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Figure Legends 

Fig. 1. Crystal structure of the high-affinity fibronectin fragment hFN10 (A) and the 

predicted docking poses of MK-429 (B), TDI-4161 (C), and the S-enantiomer of TDI-3761 

(D) in αVβ3. The αV and β3 backbones are shown in blue and red cartoon representations, 

respectively. Side chains of αV-Asp218 and β3-Tyr122 are shown as sticks. The MIDAS metal 

ion is shown as a purple sphere. The interactions between the compounds and αV-Asp218 and the 

MIDAS metal ion are indicated by dotted lines. Distances are reported in Å between the 

TyrR122 centroid π ring and centroids of aromatic groups at the α position of the compound’s 

carboxylic acid. 

Fig. 2. Development of TDI-4161 and TDI-3761. A. Structures. Structural modifications began 

with TDI-806, the racemate of MK-429 (A). The first step involved removing the imidazolinone 

ring, yielding TDI-1366 (B). This compound was further simplified by removing the aromatic 

sidechain, yielding TDI-1367(C). Increasing the length of TDI-1367 by one carbon resulted in 

TDI-2668 (D). The racemic compounds TDI-3761 (E) and TDI-3909 (F) were produced by adding 

aromatic groups in the α position of the TDI-2668 carboxylic acid. Both the R and S enantiomers 

of TDI-3761 had properties similar to those of TDI-3761 (see text for values), whereas TDI-4161 

(G), the S enantiomer of TDI-3909 was more potent and equally selective when compared to TDI-

4169, the R enantiomer (not shown). B. Characteristics of compounds. 
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Fig. 3. Comparison of the binding pockets of TDI-4161 in the crystal structure of the αVβ3-

TDI-4161 complex and the RGDW sequence of hFN10 in the crystal structure of the αVβ3-

hFN10 complex. (A) 2Fobs−Fcalc electron density map (at 1.0 σ) of TDI-4161 (shown in cyan) 

and TDI-4161 binding pocket of the αVβ3–TDI-4161 complex. (B) 2Fobs−Fcalc electron density 

map (at 1.0 σ ) of the RGDW sequence of hFN10 (shown in yellow) and the RGDW binding pocket 

of the αVβ3–hFN10 complex. αV propeller is shown in light blue, β3A domain in copper, water 

molecules as red spheres and the Mn2+ ions at the LIMBS, MIDAS and ADMIDAS as grey, purple, 

and magenta spheres, respectively. TDI-4161, hFN10, and αVβ3 side-chain and backbone atoms 

are shown as sticks in the respective colors. Oxygen, nitrogen, and sulfur atoms are in red, blue 

and yellow, respectively. 

 

Fig. 4. EM analysis of the effect of αVβ3 antagonists on αVβ3 conformation. (A) Typical 

averages of classes categorized as being in the compact-closed (red border), extended-closed (blue 

border), or extended-open (green border) conformation. Scale bar = 10 nm. (B) Percentage of 

molecules in each of the conformational states in the presence of DMSO or one of the αVβ3 

antagonists (all at 10 µM). 

 

Fig. 5. Priming of αVβ3. HEK-αVβ3 cells were either untreated (control) or incubated with 1 µM 

cilengitide, 100 µM RGDS, or 10 µM TDI-4161 or TDI-3761 for 20 minutes at room temperature, 

fixed with paraformaldehyde, washed, and incubated with fluorescent fibrinogen. After washing, 

cell-bound fluorescence was determined by flow cytometry. Compared to the control, both RGDS 

and cilengitide increased the amount of bound fibrinogen, whereas TDI-4161 and TDI-3761 did 

not. N = 7 for all values except TDI-3761, where n = 3. 

