Supplementary Materials for

Computational design of a modular protein sense/response system

Authors:
Anum A. Glasgow \dagger^{1}, Yao-Ming Huang \dagger^{1}, Daniel J. Mandell $\dagger^{1,2}$, Michael Thompson ${ }^{1}$, Ryan Ritterson ${ }^{1,8}$, Amanda L. Loshbaugh ${ }^{1,3}$, Jenna Pellegrino ${ }^{1,3}$, Cody Krivacic ${ }^{1,4}$, Roland A. Pache ${ }^{1,9}$, Kyle A. Barlow ${ }^{1,2}$, Noah Ollikainen ${ }^{1,2}$, Deborah Jeon ${ }^{1}$, Mark J. S. Kelly ${ }^{5}$, James S. Fraser ${ }^{1,3,6}$, Tanja Kortemme* ${ }^{*, 2,3,4,6,7}$.

Correspondence to: tanjakortemme@gmail.com

This PDF file includes:

Materials and Methods
Figs. S1 to S13
Tables S1 to S4
Appendices 1-4
References

Supplementary Figures

Figure S1: Sequence alignments of designed proteins (Table S1).
Figure S2: Growth $+/-5 \mathrm{mM}$ mevalonate and change in growth for data shown in Figure 2C.
Figure S3: Example data from library screening using a colony-printing assay.
Figure S4: Sequence alignments of hits from the computationally designed S3 library.
Figure S5: Sequence alignments of hits from the error-prone PCR S3 library.
Figure S6: Data from the single-site saturation mutagenesis screen.
Figure S7: Dependency of the sensor signal on IPTG and mevalonate concentrations.
Figure S8: Growth +/- mevalonate and change in growth for design S3-2D.
Figure S9: BLI binding assay representative data and fits.
Figure S10: Electron density maps supporting placement of the FPP ligand.
Figure S11: Electron density supporting ligand-induced rearrangement of the FPP binding site.
Figure S12: Comparison of S3-2D and S3-3A (with Y197A mutation) in the split mDHFR assay.
Figure S13: BLI binding data +/- FPP for designs S3-2D, S3-3A, S3-3B, S3-3C.

Supplementary Tables

Table S1: Summary of computational designs.
Table S2: Computationally designed library.
Table S3: \quad Single-site saturation mutagenesis positions and results.
Table S4: $\quad \mathrm{X}$-ray data reduction and model refinement.

Appendix 1: Plasmids / constructs for split mDHFR reporter assay.
Appendix 2: Plasmids / constructs for in vitro binding experiments and crystallography.
Appendix 3: Plasmids / constructs for TxTl reporter assay.
Appendix 4: Gene and vector DNA sequences.

Supplementary References

Materials and Methods

1. Computational design methods

Computational methods that resulted in the successful sensor design for scaffold 3 (AR-MBP) are as described in detail first(1). Differences in the design protocol that resulted in designs for scaffold 1 (FKBP12-FRB) and scaffold 2 (RapF-ComA) are described further below.
1.1 Selection of protein-protein interface scaffold set. To identify protein interface scaffolds suitable for accommodating small molecule binding sites, we searched the PDB for heterodimeric complexes with $\leq 95 \%$ sequence identity solved at $\leq 2.8 \AA$ resolution between chains of 75 to 300 residues that were expressed in E. coli. This search resulted in 612 structures that were filtered to remove HETATM records and multiple densities (only the first densities listed were kept). Selenomethionines were converted to methionines.
1.2 Definition of FPP binding site geometries. We identified 29 X-ray structures of FPP-protein complexes at $\leq 2.8 \AA$ resolution in the PDB to serve as templates for binding site geometries. We visually inspected each protein-FPP complex to identify cases where 4 residues could define an encompassing portion of the FPP binding surface. 18 structures were discarded because FPP bound in complex with an inhibitor or other small molecule, forming a binding site that cannot easily be reproduced by amino acid side-chains. Other cases were discarded because the binding site was formed by small contributions from too many residues to define a suitable binding site geometry. Ultimately, 4 template binding site geometries ("motifs") were selected for subsequent matching and design:

PDB	Protein	Motif residues
1 kzo	Protein farnesyltransferase	chain B: R291, Y251, W303. chain C: I10.
1 t0a	2C-Methyl-D-Erythritol-2,4- cyclodiphosphate Synthase	chain A: I101, F9. chain B: F9. chain C: F9.
3bnx	Aristolochene synthase	chain A: R314, W308, L184, F153.
3dpy	Protein farnesyltransferase	chain B: R291, Y251, W303. chain C: I2008.

Note that for PDB templates 1 kzo and 3dpy, one of the motif residues comes from a co-associated peptide substrate, and the binding site geometry from 1t0a contains residues from a homotrimeric interface. In all cases non-polar hydrogens were added to FPP, and a single polar hydrogen was placed on the O5 oxygen.
1.3 Building binding sites de novo into protein-protein interfaces. We scanned the interface scaffold set for backbones that may accommodate the small molecule target and binding site geometry using a geometric matching procedure(2). For each binding site geometry, the relationship between the motif side-chains and the target is uniquely defined by 6 geometric constraints. The matching algorithm scans the first motif residue constraints across a set of scaffold residue positions (here, all positions with Ca atoms within $15 \AA$ of the other chain). At each position, the motif residue is placed into rotameric conformations from the Dunbrack backbonedependent rotamer library(3). For each side-chain conformation, the small molecule target is placed relative to the motif residue using the geometric constraints defined from the template binding site geometry. Conformations that place the target without introducing steric clashes between the motif side-chain, the target, and the scaffold backbone are recorded. The process is iterated for the remaining motif residues, comparing the clash-free target positions to those from the previous motif residues using an efficient geometric hashing technique. Motif side-chain conformations that place the target within the same geometric 'bin' as positions from the previous
motif side-chains are recorded as 'hits'. At the conclusion, cases where the target is placed into the same geometric bin for all motif residues are called 'matches'. Only matches where at least one motif side-chain is placed on a different chain than the remaining motif side-chains (i.e., across the scaffold interface) are considered further. Many matches may be found for a set of scaffold interface residue positions, corresponding to highly similar conformations for the motif residue side-chains and the target that fall into the same geometric bin. One such match is randomly selected for design, which is termed a 'unique match'. The numbers of unique matches arising from each template binding site geometry for FPP are shown below:

Template PDB	Motif residues	Number of unique matches
1 kzo	chain B: R291, Y251, W303. chain C: I10.	79
1 t0a	chain A: I101, F9. chain B: F9. Chain C $: ~ F 9 . ~$	371
$3 b n x$	chain A: R314, W308, L184, F153.	370
3 dpy	chain B: R291, Y251, W303. chain C: I2008.	43

The quality and quantity of matching results are tuned by a number of parameters. To slightly relax the angle and torsion constraints, we sampled 5 degrees above and below the values computed from the template binding site geometry. There are also Euclidean and Euler parameters that determine the bin size for geometric hashing, which we set to $2.0 \AA$ and 20.0 degrees, respectively. A bump tolerance parameter allowed for some steric overlap - to be resolved in the design stage - which we set to 0.6 . We also allowed motif residues to be matched by other residue types with similar side-chain moieties. The following groups of residues were allowed to be matched by any residue in the group: "DE", "LVI", "FYW", and "ST". We tuned the matching parameters to produce a reasonable number of unique matches for design (on the order of several hundred). Evaluating matches directly is not necessarily informative, since a good match (one that faithfully reproduces the template binding site geometry) may yield poor designs due to an inability of the
'second shell' residues to accommodate the binding site geometry and target, while less precise matches may yield more promising designs after being subjected to rigid body optimization of the ligand and backbone relaxation of the scaffold. Thus, all unique matches are passed on to design.

A number of parameters control Rosetta-specific matching options, including the number of sidechain conformations sampled. The command line options used for Rosetta revision r35441 were as follows:
match.linuxgccrelease -database minirosetta_database -s 1SVX.pdb -match:lig_name LG1 match:grid_boundary 1SVX.gridlig -match:scaffold_active_site_residues 1SVX.pos match:geometric_constraint_file 3bnx.cst -extra_res_fa 3bnx_LG.fa.params output_matches_per_group 10 -ex1 -ex2 -extrachi_cutoff 0 -euclid_bin_size 2.0 -euler_bin_size 20.0 -bump_tolerance 0.6 -match:output_format PDB -match:consolidate_matches match:output_matchres_only
1.4 Initial designs and analysis. The matching algorithm places the motif residues and target into a scaffold interface while avoiding clashes with the backbone. However, the procedure will likely introduce unfavorable interactions with the residues surrounding the motif, or 'second shell' residues. In order to accommodate the target and binding motif, we applied a protocol that iterates between rigid body optimization of the target(4) and sequence design of the second shell residues(5, 6). In the design step, all residues with a Ca atom within $6.0 \AA$ of any ligand heavy atom were designable (they could change residue type), as well as any residue with a Ca atom within $8.0 \AA$ of any ligand heavy atom that also has a Cb atom closer to the ligand than the Ca
atom. Additionally, all residues with a Ca atom within $10.0 \AA$ of any ligand heavy atom are subject to repacking (Metropolis Monte Carlo optimization of side-chain conformations) together with any residue with a Ca atom within $12.0 \AA$ of the ligand with a Cb atom that is closer to the ligand than the Ca atom. The protocol iterates rigid body optimization and sequence design 3 times, producing interfaces with more favorable interactions between the motif residues, target, and second shell residues.

The command line options used for Rosetta revision r36129 were as follows:

EnzdesFixBB.linuxgccrelease -database minirosetta_database -s 1BH9_R33Y94L120F121.pdb extra_res_fa 3bnx_LG.fa.params enzdes:detect_design_interface -enzdes:cut1 6.0 -enzdes:cut2 8.0 -enzdes:cut3 10.0 -enzdes:cut4 12.0 -enzdes:cst_opt -enzdes:cst_design -enzdes:cst_min enzdes:cstfile 3bnx.cst -enzdes:bb_min -enzdes:chi_min -enzdes:design_min_cycles 3 -ex1 -ex2 -use_input_sc -nstruct 999 -enzdes:start_from_random_rb_conf

For each template binding site geometry we produced on the order of 10^{4} designs and created distributions over computed physicochemical properties. Four of these distributions from the 3 bnx template binding site geometry are shown below:

The ligand score (panel a) corresponds to the predicted binding energy between the ligand and scaffold interface. The ligand solvent accessible surface area (SASA, panel b) score measures the burial of the ligand from 0.0 (completely solvent exposed) to 1.0 (completely buried). The number of hydrogen bonds between the scaffold and the ligand (panel c) and the number of buried unsatisfied hydrogen bonds on the ligand (panel d) are also shown. For FPP, visual inspection of representative members of the distributions across all designs suggested the following filter for selecting designs for further refinement: ligand score <-6.0, ligand SASA >0.6, ligand hydrogen bonds >1, unsatisfied buried ligand hydrogen bonds $=0$. The number of designs passing the filter for all FPP binding site geometries is given below:

Template PDB	Motif residues	Number of unique matches	Number of designs passing filter
1kzo	Chain B: R291, Y251, W303. chain C: I10	79	31
1t0a	Chain A: I101, F9. Chain B: F9. chain C: F9.	371	0 (1 if SASA filter relaxed to 0.5)
3bnx	$\begin{aligned} & \text { chain A: R314, W308, } \\ & \text { L184, F153. } \end{aligned}$	370	81
3dpy	$\begin{aligned} & \text { chain B: R291, Y251, } \\ & \text { W303. chain C: I2008. } \end{aligned}$	43	0 (2 if SASA filter relaxed to 0.5)

Passing designs were then further filtered to remove interface scaffolds imposing additional challenges such as cases with small molecules crystallized at the predicted target binding site and complexes that were purified from inclusion bodies.

Ultimately, a design passing all filters with the best ligand score on an interface scaffolds, the complex (PDB 1svx) between an engineered ankyrin repeat protein (AR) and maltose binding protein (MBP) with a 4-residue binding site geometry from template 3bnx, was selected for refinement by flexible backbone ensemble design.
1.5 Flexible backbone ensemble design. To model the conformational adjustments that could occur in concert with sequence mutations, matched scaffold designs were subject to kinematic closure (KIC(7)) over their entire backbones producing conformational ensembles. In brief, KIC generates backbone conformations of segments in proteins by sampling backbone phi/psi torsion angles for n-6 degrees of freedom ("non-pivot" torsions) in a selected segment, and then solving the remaining 6 "pivot" degrees of freedom analytically to close the loop. To generate a protein backbone ensemble, different segment start and end points are sampled throughput the protein. Here, we generated near-native conformational ensembles with KIC (200 conformations with 0.9 \AA average rmsd to the X-ray structure) using a modified protocol(8) compared to the published de
novo loop reconstruction method(7). The ensemble generation protocol skips the low-resolution centroid stage and fixes the temperature at 1.2 kT . Further, to focus sampling on near-native conformations, non-pivot torsions are sampled within a vicinity of 3 degrees of the input value before each kinematic move, instead of sampling from the allowable Ramachandran space.

A second round of Rosetta sequence design was then applied across the ensembles to the sidechains surrounding the de novo built binding site in order to accommodate the motif residues and the small molecule target. Designing across a conformational ensemble, rather than a single backbone, can improve agreement between the geometry of the binding site built into the scaffold interface and the original geometry in the binding site template, and generates a diversity of predicted low-energy sequences.

The command line used to generate the ensemble with Rosetta r36129 was as follows: loopmodel.linuxgccrelease -database minirosetta_database -loops:refine refine_kic loops:max_kic_build_attempts 10000 -loops:input_pdb 1SVX_R134W103L78Y286__DE_19.pdb -loops:loop_file 1SVX_R134W103L78Y286__DE_19.loop -extra_res_fa 1SVX_R134W103L78Y286__DE_19_LG.fa.params -in:file:extra_res_cen 1SVX_R134W103L78Y286__DE_19_LG.cen.params -in:file:native 1SVX_R134W103L78Y286__DE_19.pdb -loops:kic_max_seglen 12 -loops:outer_cycles 1 loops:refine_init_temp 1.2 -loops:refine_final_temp 1.2 -loops:vicinity_sampling loops:vicinity_degree 3 -ex1 -ex2

A similar protocol for small molecule rigid body optimization and scaffold sequence design from section 1. 4 was applied to refine every member of the KIC ensemble. Additional rotamers were included (via the -ex3 -ex4 Rosetta command line flags), and the selection of residues to be redesigned, fixed, or modeled as wild-type was performed manually rather than selected by distance cutoffs (redesigned positions for the 1svx scaffold are shown in Figure 2A). Designs resulting from this step were further optimized for small molecule dependence on complex formation by requiring a ligand score <-6.0, ligand SASA >0.7, ligand hydrogen bonds >1, and unsatisfied buried ligand hydrogen bonds $=0$. In addition to selecting single designs (see below), designing across a conformational ensemble, rather than a single backbone, produced a sequence library (9) (Table S2) to be assayed in E. coli for biosensor activity.

In addition to KIC ensemble design, we also used a second method for flexible backbone design: CoupledMoves(10). In contrast to KIC ensemble design, which first pre-generates an ensemble and then performs design on each member of the ensemble, CoupledMoves simultaneously moves the backbone and side chain of an amino acid (or rigid-body and conformer of the ligand) during design. In these simulations, we started from the model of design S3-1C (Fig. 2A) with FPP placed into the AR-MBP scaffold through matching with 4 motif residues (AR: L89, W114, R145; MBP: F133), followed by CoupledMoves design performed as described in (10), allowing the motif residues and the following additional residues to design: AR: Y81, H85, Y89, W112, M114, T115, H118, L119, K122, W123, F145, K147, I152, D155; MBP: E130, P133, F194, D197, K200, N201, K251. CoupledMoves design simulations were performed using Rosetta rotamer flags "-ex1 -ex2 -extrachi_cutoff 0 -use_input_sc" and were run at a constant temperature of 0.6 kT . The backbone moves used in these simulations were 3-residue "backrub" moves(11) centered on the amino acid
being designed. Amino acid residues preferred in these simulations at key positions are shown in Figure 2A.
1.6 Design ranking and selection. We chose four computational designs for FPP sensors based on the AR/MBP (PDB 1svx) scaffold for testing:

S3-1A: Computational design ranked most highly by ligand burial
S3-1B: Computational design consensus sequence, based on most frequently selected amino acid residues in KIC ensemble design

S3-1C: Computational design with improved protein-ligand packing interactions
S3-1D: Computational design ranked most highly by predicted interaction affinity with the ligand

Models of these designs are shown below in two orientations. The orientation shown on the left was rotated 45° over the x-axis to attain the orientation shown on the right. AR: cyan, MBP: blue, FPP: magenta sticks, motif residues: sticks, designed residues: green spheres.

S3-1A

S3-1B

S3-1C

S3-1D

1.7 Computational methods that resulted in designs on scaffolds 1 and 2. Designs for scaffolds 1 and 2 resulted from the same overall protocol as described above, with the following modifications:
(i) We used an expanded protein-protein interface scaffold set consisting of 3462 heterodimers. Scaffolds were pre-relaxed using Rosetta FastRelax(12) with constraints to the starting coordinates for both backbone and side-chain atoms.
(ii) We used the following FPP binding site motifs:

Scaffold	Template PDB	Motif residues
Scaffold 1 FRB/FKBP (3FAP.pdb)	3bnx	F153, L184, W308, R314
Scaffold 2 RapF/ComA (3ULQ.pdb)	3 bnx	$\mathrm{F} 153, \mathrm{R} 314$, Y315, F87

(ii) We did not use backbone ensembles to reshape the binding site environment around the motif residues built into the scaffold, but instead used Rosetta FastRelax to optimize both side chains and backbone in the binding site environment after the design step.
(iii) We selected designs for testing based on the top predicted ligand binding score.

For scaffold 1, we selected one design (S1-1A) that contained the following wild-type reversions:
A28G, T36F, W46F, H48F, M59W, L193Y determined by visual inspection.
For scaffold 2, we selected 4 designs:
S2-1A: computationally designed sequence.
S2-1B: computationally designed with wild-type reversions: V21I, M404L and mutations of designed alanine residues: A28G, A32S, A59R.

S2-1C: as S2-1B with 2 additional alanine mutations to destabilize the wild-type protein-protein interaction: D23A, N418A.

S2-1D: as S2-1A with 2 additional mutations: W12F, A411M.
(iv) We used Rosetta version 54703 with the following command lines:

Building sites into scaffolds (matching):
match.linuxgccrelease -database ROSETTA_DATABASE -s INPUT_PDB
-match::lig_name LG1
-match::grid_boundary GRIDLIG_FILE
-match::scaffold_active_site_residues POSFILE
-match::geometric_constraint_file CST_FILE
-extra_res_fa FA_PARAMS_FILE
-output_matches_per_group 1
-match:consolidate_matches
-out:file:scorefile
-ex1 -ex2 -extrachi_cutoff 0 -use_input_sc
-euclid_bin_size $1 . \overline{5}$-euler_bin_size 15 -bump_tolerance 0.5
-out::path OUTDIR -match:output_format PDB

Design step:
enzyme_design.linuxgccrelease -database ROSETTA_DATABASE -s INPUT_PDB -in:file:fullatom -out:file:o designs.score -extra_res_fa FA_PARAMS_FILE -enzdes:cstfile CONSTRAINTS_FILE -overwrite -out:pdb_gz -nstruct 10 -enzdes:cst_design -enzdes:detect_design_interface -enzdes:cut1 6.0 -enzdes:cut2 8.0 -enzdes:cut3 10.0 -enzdes:cut4 12.0
-enzdes:cst_opt -enzdes:cst_min -enzdes:bb_min -enzdes:chi_min -enzdes:design_min_cycles 3 -ex1 -ex2 -extrachi_cutoff 0 -use_input_sc -enzdes:start_from_random_rb_conf -enzdes:final_repack_without_ligand -score:weights talaris2013_cst.wts

Fastrelax of designs:

relax.linuxgccrelease -database ROSETTA_DATABASE -s INPUT_PDB
-extra_res_fa FA_PARAMS_FILE -out:pdb_gz -out::path OUTDIR
-ignore_zero_occupancy false -relax:fast
-relax:constrain_relax_to_start_coords
-ex1 -ex2 -extrachi_cutoff 0 -use_input_sc
-score:weights talaris2013_cst.wts
-preserve_header -nstruct 10

Rescoring relaxed designs:
enzyme_design.linuxgccrelease -database ROSETTA_DATABASE -s INPUT_PDB
-in:file:fullatom -out:file:o designs.score -extra_res_fa FA_PARAMS_FILE
-enzdes:cstfile CONSTRAINTS_FILE -overwrite -out:pdb_gz
-enzdes:detect_design_interface -enzdes:cut1 0.0 -enzdes:cut2 0.0
-enzdes:cut3 $1 \overline{0} .0$-enzdes:cut4 12.0 -ex1 -ex2 -extrachi_cutoff 0
-use_input_sc -enzdes:no_unconstrained_repack -enzdes:lig_packer_weight 1.8
-enzdes:final_repack_without_ligand -score:weights talaris2013_cst.wts
1.8 Computational methods to further stabilize sensor S3-2D. Using the crystal structure for S32D as the input structure, we used the RosettaScripts platform to apply two successive cycles of CoupledMoves(10) to improve FPP-protein interactions and the binding pocket stability. The input structure was pre-relaxed using Rosetta FastRelax with constraints to the starting coordinates for both backbone and side-chain atoms. In each cycle of CoupledMoves, we chose a different group of neighboring residues in the binding pocket to be designed. The second cycle received the lowestenergy structure from the previous cycle as the input structure. Results were ranked according to total energy. Structures and sequences of top-ranked designs were manually inspected to choose which designs to experimentally test.

CoupledMoves cycle	Designed protein	Designable residues
1	AR of S3-2D $(A R-2.7)$	$80-82,84-86,88-90,118-122,141-145,150-155$
2	MBP of S3-2D $(M B P-2.5)$	$132-134,196-202,250-252$

Rosetta commands (Rosetta 3.8, commit f3a3f038d9419c0d79a6030ea4dc16f62668d69f):

FastRelax of crystal structure:

relax.linuxgccrelease -database ROSETTA_DATABASE -in:file:s INPUT_PDB -in:file:fullatom -relax:constrain_relax_to_start_coords -extra_res_fa FA_PARAMS_FILE

Design flags:
-in:file:s INPUT_PDB
-extra_res_fa FA_PARAMS_FILE
-packing
-ex1
-ex1aro
-extrachi_cutoff 0 -ex2
-number_ligands 1
-coupled_moves
-ntrials 10000
-initial_repack false
-min_pack true

```
    -ligand_mode true
    -ligand_weight 2.0
-nstruct 20
RosettaScript to run CoupledMoves:
<ROSETTASCRIPTS>
    <SCOREFXNS>
    <ScoreFunction name="ref15"/>
    </SCOREFXNS>
    <TASKOPERATIONS>
    <ReadResfile name="AR_resfile" filename=RESFILE_NAME_1/>
    <ReadResfile name="MBP_resfile" filename= RESFILE_NAME_2/>
    </TASKOPERATIONS>
    <MOVERS>
    <CoupledMovesProtocol name="coupled_moves_AR" task_operations="AR_resfile"/>
    <CoupledMovesProtocol name="coupled_moves_MBP" task_operations="MBP_resfile"/>
    <DumpPdb name="dump" fname="dump" tag_time="1"/>
    <FastRelax name="fastrelax" repeats="5"/>
    </MOVERS>
    <PROTOCOLS>
    <Add mover_name="coupled_moves_AR"/>
    <Add mover_name="dump"/>
    <Add mover_name="coupled_moves_MBP"/>
    </PROTOCOLS>
</ROSETTASCRIPTS>
```


2. Complementation assay with split murine dihydrofolate reductase (mDHFR).

2.1 Constructs and strains. We tested sensor function in E. coli strain DH10B using complementation of split mDHFR(13). The constructs used in this assay are listed in Appendix 1 and the gene sequences are listed in Appendix 4. For all MBP genes tested in the mDHFR assay, we deleted the sequence corresponding to the last alpha helix in the structure (residues 354-370). This modification was made to bring the two sensor protein termini closer together for facile complementation of the attached split mDHFR constructs upon small-molecule mediated dimerization. A detailed protocol of the assay is given below.
2.2 Liquid culture assay. Fresh preparations were made of filter-sterilized 0.2 M isopropyl β-D-1thiogalactopyranoside (IPTG) in sterile deionized water, 20% L-arabinose in sterile deionized water, $5 \mathrm{mg} / \mathrm{ml}$ trimethoprim (TMP) (Sigma) solution in methanol, and autoclaved M9 medium (0.1 mM CaCl 2 , 1 X M9 salts, $2 \mathrm{mM} \mathrm{MgSO} 4,0.4 \%$ glucose, 0.2% Casaminoacids, $10 \mathrm{mg} / \mathrm{ml}$ leucine, $10 \mathrm{mg} / \mathrm{ml}$ isoleucine, $5 \mathrm{mg} / \mathrm{ml}$ thiamine, all filter-sterilized). One 4 ml overnight culture was grown at $37{ }^{\circ} \mathrm{C}$ and 225 rpm for each strain from freshly transformed plates in M 9 medium with $37 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol and $50 \mu \mathrm{~g} / \mathrm{ml}$ spectinomycin. To prepare media for the assay, the following was added to 49 ml M9 medium: $37 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol and $50 \mu \mathrm{~g} / \mathrm{ml}$ spectinomycin, $60 \mu \mathrm{M}$ IPTG (unless otherwise noted), 0.4% L-arabinose, and $6 \mu \mathrm{~g} / \mathrm{ml}$ TMP (unless otherwise noted). All reagents were thawed completely, vortexed, and centrifuged prior to addition to the master mix to avoid precipitants. All ingredients were gently mixed in a Falcon tube, and then 4 ml of the master mix was aliquoted into new culture tubes. Each overnight culture was gently vortexed, checked for complete resolubilization of any chunks, diluted 1 to 100 in fresh
medium, and poured into a reagent reservoir. Using a multichannel pipette, $200 \mu 1$ of the diluted cultures were transferred to the wells of a transparent, flat-bottom 96-well plate (Costar), 8 wells at a time. A final concentration of 5 mM mevalonate (Sigma) (unless otherwise noted) was added to every other column via 1 to 1000 dilution of a 1 M stock solution in Millipore water. To prevent evaporation of medium, $50 \mu \mathrm{l}$ mineral oil was gently pipetted on top of each well's contents. The plate was centrifuged for 30 seconds to pop bubbles and any remaining bubbles were popped manually with a pipette tip. The plate was placed in a shaker and grown at $35^{\circ} \mathrm{C}$ and 200 rpm for 48 hours. After 48 hours of growth, cultures were mixed gently using a multichannel pipette set to $50 \mu \mathrm{l}$, avoiding disturbance of the mineral oil layer. Bubbles were removed using a Bunsen burner flame and/or pipette tips. Cell culture optical density (OD) was read over the whole plate, without a plate cap, at 600 nm using a Tecan Safire 2 microplate reader.

2.3 Library screening and saturation mutagenesis

2.3.1 Library construction. The computationally designed library (Table S2) was constructed using gene assembly mutagenesis(14). Briefly, multiple oligonucleotides were synthesized to assemble the design regions of AR and MBP, and 14 and 16 oligonucleotides were generated to cover the protein-protein interface of AR and MBP respectively. Computationally predicted mutations within the regions were introduced into the designed oligonucleotides using degenerate codons that code for a list of desired amino acids (Table S2). These synthesized oligonucleotides were combined and assembled using a two-step PCR to form the library of AR and MBP fragments, and both sets of the fragments were cloned sequentially into pCDFDuet to obtain the final library constructs.
2.3.2 Library screening. The library constructs were electroporated into DH10B E. coli and plated onto M9 minimal medium plates containing $100 \mu \mathrm{M}$ IPTG, 0.4% L-arabinose, 5 mM mevalonate and $6 \mu \mathrm{~g} / \mathrm{ml}$ TMP. The plates were cultured for 10 days at room temperature. Clones that survived under TMP selection were potential active candidates that could form functional mDHFR and were enriched in this screening. A total of 3,072 clones were selected from this step and subjected to two-step confirmation screening -1) colony-printing assay and 2) liquid culture assay.

In the colony-printing assay, freshly grown overnight cultures of each selected clone were 100X diluted and spotted onto two sets of M9 minimal medium plates, one with 5 mM mevalonate and one without. Both sets of the plates contained $100 \mu \mathrm{M}$ IPTG, 0.4% L-arabinose and $6 \mu \mathrm{~g} / \mathrm{ml}$ TMP. The plates were cultured for 10 days at room temperature. Clones that showed increased growth (as indicated by the size of the colonies) with the addition of mevalonate after 10 days were selected and individually tested using the liquid culture assay as described above. The same conditions were kept in the liquid culture screening. 36 out of 3,072 candidates were selected from the colony-printing screen and 27 out of these 36 candidates were positive in the liquid culture validation.
2.3.3 Saturation mutagenesis. We performed two rounds of iterative saturation mutagenesis (ISM, Table S3). For each round, 11 positions (AR: position 85, 112, 118, 119, 122, 123, 152, 155; MBP: $194,197,251)$ around the designed binding site were allowed to mutate to any of 20 amino acids coded by NNK degenerate codon starting from S3-2A. Only one of 11 positions was allowed to mutate at a time (a.k.a. single-site saturation). The best clone from the first round of ISM (S3-2B)
was selected as the starting sequence for the second round of ISM. A total of 384 clones and 480 clones were screened in the first and second round of ISM respectively. The top clones for each round were screened using the liquid culture assay as described above using $80 \mu \mathrm{M}$ IPTG, 0.4% L-arabinose, 5 mM mevalonate and $6 \mu \mathrm{~g} / \mathrm{ml}$ TMP.

3. Protein purification

3.1 Constructs. We expressed and purified several S3 sensor proteins for further characterization. The expression plasmids are listed in Appendix 2 and the gene sequences are listed in Appendix 4. For all MBP genes in expression plasmids, we included the sequence corresponding to the last alpha helix in the structure (residues 354-370).
3.2 Purification of ankyrin repeat (AR) proteins. Overnight cultures of BL21(DE3) pLysS cells (Novagen) harboring the pET47-6XHis-AR plasmid were grown with $37 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol and $50 \mu \mathrm{~g} / \mathrm{ml}$ kanamycin for $14-18$ hours at $37^{\circ} \mathrm{C}$ and 225 rpm in lysogeny broth (LB) medium. Overnight cultures were diluted 1 to 50 in LB and grown at $37^{\circ} \mathrm{C}$ and 225 rpm until the OD_{600} reached approximately 0.6 (about two hours). Cultures were induced with 0.5 mM IPTG and further grown at $16^{\circ} \mathrm{C}$ overnight. Cells were pelleted by centrifugation at $6,000 \mathrm{~g}$ for 20 minutes. Pellets from 1 L cell cultures were stored at $-80^{\circ} \mathrm{C}$. Frozen cell pellets were thawed on ice for 20 minutes and resuspended by vortexing in 40 ml lysis buffer (25 mM Tris, $500 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 8.0$). The following components were added to the cell resuspension: $5 \mathrm{mM} \mathrm{MgCl}, 1 \mathrm{mM} \mathrm{MnCl} 2,100$ $\mu \mathrm{M} \mathrm{CaCl}_{2}$, one protease inhibitor tablet (Thermo Fisher), and $5 \mu \mathrm{~L} 2000$ units $/ \mathrm{ml}$ DNaseI per ml lysis buffer. Cells were lysed by the addition of 10X BugBuster (Thermo Fisher) to a final
concentration of 1X, mixed gently, and stored at room temperature for 5 minutes. Cell lysate was centrifuged at $27,000 \mathrm{~g}$ for 30 minutes at $4^{\circ} \mathrm{C}$. The supernatant was decanted into a fresh tube, and imidazole was added to 20 mM . The soluble lysate was further incubated on ice for 1 hour to allow any remaining precipitate to form, then centrifuged at $3,700 g$ for 10 minutes at $4{ }^{\circ} \mathrm{C}$. The supernatant was transferred to a fresh tube, mixed with 3 ml Ni -NTA Slurry (Thermo Fisher) per 40 ml lysate, and mixed at $4{ }^{\circ} \mathrm{C}$ on a nutator for 1 hour. The lysate-slurry mix was centrifuged at 500 g for 5 minutes at $4^{\circ} \mathrm{C}$ and the supernatant was immediately discarded. The pelleted resin was resuspended in two resin-volumes of cold wash buffer (25 mM Tris, $500 \mathrm{mM} \mathrm{NaCl}, 20 \mathrm{mM}$ imidazole, pH 8.0) and applied to a $\mathrm{Ni}^{2+}-\mathrm{NTA}$ gravity column, then the column was washed with two column volumes of cold wash buffer. Protein was eluted with 1.5 column volumes in 25 mM Tris, $500 \mathrm{mM} \mathrm{NaCl}, 250 \mathrm{mM}$ imidazole, pH 8.0. The eluate was desalted into 25 mM Tris, 50 mM $\mathrm{NaCl}, \mathrm{pH} 8.0$ using an AKTA FPLC with a Hiprep 26/10 desalting column, then ion-exchanged using a Hitrap Q HP column into 25 mM Tris, $500 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH}$ 8.0 The resulting protein solution was concentrated down to 5 ml using 3 KDa MW cutoff spin concentrators (Sartorius), applied to a size-exclusion HiLoad 16/60 Superdex 75 column, and eluted in 50 mM Tris, $150 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH}$ 8.0. The eluate was concentrated to 1.5 ml and dialyzed three times against 1 L 25 mM Tris, 150 $\mathrm{mM} \mathrm{NaCl}, \mathrm{pH}$ 8.0, for two hours, overnight, and two hours, respectively. The final protein concentration was determined in the denatured state in 6 M guanidinium hydrochloride, 20 mM potassium phosphate solution and the purity was confirmed by Coomassie-stained SDS-PAGE to be $>95 \%$.
3.3 Purification of maltose binding proteins (MBP). Methods for the growth and lysis of BL21(DE3) pLysS cells with pET28-MBP plasmids were similar to those described above for AR
proteins, with the following modifications: (1) overnight cultures were subcultured with 0.2% glucose, and (2) lysis buffer was composed of 25 mM Tris, $150 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 8.0$. Isolation of the soluble lysate was followed by incubation on ice for 1 hour, then centrifugation at $3,700 g$ for 10 minutes at $4{ }^{\circ} \mathrm{C}$. The supernatant was decanted into a fresh tube, applied to an MBP affinity column (MBPtrap HP column) using an AKTA FPLC, and eluted in 50 mM Tris, $150 \mathrm{mM} \mathrm{NaCl}, 30 \mathrm{mM}$ maltose, pH 8.0. The volume of the protein solution was reduced to 5 ml using 10 KDa MW cutoff spin concentrators (Millipore) and applied to a size-exclusion HiLoad 16/60 Superdex 75 column, and eluted in 50 mM Tris, $150 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH}$ 8.0. The size exclusion eluate volume was concentrated down to 1.5 ml and dialyzed three times against 1 L 25 mM Tris, $150 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH}$ 8.0, for two hours, overnight, and two hours, respectively. The final protein concentration was determined in the denatured state in 6 M guanidinium hydrochloride, 20 mM potassium phosphate solution and the purity was confirmed by Coomassie-stained SDS-PAGE to be $>98 \%$.

