus WT) per sample in each reaction. Fractional abundance is calculated as follows: F.A. % = (Nmut/(Nmut + Nwt)) × 100), where Nmut is number of mutant events and Nwt is number of WT events per reaction. Multiple replicates were performed for each sample. ddPCR analysis of normal control genomic DNA (gene fragment obtained from IDT) and no DNA template (water) controls was performed in parallel with all samples, including multiple replicates as contamination-free controls.

Statistical Analysis: Pairwise sample group comparisons for cfDNA analysis were carried out using a two-tailed Fisher’s exact t-test, with Benjamini-Hochberg correction for multiple comparisons, using a false discovery rate of less than 0.2. For cell viability curves, comparisons were performed using the two-sided student t-test, with significance threshold of p-value < 0.05.

Acknowledgements:

The authors acknowledge funding support from NIH / NCI U54CA224068 (to R.B.C.); R01CA227807, R01CA239604, R01CA230263 (to E.A.C.); NIH / NCI U01CA217882, NIH / NCI U54CA224081, NIH / NCI R01CA204302, NIH / NCI R01CA211052, NIH / NCI R01CA169338, and the Pew-Stewart Foundations (to T.G.B.); and the Damon Runyon Cancer Research Foundation, Doris Duke Charitable Foundation, V Foundation, and American Cancer Society to C.M.B.
Figure 1. Co-occurring genomic alterations are common in non-small cell lung cancer (NSCLC) with a \textit{MET} exon 14 mutation. A. Distribution of co-occurring genomic alterations in a targeted list of cancer-associated genes (Supplemental Table 2) as detected by cfDNA in 332 samples from 289 patients with advanced-stage \textit{MET} ex14-mutated NSCLC. Results are filtered to exclude synonymous variants, variants predicted to result in an unknown or neutral function impact (via COSMIC v83, GENIE, ClinVar, and mutation assessor prediction algorithms) and mutations previously reported as associated with clonal hematopoiesis. Only genomic alterations occurring at a 2% or greater frequency are displayed. CNG, copy number gain.
Figure 2. RAS-MAPK pathway alterations are common in METex14-mutated NSCLC

A. Comparative frequency of genomic alterations as measured by cfDNA in a cohort of advanced-stage METex14 NSCLC patients (n=289) compared to an independent cohort of patients (n=1489) with a known canonical EGFR activating mutation (EGFR exon 19 deletions, EGFR L858R). Gene alterations with a statistically significant difference are displayed. q-values calculated by two-tailed Fisher’s exact test with Benjamini-Hochberg multiple hypothesis testing for false discovery rate < 0.2.

B. Spectrum of gene alterations detectable by cfDNA in the subset of METex14-mutated NSCLC patients (n=61) without
prior MET TKI treatment. Genomic alterations with a frequency of greater than 2% displayed. C. Genomic alterations detectable by cfDNA in the same patient cohort classified by functional category. CNG, copy number gain.
Figure 3. *MET* second-site and bypass pathway alterations are newly detectable after MET TKI treatment. Oncoprints show detectable genomic alterations by in paired samples from 12 patients, obtained either (A) before known MET TKI exposure or (B) after known MET TKI exposure. All samples reflect the results of cfDNA analysis (Guardant360), with the exception of three patients for whom only tissue NGS was available pre-MET TKI. Genes not common to the cfDNA panel were excluded from analysis. Full details available in Supplemental Table 3. C. Spectrum of newly detectable genomic alterations following MET TKI exposure by functional category.
Figure 4. KRAS overexpression or NF1 downregulation promotes MET TKI resistance that is overcome by combined crizotinib and trametinib polytherapy in METex14-mutated preclinical models. A. Cell viability curves demonstrating a shift in the half maximal inhibitory concentration (IC50) to crizotinib with overexpression of wild type KRAS in MET exon 14-mutant expressing Ba/F3 cells. The cells were grown in culture with HGF supplementation (50 ng/mL). B. Cell viability curve for crizotinib treatment in Ba/F3 cells with both METex14 expression and wild-type KRAS overexpression (KRAS OE), in the setting of treatment with trametinib at 0.01 μM and supplementation with HGF 50 ng/mL. The KRAS OE, trametinib negative curves in panels A and B reflect the same experimental data, displayed on two graphs for clarity. C. Cell viability curves for crizotinib-treated MET exon 14-mutant expressing Ba/F3 cells with either NF1 knockdown (shNF1) or a negative control scrambled shRNA (shScr). D. Cell viability curves for crizotinib-treated MET exon-14 mutant expressing Ba/F3 cells with NF1 knockdown, with and without addition of 0.01 μM trametinib. The shNF1, trametinib negative curves in panels C and D reflect the same data displayed on two graphs for clarity. E. Ba/F3 cells with stable expression of wild type MET, MET with an exon 14 skipping mutation (METex14), or mCherry control were treated with 50 ng/mL HGF with or without 24 hours treatment with crizotinib at 0.1 μM and/or trametinib (0.01μM). Treatment with crizotinib inhibits MET phosphorylation and inhibits downstream Erk phosphorylation, with associated increase in apoptosis as measured by cleaved PARP (cPARP). KRAS overexpression (KRAS OE) restored downstream Erk phosphorylation and reduced cleaved PARP, despite crizotinib treatment. Addition of trametinib inhibited Erk phosphorylation and increased cleaved PARP, consistent with induction of apoptosis, despite the presence of KRAS overexpression. F. NF1 knockdown (NF1 KD) restores downstream Erk phosphorylation and decreases cleaved PARP in crizotinib-treated tumor cells. The addition of trametinib reduced Erk phosphorylation and restored PARP cleavage consistent with induction of apoptosis despite the presence of NF1. G. Summary graph of IC50 to crizotinib with trametinib with and without KRAS overexpression. H. IC50s of crizotinib with trametinib with or without NF1 downregulation. *** p-value < 0.001 by student’s t-test.
References:

