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Abstract (250 words) 

Cell surface proteins play critical roles in a wide range of biological functions and disease 

processes through mediation of contacts and signals between a cell and its environment. Owing 

to their biological significance and accessibility, cell surface proteins are attractive targets for 

developing tools and strategies to identify, study, and manipulate specific cell types of interest. 

Applications ranging from immunophenotyping and immunotherapy to targeted drug delivery and 

in vivo imaging are enabled by exploitation of cell-type specific surface proteins. Despite their 

utility and relevance, the unique combination of molecules present at the cell surface are not yet 

described for most cell types. While modern mass spectrometry approaches have proven 

invaluable for generating discovery-driven, empirically derived snapshot views of surface 

proteins, significant challenges remain when analyzing these often-large datasets for the purpose 

of identifying candidate markers that are most applicable for downstream applications. To 

overcome these challenges, we developed GenieScore, a prioritization metric that integrates a 

consensus-based prediction of cell surface localization with user-input data to rank-order 

candidate cell-type specific surface markers. In this report, we outline the development of this 

prioritization strategy and demonstrate its utility for analyzing human and rodent data from 

proteomic and transcriptomic experiments in the areas of cancer, stem cell, and islet biology. The 

calculation of GenieScores, as well as additional scoring algorithm permutations that enable 

prioritization of co-expressed and intracellular cell-type specific  candidate markers, is made 

accessible via the freely available SurfaceGenie web-application at 

www.cellsurfer.net/surfacegenie. 
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Introduction 

Cell surface proteins play key roles in diverse biological processes and disease 

pathogenesis through mediation of adhesion and signaling between the extracellular and 

intracellular space. Owing to their accessible location, cell surface proteins can be exploited as 

valuable markers for a range of research and clinical applications including immunophenotyping 

live cells, targeted drug delivery, and in vivo imaging. As such, a growing interest in cell type 

specific data has fueled the generation of the Cell Surface Protein Atlas (1), Human Protein Atlas 

(2), Human Cell Atlas Project (3), and related efforts. However, the unique combination of 

molecules present specifically at the cell surface are not yet described for most cell types or 

disease states, and thus continued innovation regarding surface protein discovery and annotation 

efforts are needed.  

Specialized chemoproteomic approaches which specifically label and enrich cell surface 

proteins can provide direct evidence of cell surface localization resulting in empirically-derived 

snapshot views of the cell surface proteome (4-6). However, the large sample requirements and 

technical sophistication required for these experiments preclude their widespread use and 

application to sample-limited cell types. For these reasons, whole-cell proteomic and 

transcriptomic-based approaches that can be applied to identify and quantify thousands of 

molecules from fewer cells will continue to be useful in the search for cell surface proteins that 

are informative for particular cell types or disease stages.  

Independent of the discovery strategy employed, bioinformatic predictions can serve as 

an important complement to experimental approaches by providing a means to filter data and 

prioritize the focus on proteins that are predicted to be localized to the cell surface (7-10). Though 

transcriptomic and proteomic approaches offer significant advantages over antibody screening 

with regards to throughput and depth of coverage, candidate markers identified from discovery 

approaches must be subsequently validated as viable immunodetection or payload-delivery 
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targets. Considering the significant cost and time required for the development of de novo affinity 

reagents, it is prudent to select candidates in a manner that considers whether a marker is likely 

to be both accessible and detectable by affinity reagents in a manner that allows cell types of 

interest (i.e. target cells) to be discriminated from non-target cells. Moreover, these assessments 

should be objective and suited to the analysis of large datasets such as those generated by 

proteomic and transcriptomic studies. To address these outstanding needs, we developed 

GenieScore, a metric to rank and prioritize candidate cell type specific surface markers - 

calculated by integrating a consensus-based prediction of cell surface localization with user-input 

quantitative data. Here, we describe the development of GenieScore and demonstrate its utility 

for prioritizing candidate cell surface markers using data obtained from proteomic workflows that 

specifically identify cell surface proteins (e.g. Cell Surface Capture (CSC)) and more general 

strategies (e.g. whole-cell lysate proteomics and transcriptomics). We also demonstrate that 

permutations of GenieScore can efficiently prioritize co-expressed and intracellular cell-type 

specific markers. To facilitate its implementation among users, we developed SurfaceGenie, an 

easy-to-use web application that calculates GenieScores for user-input data and annotates the 

data with ontology information particularly relevant for cell surface proteins. SurfaceGenie is freely 

available at www.cellsurfer.net/surfacegenie. 

Results 

Generation of a surface prediction consensus dataset for predictive localization 

Four previous bioinformatic-based constructions of the human cell surface proteome were 

compiled into a single, surface prediction consensus (SPC) dataset containing 5,407 protein 

accession numbers (Dataset S1.1). The strategies used to generate these predicted human 

surface protein datasets varied markedly, from manual curation to machine learning, and resulted 

in dataset sizes ranging from 1090 to 4393 surface proteins (Figure 1A). Despite these 

differences, there was considerable overlap among these predictions, with 69% and 41% of 
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proteins in the SPC dataset occurring in ≥ 2 or ≥ 3 individual prediction sets, respectively. The 

number of proteins exclusive to a prediction strategy is positively correlated to the original dataset 

size, albeit not linearly, comprising 1.7%, 4.4%, 9.6%, and 26.5% for the Diaz-Ramos, Bausch-

Fluck, Town, and Cunha datasets, respectively (Figure 1B). To reflect the difference in the 

consensus of surface localization, each protein was assigned one point for each of the individual 

predicted datasets in which that protein appeared, termed Surface Prediction Consensus (SPC) 

score (Figure 1B, Dataset S1.1). The distribution of SPC scores is shown in Figure 1B where 

1671, 1507, 1497, and 732 proteins are assigned a score of 1, 2, 3, and 4, respectively. To enable 

more widespread applicability, mouse and rat SPC score databases were generated by mapping 

the human proteins to mouse and rat homologs using the Mouse Genome Informatics database 

(http://www.informatics.jax.org, Dataset S1.2-3). 

Benchmarking the SPC dataset against other annotations 

The SPC dataset was compared to three established resources for obtaining cell surface 

localization annotations: 1) Gene Ontology Cellular Component Ontology (GO-CCO) (11, 12), 2) 

annotations within the Cell Surface Protein Atlas (CSPA) (1), and 3) annotations generated 

through application of HyperLOPIT (13). Comparisons to GO-CCO were consistent with 

expectations as ‘nucleus’ and ‘cytoplasm’ were the two most common terms for proteins with SPC 

scores of 0, ‘integral component of membrane’ and ‘membrane’ for SPC scores of 1, and ‘integral 

component of membrane’ and ‘plasma membrane’ for SPC scores of 2-4 (Figure 1C). The 

‘confidence’ assignment to proteins in the CSPA agreed with SPC scores for both human and 

mouse, with the notable exception of ~17% of proteins assigned ‘high confidence’ having an SPC 

score of 0 (Figure S1A). However, upon closer inspection, 95% of these proteins are predicted to 

be secreted or extracellular matrix proteins (Secretome P, (14)), which can be captured in CSC 

experiments but are not integral membrane proteins. The most common HyperLOPIT annotation 

in proteins with SPC scores of 3 or 4 was ‘plasma membrane’; however, ‘ER/Golgi apparatus’ 
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was the most common annotation in proteins with SPC scores of 1 or 2 (Figure S1B). Though 

these comparisons demonstrated agreement overall, the SPC dataset provides unique and 

specific information in addition to assigning the predictions in a non-binary manner. Furthermore, 

as the SPC score is not dependent on experimental observation, it is more comprehensive in 

coverage than the CSPA and HyperLOPIT. These differences offer significant advantages for 

mathematically assigning the likelihood that a protein is present at the cell surface in a predictive 

manner. Moreover, the calculation of SPC score is straightforward and flexible to allow easy 

integration of results from future efforts of cell surface localization prediction. 

Defining features of a cell surface protein marker based on first principles 

By defining the term ‘marker’ to designate a cell surface protein which is capable of 

distinguishing between cell types of interest on the basis of signal obtained by immunodetection, 

there are three features that can be used to evaluate the capacity of a protein to serve as a marker 

(Figure 2A). These include (1) SPC score - presence at the cell surface, (2) signal dispersion - 

difference in abundance among cell types, and (3) signal strength - sufficient abundance for 

specific antibody-based detection. The product of these three terms, which we define as 

GenieScore, is a metric that can be used to rank proteins from experimental data for their capacity 

to serve as a marker. Importantly, prioritization of cell surface proteins that are likely capable of 

serving as informative markers should consider experimental data from relevant cell types, 

including the target and non-target cell types that are to be discriminated. Hence, although a 

consensus-based predictive approach can be adopted to represent whether a protein is capable 

of being present at the cell surface (SPC score), the signal dispersion and signal strength must 

be determined empirically, as these will differ among cell types. As the two mathematical terms 

chosen to represent signal dispersion and signal strength are agnostic to the data type, we 

investigated the effects of different sources of input-data to these terms with respect to the 

calculated GenieScores.  
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Testing GenieScore by comparing two proteomic approaches for marker discovery 

We previously demonstrated that CSC applied to four human lymphocyte cell lines 

resulted in sufficient depth of surface protein identification to allow discrimination among the lines 

(15). Here, we performed whole-cell lysate (WCL) digestion of these same cell lines to determine 

whether a generic proteomic approach would be sufficient to detect divergent cell surface proteins 

to do the same. Notably, the WCL approach only required a peptide amount equivalent to ~1000 

cells compared to CSC which used ~100 million cells/experiment. While the majority, 75% (325), 

of the CSC-identified proteins are predicted to be cell surface localized (i.e. SPC scores of 1-4), 

only 13% (485) of the WCL proteins met this criterion. Although these datasets were collected on 

the same cell lines, only 91 proteins with SPC scores 1-4 were observed in both datasets, which 

represent 28% and 19% of the CSC and WCL predicted surface proteins, respectively. Despite 

these differences, applying hierarchical clustering to the subset of proteins in each dataset with 

SPC scores of 1-4 recapitulated the clustering predicted based on the entire dataset for both 

proteomic approaches (Figure S2). These data highlight the utility of applying the SPC metric as 

a strategy to filter and compare between datasets and demonstrate that a generic proteomic 

strategy can provide sufficient surface protein detection to differentiate among cell types using 

0.1% of the cellular material required for CSC.  

GenieScores were calculated for each protein in the CSC and WCL datasets using 

peptide-spectrum matches (PSMs) as input for signal dispersion and signal strength calculations 

(Dataset S.1-2). Though predicted surface proteins were identified by both proteomic approaches, 

the distributions of SPC scores, signal dispersion, and signal strength were markedly different 

between CSC and WCL (Figure 2B-D). These observations are expected due to the highly-

selective nature of CSC which primarily captures N-glycosylated peptides resulting in higher 

specificity for bona fide surface proteins and fewer peptides identified per protein (4, 15-17). 

GenieScores were plotted against the rank for CSC and WCL data resulting in a rectangular-
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hyberbola-like shape, namely a subset of higher-scoring proteins that trail off into a majority of 

lower-scoring proteins (Figure 2E-F) with a similar range (6.59 and 6.16 for CSC and WCL, 

respectively) but significant difference in the distribution. GenieScores for the 91 proteins 

identified in both proteomic approaches were strongly correlated (rs = 0.63) (Dataset S2.3, Figure 

2G).  

The top-scoring candidate markers in both the CSC and WCL data sets are proteins for 

which the majority (if not the totality) of PSMs are in a single cell line. The numbers of PSMs per 

cell line for selected proteins are shown for CSC and WCL in Figure 3 along with the ranks 

determined by application of GenieScore (plotted in Figure 2E-F). Many of the high ranking 

candidates have previously been reported as markers for cancer types modeled by the cell lines 

used here - including ATP1B1, CD39, and HLA-DR for chronic lymphocytic leukemia (CLL) (18-

20) (Hg-3 cell line); CD10 and CD79b for Burkitt Lymphoma (21, 22) (Ramos cell line) (Figure 3). 

Proteins with moderate ranks often had PSMs spread evenly among two or more of the cell lines. 

The examples here include CD5 - a known T cell marker that is often expressed in CLL (18) 

(accounting for its observation in Jurkat and Hg-3 cell lines, respectively), and CD47 – a protein 

reported to be upregulated in many cancer subtypes (23). Proteins with low ranks are equally 

spread among all the cell lines, often ‘housekeeping’ type proteins such as transferrin receptor 1 

and mannose-6-phosphate receptor (Figure 3).  

As the calculation of GenieScore relies on averages (as opposed to individual replicate 

measurements) the relationship between the product of the experimental terms (signal dispersion 

and signal strength) used to calculate GenieScore and the statistical difference (which considers 

variability in measurement) between cell lines was investigated. A positive relationship was 

observed, with Spearman’s correlations (rs) of 0.66 and 0.64 for WCL and CSC, respectively, 

suggesting that the equation for GenieScore is likely to be prioritizing proteins for which there is 

a statistical difference (Figure S3A). Finally, recognizing the limitations of relying on PSMs for 
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quantitative comparisons, GenieScores were calculated using MS1 peak areas for selected 

proteins. Results from this strategy had a very strong correlation to GenieScores using PSMs; rs 

= 0.88 and 0.80 for WCL and CSC, respectively (Figure S3B). Altogether, application of 

GenieScore to the data collected from diverse lymphocyte cell lines produced similar ranking of 

candidate markers independent of the type of input data, including several surface proteins 

previously linked to relevant cancer subtypes, which indicates GenieScore is a robust and valid 

prioritization metric. 

Benchmarking GenieScore against two published surface protein marker studies  

A major application of GenieScore is to prioritize candidate markers for 

immunophenotyping. Hence, we sought to benchmark the performance of GenieScore ranking 

against two published studies that performed flow cytometry analyses to orthogonally validate 

putative markers for cell types of interest which were originally identified from proteomics and/or 

transcriptomic data. In the first study, Martinko et al. performed CSC and RNA-Seq on MCF10A 

KRASG12V cells (comparing the results to empty vector control MCF10A cells) to identify surface 

proteins indicative of RAS-driven cancer phenotype (24). Antibodies were subsequently 

developed against seven candidate markers, all of which demonstrated positive signal on the 

MCF10A KRASG12V cells. Using GenieScore as a prioritization metric, we investigated the relative 

ranks of these validated markers among the CSC and RNA-Seq datasets. As the goal of the 

original study was to identify surface proteins which were upregulated in cancer, GenieScores 

were only calculated for predicted surface proteins (SPC score >0) which met this additional 

criterion – resulting in 122 candidates from CSC and 330 candidates from RNA-Seq (Figure 4A, 

Dataset S2.1-2). The validated proteins were among the highest scoring candidates in both the 

CSC and RNA-Seq data sets (Figure 4A). GenieScores calculated from the CSC and RNA-Seq 

data had a moderate correlation (rs = 0.41) with most of the validated markers scoring highly for 

both CSC and RNA-Seq (Figure 4B). The rank of the putative markers by GenieScore was 
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compared to the rank by log2 fold changes (a metric denoted as selection criteria in the original 

manuscript) (Figure 4C). In all but one case, the candidates rank higher by GenieScore than by 

log2fold ratio. These results support GenieScore as a useful, single metric that enables selection 

of cell surface proteins which can serve as markers for immunodetection. Though the validated 

markers were among the top-ranking candidates, other proteins with high GenieScores emerge 

as potential targets, highlighting the utility of GenieScore to reveal new biological insights or 

targets from previously published data. Two such targets that scored well by both CSC and RNA-

Seq are THBD and NRP1, which have been previously implicated in a KRAS-driven myeloid 

malignancy and KRAS-driven tumorigenesis (25, 26). Additionally, several proteins score well in 

one dataset (i.e. CSC or RNA-Seq) but are completely absent from the other. SAT-1, ranked 5 

within the RNA-Seq data but not observed by CSC, plays a role in a polyamine synthesis pathway 

that is upregulated by KRAS-driven cancers (27, 28). Inspection of the primary sequence of SAT-

1 reveals that the N-glycosite is located within a peptide that would make it unlikely to be detected 

by mass spectrometry. Conversely, there are proteins within the CSC dataset for which there 

were no matching transcripts such as LRP1, a protein associated with tumorigenesis and tumor 

progression (29, 30). Altogether, these results present the complementary nature of CSC and 

RNA-Seq as discovery techniques and demonstrate that GenieScore-based analyses of these 

data, either independently or together, provide a rapid strategy for prioritizing candidates for 

immunophenotyping. 

In the second study, Boheler et al. performed CSC on human fibroblasts, embryonic stem 

cells, and induced pluripotent stem cells to identify surface markers for stem cells (16). Candidate 

pluripotency markers were selected by comparing the set of proteins observed on stem cells to 

CSC data from the CSPA, specifically, requiring that a protein was not detected in fibroblasts and 

detected in fewer than four other somatic cell types (excluding cancer cell types). Negative 

markers of pluripotency were selected in a similar manner, specifically, not detected in stem cells 
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and detected in six or more non-diseased cell types in the CSPA. Flow cytometry analysis of 

human fibroblasts and stem cells was used to orthogonally validate seventeen putative positive 

and three putative negative pluripotency markers and included three previously reported positive 

pluripotency markers as controls. The GenieScores for proteins observed in the human fibroblast 

and stem cell CSC experiments were plotted against the log2fold ratio of PSMs between the cell 

types providing a visual depiction of capacity to serve as a marker segregated by cell type wherein 

the reference, putative negative, and putative positive pluripotency markers are denoted in 

individual plots (Figure 4D, Dataset S3.1). The reference stem cell markers are among the top 

scoring (with ranks of 2 and 10) candidate pluripotency markers from the CSC dataset, except for 

Thy1, a protein for which both CSC and flow cytometry results provided evidence for its presence 

in fibroblasts and stem cells. The GenieScores for the putative negative and positive markers 

were spread over a greater range in this dataset compared to the distribution observed for the 

Martinko et al. study. This difference is likely attributable to the notably divergent strategies 

employed for candidate selection. Specifically, the Boheler study relied on qualitative 

(presence/absence) rather than quantitative comparisons, considered data from cell types outside 

those included in the study, and restricted validation to candidates for which commercially-

available monoclonal antibodies were available. Notably, several of the validated markers were 

identified by relatively few PSMs in the original dataset (IL27RA, EFNA3). While the number of 

PSMs is sometimes used as a filter to eliminate proteins from consideration, in this case, 

comparisons to 50 other cell types suggested these candidates are putatively restricted to stem 

cells. Thus, despite being identified by relatively few PSMs in CSC analyses, proteins that are 

uniquely observed in a single cell type can be valuable immunophenotyping markers provided 

there are data of a similar type and quality on other cell types for comparison. Altogether, these 

data highlight the importance of context during marker selection and the value of considering 

additional datasets. Specifically, if additional datasets are integrated prior to calculation of 

GenieScore, candidates with a lower signal strength (few PSMs) would rank more highly because 
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they would have a higher signal dispersion (all PSMs coming from a single cell type). Overall, 

these evaluations of previously validated datasets illustrate how GenieScore is a useful strategy 

to prioritize candidate cell surface markers using both proteomic and transcriptomic datasets. 

Integrating GenieScores of proteomic and transcriptomic data to reveal candidate markers for 

mouse islet cell types 

As GenieScore provided a useful rank-ordering of potential protein markers from both 

RNA-Seq and CSC data that was consistent with published results, we sought to evaluate its 

utility for integrating data from disparate studies for marker discovery. To this end, we performed 

CSC on mouse α and β cell lines and compared the results to published RNA-Seq data acquired 

on primary α and β cells from dissociated mouse islets (31). The datasets shared 321 predicted 

surface proteins (Figure 5A, Dataset S4.1), and GenieScores from the CSC data were plotted 

against GenieScores from the RNA-Seq data (Figure 5B). A possible explanation for the weak 

correlation (rs = 0.26) between GenieScores is that the CSC dataset was acquired on cell lines 

and the RNA-Seq dataset was acquired on primary cells. However, in the context of marker 

discovery, each of these approaches offers advantages, namely, the CSC data provides 

experimental evidence regarding protein abundance at the cell surface and the RNA-Seq analysis 

of primary cells avoids possible artifacts introduced by culturing cells ex vivo. Recognizing the 

complementary benefits of these approaches, the data were combined in a manner that weights 

them equally, namely, the signal dispersion was calculated using the average of the normalized 

CSC and normalized RNA-Seq data. The combined GenieScores were distributed similarly to 

scores calculated using CSC or RNA-Seq individually and when plotted against the log2fold ratio 

between α and β cells allow for visual discrimination of the candidate markers for each cell type 

(Figure 5C, Dataset S4.2). Among the top candidate markers for α and β cells revealed by this 

combined approach are proteins with well-established roles in islet biology including GLP1, 

GABBR2, GALR1, KCNK3, SLC7A2 - proteins highlighted in a recent review of the β cell literature 
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(32). ALCAM (CD166), CHR1, and CEACAM1 are proteins which have been studied in the 

context of the islet biology, though have less defined roles (33-35). Altogether, GenieScore 

provided a useful framework for integrating proteomic and transcriptomic data for surface marker 

prioritization.  

To extend the analysis beyond the identification of proteins which might be capable of 

distinguishing α and β cells to finding cell-type specific markers within the context of the islet, we 

applied GenieScore to a single-cell RNA-Seq dataset that was collected on cells from dissociated 

human islets (36) (Dataset S5.1). Lawlor et al partitioned the data on single cells into seven 

different cell types – α, β, γ, δ, acinar, ductal, stellate - based on a subset of genes that were 

determined to be representative of each of the clusters. Top ranking markers for each of the seven 

cell types are listed in Figure 5D. Many of the proteins identified as capable of distinguishing 

between α and β cells in the analysis of CSC and RNA-Seq data were not cell-type specific when 

data from other cell types found within the islet were considered. For example, NRCAM and 

SLC4A10 are proteins more abundant in β than α cells, but the levels expressed in β cells are 

equivalent to γ or δ cells, respectively. PTPRK is expressed at a higher level in α than β cells in 

all studies, but the level of expression is 26-fold lower than acinar cells and 35-fold lower than 

ductal cells. Altogether, while the cell-type specificity that is ultimately required will depend on the 

desired downstream application, these observations highlight that consideration of a larger 

cellular context is important for the identification of cell-type specific markers. 

Recognizing the utility of the GenieScore approach for prioritizing cell-type specific surface 

proteins, the equation was further adapted to enable prioritization of other classes of proteins 

using the same input data. First, removal of the SPC score component from GenieScore, a 

permutation termed OmniGenieScore, allowed for the identification of proteins which can be used 

as cell-type specific markers without considering their surface localization. Application of 

OmniGenieScore to the islet cell single-cell RNA-seq data revealed many known cell-type specific 
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markers such as glucagon (GCG) for α cells, insulin (INS) for β cells, pancreatic polypeptide (PPY) 

for γ cells, and somatostatin (SST) for δ cells (Figure 5D). By inverting the signal dispersion term 

(i.e. 1 – (
𝐺

𝐺𝑚𝑎𝑥
)2), a permutation termed IsoGenieScore, the set of cell surface proteins which are 

relatively abundant and similar in signal among all cell types in the analysis were prioritized. The 

classes of proteins (e.g. adhesion, cell growth, insulin signaling) which were at the top of this 

ranking system were largely involved in generic processes that are not specific to any cell type 

(Figure 5D). Reversing the signal dispersion and ignoring the SPC score, termed 

IsoOmniGenieScore, resulted in prioritization of proteins typically selected to be loading controls 

for Western blotting or reference genes for PCR (e.g. GAPDH, ACTB, B2M) in addition to many 

of the proteins involved in mitochondrial oxidation (Figure 5D). Altogether, these four permutations 

of the GenieScore enabled the prioritization of candidate markers for a broad range of 

applications, including cell surface and intracellular markers that distinguish cell types as well as 

those that are co-expressed among cell types. 

 SurfaceGenie: a web-based application for integrating GenieScore and relevant annotations 

To enable calculation of GenieScores for user input data, a shinyApp, SurfaceGenie, was 

developed in R. In this interface, users upload data from proteomic or transcriptomic experiments 

as a .csv file and can view the distribution of GenieScores and SPC scores for the proteins 

contained in their data (Figure 6A). SurfaceGenie is compatible with human, mouse, and rat data. 

As part of the analysis, input proteins are annotated with ontological information including CD and 

HLA molecule designations. In addition, proteins are annotated with the number of cell types 

within the CSPA in which the protein has been observed – a factor found to be relevant for marker 

prioritization in the Boheler et al data. The plots and data generated are available for download, 

including the results for individual terms used to calculate GenieScore. The permutations of 

GenieScore applied in Figure 5D are also available. Additional functionality includes the ability to 

query accession numbers in single or batch mode, independent of data type, to obtain SPC 
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Scores. SurfaceGenie is freely available at http://www.cellsurfer.net/surfacegenie (screen 

captures shown in Figure 6B).  

Discussion 

Despite the central role cell surface proteins play in maintaining cellular structure and 

function, the cell surface is not well documented for most human cell types. There is currently no 

comprehensive reference repository of experimentally determined cell surface proteins cataloged 

by individual human cell types that can be used as a baseline for comparison to experimentally-

perturbed or diseased phenotypes. Although specialized proteomic approaches allow for probing 

the occupancy of the cell surface, the sample requirements and technical sophistication often 

preclude widespread application, and quantitation is challenging. To overcome these challenges, 

predictions of surface localization can enable insights from more easily implemented proteomic 

and transcriptomic approaches, which can be performed on smaller sample sizes. However, with 

technologies that allow for ‘omic’ evaluation of individual cell types, there is a need to develop 

methodologies to prioritize the value contained within these studies in order to extract useful 

knowledge from acquired data. 

Here, we describe the development of GenieScore, a prioritization approach that 

integrates a predictive metric regarding surface localization with experimental data to rank-order 

proteins which may be useful as cell surface markers. We demonstrate that GenieScore is 

compatible with quantitative data from CSC, WCL, and RNA-Seq experiments and is a useful 

strategy by which to integrate multiple sources of data for candidate marker prioritization. 

SurfaceGenie, a web-based application, was developed to enable the calculation of SPC scores 

and GenieScores, and the various permutations thereof, from user-input data. SurfaceGenie also 

supplements the data with annotations relevant for marker selection.  
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Beyond immunophenotyping, SurfaceGenie is expected to facilitate the identification of 

valuable drug targets as the features of cell surface markers (e.g. surface localization and cell-

type specificity) are also advantageous when designing efficient and specific therapies. 

Independent of GenieScore, the ability to query SPC scores within SurfaceGenie can deliver 

value in-and-of-itself, providing users with an additional resource to interrogate surface 

localization for proteins which are not yet characterized experimentally. However, whether an 

expressed protein is localized to the cell surface on a specific cell type in a specific experimental 

or biological condition remains difficult to predict. This is especially true for proteins that 1) lack 

traditional sequence motifs (e.g. signal peptides), 2) are only trafficked to the cell surface upon 

ligand binding (e.g. glucose transporter 3, GLUT3), or 3) have proteoforms that exhibit different 

subcellular localization than the canonical version of a protein for which predictions are typically 

based upon. For these reasons, experimental workflows that provide capabilities for discovery 

(i.e. not limited to available affinity reagents) while providing experimental evidence of cell surface 

localization on a particular cell type of interest with a specific context (e.g. experimental condition, 

disease state) will remain invaluable. 

In conclusion, we anticipate that SurfaceGenie will enable effective prioritization of 

informative candidate cell surface markers to support a broad range of research questions, from 

mechanistic to disease-related studies. The candidates prioritized using SurfaceGenie are 

expected to be of use to a range of applications including immunophenotyping, immunotherapy, 

and drug targeting.  

Methods 

All experimental details are provided in Supporting Information.  

Cell culture 
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Human lymphocyte cell lines (Ramos, HG-3, RCH-ACV, Jurkat) were cultured and 

passaged as previously described (15). α TC1 clone 6 (ATCC, CRL-2934) and β-TC-6 (ATCC, 

CRL-11506) cells were maintained at 37˚C and 5% CO2, cultured in Dulbecco’s Modified Eagle’s 

Medium (Gibco) supplemented with 10% heat-inactivated fetal bovine serum containing 16.6 mM 

or 5.5 mM glucose, respectively. 

Cell Lysis, Protein Digestion, and Peptide Cleanup 

For WCL analysis of lymphocytes, cell pellets were lysed in 100 mM ammonium 

bicarbonate containing 20% acetonitrile and 40% Invitrosol (Thermo Fisher Scientific), digested 

with trypsin (Promega, Madison, WI) overnight, and cleaned by SP2 (37). Peptides were 

quantified using Pierce Quantitative Fluorometric Peptide Assay (Thermo Fisher Scientific) 

according to manufacturer’s instructions on a Varioskan LUX Multimode Microplate Reader and 

SkanIt 5.0 software (Thermo Fisher Scientific). For CSC analysis of mouse islet cell lines, samples 

were prepared as previously described (15-17). 

Mass Spectrometry Acquisition and Analysis 

Lymphocyte peptides and CSC samples of mouse islet cell types were analyzed by LC-

MS/MS using a Dionex UltiMate 3000 RSLCnano system (Thermo Fisher Scientific) in line with a 

Q Exactive (Thermo Fisher Scientific). Lymphocyte samples were prepared as 50 ng/µL total 

sample peptide concentration with Pierce Peptide Retention Time Calibration Mixture (PRTC, 

Thermo) spiked in at a final concentration of 2 fmol/µL and queued in blocked and randomized 

order with two technical replicates analyzed per sample. CSC samples of mouse islet cell types 

were analyzed as described (38, 39). MS data were analyzed using Proteome Discoverer 2.2 

(Thermo Fisher Scientific) and SkylineDaily (v4.2.1.19095) (40).  

Construction of a consensus dataset of predicted surface proteins  
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Four published surfaceome datasets (7-10), each of which used a distinct methodology to 

bioinformatically predict the subset of the proteome which can be surface localized, were 

concatenated into a single consensus dataset. The ‘retrieve/mapping ID’ function within UniProt 

(www.uniprot.org) was used to convert the gene names provided in the published datasets to 

UniProt Accession numbers. Ambiguous matches were clarified by any supplementary 

information provided in the datasets in addition to gene name (e.g. alternate name, molecule 

name, chromosome).  

GenieScore – A mathematical representation of surface marker potential  

An equation was developed to mathematically represent key features deemed relevant 

when considering whether a protein has high potential to qualify as a cell surface marker for 

distinguishing between cell types or experimental groups. The equation, which returns a metric 

termed GenieScore, is the product of 1) the SPC scores (described above); 2) signal dispersion, 

a measure of the disparity in observations among investigated samples that is mathematically 

equivalent to the square of the normalized Gini coefficient (41); and 3) signal strength, a 

logarithmic transformation of the experimental data (e.g. number of PSMs, MS1 peak area, 

FKPM, or RKPM). A thorough definition and rationalization of the individual equation terms is 

provided in Supporting Information. 

𝐺𝑒𝑛𝑖𝑒𝑆𝑐𝑜𝑟𝑒 = (𝑆𝑃𝐶 𝑠𝑐𝑜𝑟𝑒)∙(
𝐺

𝐺𝑀𝑎𝑥
)

2

∙log(𝑆𝑖𝑔𝑛𝑎𝑙𝑀𝑎𝑥) 

Application of GenieScore 

 Details for the strategies applied to calculate GenieScores for each study are provided in 

Supporting Information. 

SurfaceGenie Web application 
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A web application for accessing SurfaceGenie was developed as an interactive Shiny app 

written in R and is available for use at www.cellsurfer.net/surfacegenie. Source code is available 

at www.github.com\GundryLab\SurfaceGenie. 