4. In vitro binding assays using bio-layer interferometry (BLI)

4.1 Constructs. We purified several S3 sensor protein pairs to determine their in vitro binding affinity in the presence and absence of FPP by BLI. In our BLI experiments, one protein is tethered to an optically transparent biosensor tip by a biotin-streptavidin interaction, and the other protein is present as the analyte in solution in the microplate. BLI expression plasmids are listed in Appendix 2 and the gene sequences are listed in Appendix 4. Constructs for BLI experiments included the sequence corresponding to the last alpha helix in MBP (residues 354-370).
4.2 Biotinylation of avi-MBP. Avi-tagged MBP (Appendix 2) was prepared at $66 \mu \mathrm{M}$ in 10 mM Tris buffer, pH 8.0. The BirA-500 biotin-protein ligase kit from Avidity was used as per the manufacturer's instructions, with a final avi-MBP concentration of $40 \mu \mathrm{M}$ and $2.5 \mu \mathrm{~g}$ BirA enzyme per 10 nmol protein. The reaction was performed at $30^{\circ} \mathrm{C}$ for 45 minutes, and then bufferexchanged by spin concentration and 50 -fold dilution three times in fresh 25 mM Tris, 150 mM NaCl buffer, pH 8.0 , to remove excess biotin and reaction components. Biotinylated avi-MBP was diluted to $40 \mu \mathrm{M}$ and stored at $4{ }^{\circ} \mathrm{C}$ for use in BLI measurements.
4.3 BLI. Affinity measurements between avi-tagged MBP, AR and FPP were performed at room temperature using an Octet RED96 system and streptavidin (SA)-coated biosensor tips (Pall ForteBio). Avi-MBP was diluted to 400 nM in HBS-P buffer (0.01 M HEPES pH 7.4, 0.15 M $\mathrm{NaCl}, 0.005 \% \mathrm{v} / \mathrm{v}$ Surfactant P20) to be used as the antigen. Antigen-bound SA-tips were washed, exposed to the analyte solutions during an association period, and then allowed to unbind from the analyte during a dissociation period. For experiments including FPP, the analyte solution was
composed of $0-24 \mu \mathrm{M}$ AR and $200 \mu \mathrm{M} \mathrm{FPP}$. For experiments measuring the affinity of MBP for AR without FPP, the analyte solution was composed of $0-500 \mu \mathrm{M} \mathrm{AR}$. The binding protocol was as follows: rinse tips in HBS-P buffer, 60 seconds; load tips with antigen, 300 seconds; establish baseline by rinsing tips in HBS-P buffer, 60 seconds; association with analyte, 60 seconds; dissociation in baseline wells, 600 seconds. Raw data was fit to $1: 1$ binding curves in Octet Data Analysis HT software using curve fitting kinetic analysis with local fitting. The theoretical equilibrium binding signal response data (R equilibrium) were normalized by the steady-state group maximum response ($\mathrm{R}_{\max }$) values, and the steady state affinity was determined using the Hill equation,

$$
\theta=\frac{1}{\frac{K_{A}}{[L]}+1},
$$

where θ is the fraction of MBP that is bound to AR, K_{A} is the AR concentration at which half the MBP are occupied; and [L] is the concentration of unbound AR. Non-cooperative binding kinetics are assumed. All binding curves fit the BLI data with $\mathrm{R}^{2}>0.90$.

5. Cell-free transcription-translation (TxTl) assay

5.1 Constructs. Plasmids for TxTl experiments were constructed using standard BsaI/BsmBI Golden Gate cloning methods as described in Engler et al.(15) using our group's adaptation of the MoClo Yeast Tool Kit strategy as described in Lee et al.(10). For all MBP genes in TxTl plasmids, we included the sequence corresponding to the last alpha helix in the structure (residues 354-370). A comprehensive list of plasmids is available in Appendix 3.
5.2 TxTl protocol. Separate $30 \mu 1 \mathrm{TxTl}$ reactions were prepared for each plasmid (expressing MBP or AR variants) as described in Sun et al.(17) and incubated for $8-16$ hours at $29^{\circ} \mathrm{C}$. Each reaction also included 0.2 nM of the TxTl11 plasmid for RNA polymerase expression (Appendix 3) and 1 mM IPTG. The cell extract was prepared from Rosetta 2 cells (EMD Millipore). All TxTl reactions were mixed 1 to 1 with phosphate buffered saline/1\% bovine serum albumin (PBS/BSA solution) for a total protein solution volume of $60 \mu \mathrm{l}$. A master mix was prepared by mixing 1 volume TxTl extract expressing an MBP variant, 1 volume TxTl extract expressing an AR variant, and 2 volumes PBS/BSA solution. Master mix aliquots of $27 \mu \mathrm{l}$ were mixed with $3 \mu \mathrm{l}$ farnesyl pyrophosphate (FPP) (Sigma) stock solutions in water with concentrations ranging from $1 \mu \mathrm{M}$ to 2 mM . These $30 \mu \mathrm{l}$ solutions were distributed in $9.5 \mu \mathrm{l}$ aliquots in a white opaque 384 well plate for luminescence measurements or a black opaque 384 well plate for fluorescence measurements, centrifuged for 30 seconds to remove bubbles, and stored at room temperature for 10 minutes. For luminescence measurements, 1 ml plus $10 \mu 1$ per well of Promega NanoGlo buffer was thawed on ice and mixed with a 50 -fold dilution of furimazine substrate to make NanoGlo reagent, as described in Dixon et al.(18). The reagent was distributed in $9.5 \mu \mathrm{l}$ aliquots to all wells containing
$9.5 \mu \mathrm{l}$ protein/FPP sample. After ten minutes, a SpectraMax L luminometer (Molecular Devices) was used to take luminescence readings using analog detection and injection, following priming of the injection lines with 1 ml NanoGlo reagent. Data were collected with the following machine settings: integration time, 1 s ; PMT setting, photon counting; automix setting, classic with 5 s mix duration and $30 \mathrm{~mm} / \mathrm{s}$ mix speed; M -injection, with injector volume $10 \mu \mathrm{l}$, post-injection delay 1 s; injection speed $320 \mu \mathrm{l} / \mathrm{s}$, and no shaking after injection; and dark adapt set to off. For fluorescence measurements, a Tecan Safire 2 microplate reader was used to read ddGFP complementation from the top of the plate at excitation/emission wavelengths of 380 nm and 508 nm , with the gain set to 100 .
5.3 Data fitting for in vitro FPP titration measurements. Raw background-subtracted luminescence and fluorescence data from TxTl assay measurements were averaged for each FPP concentration and fit to a modified three-parameter logistic nonlinear regression model of the Hill equation,

$$
\hat{\mathrm{Y}}=a+\frac{b-a}{1+\frac{c}{x}},
$$

where $\hat{\mathrm{Y}}$ is the expected response at FPP concentration x, a is the minimum response when no FPP is present, b is the maximum response, and c is the FPP concentration at which half the protein sensors are bound, allowing for a fluorescent or luminescent output. Data and fit were normalized by subtracting the calculated minimum response and dividing by the difference of the calculated maximum and minimum responses.

6. Crystallography.

6.1 Constructs. The plasmids used to express S3-2D sensor proteins for crystallography are listed in Appendix 2. Their sequences are listed in Appendix 4. Methods for protein expression and purification are described in Section 3.
6.2 Crystallization. AR and MBP were each prepared at $340 \mu \mathrm{M}$ and mixed $1: 1$ to obtain each protein at $170 \mu \mathrm{M}$ in solution. FPP was prepared at 170 mM in 70% ethanol and diluted 100 -fold in the protein solution for a final concentration of 1.7 mM FPP. We carried out initial crystallization trials in 15-well hanging drop format using EasyXtal crystallization plates (Qiagen) and a crystallization screen that was designed to explore the chemical space around the crystallization conditions reported by Binz et al. (19) for the co-crystal structure of their AR-MBP complex (PDBID:1SVX). Crystallization drops were prepared by mixing $1 \mu \mathrm{l}$ of protein solution with $1 \mu \mathrm{l}$ of the mother liquor, and sealing the drop inside a reservoir containing an additional 500 μl of the mother liquor solution. Thin, plate-like crystals were obtained in many of the conditions tested, with the largest single crystals growing from drops prepared using mother liquor containing 0.1 M Tris Buffer pH 8.7, 0.1 M sodium chloride, and 32% PEG- 6000 . The crystals could not be obtained without the addition of the FPP ligand, and we used SDS-PAGE to confirm that both proteins required to form the heterodimer were present in the crystals (after harvesting and washing in mother liquor without protein).
6.3 X-ray data collection and processing. Prior to X-ray data collection, crystals were dehydrated overnight in a solution containing 0.1 M Tris Buffer $\mathrm{pH} 8.7,0.1 \mathrm{M}$ sodium chloride, and 45%

PEG-6000. Next, the crystals were soaked in a solution containing 0.1 M Tris Buffer pH 8.7, 0.1 M sodium chloride, 42\% PEG-6000, 7\% ethanol, and 18 mM FPP for 30 minutes before they were harvested and flash-cooled in liquid nitrogen. The soaking steps were essential to improve the quality of the observed X-ray diffraction patterns, and to ensure adequate occupancy of the FPP ligand in the resulting electron density maps. No cryoprotectant was necessary due to the high concentration of PEG-6000 in the soaking solutions.

We collected single-crystal X-ray diffraction data on beamline 8.3.1 at the Advanced Light Source. The beamline was equipped with an ADSC Quantum 315r CCD detector, and the crystals were maintained at a cryogenic temperature $(100 \mathrm{~K})$ throughout the course of data collection.

We processed the X-ray data using the Xia2 system(20), which performed indexing, integration, and scaling with XDS and XSCALE(21), followed by merging with Pointless(22). A resolution cutoff ($2.20 \AA$) was taken where the completeness of the data fell to a value of approximately 90%. Although other metrics of data quality (such as $\mathrm{CC} 1 / 2$ and $<\mathrm{I} / \sigma \mathrm{I}>$) suggest that a more aggressive resolution cutoff would be acceptable, we were limited by physical constraints on the experimental geometry. Specifically, the plate-like morphology of the crystals resulted in the long axis of the unit cell always being perpendicular to the crystal rotation (phi) axis, which constrained the minimum sample-to-detector distance and the maximum Bragg angle that could be recorded on the detector without producing overlap between individual reflections. Further information regarding data collection and processing is presented in Table S4. The reduced diffraction data were analyzed with phenix.xtriage (http://www.ccp4.ac.uk/newsletters/newsletter43/articles/PHZ_RWGK_PDA.pdf) to check for
crystal pathologies, which revealed the presence of pseudomerohedral twinning based on the results of the L-test $(<|\mathrm{L}|>=0.399,<\mathrm{L} 2\rangle=0.225)(23)$.
6.4 Structure determination. We obtained initial phase information for calculation of electron density maps by molecular replacement using the program Phaser(24), as implemented in the PHENIX suite(25). We searched for each component of the heterodimer independently, using separate models of AR (PDBID: 1SVX, chain A) and the "closed" (ligand-bound) form of MBP (PDBID: 1FDQ). We explicitly did not use the design model for molecular replacement to avoid the introduction of model bias. Two complete copies of the heterodimer were found in the unit cell, consistent with an analysis of Matthews probabilities for the observed unit cell and molecular weight of the heterodimer $(26,27)$.

Next, we attempted to rebuild the missing or incorrect parts of the molecular replacement solution using the electron-density maps calculated from model phases, however, the presence of twinning compromised the quality of the initial maps. To improve the interpretability of the electron density maps, we carried out a round of atomic refinement using phenix.refine(28) in which we also refined the twin fraction (twin operator $=h,-k,-l$; refined twin fraction, $\boldsymbol{\alpha}=0.49$). The twin refinement improved the map quality substantially, allowing us to rebuild the missing or incorrect parts of the structure. Additional iterative steps of manual model rebuilding and atomic refinement were performed, and during this process we found evidence for several small molecule ligands in both $2 m F_{o}-D F_{c}$ and $m F_{o}-D F_{c}$ electron density maps. Specifically, we identified an FPP molecule occupying one of the computationally-designed binding sites, as well as two maltose disaccharides (one bound to each copy of MBP). The presence of merohedral twinning can present challenges
for map interpretation because the structure factor detwinning process can exacerbate the effects of model phase bias(29). Consequently, we took extra care with the placement of the FPP ligand into electron density features around the designed binding site. The initial placement of the ligand was motivated by the observation of several strong electron density peaks near a key lysine residue and in the hydrophobic binding cavity, which could be attributed to the pyrophosphate group and aliphatic tail of FPP, respectively. Refinement of the structure with FPP in the binding site resulted in a rearrangement of side chains in contact with the ligand, providing additional evidence that this binding site is occupied. Specifically, Trp114 of AR becomes ordered upon FPP binding, and Y197 in MBP rotates and displaces a small network of two neighboring water molecules (Figure S11). After adding the ligands, we performed additional refinement of atomic positions, atomic displacement parameters, and occupancies using non-crystallographic symmetry (NCS) and secondary structure restraints, a riding hydrogen model, and automatic weight optimization. The refined atomic B-factors of the FPP ligand are similar to those of the surrounding protein atoms. After refining the model to convergence, we further verified the presence of the FPP ligand in the model by repeating our final refinement starting from atomic coordinates without the ligand atoms. This "omit refinement" produced $2 m F_{o}-D F_{c}$ and $m F_{o}-D F_{c}$ omit maps and allowed us to assess the effect of including the ligand. The omit maps showed density that was highly similar to the original maps that permitted initial placement of FPP (Figure S10). The absence of FPP in the second ligand binding site could be the result of distortions to the heterodimeric interface caused by crystallization, or by the dehydration procedure that was required to improve the diffraction resolution. All model building was performed using $\operatorname{Coot}(30)$ and refinement steps were performed with phenix.refine (v1.13-2998) within the PHENIX suite $(25,28)$. Restraints for the maltose and FPP ligands were calculated using phenix.elbow(31). The final model coordinates were deposited
in the Protein Data Bank (PDB(32)) under accession code 60B5. Further information regarding model building and refinement is presented in Table $\mathbf{S 4}$.