 

Fig. 6. Effect of compounds on differentiation of murine bone marrow macrophages into 

osteoclast-like cells in the presence of RANK ligand and a source of M-CSF. (A) Immunoblot 

of expression of osteoclast marker proteins by murine macrophages after 3 days of culture in 

plastic wells in the presence of RANK ligand and a source of M-CSF. (B and C) Morphology of 

cells grown for 5 days on plastic and stained for the osteoclast marker tartrate resistant acid 

phosphatase. Compounds were added either on day 0 (B, top) or day 4 (C). Scale bar = 1 mm. 

Image analysis of the day 0 data is shown in the bottom panel of (B) (mean ± SD; Student’s t-test; 
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n = 6 for each compound, except cilengitide and TDI-4161, where n = 5). (D) Resorption of bone 

by osteoclast-like cells as reflected in release of cross-linked collagen type 1 degradation peptide. 

Scale bar = 100 μm. (E) Direct staining of resorption lacunae (brown reaction product) produced 

on bone. (F) Quantification of fraction of the bone area with resorption lacunae [all compounds 

p<0.001 compared to DMSO Control except TDI Control (p=0.99) by ANOVA analysis with 

Dunnett post hoc test with adjustment for multiple testing].   

 

Fig. 7. Effect of αVβ3 targeting compounds on VEGF-induced angiogenesis ex vivo. 

(A) Mouse aortic rings were stimulated with OptimMEM supplemented with 2.5% FCS and 30 

ng/ml VEGF, PBS, or vehicle alone (DMSO). Cilengitide, TDI-4161, or TDI-3761 were added to 

OptimMEM supplemented with 2.5% FCS and 30 ng/ml VEGF at 1 nM, 10 nM, 100 nM, 1 μM 

and 10 μM. The number of sprouts per ring was counted in a blinded fashion using a phase contrast 

microscope at day 8 post embedding. Data are presented as mean ± SEM. To minimize the 

potential impact of inter-animal variations in angiogenesis, rings from the aortas of four animals 

were included in each experimental condition. The number of rings included in each experimental 

condition varied, however, from one to four. To prevent overweighting the impact of any aorta, 

the number of sprouts from the rings from the same aorta in each experimental condition were 

averaged, yielding four values for each condition, one for each aorta. The data presented are the 

mean ± SEMs of these four values. Asterisks above the data bars indicate that the results differ 

significantly (p<0.05) from that of the DMSO + VEGF sample using two-tailed Student’s t- test 

without correction for multiple comparisons. 
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Table 1 
 

 Cilengitide  MK-429 
racemate 

 TDI-3761  TDI-4161 

IC50 (μM) for inhibition of 
human αVβ3-mediated cell 
adhesion to fibrinogen 

0.029 ± 0.040 
(n=6) 

 0.003 ± 0.002 
(n=6) 

 0.172 ± 0.066 
(n=5) 

 0.025 ± 0.010 
(n=6) 

        
EC50 (μM) for mAb AP5 
epitope exposure  

0.048 ± 0.013 
(n=3) 

 0.012 ± 0.001 
(n=3) 

 >10 
(n=3) 

 >10 
(n=3) 

        

EC50/IC50  1.7  4.0  >58  >400 
        
IC50 (μM) for inhibition of 
murine αVβ3-mediated cell 
adhesion to fibrinogen  

0.026 ± 0.010     
(n=4) 

 0.004 ± 0.001 
(n=4) 

 0.041 ± 0.027 
(n=6) 

 0.067 ± 0.046 
(n=6) 

        
IC50 (μM) for inhibition of 
purified αVβ3 binding to 
penton base  

0.007 ± 0.008 
(n=4) 

 

0.011 ± 0.005 
(n=4) 

 

0.049 ± 0.050 
(n=4) 

 

0.012 ± 0.005 
(n=4) 

        
IC50 (μM) for inhibition of 
purified αVβ5 binding to 
vitronectin  

0.006 ± 0.004 
(n=5) 

 

0.035 ± 0.019 
(n=5) 

 

0.875 ± 0.348 
(n=5) 

 

0.689 ± 0.374 
(n=5) 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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