Supporting Information 

1. Supplemental Methods 

2. Figure S1 – Benchmarking of Surface Protein Consensus (SPC) database against CSPA 

and HyperLOPIT annoations 

3. Figure S2 – Hierarchical clustering applied to all and predicted surface proteins for Cell 

Surface Capture and whole-cell lysate data 

4. Figure S3 – Correlation of GenieScore experimental terms with statistical significance and 

correlation of GenieScores calculated using PSMs or MS1-based peak area 

5. Dataset S1 – (1) Human SPC dataset, (2) Mouse SPC dataset, (3) Rat SPC dataset, 

6. Dataset S2 - (1) Lymphocyte WCL data with GenieScores, (2) Lymphocyte CSC data with 

GenieScores, (3) GenieScores for proteins common to CSC and WCL 

7. Dataset S3 – (1) CSC data on MCF10A KRASG12V and empty vector controls with 

GenieScores, (2) RNA-Seq data on MCF10A KRASG12V and empty vector controls with 

GenieScores 

8. Dataset S4 – (1) Human dermal fibroblast and stem cell CSC data with GenieScores 

9. Dataset S5 – (1) CSC data on mouse α and β cells with GenieScores, (2) RNA-Seq data 

on mouse α and β cells with GenieScores 

10. Dataset S6 – (1) Single-cell RNA-Seq on human islet cells with GenieScores and modified 

GenieScores 
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Figure Legends 

Figure 1: Generation and benchmarking of a Surface Prediction Consensus (SPC) score. 
(A) The four previously published human surfaceome databases used, designated by first author 
of the corresponding publication, with details about how the databases were generated and the 
number of Uniprot Accessions within each database. (B) An UpSet plot (42, 43) depicting the 
intersections between the individual surfaceome databases. The proteins were stratified by the 
number of individual datasets they appeared in, termed Surface Prediction Consensus (SPC). 
The number of proteins with each SPC score is shown. The full dataset is provided in the 
Supporting Information (Dataset S1, 4.1) (C) The distribution of Gene Ontology Cellular 
Component Ontology (GO-CCO) annotations across different SPC scores depicted as a bubble 
chart, where the size of the bubble represents the number of proteins in the intersection between 
the particular SPC score and GO-CCO annotations. 

 

Figure 2. GenieScore components and application to two proteomic analyses of four 
lymphocyte lines. (A) The features of a protein that were hypothesized to predominate the 
capacity of a protein to serve as a cell surface marker are shown with the names of the 
mathematical terms derived to represent them. The marker potential features are annotated by 
the applied approach (i.e. predictive or experimental) to answer the relevant questions. The 
remaining panels depict the distribution of the individual components and GenieScores calculated 
from the data acquired from application of whole-cell lysate (WCL) or Cell Surface Capture (CSC) 
to four lymphocyte cell line (n = 3 per cell line, N = 485 data points for WCL, N = 325 data points 
for CSC). (B) A histogram depicting the distribution of SPC scores within predicted surface 
proteins (SPC score >0) identified by application of WCL and CSC. (C) A violin plot depicting the 
distribution of signal dispersion for the predicted surface proteins identified by WCL and CSC. (D) 
A violin plot depicting the distribution of signal strength for the predicted surface proteins identified 
by WCL and CSC. (E) Plot of GenieScore against rank-order of candidate cell surface markers 
for predicted surface proteins identified by WCL. (F) Plot of GenieScore against rank-order of 
candidate cell surface markers for predicted surface proteins identified by CSC. (G) GenieScores 
calculated using either WCL or CSC data are plotted against each other the 91 proteins identified 
by both approaches along with the Spearman’s Correlation for those scores.  

 

Figure 3. Distributions of observed abundance for selected proteins in the lymphocyte data 
with a range of GenieScores. The number of peptide-spectrum matches (PSMs) assigned to 
selected proteins for both Cell Surface Capture (CSC) and whole-cell lysate (WCL) experiments. 
Biological replicates (n = 3) are shown as data points and averages are shown as columns. The 
ranks assigned to each protein, according to the set of calculated GenieScores, are shown for 
both CSC and WCL datasets.  

 

Figure 4. Benchmarking GenieScore against two published cell surface marker studies 
which validated candidate markers by flow cytometry. Panels A-C depict data from 
application of GenieScore to data from Martinko et al. Panel D depicts data from application of 
GenieScore to data from Boheler et al. (A) The subset of proteins for which GenieScores were 
calculated is the intersection of the set of proteins with SPC scores >0 with the set of proteins that 
were increased in the KRAS mutant - shown by the shaded overlap. Plots of GenieScores against 
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candidate rank are shown for the Cell Surface Capture (CSC) and RNA-Seq datasets. Proteins 
selected in the original manuscript for antibody development and subsequently validated as 
surface markers by flow cytometry are shown as black diamonds and labeled with gene names. 
(B) The GenieScores calculated using either CSC or RNA-Seq data are plotted against each other 
for the 211 surface proteins identified by both approaches along with the Spearman’s Correlation 
of those scores. The flow cytometry-validated markers are shown as black diamonds. (C) A table 
containing the ranks assigned, according to either GenieScores or log2fold, for each protein. The 
change in rank, calculated as GenieScore rank minus log2fold rank, is shown for each flow 
cytometry-validated marker. (D) GenieScores for the 495 proteins identified by CSC in human 
fibroblast and stem cells are plotted against the log2fold ratio. Refence stem cell markers, as well 
as the negative and positive markers for pluripotency selected for validation by flow cytometry are 
highlighted in their own plots.  

 

Figure 5. Application of GenieScore and its permutations to islet cell types. Panels A-C 
depict data from application of GenieScore to Cell Surface Capture (CSC) data from mouse α and 
β cell lines collected as part of this study integrated with RNA-Seq on mouse primary α and β 
cells from Benner et al. Panel D depicts data from application of GenieScore and its permutations 
to human islet single-cell RNA-Seq data from Lawlor et al. (A) The subset of proteins for which 
GenieScores were calculated is the set of proteins with SPC scores >0 that were identified by 
both CSC and RNA-Seq, shown as the shaded overlap. (B) The GenieScores calculated using 
either CSC or RNA-Seq data are plotted against each other for the 321 proteins identified by both 
approaches along with the Spearman’s Correlation of those scores. (C) GenieScores calculated 
using the combined CSC and RNA-Seq data are plotted against candidate rank and against the 
log2fold ratio (N = 321 proteins). Selected candidate markers which have previously been 
associated with islet cell biology are labeled with gene names. (D) The top scoring proteins from 
application of the different permutations of GenieScore are shown grouped either by cell type or 
by biological function. 

 

Figure 6. Overview of the utility of SurfaceGenie and screen captures from the web 
application. (A) A schematic depicting the tested inputs and potential applications of 
SurfaceGenie, a web-based application which calculates GenieScore permutations from user-
input data. (B) Screen captures of the different modes of use for the SurfaceGenie web 
application. 
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Supplementary Information Text 

 

Rationalization and description of GenieScore equation components.  
Surface Protein Consensus (SPC) score was generated from concatenating four individual human 
surfaceome databases and assigning a point for each of the individual datasets in which the 

protein was predicted to be localized to the cell surface. SPC scores range 0-4 such that proteins 

with more consensus of surface localization are prioritized over proteins with less consensus. 