Figure S1

Scaffold 1:

FKBP-12

FKBP12-WT GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFMLGKQEVIRGWEEGVAQMSVGQRAKLTISPD FKBP12-1.1 GVQVETISPGDGRTFPKRGQTCVVHITGMLEDGKKEISSRDRNKPFKEMLGKQRVLRGWEEGVAQMSVGQRAKLTISPD

FRB

108	127	147
\|	167	

FRB-WT VAILWHEMWHEGLEEASRLYFGERNVKGMFEVLEPLHAMMERGPQTLKETSFNQAYGRDLMEAQEWCRKYMKSGNVKDL FRB-1.1 VAILWHEMWHEGAEEAARLYRGERNVKGMFEVLEPLHAMMERGPQTLKETSFNQAYGRDLMEAQEWCRKYMKSGNVKDL

187
FRB-WT TRAWDLYYHVFRRIS
FRB-1.1 WRAMLLYAHVRDRIS

Scaffold 2:

RapF

80	
RapF-WT	LLEIDKK
RapF-1.1 1	LLEIDKK
RapF-1.2	LLEIDKK
RapF-1.3 LLEIDKK	
RapF-1.4	LLEIDKK

ComA
377
396
416

ComA-WT VLTPRECLILQEVEKGFTNQEIADALHISSkRSIEYSLTSIFNKLNVGSRTEAVLIAKS
ComA-1.1 VLTPRECLILQEVEKGFTNQEIADALHIRASAIEASLTSIFNKLNVGSRTEAVLIAKS
ComA-1.2 VLTPRECLILQEVEKGFTNQEIADALHMRASAIEASLTSIFNKLNVGSRTEAVLIAKS
ComA-1.3 VLTPRECLILQEVEKGFTNQEIADALHMRASAIEASLTSIFAKLNVGSRTEAVLIAKS
ComA-1.4 VLTPRECLILQEVEKGFTNQEIADALHIRASAIEMSLTSIFNKLNVGSRTEAVLIAKS

Scaffold 3:

MBP

1 20 ${ }_{1}^{20}$

MBP-WT KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEI
MBP-1.1 KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEI
MBP-1.2 KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEI
MBP-1.3 KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEI
MBP-1.4 KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEI
MBP-2.5 KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEI
MBP-3.6 KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEI

MBP-WT TPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIPALDKELKAKGKSALMFNLQEPYFTW
MBP-1.1 TPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIFALDKELKAKGKSALMFNLQEPYFTW
MBP-1.2 TPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIFALDKELKAKGKSALMFNLQEPYFTW
MBP-1.3 TPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIFALDKELKAKGKSALMFNLQEPYFTW
MBP-1.4 TPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIFALDKELKAKGKSALMFNLQEPYFTW
MBP-2.5 TPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIFALDKELKAKGKSALMFNLQEPYFTW
MBP-3.6 TPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIEALDKELKAKGKSALMFNLQEPYFTW

160	180	200	220
I	1	\|	

MBP-WT PLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVDLIKNKHMNADTDYSIAEAAFNKGETAMTINGPWAWSNIDT MBP-1.1 PLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVALIAAKAMNADTDYSIAEAAFNKGETAMTINGPWAWSNIDT MBP-1.2 PLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVALIKAKHMNADTDYSIAEAAFNKGETAMTINGPWAWSNIDT MBP-1.3 PLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTRLVYLIAAKAMNADTDYSIAEAAFNKGETAMTINGPWAWSNIDT MBP-1.4 PLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVALIKAKAMNADTDYSIAEAAFNKGETAMTINGPWAWSNIDT MBP-2.5 PLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTALVYLIAAKAMNADTDYSIAEAAFNKGETAMTINGPWAWSNIDT MBP-3.6 PLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTALVALIAAKAMNADTDYSIAEAAFNKGETAMTINGPWAWSNIDT

240	260	280
\|	300	

MBP-WT SKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPR MBP-1.1 SKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPR MBP-1.2 SKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPR MBP-1.3 SKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPR MBP-1.4 SKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPR MBP-2.5 SKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPR MBP-3.6 SKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPR

320	340	360
I		

MBP-WT IAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDEALKDAQTRITK
MBP-1.1 IAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAASG
MBP-1.2 IAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAASG
MBP-1.3 IAATMENAQKGE IMPNIPQMSAFWYAVRTAVINAASG
MBP-1.4 IAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAASG
MBP-2.5 IAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDEALKDAQTRITK
MBP-3.6 IAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDEALKDAQTRITK

AR

Fig. S1. Sequence alignments of designed proteins (Table S1). Residues that are different from the wild-type scaffold are highlighted, and motif residues are highlighted in yellow and boxed. Computationally predicted mutations for original designs are in magenta, stability-enhancing mutations from Kramer et al.(33) are in dark gray, mutations from error-prone PCR are in light grey, mutations from saturation mutagenesis are in orange, computationally predicted stabilizing mutations are in purple, and the computationally predicted reversion mutation is in blue.

Figure S2

$\square \mathrm{OD}(\mathrm{-} \mathrm{MEV})$
$\square \mathrm{OD}(+\mathrm{MEV})$
\square
$\triangle O D$

Fig. S2. Growth +/- $5 \mathbf{m M}$ mevalonate and change in growth for data shown in Figure 2C. (A) Sensor design for scaffold 1 (FRB/FKBP). (B) Sensor designs for scaffold 2 (RapF/ComA). (C) Sensor designs for scaffold 3 (AR/MBP). Change in growth is dependent on IPTG concentration (panel C) as expected, where at high induction levels split mDHFR is complemented independent of mevalonate, and adding mevalonate leads to a growth disadvantage because of production of toxic metabolites (IPP, DMAP, and FPP). Figure 2C shows data at $50 \mu \mathrm{M}$ IPTG. Experimental conditions: 0.4% L-arabinose, $1 \mu \mathrm{~g} / \mathrm{mL}$ TMP, $35^{\circ} \mathrm{C}$. Error bars are the standard deviation from at least 4 biological replicates and 8 replicates for each biological replicate.

Note that S3-2A, which contains two mutations introduced by error-prone PCR and was selected by library screening using the split mDHFR reporter, behaves similarly (except for a slight shift in the effect of IPTG concentration) to the original computational design S3-1C, which has an identical sequence without the two error-prone PCR mutations (Fig. 2A, Fig. S5).

Figure S3

Fig. S3. Example data from library screening using a colony-printing assay. (A) Comparison of growth in the presence (top) and absence (bottom) of 5 mM mevalonate for two replicates. A colony growing better with mevalonate is circled in the replicates. (B) Examples of two to three replicates for library hits (concatenated from different plates). Experimental conditions: $0.4 \% \mathrm{~L}-$
arabinose, $6 \mu \mathrm{~g} / \mathrm{mL}$ TMP, $100 \mu \mathrm{M}$ IPTG. Top row: hits from library 2; bottom row: hits from library 1.
Figure S4

MBP

Fig. S4. Sequence alignments of hits from the computationally designed S3 library. These variants were identified using a plate-based split mDHFR assay (Fig. S3) and validated by individual solution growth assays (Methods). Residues different from the WT scaffold are highlighted in magenta, and motif residues are highlighted in yellow and boxed.

Figure S5

MBP

1
20
40
60

MBP-WT KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEI
MBP-D1F11 KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEI MBP-D2E11 KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEI MBP-D23E3 KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEI MBP-D26B5 MBP-D28D9
MBP-D28H1
MBP-D29F4
MBP-D30B9
MBP-D30F9
MBP-D31D9
MBP-D31E8 KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEI KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEI KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEI KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEI KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEI KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEI KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEI KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEI

 MBP-D1F11 PLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTRLVYLIAAKAMNADTDYSIAEAAFNKGETAMTINGPWAWSNIDT
MBP-D2E11
MBP-D23E3
MBP-D2 6B5
MBP-D28D9
MBP-D28H1
MBP-D29F4
MBP-D30B9
MBP-D30F9
MBP-D31D9
MBP-D31E8

MBP-WT
MBP-D1F11
MBP-D2E11
MBP-D23E3
MBP-D2 6B5
MBP-D28D9
MBP-D28H1
MBP-D29F4
MBP-D30B9
MBP-D30F9
MBP-D31D9
MBP-D31E8
PTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPI SKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPR SKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPR SKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPR SKVNYGVTVLPTFKGQPSKPFVGVLSAGINAAS PNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPR SKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPR SKVNYGVTVLPTFKGQPSKPFVGVLSAGINAAS PNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPR SKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPR SKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPR SKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPR SKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPR SKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPR
320

340
IAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAA

MBP-D23E3
MBP-D26B5
MBP-D28D9
MBP-D28H1
MBP-D29F4
MBP-D30B9
MBP-D30F9
MBP-D31D9
MBP-D31E8

MBP-D1F11 IAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAA IAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAA

Fig. S5. Sequence alignments of hits from the error-prone PCR S3 library. These variants were identified using a plate-based split mDHFR assay (Fig. S3) and validated by individual solution growth assays (Methods). Residues different from the WT scaffold are highlighted in magenta, and motif residues are highlighted in yellow and boxed.

Figure S6

Fig. S6. Data from the single-site saturation mutagenesis screen. (A) Sequences of hits at screened positions. (B) Validation of hits from round 1 (starting from S3-2A) with the split mDHFR assay in liquid culture. (C) Validation of hits from round 2 (starting from S3-2B) with split mDHFR assay in liquid culture. (D) Sensor signal (change in growth as measured by OD_{600}) from round 2. (E) Split mDHFR plate assay showing that sensors S3-2B and S3-2C function under more stringent conditions (lower IPTG inducer concentration). Experimental conditions: Round 1 (panel B): cultures grown with $80 \mu \mathrm{M}$ IPTG at $35^{\circ} \mathrm{C}, n=3$. Round 2: (panels C, D): cultures grown with $60 \mu \mathrm{M}$ IPTG at $35^{\circ} \mathrm{C}, n=4$. Error bars reflect standard deviation.

Figure S7

Fig. S7. Dependency of the sensor signal on IPTG and mevalonate concentrations. Data are from a split mDHFR assay in liquid culture. Experimental conditions: varied concentrations of IPTG and mevalonate, 0.4% L-arabinose, $1 \mu \mathrm{~g} / \mathrm{ml}$ TMP, cultured at $35^{\circ} \mathrm{C}$. Data are averaged over 6 plates per design.

Figure S8

Fig. S8. (A) Growth +/- mevalonate and (B) change in growth for design S3-2D. Experimental conditions: $35^{\circ} \mathrm{C}, 1 \mu \mathrm{~g} / \mathrm{ml}$ TMP, 5 mM mevalonate. Error bars are standard deviation from at least 4 biological replicates and 8 replicates for each biological replicate.

Figure S9

Fig. S9. BLI binding assay representative data and fits. The apparent K_{D} of design S3-2D was measured using immobilized avi-MBP-2.5, titrated AR-2.7 at indicated concentrations (top), in the presence of $200 \mu \mathrm{M}$ FPP. Red lines in the top plot indicate fit to the data and residuals are shown in the bottom plot.

Figure S10

Fig. S10. Electron density maps supporting placement of the FPP ligand. The $2 F_{o}-F_{c}$ electron density map created using the final model phases (\mathbf{A}, cyan mesh) shows good agreement with the modeled ligand (RSCC $=0.89$). The $2 F_{o}-F_{c}\left(\mathbf{B}\right.$, dark blue mesh) and $F_{o}-F_{c}(\mathbf{C}$, blue/orange volumes) omit maps contain notable peaks corresponding to the pyrophosphate group (marked with a star) and the aliphatic tail (marked with an arrow), which resembled peaks in the $2 F_{o}-F_{c}$ and $F_{o}-F_{c}$ maps that were used to initially identify the ligand. An overlay of the different electron density maps (D) shows the co-localization of these features in real space.

Figure S11

Fig. S11. Electron density supporting ligand-induced rearrangement of the FPP binding site. In the unoccupied FPP binding site (yellow models, density shown in panel (A), Y197 in the MBP monomer is rotated down into the binding pocket, and W114 of the AR monomer appears flexible, likely occupying multiple rotameric states (denoted by a star). When the binding site is occupied (MBP models in blue, AR models in cyan, density shown in panel (B), the Y197 side chain rotates away from the FPP molecule, displacing a small network of neighboring water molecules (indicated by the black arrows in panel A), and W114 becomes well-ordered with its indole group packed against the bound FPP molecule (pink).

Figure S12

Fig. S12. Comparison of S3-2D and S3-3A (Y197A mutation) in the split mDHFR assay. Design S3-3A is an active sensor in E. coli. Experimental conditions: $35^{\circ} \mathrm{C}, 60 \mu \mathrm{M}$ IPTG, $6 \mu \mathrm{~g} / \mathrm{ml}$ TMP, 0.4% L-arabinose. Error bars are standard deviations, $n=8$ for each design and $+/-$ mevalonate condition.

Figure S13

A S3-2D

B S3-3A

C $\mathrm{S3}-3 \mathrm{~B}$

D $\mathrm{S3}-3 \mathrm{C}$

Fig. S13. BLI binding data +/- FPP for designs S3-2D, S3-3A, S3-3B, S3-3C. Experiments use immobilized MBP variants titrating in AR variants at the indicated concentrations. Data for the + FPP condition are also shown in Figure 3E and depicted here for comparison. Apparent K_{D} values are given in Figure 3C. Error bars are standard deviations, $n \geq 3$ for each of $+/-$ FPP conditions.

Table S1. Summary of computational designs. The design ID lists scaffold first (S1, S2, S3), followed by design round ($1,2,3$), followed by a letter (A, B, etc). The nomenclature for the individual sensor proteins lists protein, design round, and a consecutive number denoting the protein's variant.

Scaffold (WT PDB)	$\begin{aligned} & \text { Design } \\ & \text { ID } \end{aligned}$	Sensor Protein A	Sensor Protein B	Design / Engineering Method
Scaffold 1: FKBP12 -FRB (3FAP.pdb)	S1-1A	FKBP12-	FRB-1.1	Computational Design
Scaffold 2: RapF-ComA (3ULQ.pdb)	S2-1A	RapF-1.1	ComA-1.1	Computational Design
	S2-1B	RapF-1.2	ComA-1.2	Computational Design
	S2-1C	RapF-1.3	ComA-1.3	Computational Design
	S2-1D	RapF-1.4	ComA-1.4	Computational Design
Scaffold 3: AR-MBP (1SVX.pdb)	Computational designs (group 1)			
	S3-1A	AR-1.1	MBP-1.1	Computational Design, best ligand burial
	S3-1B	AR-1.2	MBP-1.2	Computational Design, consensus
	S3-1C	AR-1.3	MBP-1.3	Computational Design, optimized ligand packing
	S3-1D	AR-1.4	MBP-1.4	Computational Design, best ligand score
	Computational designs with stability enhancing mutations (group 2)			
	S3-2A	AR-2.5	MBP-1.3	Hit from error-prone PCR (identical to design S3-1C except for 2 mutations in AR: N102H, A104E)
	S3-2B	AR-2.5	MBP-2.5	S3-2A with stability enhancing mutation from saturation mutagenesis in MBP: R194A
	S3-2C	AR-2.6	MBP-2.5	S3-2A with stability enhancing mutations from saturation mutagenesis: MBP: R194A AR: L85G
	S3-2D	AR-2.7	MBP-2.5	S3-2C with published stabilizing mutations in AR*: W122K, E152L, A149P, S153A, L161I, I164V, L168A, N169A
	Computational designs with designed affinity enhancing mutations (group 3)			
	S3-3A	AR-2.7	MBP-3.6	S3-2D with affinity enhancing mutation in MBP from KIC ensemble design: Y197A
	S3-3B	AR-3.8	MBP-2.5	S3-2D with affinity enhancing mutations in AR from CoupledMoves: R145K, K147L, D155L
	S3-3C	AR-3.8	MBP-3.6	S3-2D with affinity enhancing mutations in AR and MBP: AR: R145K, K147L, D155L MBP: Y197A

[^0]Table S2. Computationally designed library. We designed a sequence library with 2.4×10^{6} members using degenerate codons (top) based on the dominant residues predicted computationally (bottom). The library was tested using the plate-based split mDHFR assay. Hits were defined as sensor sequences that grew better in the presence of mevalonate. Residues are shown with motif positions in red and wild-type residues shaded grey. Residues with minor frequencies in the flexible design predictions are shown as lower-case letters.

Sequence position	81	85	89	114	119	122	123	145	152	133	194	197	200	201	203
Protein	AR									MBP					
Wild-type residue	Y	H	Y	M	L	K	W	F	I	P	F	D	K	N	H
Library codon	WTK	WTT	WTK	TGG	GCG	KHT	BHK	CGT	RYT	YWT	-	GVC	RMG	KHT	-
Library residues (plus F79A)	$\begin{aligned} & \mathrm{F} \\ & \mathrm{I} \\ & \mathrm{~L} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{I} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{I} \\ & \mathrm{~L} \\ & \mathrm{M} \end{aligned}$	W	A	$\begin{gathered} \mathrm{A} \\ \mathrm{D} \\ \mathrm{~F} \\ \mathrm{~S} \\ \mathrm{~V} \\ \mathrm{Y} \end{gathered}$	F Y A S V D L P H Q E	R	$\begin{gathered} \mathrm{A} \\ \mathrm{I} \\ \mathrm{~T} \\ \mathrm{~V} \end{gathered}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{Y} \end{aligned}$	-	$\begin{gathered} \text { A } \\ \mathrm{D} \\ \mathrm{G} \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{E} \\ & \mathrm{~K} \\ & \mathrm{~T} \end{aligned}$	$\begin{gathered} \mathrm{A} \\ \mathrm{D} \\ \mathrm{~F} \\ \mathrm{~S} \\ \mathrm{~V} \\ \mathrm{Y} \end{gathered}$	-
```Residues in library hits```	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~L} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{I} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{M} \end{aligned}$	W	A	D S V Y	$\begin{aligned} & \mathrm{Y} \\ & \mathrm{~A} \\ & \mathrm{~V} \\ & \mathrm{~L} \\ & \mathrm{E} \end{aligned}$	R	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~T} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{Y} \\ & \mathrm{H} \end{aligned}$	-	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~A} \\ & \mathrm{G} \end{aligned}$	$\begin{aligned} & \mathrm{K} \\ & \mathrm{E} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~A} \\ & \mathrm{D} \end{aligned}$	-

## Computational predictions

Sequence position	81	85	89	114	119	122	123	145	152	133	194	197	200	201	203
Protein	AR									MBP					
```Computational Design (Top-ranked individual Sequences) (+99: D,G,T)```	$\begin{aligned} & \mathrm{F} \\ & \mathrm{I} \\ & \mathrm{~L} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \text { F } \\ & \mathrm{I} \\ & \mathrm{~L} \end{aligned}$	L	W	A	$\begin{aligned} & \mathrm{Y} \\ & \mathrm{~W} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{Y} \end{aligned}$	R	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~V} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{Y} \end{aligned}$	$\begin{aligned} & F \\ & R \end{aligned}$	A Y	A	A	$\begin{aligned} & \text { A } \\ & \text { H } \\ & \text { S } \end{aligned}$
Computational Predictions (KIC Ensemble)	$\begin{aligned} & \text { a } \\ & \mathrm{F} \\ & \mathrm{i} \\ & \mathrm{~L} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{a} \\ & \mathrm{~F} \\ & \mathrm{I} \\ & \mathrm{~m} \end{aligned}$	L	W	A	$\begin{aligned} & \text { A } \\ & \mathrm{F} \\ & \mathrm{I} \\ & \mathrm{Y} \end{aligned}$	A	R	A V	$\begin{aligned} & \mathrm{F} \\ & \mathrm{Y} \end{aligned}$	-	$\begin{aligned} & \text { A } \\ & \text { G } \end{aligned}$	A	$\begin{aligned} & \text { A } \\ & \text { L } \\ & \text { F } \\ & \text { Y } \end{aligned}$	-
Computational Predictions (CoupledMoves)	F	$\begin{aligned} & \mathrm{F} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \hline \text { A } \\ & \text { F } \\ & \text { H } \\ & \text { V } \\ & \text { W } \end{aligned}$	A	F W Y	F M Y	E R N N T	H F Y	F Y	F	A F H Y	A	A	-

Table S3: Single-site saturation mutagenesis positions and results.