Human, mouse and Rat SPC scores are in Dataset S1. 

Signal dispersion is calculated for each protein based on the quantitative measurements from each 
cell type. First, the Gini coefficient, a measure of disparity, is calculated on the array of 

measurements. Next, this value is normalized by dividing by the maximum Gini coefficient 

possible, (1 – 1/N), where N is equal to the number of cell types. Finally, this value is squared to 

increase the weight assigned to this term. The values for this term range 0-1. Proteins with exactly 
equal measurements across cell types will score 0, proteins only observed in a single cell type 

will score 1. This measurement does not assume the normal distribution of data and requires no 

imputation of zero-values making it amenable to many types of quantitative measurements. 

Signal strength is calculated for each protein based on the quantitative measurements from each 

cell type. First, the maximum measurement is calculated for each protein. Next, the log10 is 
calculated for 1 plus this value, in order to force all the values to be returned as positive numbers. 

This results in proteins at the lower limit of detection being of lower priority than those with a 

stronger signal, because it is expected that those of higher abundance will practically serve as 
more accessible markers for downstream technologies. Signal strength is not a bounded term and 

the range highly depends on the type of quantitative measurement. 

Modifications to the GenieScore equation.  

IsoGenieScore utilizes the same three calculations as GenieScore (see above), however, it uses (1 
-  signal dispersion). This prioritizes proteins with equal and intense measurements as opposed to 

those with disparate measurements.  

OmniGenieScore is equal to the product of signal dispersion and signal strength. This prioritizes 

molecules with disparate measurements without considering the surface localization. As this 

score doesn’t apply any protein-specific information, it can be calculated on any type on 

quantitative data. 

IsoOmniGenieScore is equal to the product of (1 - signal dispersion) and signal strength. This 
prioritizes molecules with equal and intense measurements without considering the surface 

localization. As this score doesn’t apply any protein-specific information, it can be calculated on 

any type on quantitative data. 

Methods 

Cell lysis, protein digestion, and peptide cleanup. For whole-cell lysate analysis of lymphocyte 

cell lines, pellets of 5 million cells were lysed in 500 μL of 2x Invitrosol (40% v/v; Thermo 

Fisher Scientific), 20% acetonitrile in 50 mM ammonium bicarbonate. Sample was sonicated 

(VialTweeter; Hielscher Ultrasonics, Teltow, Germany) by three ten-second pulses, set on ice for 
one minute, and then sonicated by three ten-second pulses. Samples were brought to 5mM TCEP 

and reduced for 30 min at 37°C on a Thermomixer at 1200 rpm. Samples were brought to 10 mM 

IAA and alkylated for 30 min at 37°C on a Thermomixer at 1200 rpm in the dark. 20 μg trypsin 
was added to each sample and was digested at 37°C overnight on a Thermomixer at 1200 rpm. 

 

Hierarchical clustering of lymphocyte whole-cell lysate (WCL) and Cell Surface Capture 

(CSC) data. Data containing the number of peptide-spectrum matches were uploaded into SPSS 
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(v. 22). Hierarchical clustering was performed using Phi-square measure of distance (appropriate 
for count data) and furthest neighbor (complete) linkage. Clustering was performed on entire 

dataset and then repeated for predicted surface proteins. 

 

MS1 Peak Area Quantification. RAW and searched MS data for CSC and WCL were imported 
into SkylineDaily (v4.2.1.19095) (1). For both CSC and WCL, peptide inclusion criteria were (1) 

fully tryptic, (2) no missed cleavages, (3) length 6-30, (4) exclude 25 N-terminal amino acids, and 

(5) no methionine residues. For WCL samples, all default, sequence-based exclusion criteria in 
Skyline except cysteine were further applied. For CSC, proteins with ≥ 3 peptides were selected 

for MS1-based quantification. For WCL, proteins with ≥ 5 peptides were candidates for MS1-

based quantification. From among these candidates, the proteins with the top 15 and bottom 15 
GenieScores were selected for MS1-based quantification. 

Implementation of GenieScore for each dataset.  

Lymphocyte whole-cell lysate (WCL) and Cell Surface Capture (CSC) data: WCL data were 

acquired and searched as part of this study using parameters in Tables S1 and S2. Searched WCL 

data were filtered to include only proteins with ≥2 unique peptides. RAW files were obtained 
from MassIVE (massive.ucsd.edu; accession number MSV000080532) for CSC experiments 

performed by Haverland et al. (2) and re-searched using parameters in Table S2 (CSC Hi-Hi). 

Searched CSC data were filtered to include only proteins with ≥ 2 peptide-spectrum matches 
(PSMs) among all samples. All data are in Dataset S2. 

CSC and RNA-Seq data on MCF10A KRAS
G12V

 and empty vector controls: CSC and RNA-

Seq data were obtained from Supplemental Files 1 and 5, respectively, from Martinko et al. (3). 

Only transcripts marked as “significantly different” were included in RNA-Seq analysis. As only 

log2fold changes were provided for CSC data, these data were transformed to allow calculation of 
signal dispersion. The signal strength component calculated from FPKM values were used for 

both CSC and RNA-Seq analyses. All data are in Dataset S3. 

Human stem cell and dermal fibroblast CSC data: RAW files were obtained from MassIVE 

(massive.ucsd.edu; accession number MSV000083846) for CSC experiments performed by 

Boheler et al. (4). RAW files for embryonic stem cells (DR-11, DR-17, DR-27, DR-29), induced 
pluripotent stem cells (DR-28, DR-30, DR-31), and dermal fibroblasts (DR-12, RG-107, RG-108) 

were re-searched using parameters in Table S2 (CSC Hi-Lo). Searched CSC data were filtered to 

include only proteins with ≥ 2 PSMs among all samples. Embryonic and induced pluripotent stem 

cells were treated as a single group, averaging the number of PSMs for each protein. All data are 
in Dataset S4. 

α and β cell CSC and RNA-Seq data: CSC data were acquired and RAW files were searched as 

part of this study according to parameters in Table S1 and S2 (CSC Hi-Hi). Searched CSC data 

were filtered to include only proteins occurring in ≥ 2 biological replicates. RNA-Seq data were 

obtained from Supplemental File 12 from Benner et al.(5). The combined GenieScore 
calculations were performed by first normalizing the PSMs and RPKM measurements 

individually to the maximum value for each protein. Next, the average of the normalized values 

was calculated for both α and β cells. Finally, the signal dispersion was calculated using these 
averaged, normalized measurements. The sum of the CSC and RNA-Seq signal strength values 

was used for the calculation of the combined GenieScores. All data are in Dataset S5. 