Sequence position	85	112	118	119	122	123	152	155	194	197	251
Protein	AR								MBP		
Wild-type residue	H	D	H	L	K	W	I	D	F	D	K
Residues in library hits	$\begin{aligned} & \mathrm{F} \\ & \mathrm{I} \end{aligned}$			A	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~S} \\ & \mathrm{~V} \\ & \mathrm{Y} \end{aligned}$	$\begin{aligned} & \mathrm{Y} \\ & \mathrm{~A} \\ & \mathrm{~V} \\ & \mathrm{~L} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~T} \\ & \mathrm{~V} \end{aligned}$			$\begin{aligned} & \mathrm{D} \\ & \mathrm{~A} \\ & \mathrm{G} \end{aligned}$	
Residue in design S31D	F	D	H	A	Y	Y	V	D	F	A	K
Residue in design S31C	L	D	H	A	W	F	E	D	R	Y	K
Residue in design S32A	L	D	H	A	W	F	E	D	R	Y	K
Saturation mutagenesis hits round 1 , starting from S3-2A	-	-	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~N} \\ & \mathrm{P} \end{aligned}$	-	$\begin{aligned} & \text { V } \\ & \text { L } \end{aligned}$	-	-	-	$\begin{aligned} & \mathrm{A} \\ & \mathrm{G} \\ & \mathrm{~F} \end{aligned}$	-	-
Best from combination of hits round 1 (design S3- 2B)	L	D	H	A	W	F	E	D	A	Y	K
Saturation mutagenesis hits round 2, starting from S3-2B	G	-	$\begin{aligned} & T \\ & I \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{R} \end{aligned}$	-	-	-	-	-	-	-
Best from round 2 (design S32C)	G	D	H	A	W	F	E	D	A	Y	K

Table S4: X-ray data reduction and model refinement.

Wavelength	$1.116 \AA{ }^{\text {a }}$
Resolution Range	95.47-2.20 (2.24-2.20)
Unit Cell	$\begin{aligned} & \mathrm{a}=44.57 \AA, \mathrm{~b}=190.92 \AA, \mathrm{c}=55.48 \AA \\ & \boldsymbol{\alpha}=\boldsymbol{\beta}=\boldsymbol{\gamma}=90^{\circ} \end{aligned}$
Space Group	$P 2_{1}$
Unique Reflections	45972 (7746)
Multiplicity	3.7 (3.6)
Completeness	98.5\% (91.5\%)
<I/ $/$ I $>$	17.5 (8.3)
$\mathrm{CC}_{1 / 2}{ }^{\text {a }}$	0.997 (0.966)
$\mathrm{R}_{\text {pim }}{ }^{\text {b }}$	0.033 (0.090)
$\mathrm{R}_{\text {work }}{ }^{\text {c }}$	0.2071 (0.3448)
$\mathrm{R}_{\text {free }}{ }^{\text {c }}$	0.2596 (0.4761)
Total Refined Atoms	8115
Protein Residues	1022
Solvent Molecules	141
Refined Ligand Atoms	70
Average B-factor	$21.6 \AA^{2}$
$\mathrm{RMSD}_{\text {bonds }}$	0.003Å
$\mathrm{RMSD}_{\text {angles }}$	$0.56{ }^{\circ}$
Rama. Plot:	
Favored	97.1\%
Allowed	2.9\%
Outliers	0.0\%
Molprobity Clashscore ${ }^{\text {d }}$	3.97
PDB ID	60B5

a. Reference (34)
b. Reference (20)
c. Reference (35)
d. Reference (36)

Appendix 1: Plasmids / constructs for split mDHFR reporter assays. See Appendix 4 for full DNA sequences for each gene and vector listed below.

Designs with C-terminal split mDHFR

Construct	Vector background	Description
DHFR1	pCDFDuet*	FKBP12/FRB design S1-1A
DHFR2	pCDFDuet	RapF/ComA design S2-1A
DHFR3	pCDFDuet	RapF/ComA design S2-1B
DHFR4	pCDFDuet	RapF/ComA design S2-1C
DHFR5	pCDFDuet	RapF/ComA design S2-1D
DHFR6	pCDFDuet	AR/MBP design S3-1A
DHFR7	pCDFDuet	AR/MBP design S3-1B
DHFR8	pCDFDuet	AR/MBP design S3-1C
DHFR9	pCDFDuet	AR/MBP design S3-1D
DHFR10	pCDFDuet	AR/MBP Design S3-2A
DHFR11	pCDFDuet	AR/MBP Design S3-2B
DHFR12	pCDFDuet	AR/MBP Design S3-2C
DHFR13	pCDFDuet	AR/MBP Design S3-2D
DHFR14		AR/MBP Design S3-3A

* pCDFDuet (Novagen) is spectromycin/spectinomycin-resistant and has the CDF origin of replication. Each protein is fused to one of the subunits of split mDHFR. See Appendix $\mathbf{3}$ for sequences of split mDHFR subunits.

Mevalonate pathway constructs

Construct	Vector background	Description
pMBIS	$\mathrm{pB} 8 \mathrm{a}^{* *}$	ERG12-ERG8-MVD1-idi-ispA
ispA R116A	$\mathrm{pB8a}$	$\mathrm{pMBIS}+$ loss of function in
		ispA
pB5K	pB 8 a	$\mathrm{pMBIS}+$ ADS

** pB8a is chloramphenicol-resistant and has the pBBR1 origin of replication.

Motif residue alanine reversions with C-terminal split mDHFR

Construct	Vector background	Description
DHFR15	pCDFDuet	Design S3-2C AR L89A
DHFR16	pCDFDuet	Design S3-2C AR W114A
DHFR17	pCDFDuet	Design S3-2C AR R145A
DHFR18	pCDFDuet	Design S3-2C MBP F133A

Appendix 2: Plasmids / constructs for in vitro binding experiments and crystallography. These constructs included the C-terminal alpha helix in MBP (residues 354-370). See Appendix 4 for full DNA sequences for each gene and vector listed below.

Constructs for bio-layer interferometry (Designs S3-2D, S3-3A, S3-3B and S3-3C)

Construct	Vector background	Description*
BLI1	pET28b-GG	AR-2.7
BLI2	pET28b-GG	Avi-MBP-2.5
BLI3	pET28b-GG	AR-3.8
BLI4	pET28b-GG	Avi-MBP-3.6

*Avi tag sequence
DNA: GGTCTGAACGACATCTTCGAGGCTCAGAAAATCGAATGGCACGAA Protein: GLNDIFEAQKIEWHE

Constructs for crystallography (Design S3-2D)

Construct	Vector background	Description
CR1	pET28a	MBP-2.5
CR2	pET47b $(+)$	AR-2.7

Appendix 3: Plasmids / constructs for TxTl reporter assays. See Appendix 4 for full DNA sequences for each gene, vector, and reporter listed below.

Designs S3-2D and S3-3A constructs for TxT1 cell-free reporter assay

Construct	Vector background*	Description**
TxT11	TxT1 T7 A1	LgBIT-AR-2.7
TxT12	TxT1 T7 A2	MBP-2.5-SmBIT
TxT13	TxT1 T7 A2	ddRFPb-AR-2.7
TxT14	TxT1 T7 A2	MBP-2.5-ddGFPa
TxT15	TxT1 T7 A2	MBP-3.6-SmBIT
TxT16	TxT1 T7 A2	MBP-3.6-ddGFPa

* The TxTl T7 A1 vector has a kanamycin resistance cassette and a p15a origin of replication.

The TxTl T7 A2 vector has an ampicillin resistance cassette and a ColE1 origin of replication.
**LgBIT: 18 kDa large subunit of the engineered split nanoluciferase, NanoBiT
SmBIT: 1.3 kDa (11 amino acid peptide) small subunit of NanoBiT
ddRFPb: 26 kDa dimerization-dependent protein that fluoresces in complex with ddGFPa. ddGFPa: 26 kDa dimerization-dependent protein that fluoresces in complex with ddRFPb.
ddRFPb + ddGFPa complex is excited at 493 and 380 nm , with emission peaks at 448 and 508 nm .

Controls for TxTl cell-free reporter assay

Construct	Vector background	Description
TxT17	TxT1 T7 A1	LgBIT-WT AR
TxT18	TxT1 T7 A2	WT MBP-SmBIT
TxT19	TxT1 T7 A2	ddRFPb-WT AR
TxT110	TxT1 T7 A2	WT MBP-ddGFPa

Additional construct

Construct	Vector background $* * *$	Description
TxT111	TxT1 T500 A3	T7 RNA polymerase expression
$* * *$ The TxTl T500 A3 vector has an ampicillin resistance cassette and a p15a origin of replication. The		
target gene is expressed from the Pr promoter from lambda phage.		

Appendix 4: Gene and vector DNA sequences.

pCDFDuet

CGCTGACGTCGGTACCCTCGAGTCTGGTAAAGAAACCGCTGCTGCGAAATTTGAACGCCAGCACATGGAC TCGTCTACTAGCGCAGCTTAATTAACCTAGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTG GGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAACCTCAGGCATTTGAGAAGCACACGGTCACACT GCTTCCGGTAGTCAATAAACCGGTAAACCAGCAATAGACATAAGCGGCTATTTAACGACCCTGCCCTGAA CCGACGACCGGGTCATCGTGGCCGGATCTTGCGGCCCCTCGGCTTGAACGAATTGTTAGACATTATTTGC CGACTACCTTGGTGATCTCGCCTTTCACGTAGTGGACAAATTCTTCCAACTGATCTGCGCGCGAGGCCAA GCGATCTTCTTCTTGTCCAAGATAAGCCTGTCTAGCTTCAAGTATGACGGGCTGATACTGGGCCGGCAGG CGCTCCATTGCCCAGTCGGCAGCGACATCCTTCGGCGCGATTTTGCCGGTTACTGCGCTGTACCAAATGC GGGACAACGTAAGCACTACATTTCGCTCATCGCCAGCCCAGTCGGGCGGCGAGTTCCATAGCGTTAAGGT TTCATTTAGCGCCTCAAATAGATCCTGTTCAGGAACCGGATCAAAGAGTTCCTCCGCCGCTGGACCTACC AAGGCAACGCTATGTTCTCTTGCTTTTGTCAGCAAGATAGCCAGATCAATGTCGATCGTGGCTGGCTCGA AGATACCTGCAAGAATGTCATTGCGCTGCCATTCTCCAAATTGCAGTTCGCGCTTAGCTGGATAACGCCA CGGAATGATGTCGTCGTGCACAACAATGGTGACTTCTACAGCGCGGAGAATCTCGCTCTCTCCAGGGGAA GCCGAAGTTTCCAAAAGGTCGTTGATCAAAGCTCGCCGCGTTGTTTCATCAAGCCTTACGGTCACCGTAA CCAGCAAATCAATATCACTGTGTGGCTTCAGGCCGCCATCCACTGCGGAGCCGTACAAATGTACGGCCAG CAACGTCGGTTCGAGATGGCGCTCGATGACGCCAACTACCTCTGATAGTTGAGTCGATACTTCGGCGATC ACCGCTTCCCTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCG GATACATATTTGAATGTATTTAGAAAAATAAACAAATAGCTAGCTCACTCGGTCGCTACGCTCCGGGCGT GAGACTGCGGCGGGCGCTGCGGACACATACAAAGTTACCCACAGATTCCGTGGATAAGCAGGGGACTAAC ATGTGAGGCAAAACAGCAGGGCCGCGCCGGTGGCGTTTTTCCATAGGCTCCGCCCTCCTGCCAGAGTTCA CATAAACAGACGCTTTTCCGGTGCATCTGTGGGAGCCGTGAGGCTCAACCATGAATCTGACAGTACGGGC GAAACCCGACAGGACTTAAAGATCCCCACCGTTTCCGGCGGGTCGCTCCCTCTTGCGCTCTCCTGTTCCG ACCCTGCCGTTTACCGGATACCTGTTCCGCCTTTCTCCCTTACGGGAAGTGTGGCGCTTTCTCATAGCTC ACACACTGGTATCTCGGCTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTAAGCAAGAACTCCCCGTTC AGCCCGACTGCTGCGCCTTATCCGGTAACTGTTCACTTGAGTCCAACCCGGAAAAGCACGGTAAAACGCC ACTGGCAGCAGCCATTGGTAACTGGGAGTTCGCAGAGGATTTGTTTAGCTAAACACGCGGTTGCTCTTGA AGTGTGCGCCAAAGTCCGGCTACACTGGAAGGACAGATTTGGTTGCTGTGCTCTGCGAAAGCCAGTTACC ACGGTTAAGCAGTTCCCCAACTGACTTAACCTTCGATCAAACCACCTCCCCAGGTGGTTTTTTCGTTTAC AGGGCAAAAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACTGAACCGCTC TAGATTTCAGTGCAATTTATCTCTTCAAATGTAGCACCTGAAGTCAGCCCCATACGATATAAGTTGTAAT TCTCATGTTAGTCATGCCCCGCGCCCACCGGAAGGAGCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGT CGAGATCCCGGTGCCTAATGAGTGAGCTAACTTACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGT CGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGG GCGCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGATTGCCCTTCACCGCCTGGCCCTG AGAGAGTTGCAGCAAGCGGTCCACGCTGGTTTGCCCCAGCAGGCGAAAATCCTGTTTGATGGTGGTTAAC GGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTACCGAGATGTCCGCACCAACGCGCA GCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGG AACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGT TCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGA CAGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCAG TCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAATAAC GCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCA GCCCACTGACGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTAC CATCGACACCACCACGCTGGCACCCAGTTGATCGGCGCGAGATTTAATCGCCGCGACAATTTGCGACGGC GCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGACTGTTTGCCCGCCAGTTGTTGTGCCA CGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAACGTG GCTGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAAC

GTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCATGCCATACCGCGAAAGG TTTTGCGCCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGACTCCTGCATTAGGAAATTAA TACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTGTAGAAATAATTTTGTTTAACTTTAA TAAGGAGATATACC

pB8a

GGATCCTAACTCGAGTAAGGATCTCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTT TCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCT TTTGCGTTTATACCTAGGCTACAGCCGATAGTCTGGAACAGCGCACTTACGGGTTGCTGCGCAACCCAAG TGCTACCGGCGCGGCAGCGTGACCCGTGTCGGCGGCTCCAACGGCTCGCCATCGTCCAGAAAACACGGCT CATCGGGCATCGGCAGGCGCTGCTGCCCGCGCCGTTCCCATTCCTCCGTTTCGGTCAAGGCTGGCAGGTC TGGTTCCATGCCCGGAATGCCGGGCTGGCTGGGCGGCTCCTCGCCGGGGCCGGTCGGTAGTTGCTGCTCG CCCGGATACAGGGTCGGGATGCGGCGCAGGTCGCCATGCCCCAACAGCGATTCGTCCTGGTCGTCGTGAT CAACCACCACGGCGGCACTGAACACCGACAGGCGCAACTGGTCGCGGGGCTGGCCCCACGCCACGCGGTC ATTGACCACGTAGGCCAACACGGTGCCGGGGCCGTTGAGCTTCACGACGGAGATCCAGCGCTCGGCCACC AAGTCCTTGACTGCGTATTGGACCGTCCGCAAAGAACGTCCGATGAGCTTGGAAAGTGTCTTCTGGCTGA CCACCACGGCGTTCTGGTGGCCCATCTGCGCCACGAGGTGATGCAGCAGCATTGCCGCCGTGGGTTTCCT CGCAATAAGCCCGGCCCACGCCTCATGCGCTTTGCGTTCCGTTTGCACCCAGTGACCGGGCTTGTTCTTG GCTTGAATGCCGATTTCTCTGGACTGCGTGGCCATGCTTATCTCCATGCGGTAGGGGTGCCGCACGGTTG CGGCACCATGCGCAATCAGCTGCAACTTTTCGGCAGCGCGACAACAATTATGCGTTGCGTAAAAGTGGCA GTCAATTACAGATTTTCTTTAACCTACGCAATGAGCTATTGCGGGGGGTGCCGCAATGAGCTGTTGCGTA CCCCCCTTTTTTAAGTTGTTGATTTTTAAGTCTTTCGCATTTCGCCCTATATCTAGTTCTTTGGTGCCCA AAGAAGGGCACCCCTGCGGGGTTCCCCCACGCCTTCGGCGCGGCTCCCCCTCCGGCAAAAAGTGGCCCCT CCGGGGCTTGTTGATCGACTGCGCGGCCTTCGGCCTTGCCCAAGGTGGCGCTGCCCCCTTGGAACCCCCG CACTCGCCGCCGTGAGGCTCGGGGGGCAGGCGGGCGGGCTTCGCCCTTCGACTGCCCCCACTCGCATAGG CTTGGGTCGTTCCAGGCGCGTCAAGGCCAAGCCGCTGCGCGGTCGCTGCGCGAGCCTTGACCCGCCTTCC ACTTGGTGTCCAACCGGCAAGCGAAGCGCGCAGGCCGCAGGCCGGAGGCACTAGTGCTTGGATTCTCACC AATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAATCCAGATGGAGTTCTGAGGTCATTACTGGA TCTATCAACAGGAGTCCAAGCGAGCTCGTAAACTTGGTCTGACAGTTACGCCCCGCCCTGCCACTCATCG CAGTACTGTTGTAATTCATTAAGCATTCTGCCGACATGGAAGCCATCACAAACGGCATGATGAACCTGAA TCGCCAGCGGCATCAGCACCTTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAAACGGGGGCGAAGAA GTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAACTCACCCAGGGATTGGCTGAGACGAAAAAC ATATTCTCAATAAACCCTTTAGGGAAATAGGCCAGGTTTTCACCGTAACACGCCACATCTTGCGAATATA TGTGTAGAAACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTTGCTCATG GAAAACGGTGTAACAAGGGTGAACACTATCCCATATCACCAGCTCACCGTCTTTCATTGCCATACGGAAT TCCGGATGAGCATTCATCAGGCGGGCAAGAATGTGAATAAAGGCCGGATAAAACTTGTGCTTATTTTTCT TTACGGTCTTTAAAAAGGCCGTAATATCCAGCTGAACGGTCTGGTTATAGGTACATTGAGCAACTGACTG AAATGCCTCAAAATGTTCTTTACGATGCCATTGGGATATATCAACGGTGGTATATCCAGTGATTTTTTTC TCCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATAT TTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGT C

pET28b-GG (with GFP dropout)

TGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACC GCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCG GCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGA CCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCT TTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCT CGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTA ACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATTTCAGGTGGCACTTTTCGGGGAAAT

GTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAATTAATTCT TAGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTT GAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTA TCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTA TCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGTTTATGCATTTCTTTCC AGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCAT TCGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAA TGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCTAATA CCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATG CTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTG GCAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTG TCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAATT TAATCGCGGCCTAGAGCAAGACGTTTCCCGTTGAATATGGCTCATAACACCCCTTGTATTACTGTTTATG TAAGCAGACAGTTTTATTGTTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGAC CCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAA AAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAAC TGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAG AACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATA AGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGG GGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTA TGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAG GAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCT CTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCG GCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATT CTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAG CGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATT TCACACCGCATATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACT CCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGAC GGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAG GTTTTCACCGTCATCACCGAAACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCGTGGTCGTGAAGCGAT TCACAGATGTCTGCCTGTTCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGTTAATGTCTGGCTTC TGATAAAGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTTGGTCACTGATGCCTCCGTGTAAGGGGGATT TCTGTTCATGGGGGTAATGATACCGATGAAACGAGAGAGGATGCTCACGATACGGGTTACTGATGATGAA CATGCCCGGTTACTGGAACGTTGTGAGGGTAAACAACTGGCGGTATGGATGCGGCGGGACCAGAGAAAAA TCACTCAGGGTCAATGCCAGCGCTTCGTTAATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCC TGCGATGCAGATCCGGAACATAATGGTGCAGGGCGCTGACTTCCGCGTTTCCAGACTTTACGAAACACGG AAACCGAAGACCATTCATGTTGTTGCTCAGGTCGCAGACGTTTTGCAGCAGCAGTCGCTTCACGTTCGCT CGCGTATCGGTGATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAG GAGCACGATCATGCGCACCCGTGGGGCCGCCATGCCGGCGATAATGGCCTGCTTCTCGCCGAAACGTTTG GTGGCGGGACCAGTGACGAAGGCTTGAGCGAGGGCGTGCAAGATTCCGAATACCGCAAGCGACAGGCCGA TCATCGTCGCGCTCCAGCGAAAGCGGTCCTCGCCGAAAATGACCCAGAGCGCTGCCGGCACCTGTCCTAC GAGTTGCATGATAAAGAAGACAGTCATAAGTGCGGCGACGATAGTCATGCCCCGCGCCCACCGGAAGGAG CTGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGAGATCCCGGTGCCTAATGAGTGAGCTAACTTACAT TAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGG CCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGG CAACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTTTGCCCC AGCAGGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGT ATCCCACTACCGAGATATCCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGC CATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGA AAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATT TATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTG GTGACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTG

ATGGGTGTCTGGTCAGAGACATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGG CATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCACCGC CGCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCG CGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCA GCAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGC TTCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACGCGGGAAACGGTCTGATAA GAGACACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCT CTTCCGGGCGCTATCATGCCATACCGCGAAAGGTTTTGCGCCATTCGATGGTGTCCGGGATCTCGACGCT CTCCCTTATGCGACTCCTGCATTAGGAAGCAGCCCAGTAGTAGGTTGAGGCCGTTGAGCACCGCCGCCGC AAGGAATGGTGCATGCAAGGAGATGGCGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATACCCACG CCGAAACAAGCGCTCATGAGCCCGAAGTGGCGAGCCCGATCTTCCCCATCGGTGATGTCGGCGATATAGG CGCCAGCAACCGCACCTGTGGCGCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTC GATCCCGCGAAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAA TTTTGTTTAACTTTAAGAAGGAGATATACCATGGGAGACCTCCCCTATCAGTGATAGAGATTGACATCCC TATCAGTGATAGAGATACTGAGCACGGATCTTAGCTACTAGAGAAAGAGGAGAAATACTAGATGCGTAAA GGCGAAGAGCTGTTCACTGGTGTCGTCCCTATTCTGGTGGAACTGGATGGTGATGTCAACGGTCATAAGT TTTCCGTGCGTGGCGAGGGTGAAGGTGACGCAACTAATGGTAAACTGACGCTGAAGTTCATCTGTACTAC TGGTAAACTGCCGGTACCTTGGCCGACTCTGGTAACGACGCTGACTTATGGTGTTCAGTGCTTTGCTCGT TATCCGGACCATATGAAGCAGCATGACTTCTTCAAGTCCGCCATGCCGGAAGGCTATGTGCAGGAACGCA CGATTTCCTTTAAGGATGACGGCACGTACAAAACGCGTGCGGAAGTGAAATTTGAAGGCGATACCCTGGT AAACCGCATTGAGCTGAAAGGCATTGACTTTAAAGAAGACGGCAATATCCTGGGCCATAAGCTGGAATAC AATTTTAACAGCCACAATGTTTACATCACCGCCGATAAACAAAAAAATGGCATTAAAGCGAATTTTAAAA TTCGCCACAACGTGGAGGATGGATCTGTGCAGCTGGCTGATCACTACCAGCAAAACACTCCAATCGGTGA TGGTCCTGTTCTGCTGCCAGACAATCACTATCTGAGCACGCAAAGCGTTCTGTCTAAAGATCCGAACGAG AAACGCGATCATATGGTTCTGCTGGAGTTCGTAACCGCAGCGGGCATCACGCATGGTATGGATGAACTGT ACAAATGAGGTCTCTTAAGAGCTCCGTCGACAAGCTTGCGGCCGCACTCGAGCACCACCACCACCACCAC TGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAG CATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT

pET28a

TGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACC GCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCG GCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGA CCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCT TTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCT CGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTA ACAAAAATTTAACGCGAATTTTAACAAAATATTAACGCTTACAATTTAGGTGGCACTTTTCGGGGAAATG TGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAATTAATTCTT AGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTG AAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTAT CGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTAT CAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGTTTATGCATTTCTTTCCA GACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATT CGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAAT GCAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCTAATAC CTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGC TTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGG CAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGT CGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAATTT AATCGCGGCCTAGAGCAAGACGTTTCCCGTTGAATATGGCTCATAACACCCCTTGTATTACTGTTTATGT AAGCAGACAGTTTTATTGTTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACC

CCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAA AAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACT GGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGA ACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAA GTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGG GGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTAT GAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGG AGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTC TGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGG CCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTC TGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGC GAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTT CACACCGCATATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTC CGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACG GGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGG TTTTCACCGTCATCACCGAAACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCGTGGTCGTGAAGCGATT CACAGATGTCTGCCTGTTCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGTTAATGTCTGGCTTCT GATAAAGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTTGGTCACTGATGCCTCCGTGTAAGGGGGATTT CTGTTCATGGGGGTAATGATACCGATGAAACGAGAGAGGATGCTCACGATACGGGTTACTGATGATGAAC ATGCCCGGTTACTGGAACGTTGTGAGGGTAAACAACTGGCGGTATGGATGCGGCGGGACCAGAGAAAAAT CACTCAGGGTCAATGCCAGCGCTTCGTTAATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCT GCGATGCAGATCCGGAACATAATGGTGCAGGGCGCTGACTTCCGCGTTTCCAGACTTTACGAAACACGGA AACCGAAGACCATTCATGTTGTTGCTCAGGTCGCAGACGTTTTGCAGCAGCAGTCGCTTCACGTTCGCTC GCGTATCGGTGATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAGG AGCACGATCATGCGCACCCGTGGGGCCGCCATGCCGGCGATAATGGCCTGCTTCTCGCCGAAACGTTTGG TGGCGGGACCAGTGACGAAGGCTTGAGCGAGGGCGTGCAAGATTCCGAATACCGCAAGCGACAGGCCGAT CATCGTCGCGCTCCAGCGAAAGCGGTCCTCGCCGAAAATGACCCAGAGCGCTGCCGGCACCTGTCCTACG AGTTGCATGATAAAGAAGACAGTCATAAGTGCGGCGACGATAGTCATGCCCCGCGCCCACCGGAAGGAGC TGACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGAGATCCCGGTGCCTAATGAGTGAGCTAACTTACATT AATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGC CAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGGC AACAGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTTTGCCCCA GCAGGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTA TCCCACTACCGAGATATCCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCC ATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGCATTTGCATGGTTTGTTGAA AACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATATTT ATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCCCGCTAACAGCGCGATTTGCTGG TGACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGA TGGGTGTCTGGTCAGAGACATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGC ATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCACCGCC GCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCGC GAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAG CAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCT TCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAG AGACACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTC TTCCGGGCGCTATCATGCCATACCGCGAAAGGTTTTGCGCCATTCGATGGTGTCCGGGATCTCGACGCTC TCCCTTATGCGACTCCTGCATTAGGAAGCAGCCCAGTAGTAGGTTGAGGCCGTTGAGCACCGCCGCCGCA AGGAATGGTGCATGCAAGGAGATGGCGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATACCCACGC CGAAACAAGCGCTCATGAGCCCGAAGTGGCGAGCCCGATCTTCCCCATCGGTGATGTCGGCGATATAGGC GCCAGCAACCGCACCTGTGGCGCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTCG ATCCCGCGAAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAAT TTTGTTTAACTTTAAGAAGGAGATATACCATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCT

GGTGCCGCGCGGCAGCCATATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGCGGATCCGAATTCGAG CTCCGTCGACAAGCTTGCGGCCGCACTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAA GCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTA AACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT

pET47b (+)

ATCCGGATATAGTTCCTCCTTTCAGCAAAAAACCCCTCAAGACCCGTTTAGAGGCCCCAAGGGGTTATGC TAGTTATTGCTCAGCGGTGGCAGCAGCCAACTCAGCTTCCTTTCGGGCTTTGTTTAGCAGCCTAGGTTAA TTAAGCCTCGAGAGCAGCAGAAGTAGAGCTGTCCATGTGCTGGCGTTCGAATTTAGCAGCAGCGGTTTCT TTACTACCGCGTGGCACCAGAGCGAGCTCTGCGGCCGCAAGCTTGTCGACGGACGTCGGGCGCGCCAAGG CCTGTACAGAATTCGGATCCTGGTACCCGGGTCCCTGAAAGAGGACTTCAAGAGCCGCGGAGTGATGGTG GTGGTGATGTGCCATATGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTCTAGAGGGGAATTGTTAT CCGCTCACAATTCCCCTATAGTGAGTCGTATTAATTTCGCGGGATCGAGATCGATCTCGATCCTCTACGC CGGACGCATCGTGGCCGGCATCACCGGCGCCACAGGTGCGGTTGCTGGCGCCTATATCGCCGACATCACC GATGGGGAAGATCGGGCTCGCCACTTCGGGCTCATGAGCGCTTGTTTCGGCGTGGGTATGGTGGCAGGCC CCGTGGCCGGGGGACTGTTGGGCGCCATCTCCTTGCATGCACCATTCCTTGCGGCGGCGGTGCTCAACGG CСTCAACCTACTACTGGGCTGCTTCCTAATGCAGGAGTCGCATAAGGGAGAGCGTCGAGATCCCGGACAC CATCGAATGGCGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAGAGTCAATTCAGGGTGGTG AATGTGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCGGTGTCTCTTATCAGACCGTTTCCCGCG TGGTGAACCAGGCCAGCCACGTTTCTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATGGCGGAGCTGAA TTACATTCCCAACCGCGTGGCACAACAACTGGCGGGCAAACAGTCGTTGCTGATTGGCGTTGCCACCTCC AGTCTGGCCCTGCACGCGCCGTCGCAAATTGTCGCGGCGATTAAATCTCGCGCCGATCAACTGGGTGCCA GCGTGGTGGTGTCGATGGTAGAACGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCTTCTCGC GCAACGCGTCAGTGGGCTGATCATTAACTATCCGCTGGATGACCAGGATGCCATTGCTGTGGAAGCTGCC TGCACTAATGTTCCGGCGTTATTTCTTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTCTCCC ATGAAGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTAGC GGGCCCATTAAGTTCTGTCTCGGCGCGTCTGCGTCTGGCTGGCTGGCATAAATATCTCACTCGCAATCAA ATTCAGCCGATAGCGGAACGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGC TGAATGAGGGCATCGTTCCCACTGCGATGCTGGTTGCCAACGATCAGATGGCGCTGGGCGCAATGCGCGC CATTACCGAGTCCGGGCTGCGCGTTGGTGCGGACATCTCGGTAGTGGGATACGACGATACCGAAGACAGC TCATGTTATATCCCGCCGTTAACCACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACC GCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAG AAAAACCACCCTGGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTG GCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTAAGTTAGCTCACTCAT TAGGCACCGGGATCTCGACCGATGCCCTTGAGAGCCTTCAACCCAGTCAGCTCCTTCCGGTGGGCGCGGG GCATGACTAGCATGATCGTGCTCCTGTCGTTGAGGACCCGGCTAGGCTGGCGGGGTTGCCTTACTGGTTA GCAGAATGAATCACCGATACGCGAGCGAACGTGAAGCGACTGCTGCTGCAAAACGTCTGCGACCTGAGCA ACAACATGAATGGTCTTCGGTTTCCGTGTTTCGTAAAGTCTGGAAACGCGGAAGTCAGCGCCCTGCACCA TTATGTTCCGGATCTGCATCGCAGGATGCTGCTGGCTACCCTGTGGAACACCTACATCTGTATTAACGAA GCGCTGGCATTGACCCTGAGTGATTTTTCTCTGGTCCCGCCGCATCCATACCGCCAGTTGTTTACCCTCA CAACGTTCCAGTAACCGGGCATGTTCATCATCAGTAACCCGTATCGTGAGCATCCTCTCTCGTTTCATCG GTATCATTACCCCCATGAACAGAAATCCCCCTTACACGGAGGCATCAGTGACCAAACAGGAAAAAACCGC CCTTAACATGGCCCGCTTTATCAGAAGCCAGACATTAACGCTTCTGGAGAAACTCAACGAGCTGGACGCG GATGAACAGGCAGACATCTGTGAATCGCTTCACGACCACGCTGATGAGCTTTACCGCAGCTGCCTCGCGC GTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGC GGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCGCAGCCATG ACCCAGTCACGTAGCGATAGCGGAGTGTATACTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAG AGTGCACCATATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCTCTT CCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAA GGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAA AAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATC

ACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCC TGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCT TCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCA AGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGA GTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGG TATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTG GTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAAC CACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAA GATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCA TGAACAATAAAACTGTCTGCTTACATAAACAGTAATACAAGGGGTGTTATGAGCCATATTCAACGGGAAA CGTCTTGCTCTAGGCCGCGATTAAATTCCAACATGGATGCTGATTTATATGGGTATAAATGGGCTCGCGA TAATGTCGGGCAATCAGGTGCGACAATCTATCGATTGTATGGGAAGCCCGATGCGCCAGAGTTGTTTCTG AAACATGGCAAAGGTAGCGTTGCCAATGATGTTACAGATGAGATGGTCAGACTAAACTGGCTGACGGAAT TTATGCCTCTTCCGACCATCAAGCATTTTATCCGTACTCCTGATGATGCATGGTTACTCACCACTGCGAT CCCCGGCAAAACAGCATTCCAGGTATTAGAAGAATATCCTGATTCAGGTGAAAATATTGTTGATGCGCTG GCAGTGTTCCTGCGCCGGTTGCATTCGATTCCTGTTTGTAATTGTCCTTTTAACAGTGATCGCGTATTTC GTCTCGCTCAGGCGCAATCACGAATGAATAACGGTTTGGTTGATGCGAGTGATTTTGATGACGAGCGTAA TGGCTGGCCTGTTGAACAAGTCTGGAAAGAAATGCATAAACTTTTGCCATTCTCACCGGATTCAGTCGTC ACTCATGGTGATTTCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGATGTTG GACGAGTCGGAATCGCAGACCGATACCAGGATCTTGCCATCCTATGGAACTGCCTCGGTGAGTTTTCTCC TTCATTACAGAAACGGCTTTTTCAAAAATATGGTATTGATAATCCTGATATGAATAAATTGCAGTTTCAT TTGATGCTCGATGAGTTTTTCTAAGAATTAATTCATGAGCGGATACATATTTGAATGTATTTAGAAAAAT AAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGAAATTGTAAACGTTAATATTTTGT TAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCC TTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTA AAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCAT CACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCG ATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGC GCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGC TACAGGGCGCGTCCCATTCGCCA

TxTl T7 A1

ATCCCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGT CGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATAGCTGAGC ATGAGACGGAAATCTGCTCGTCAGTGGTGCTCACACTGACGAATCATGTACAGATCATACCGATGACTGC CTGGCGACTCACAACTAAGCAAGACAGCCGGAACCAGCGCCGGCGAACACCACTGCATATATGGCATATC ACAACAGTCCAACTAGTGCACTGCAGTACATTATTCTTAGAAAAACTCATCGAGCATCAAATGAAACTGC AATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACT CACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGTCCAACATCAAT ACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAA TCCGGTGAGAATGGCAAAAGTTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGT CATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCG ATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCA ACAATATTTTCACCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGG TGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAG CCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGTTTCAGAAACAAC TCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCC ATTTATACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTAGAGCAAGACGTTTCCCGTTG AATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGGAGTTTTTTCCATA GGCTCCGCCCCCCTGACAAGCATCACGAAATCTGACGCTCAAATCAGTGGTGGCGAAACCCGACAGGACT ATAAAGATACCAGGCGTTTCCCCCTGGCGGCTCCCTCGTGCGCTCTCCTGTTCCTGCCTTTCGGTTTACC

GGTGTCATTCCGCTGTTATGGCCGCGTTTGTCTCATTCCACGCCTGACACTCAGTTCCGGGTAGGCAGTT CGCTCCAAGCTGGACTGTATGCACGAACCCCCCGTTCAGTCCGACCGCTGCGCCTTATCCGGTAACTATC GTCTTGAGTCCAACCCGGAAAGACATGCAAAAGCACCACTGGCAGCAGCCACTGGTAATTGATTTAGAGG AGTTAGTCTTGAAGTCATGCGCCGGTTAAGGCTAAACTGAAAGGACAAGTTTTGGTGACTGCGCTCCTCC AAGCCAGTTACCTCGGTTCAAAGAGTTGGTAGCTCAGAGAACCTTCGAAAAACCGCCCTGCAAGGCGGTT TTTTCGTTTTCAGAGCAAGAGATTACGCGCAGACCAAAACGATCTCAAGAAGATCATCTTATTCCCTGAA TTCGCATCTAGACTGATGAGACGTGGTAGAGCCACAAACAGCCGGTACAAGCAACGATCTCCAGGACCAT CTGAATCATGCGCGGATGACACGAACTCACGACGGCGATCACAGACATTAACCCACAGTACAGACACTGC GACAACGTGGCAATTCGTCGCAATACAACGGAGGCCGTTGAGCACCGCCGCCGCAAGGAATGGTGCATGC AAGGAGATGGCGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCA TGAGCCCGAAGTGGCGAGCCCGATCTTCCCCATCGGTGATGTCGGCGATATAGGCGCCAGCAACCGCACC TGTGGCGCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTCGATCCCGCGAAATTAA TACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAA GAAGGAGATATAT

TxT1 T7 A2

ATCCCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGT CGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATAGCTGCCA ATGAGACGACGGGGTCATCACGGCTCATCATGCGCCCAACAAATGTGTGCCATACACGCTCGGATGACTG CCTGATGACCGCACTGACTGGGGACAGCCGATCCACCTAAGCCTGTGAGAGAAGCAGACACCCGACAGAT CAAGGCAGTTAACTAGTGCACTGCAGTACATTATTCTTAGAAAAACTCATCGAGCATCAAATGAAACTGC AATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACT CACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGTCCAACATCAAT ACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAA TCCGGTGAGAATGGCAAAAGTTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGT CATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCG ATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCA ACAATATTTTCACCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGG TGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAG CCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGTTTCAGAAACAAC TCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCC ATTTATACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTAGAGCAAGACGTTTCCCGTTG AATATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGGAGTTTTTTCCATA GGCTCCGCCCCCCTGACAAGCATCACGAAATCTGACGCTCAAATCAGTGGTGGCGAAACCCGACAGGACT ATAAAGATACCAGGCGTTTCCCCCTGGCGGCTCCCTCGTGCGCTCTCCTGTTCCTGCCTTTCGGTTTACC GGTGTCATTCCGCTGTTATGGCCGCGTTTGTCTCATTCCACGCCTGACACTCAGTTCCGGGTAGGCAGTT CGCTCCAAGCTGGACTGTATGCACGAACCCCCCGTTCAGTCCGACCGCTGCGCCTTATCCGGTAACTATC GTCTTGAGTCCAACCCGGAAAGACATGCAAAAGCACCACTGGCAGCAGCCACTGGTAATTGATTTAGAGG AGTTAGTCTTGAAGTCATGCGCCGGTTAAGGCTAAACTGAAAGGACAAGTTTTGGTGACTGCGCTCCTCC AAGCCAGTTACCTCGGTTCAAAGAGTTGGTAGCTCAGAGAACCTTCGAAAAACCGCCCTGCAAGGCGGTT TTTTCGTTTTCAGAGCAAGAGATTACGCGCAGACCAAAACGATCTCAAGAAGATCATCTTATTCCCTGAA TTCGCATCTAGACTGATGAGACGTGGTAGAGCCACAAACAGCCGGTACAAGCAACGATCTCCAGGACCAT CTGAATCATGCGCGGATGACACGAACTCACGACGGCGATCACAGACATTAACCCACAGTACAGACACTGC GACAACGTGGCAATTCGTCGCAATACAACGGAGGCCGTTGAGCACCGCCGCCGCAAGGAATGGTGCATGC AAGGAGATGGCGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCA TGAGCCCGAAGTGGCGAGCCCGATCTTCCCCATCGGTGATGTCGGCGATATAGGCGCCAGCAACCGCACC TGTGGCGCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTCGATCCCGCGAAATTAA TACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAA GAAGGAGATATAT

TxT1 T500 A3

CTCGAGGAATTCGACTCAATTAGTTCAGTCAGTTTCAGGATATTAGTCATCTCTACATTGATTATGAGTA TTCAGAAATTCCTTAAATATTCTGACAAATGCTCTTTCCCTAAACTCCCCCCATAAAAAAACCCGCCGAA GCGGGTTTTTACGTTATTTGCGGATTAACGATTACTCGTTATCAGAACCGCCCAGACCTGCGTTCAGCAG TTCTGCCAGGCTGGCAGATGCGTCTTCCGAATTGATCCGTCGACCAAAGCCCGCCGAAAGGCGGGCTTTT CTGTGCCGGCATGATAAGCTGTCAAACATGAGAATTACAACTTATATCGTATGGGGCTGACTTCAGGTGC TACATTTGAAGAGATAAATTGCACTGAAATCTAGAAATATTTTATCTGATTAATAAGATGATCTTCTTGA GATCGTTTTGGTCTGCGCGTAATCTCTTGCTCTGAAAACGAAAAAACCGCCTTGCAGGGCGGTTTTTCGA AGGTTCTCTGAGCTACCAACTCTTTGAACCGAGGTAACTGGCTTGGAGGAGCGCAGTCACCAAAACTTGT CCTTTCAGTTTAGCCTTAACCGGCGCATGACTTCAAGACTAACTCCTCTAAATCAATTACCAGTGGCTGC TGCCAGTGGTGCTTTTGCATGTCTTTCCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGG TCGGACTGAACGGGGGGTTCGTGCATACAGTCCAGCTTGGAGCGAACTGCCTACCCGGAACTGAGTGTCA GGCGTGGAATGAGACAAACGCGGCCATAACAGCGGAATGACACCGGTAAACCGAAAGGCAGGAACAGGAG AGCGCACGAGGGAGCCGCCAGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCACTGA TTTGAGCGTCAGATTTCGTGATGCTTGTCAGGGGGGCGGAGCCTATGGAAAAACGGCTTTGCCGCGGCCC TCTCACTTCCCTGTTAAGTATCTTCCTGGCATCTTCCAGGAAATCTCCGCCCCGTTCGTAAGCCATTTCC GCTCGCCGCAGTCGAACGACCGAGCGTAGCGAGTCAGTGAGCGAGGAAGCGGAATATATCCTGTATCACA TATTCTGCTGACGCACCGGTGCAGCCTTTTTTCTCCTGCCACATGAAGCACTTCACTGACACCCTCATCA GTGCCAACATAGTAAGCCAGTATACACTCCGCTAGGGTCATGAGATTATCAAAAAGGATCTTCACCTAGA TCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTA CCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTC CCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAG ACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGG TCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCA GTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGG CTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGT TAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCA GCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCA AGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGC GCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATC TTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTT TCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACG GAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATG AGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAG TGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCC CTTTCGTCTTCAAGAATTCTGGCGAATCCTCTGACCAGCCAGAAAACGACCTTTCTGTGGTGAAACCGGA TGCTGCAATTCAGAGCGGCAGCAAGTGGGGGACAGCAGAAGACCTGACCGCCGCAGAGTGGATGTTTGAC ATGGTGAAGACTATCGCACCATCAGCCAGAAAACCGAATTTTGCTGGGTGGGCTAACGATATCCGCCTGA TGCGTGAACGTGACGGACGTAACCACCGCGACATGTGTGTGCTGTTCCGCTGGGCATGCCAGGACAACTT CTGGTCCGGTAACGTGCTGAGCTAACACCGTGCGTGTTGACAATTTTACCTCTGGCGGTGATAATGGTTG CAGCTAGCAATAATTTTGTTTAACTTTAAGAAGGAGGATCCAA

FKBP12-1.1

ATGGGCGGAGTGCAGGTGGAAACCATCTCCCCAGGAGACGGGCGCACCTTCCCCAAGCGCGGCCAGACCT GCGTGGTGCACATTACCGGGATGCTTGAAGATGGAAAGAAATTTATTTCCTCCCGGGACAGAAACAAGCC CTTTAAGTTTATGCTAGGCAAGCAGCGTGTGCTGCGAGGCTGGGAAGAAGGGGTTGCCCAGATGAGTGTG GGTCAGAGAGCCAAACTGACTATATCTCCAGATTATGCCTTTGGTGCCACTGGGCACCCAGGCATCATCC CACCACATGCCACTCTCGTCTTCGATGTGGAGCTTCTAAAACTGGAA

FRB-1. 1

ATGGGTGTGGCCATCCTCTGGCATGAGATGTGGCATGAAGGCGCGGAAGAGGCAGCGCGTTTGTACCGTG GGGAAAGGAACGTGAAAGGCATGTTTGAGGTGCTGGAGCCCTTGCATGCTATGATGGAACGGGGCCCCCA GACTCTGAAGGAAACATCCTTTAATCAGGCCTATGGTCGAGATTTAATGGAGGCCCAAGAGTGGTGCAGG AAGTACATGAAATCAGGGAATGTCAAGGACCTCTGGCAAGCCATGCTGCTCTATGCGCATGTGCGTGATC GAATCTCA

RapF-1. 1

ATGGGCAGCAGCAGCAGCATTGGCGAAAAGATTAACGAATGGTATATGTACATACGCCGATTCAGCATAC CCGATGCAGCGTATTTGGCGTTTGAAATCGCGCAAGAGCTGGATCAAATGGAAGAAGATCAAGACCTTCA TTTGTACTATTCACTGATGCTGTTTCGGGCGTATCTAATGGCCGAGTACCTTGAACCGTTAGAAAAAATG AGGATTGAGGAACAGCCGAGACTGTCTGATCTGCTGCTTGAGATTGATAAAAAA

RapF-1. 2

ATGGGCAGCAGCAGCAGCATTGGCGAAAAGATTAACGAATGGTATATGTACATACGCCGATTCAGCGTGC CCGATGCAGCGTATTTGGGCTTTGAAATCAGCCAAGAGCTGGATCAAATGGAAGAAGATCAAGACCTTCA TTTGTACTATTCACTGATGCTGTTTCGGGCGTATCTAATGCGTGAGTACCTTGAACCGTTAGAAAAAATG AGGATTGAGGAACAGCCGAGACTGTCTGATCTGCTGCTTGAGATTGATAAAAAA

RapF-1. 3
ATGGGCAGCAGCAGCAGCATTGGCGAAAAGATTAACGAATGGTATATGTACATACGCCGATTCAGCGTGC CCGCGGCAGCGTATTTGGGCTTTGAAATCAGCCAAGAGCTGGATCAAATGGAAGAAGATCAAGACCTTCA TTTGTACTATTCACTGATGCTGTTTCGGGCGTATCTAATGCGTGAGTACCTTGAACCGTTAGAAAAAATG AGGATTGAGGAACAGCCGAGACTGTCTGATCTGCTGCTTGAGATTGATAAAAAA

RapF-1. 4

ATGGGCAGCAGCAGCAGCATTGGCGAAAAGATTAACGAATTTTATATGTACATACGCCGATTCAGCATAC CCGATGCAGCGTATTTGGCGTTTGAAATCGCGCAAGAGCTGGATCAAATGGAAGAAGATCAAGACCTTCA TTTGTACTATTCACTGATGCTGTTTCGGGCGTATCTAATGGCCGAGTACCTTGAACCGTTAGAAAAAATG AGGATTGAGGAACAGCCGAGACTGTCTGATCTGCTGCTTGAGATTGATAAAAAA

ComA-1. 1

ATGGGTTCCTCTCAAAAAGAACAAGATGTGCTCACACCTAGAGAATGCCTGATTCTTCAAGAAGTTGAAA AGGGATTTACAAACCAAGAAATCGCAGATGCCCTTCATTTACGTAAGAGCGCGATTGAAGCGAGCTTGAC ATCGATTTTCAATAAGCTGAATGTCGGTTCACGGACGGAAGCGGTTTTGATTGCGAAATCAGACGGTGTA CTT

ComA-1. 2

ATGGGTTCCTCTCAAAAAGAACAAGATGTGCTCACACCTAGAGAATGCCTGATTCTTCAAGAAGTTGAAA AGGGATTTACAAACCAAGAAATCGCAGATGCCCTTCACATGCGTAAGAGCGCGATTGAAGCGAGCTTGAC ATCGATTTTCAATAAGCTGAATGTCGGTTCACGGACGGAAGCGGTTTTGATTGCGAAATCAGACGGTGTA CTT

ComA-1. 3

ATGGGTTCCTCTCAAAAAGAACAAGATGTGCTCACACCTAGAGAATGCCTGATTCTTCAAGAAGTTGAAA AGGGATTTACAAACCAAGAAATCGCAGATGCCCTTCACATGCGTAAGAGCGCGATTGAAGCGAGCTTGAC ATCGATTTTCGCGAAGCTGAATGTCGGTTCACGGACGGAAGCGGTTTTGATTGCGAAATCAGACGGTGTA CTT

ComA-1. 4

ATGGGTTCCTCTCAAAAAGAACAAGATGTGCTCACACCTAGAGAATGCCTGATTCTTCAAGAAGTTGAAA AGGGATTTACAAACCAAGAAATCGCAGATGCCCTTCATTTACGTAAGAGCGCGATTGAAATGAGCTTGAC ATCGATTTTCAATAAGCTGAATGTCGGTTCACGGACGGAAGCGGTTTTGATTGCGAAATCAGACGGTGTA CTT

AR-1. 1

SDLGRKLLEAARAGQDDEVRILMANGADVNAADNTGTTPLHLAAYSGHLEIVEVLLKHGADVDASDVFGF TPLILAALWGHLEIVEVLLKNGADVNAMGS DGWTPLHAAAYFGYLEIVEVLLKHGADVNAQDKRGKTAFD ISIDNGNEDLAEILQKLN

AR-1. 2

SDLGRKLLEAARAGQDDEVRILMANGADVNAADNTGTTPLHLAAYSGHLEIVEVLLKHGADVDASDVFGL TPLILAALWGHLEIVEVLLKNGADVNAMDSDGWTPLHAAAYFGYLEIVEVLLKHGADVNAQDKRGKTAFD VSIDNGNEDLAEILQKLN

AR-1. 3

SDLGRKLLEAARAGQDDEVRILMANGADVNAADNTGTTPLHLAAYSGHLEIVEVLLKHGADVDASDVFGF TPLLLAALWGHLEIVEVLLKNGADVNAMGSDGWTPLHAAAWFGYLEIVEVLLKHGADVNAQDKRGKTAFD ESIDNGNEDLAEILQKLN

AR-1. 4

SDLGRKLLEAARAGQDDEVRILMANGADVNAADNTGTTPLHLAAYSGHLEIVEVLLKHGADVDASDVFGM TPLFLAALWGHLEIVEVLLKNGADVNAMTS DGWTPLHAAAYFGYLEIVEVLLKHGADVNAQDKRGKTAFD VSIDNGNEDLAEILQKLN