Islet cell single-cell RNA-Seq: RNA-Seq data were obtained from Supplemental File 6 from 

Lawlor et al. (6). All data are in Dataset S6. 
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Fig. S1. Benchmarking Surface Protein Consensus (SPC) scores. (A-B) The distribution of 

confidence assignments within the Cell Surface Protein Atlas (CSPA) (7) across different SPC 
scores for human and mouse datasets depicted as bubble charts, where the size of the bubble 

represents the number of proteins in the intersection between the particular SPC score and CSPA 

annotations. (C) The distribution of annotations assigned by application of HyperLOPIT (8) to 

mouse stem cells across different SPC scores depicted as a bubble chart, where the size of the 
bubble represents the number of proteins in the intersection between the particular SPC score and 

HyperLOPIT annotation. 
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Fig. S2. Hierarchical clustering of lymphocyte Cell Surface Capture and Whole-cell Lysate 

data. Dendrograms depicting the relationships inferred by hierarchical clustering. All three 

biological replicates cluster for each of the four lymphocyte cells lines whether using all 

identified proteins or the subset of proteins predicted to be surface-localized by SPC scores. 
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Fig. S3. Correlations of GenieScores and GenieScore components. GenieScores calculated 
MS1-based peak area plotted against GenieScores for the same proteins calculated using peptide-

spectrum matches shown with calculated Spearman’s correlation for whole-cell lysate (WCL) and 

Cell Surface Capture (CSC) data. The product of signal distribution and signal strength plotted 
against the statistical significance calculated using a one-way ANOVA shown with calculated 

Spearman’s correlation for CSC and WCL data. 
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Table S1. Mass spectrometry acquisition settings   

 Whole-cell Lysate Cell Surface Capture 

Injection Mode  Full Loop uL PickUp 

Sample Loop 20 μL 20 μL 

Stationary Phase 
Acclaim PepMap C 18 100 Å, 75 

µm, 2 µm, 25 cm 

Michrom Bioresources Magic 

C18AQ 200 Å, 3 µm, 10 cm 

LC Solvent A 
100% H2O, 

0.1% formic acid 
100% H2O, 

0.1% formic acid 

LC Solvent B 
80% MeCN, 

0.1% formic acid 
80% MeCN, 

0.1% formic acid 

LC Gradient 

7-7% B in 5 min 
7-28% B in 123 min 
28-40% B in 25 min 

40-98% in 3 min 

2-2% B in 10 min 
2-35% B in 40 min 

35-98% B in 10 min 
 

LC Flow Rate 300 nL/min 300 nL/min 

Mass Spectrometer Thermo Orbitrap Q Exactive Thermo Orbitrap Q Exactive 

Method Type Data dependent MS2, Top15 Data dependent MS2, Top15 

Spray Voltage 2 kV 3.8 kV 

MS1 Detector Orbitrap Orbitrap 

MS1 scan range 350-1600 m/z 300-1600 m/z 

MS1 resolution 70,000 @ 200 m/z 70,000 @ 200 m/z 

MS1 AGC Target 1e6 1e6 

MS1 Maximum IT 50 ms 50 ms 

MS2 Detector Orbitrap Orbitrap 

MS2 resolution 17,500 @ 200 m/z 17,500 @ 200 m/z 

Isolation Window 2.0 m/z 2.0 m/z 

MS2 AGC Target 5e4 1e5 

MS2 Maximum IT 110 ms 110 ms 

Activation Type / 
Collision Energy 

HCD 27% HCD 27% 

Minimum AGC Target. 5.0e2 1.0e3 

Intensity Threshold 4.5e3 9.1e3 

Dynamic Exclusion 30 s 60 s 
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Table S2. Peptide search and post-search validation parameters 

 

Sample Whole-cell lysate 
Cell Surface Capture 

(Hi-Hi) 
Cell Surface Capture 

(Hi-Lo) 

Platform ProteomeDiscoverer 2.2 ProteomeDiscoverer 2.2 ProteomeDiscoverer 2.2 

Search Algorithm SequestHT SequestHT SequestHT 

Validation 
Percolator 

Peptide Validator 
Protein FDR Validator 

Percolator 
Peptide Validator 

Protein FDR Validator 

Percolator 
Peptide Validator 

Protein FDR Validator 

Database 
SwissProt; Human; 
created 6/7/2017 

SwissProt; Human; 
created 6/7/2017 or 
SwissProt; Mouse; 
created 11/30/2018 

SwissProt; Human; 
created 6/7/2017 

Enzyme (semi/full) Trypsin (full) Trypsin (semi) Trypsin (semi) 

Missed Cleavages 2 2 2 

Precursor mass 
tolerance 

10 ppm 10 ppm 10 ppm 

Fragment mass 
tolerance 

0.02 Da 0.02 Da 0.6 Da 

Static Modifications Carbamidomethyl (C) Carbamidomethyl (C) Carbamidomethyl (C) 

Dynamic 
Modifications 

Oxidation (M),  
Acetylation (N-term) 

Oxidation (M),  
Acetylation (N-term) 

Deamidation (N) 

Oxidation (M),  
Acetylation (N-term) 

Deamidation (N) 

Target FDR (Strict): 0.01 0.01 0.01 

Target FDR 
(Relaxed): 

0.05 0.05 0.05 

Validation basis q-Value q-Value q-Value 
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Additional dataset S1 (separate file – descriptions of separate tabs are below) 

(1) Human SPC dataset 

(2) Mouse SPC dataset 
(3) Rat SPC dataset 

Additional dataset S2 (separate file – descriptions of separate tabs are below) 

(1) Lymphocyte WCL data with GenieScores 

(2) Lymphocyte CSC data with GenieScores 

(3) GenieScores for proteins common to CSC and WCL 

Additional dataset S3 (separate file – descriptions of separate tabs are below) 

(1) CSC data on MCF10A KRASG12V and empty vector controls with GenieScores 
(2) RNA-Seq data on MCF10A KRASG12V and empty vector controls with GenieScores 

Additional dataset S4 (separate file – descriptions of separate tabs are below) 

(1) Human dermal fibroblast and stem cell CSC data with GenieScores 

Additional dataset S5 (separate file – descriptions of separate tabs are below) 

(1) CSC data on mouse α and β cells with GenieScores 

(2) RNA-Seq data on mouse α and β cells with GenieScores 

Additional dataset S6 (separate file – descriptions of separate tabs are below) 

(1) Single-cell RNA-Seq on human islet cells with GenieScores and modified GenieScores 
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