AR-2. 5

SDLGRKLLEAARAGQDDEVRILMANGADVNAADNTGTTPLHLAAYSGHLEIVEVLLKHGADVDASDVFGF TPLLLAALWGHLEIVEVLLKHGEDVNAMGSDGWTPLHAAAWFGYLEIVEVLLKHGADVNAQDKRGKTAFD ESIDNGNEDLAEILQKLN

AR-2. 6

SDLGRKLLEAARAGQDDEVRILMANGADVNAADNTGTTPLHLAAYSGHLEIVEVLLKHGADVDASDVFGF TPLGLAALWGHLEIVEVLLKHGEDVNAMGS DGWTPLHAAAWFGYLEIVEVLLKHGADVNAQDKRGKTAFD ESIDNGNEDLAEILQKLN

AR-2. 7

SDLGRKLLEAARAGQDDEVRILMANGADVNAADNTGTTPLHLAAYSGHLEIVEVLLKHGADVDASDVFGF TPLGLAALWGHLEIVEVLLKHGEDVNAMGS DGWTPLHAAAKFGYLEIVEVLLKHGADVNAQDKRGKTPFD LAIDNGNEDIAEVLQKAA

AR-3. 8

SDLGRKLLEAARAGQDDEVRILMANGADVNAADNTGTTPLHLAAYSGHLEIVEVLLKHGADVDASDVFGF TPLGLAALWGHLEIVEVLLKHGEDVNAMGS DGWTPLHAAAKFGYLEIVEVLLKHGADVNAQDKKGLTPFD LAILNGNEDIAEVLQKAA

MBP-1. 1

KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGY AQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIFALDKELK AKGKSALMFNLQEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVALIAAKAMNADTDY SIAEAAFNKGETAMTINGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFL ENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVINA ASG

MBP-1. 2

KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGY AQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIFALDKELK AKGKSALMFNLQEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVALIKAKHMNADTDY SIAEAAFNKGETAMTINGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFL ENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVINA ASG

MBP-1. 3

KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGY AQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIFALDKELK AKGKSALMFNLQEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTRLVYLIAAKAMNADTDY SIAEAAFNKGETAMTINGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFL ENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVINA ASG

MBP-1. 4

KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGY AQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIFALDKELK AKGKSALMFNLQEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTFLVALIKAKAMNADTDY SIAEAAFNKGETAMTINGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFL ENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVINA ASG

MBP-2.5

KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGY AQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIFALDKELK AKGKSALMFNLQEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTALVYLIAAKAMNADTDY SIAEAAFNKGETAMTINGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFL ENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVINA ASGRQTVDEALKDAQTRITK

MBP-3. 6

KIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGY AQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIFALDKELK AKGKSALMFNLQEPYFTWPLIAADGGYAFKYENGKYDIKDVGVDNAGAKAGLTALVALIAAKAMNADTDY SIAEAAFNKGETAMTINGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFL ENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVINA ASGRQTVDEALKDAQTRITK

ERG12

ATGTCATTACCGTTCTTAACTTCTGCACCGGGAAAGGTTATTATTTTTGGTGAACACTCTGCTGTGTACA ACAAGCCTGCCGTCGCTGCTAGTGTGTCTGCGTTGAGAACCTACCTGCTAATAAGCGAGTCATCTGCACC AGATACTATTGAATTGGACTTCCCGGACATTAGCTTTAATCATAAGTGGTCCATCAATGATTTCAATGCC ATCACCGAGGATCAAGTAAACTCCCAAAAATTGGCCAAGGCTCAACAAGCCACCGATGGCTTGTCTCAGG AACTCGTTAGTCTTTTGGACCCGTTGTTAGCTCAACTATCCGAATCCGCCCACTACCATGCAGCGTTTTG TTTCCTGTATATGTTTGTTTGCCTATGCCCCCATGCCAAGAATATTAAGTTTTCTTTAAAGTCTACTTTA CCCATCGGTGCTGGGTTGGGCTCAAGCGCCTCTATTTCTGTATCACTGGCCTTAGCTATGGCCTACTTGG GGGGGTTAATAGGATCTAATGACTTGGAAAAGCTGTCAGAAAACGATAAGCATATAGTGAATCAATGGGC CTTCATAGGTGAAAAGTGTGCTCACGGTACCCCTTCAGGAATAGATAACGCTGTGGCCACTTATGGTAAT GCCCTGCTATTTGAAAAAGACTCACATAATGGAACAATAAACACAAACAATTTTAAGTTCTTAGATGATT TCCCAGCCATTCCAATGATCCTAACCTATACTAGAATCCCAAGGTCTACAAAAGACCTTGTTGCTCGCGT TCGTGTGTTGGTCACCGAGAAATTTCCTGAAGTTATGAAGCCAATTCTAGATGCCATGGGTGAATGTGCC CTACAAGGCTTAGAGATCATGACTAAGTTAAGTAAATGTAAAGGCACCGATGACGAGGCTGTAGAAACTA ATAATGAACTGTATGAACAACTATTGGAATTGATAAGAATAAATCATGGACTGCTTGTCTCAATCGGTGT TTCTCATCCTGGATTAGAACTTATTAAAAATCTGAGCGATGATTTGAGAATTGGCTCCACAAAACTTACC GGTGCTGGTGGCGGCGGTTGCTCTTTGACTTTGTTACGAAGAGACATTACTCAAGAGCAAATTGACAGCT TCAAAAAGAAATTGCAAGATGATTTTAGTTACGAGACATTTGAAACAGACTTGGGTGGGACTGGCTGCTG TTTGTTAAGCGCAAAAAATTTGAATAAAGACCTTAAAATCAAATCCCTAGTATTCCAATTATTTGAAAAT AAAACTACCACAAAGCAACAAATTGACGATCTATTATTGCCAGGAAACACGAATTTACCATGGACTTCA

ERG8

ATGTCAGAGTTGAGAGCCTTCAGTGCCCCAGGGAAAGCGTTACTAGCTGGTGGATATTTAGTTTTAGATA CAAAATATGAAGCATTTGTAGTCGGATTATCGGCAAGAATGCATGCTGTAGCCCATCCTTACGGTTCATT GCAAGGGTCTGATAAGTTTGAAGTGCGTGTGAAAAGTAAACAATTTAAAGATGGGGAGTGGCTGTACCAT ATAAGTCCTAAAAGTGGCTTCATTCCTGTTTCGATAGGCGGATCTAAGAACCCTTTCATTGAAAAAGTTA TCGCTAACGTATTTAGCTACTTTAAACCTAACATGGACGACTACTGCAATAGAAACTTGTTCGTTATTGA TATTTTCTCTGATGATGCCTACCATTCTCAGGAGGATAGCGTTACCGAACATCGTGGCAACAGAAGATTG AGTTTTCATTCGCACAGAATTGAAGAAGTTCCCAAAACAGGGCTGGGCTCCTCGGCAGGTTTAGTCACAG TTTTAACTACAGCTTTGGCCTCCTTTTTTGTATCGGACCTGGAAAATAATGTAGACAAATATAGAGAAGT TATTCATAATTTAGCACAAGTTGCTCATTGTCAAGCTCAGGGTAAAATTGGAAGCGGGTTTGATGTAGCG GCGGCAGCATATGGATCTATCAGATATAGAAGATTCCCACCCGCATTAATCTCTAATTTGCCAGATATTG GAAGTGCTACTTACGGCAGTAAACTGGCGCATTTGGTTGATGAAGAAGACTGGAATATTACGATTAAAAG

TAACCATTTACCTTCGGGATTAACTTTATGGATGGGCGATATTAAGAATGGTTCAGAAACAGTAAAACTG GTCCAGAAGGTAAAAAATTGGTATGATTCGCATATGCCAGAAAGCTTGAAAATATATACAGAACTCGATC ATGCAAATTCTAGATTTATGGATGGACTATCTAAACTAGATCGCTTACACGAGACTCATGACGATTACAG CGATCAGATATTTGAGTCTCTTGAGAGGAATGACTGTACCTGTCAAAAGTATCCTGAAATCACAGAAGTT AGAGATGCAGTTGCCACAATTAGACGTTCCTTTAGAAAAATAACTAAAGAATCTGGTGCCGATATCGAAC CTCCCGTACAAACTAGCTTATTGGATGATTGCCAGACCTTAAAAGGAGTTCTTACTTGCTTAATACCTGG TGCTGGTGGTTATGACGCCATTGCAGTGATTACTAAGCAAGATGTTGATCTTAGGGCTCAAACCGCTAAT GACAAAAGATTTTCTAAGGTTCAATGGCTGGATGTAACTCAGGCTGACTGGGGTGTTAGGAAAGAAAAAG ATCCGGAAACTTATCTTGATAAA

MVD1

ATGACCGTTTACACAGCATCCGTTACCGCACCCGTCAACATCGCAACCCTTAAGTATTGGGGGAAAAGGG ACACGAAGTTGAATCTGCCCACCAATTCGTCCATATCAGTGACTTTATCGCAAGATGACCTCAGAACGTT GACCTCTGCGGCTACTGCACCTGAGTTTGAACGCGACACTTTGTGGTTAAATGGAGAACCACACAGCATC GACAATGAAAGAACTCAAAATTGTCTGCGCGACCTACGCCAATTAAGAAAGGAAATGGAATCGAAGGACG CCTCATTGCCCACATTATCTCAATGGAAACTCCACATTGTCTCCGAAAATAACTTTCCTACAGCAGCTGG TTTAGCTTCCTCCGCTGCTGGCTTTGCTGCATTGGTCTCTGCAATTGCTAAGTTATACCAATTACCACAG TCAACTTCAGAAATATCTAGAATAGCAAGAAAGGGGTCTGGTTCAGCTTGTAGATCGTTGTTTGGCGGAT ACGTGGCCTGGGAAATGGGAAAAGCTGAAGATGGTCATGATTCCATGGCAGTACAAATCGCAGACAGCTC TGACTGGCCTCAGATGAAAGCTTGTGTCCTAGTTGTCAGCGATATTAAAAAGGATGTGAGTTCCACTCAG GGTATGCAATTGACCGTGGCAACCTCCGAACTATTTAAAGAAAGAATTGAACATGTCGTACCAAAGAGAT TTGAAGTCATGCGTAAAGCCATTGTTGAAAAAGATTTCGCCACCTTTGCAAAGGAAACAATGATGGATTC CAACTCTTTCCATGCCACATGTTTGGACTCTTTCCCTCCAATATTCTACATGAATGACACTTCCAAGCGT ATCATCAGTTGGTGCCACACCATTAATCAGTTTTACGGAGAAACAATCGTTGCATACACGTTTGATGCAG GTCCAAATGCTGTGTTGTACTACTTAGCTGAAAATGAGTCGAAACTCTTTGCATTTATCTATAAATTGTT TGGCTCTGTTCCTGGATGGGACAAGAAATTTACTACTGAGCAGCTTGAGGCTTTCAACCATCAATTTGAA TCATCTAACTTTACTGCACGTGAATTGGATCTTGAGTTGCAAAAGGATGTTGCCAGAGTGATTTTAACTC AAGTCGGTTCAGGCCCACAAGAAACAAACGAATCTTTGATTGACGCAAAGACTGGTCTACCAAAGGAA

idi

ATGATAATGCAAACGGAACACGTCATTTTATTGAATGCACAGGGAGTTCCCACGGGTACGCTGGAAAAGT ATGCCGCACACACGGCAGACACCCGCTTACATCTCGCGTTCTCCAGTTGGCTGTTTAATGCCAAAGGACA ATTATTAGTTACCCGCCGCGCACTGAGCAAAAAAGCATGGCCTGGCGTGTGGACTAACTCGGTTTGTGGG CACCCACAACTGGGAGAAAGCAACGAAGACGCAGTGATCCGCCGTTGCCGTTATGAGCTTGGCGTGGAAA TTACGCCTCCTGAATCTATCTATCCTGACTTTCGCTACCGCGCCACCGATCCGAGTGGCATTGTGGAAAA TGAAGTGTGTCCGGTATTTGCCGCACGCACCACTAGTGCGTTACAGATCAATGATGATGAAGTGATGGAT TATCAATGGTGTGATTTAGCAGATGTATTACACGGTATTGATGCCACGCCGTGGGCGTTCAGTCCGTGGA TGGTGATGCAGGCGACAAATCGCGAAGCCAGAAAACGATTATCTGCATTTACCCAGCTTAAA

ispA

ATGGACTTTCCGCAGCAACTCGAAGCCTGCGTTAAGCAGGCCAACCAGGCGCTGAGCCGTTTTATCGCCC CACTGCCCTTTCAGAACACTCCCGTGGTCGAAACCATGCAGTATGGCGCATTATTAGGTGGTAAGCGCCT GCGACCTTTCCTGGTTTATGCCACCGGTCATATGTTCGGCGTTAGCACAAACACGCTGGACGCACCCGCT GCCGCCGTTGAGTGTATCCACGCTTACTCATTAATTCATGATGATTTACCGGCAATGGATGATGACGATC TGCGTCGCGGTTTGCCAACCTGCCATGTGAAGTTTGGCGAAGCAAACGCGATTCTCGCTGGCGACGCTTT ACAAACGCTGGCGTTCTCGATTTTAAGCGATGCCGATATGCCGGAAGTGTCGGACCGCGACAGAATTTCG ATGATTTCTGAACTGGCGAGCGCCAGTGGTATTGCCGGAATGTGCGGTGGTCAGGCATTAGATTTAGACG CGGAAGGCAAACACGTACCTCTGGACGCGCTTGAGCGTATTCATCGTCATAAAACCGGCGCATTGATTCG CGCCGCCGTTCGCCTTGGTGCATTAAGCGCCGGAGATAAAGGACGTCGTGCTCTGCCGGTACTCGACAAG

TATGCAGAGAGCATCGGCCTTGCCTTCCAGGTTCAGGATGACATCCTGGATGTGGTGGGAGATACTGCAA CGTTGGGAAAACGCCAGGGTGCCGACCAGCAACTTGGTAAAAGTACCTACCCTGCACTTCTGGGCCTTGA GCAAGCCCGGAAGAAAGCCCGGGATCTGATCGACGATGCCCGTCAGTCGCTGAAACAACTGGCTGAACAG TCACTCGATACCTCGGCACTGGAAGCGCTAGCGGACTACATCATCCAGCGTAATAAA

ADS

ATGGCCCTGACCGAAGAGAAACCGATCCGCCCGATCGCTAACTTCCCGCCGTCTATCTGGGGTGACCAGT TCCTGATCTACGAAAAGCAGGTTGAGCAGGGTGTTGAACAGATCGTAAACGACCTGAAGAAAGAAGTTCG TCAGCTGCTGAAAGAAGCTCTGGACATCCCGATGAAACACGCTAACCTGCTGAAACTGATCGACGAGATC CAGCGTCTGGGTATCCCGTACCACTTCGAACGCGAAATCGACCACGCACTGCAGTGCATCTACGAAACCT ACGGCGACAACTGGAACGGCGACCGTTCTTCTCTGTGGTTTCGTCTGATGCGTAAACAGGGCTACTACGT TACCTGTGACGTTTTTAACAACTACAAGGACAAGAACGGTGCTTTCAAACAGTCTCTGGCTAACGACGTT GAAGGCCTGCTGGAACTGTACGAAGCGACCTCCATGCGTGTACCGGGTGAAATCATCCTGGAGGACGCGC TGGGTTTCACCCGTTCTCGTCTGTCCATTATGACTAAAGACGCTTTCTCTACTAACCCGGCTCTGTTCAC CGAAATCCAGCGTGCTCTGAAACAGCCGCTGTGGAAACGTCTGCCGCGTATCGAAGCAGCACAGTACATT CCGTTTTACCAGCAGCAGGACTCTCACAACAAGACCCTGCTGAAACTGGCTAAGCTGGAGTTCAACCTGC TGCAGTCTCTGCACAAAGAAGAACTGTCTCACGTTTGTAAGTGGTGGAAGGCATTTGACATCAAGAAAAA CGCGCCGTGCCTGCGTGACCGTATCGTTGAATGTTACTTCTGGGGTCTGGGTTCTGGTTATGAACCACAG TACTCCCGTGCACGTGTGTTCTTCACTAAAGCTGTAGCTGTTATCACCCTGATCGATGACACTTACGATG CTTACGGCACCTACGAAGAACTGAAGATTTTTACTGAAGCTGTAGAACGCTGGTCTATCACTTGCCTGGA CACTCTGCCGGAGTACATGAAACCGATCTACAAACTGTTCATGGATACCTACACCGAAATGGAGGAGTTC CTGGCAAAAGAAGGCCGTACCGACCTGTTCAACTGCGGTAAAGAGTTTGTTAAAGAGTTCGTACGTAACC TGATGGTTGAAGCTAAATGGGCTAACGAAGGCCATATCCCGACTACCGAAGAACATGACCCGGTTGTTAT CATCACCGGCGGTGCAAACCTGCTGACCACCACTTGCTATCTGGGTATGTCCGACATCTTTACCAAGGAA TCTGTTGAATGGGCTGTTTCTGCACCGCCGCTGTTCCGTTACTCCGGTATTCTGGGTCGTCGTCTGAACG ACCTGATGACCCACAAAGCAGAGCAGGAACGTAAACACTCTTCCTCCTCTCTGGAATCCTACATGAAGGA ATATAACGTTAACGAGGAGTACGCACAGACTCTGATCTATAAAGAAGTTGAAGACGTATGGAAAGACATC AACCGTGAATACCTGACTACTAAAAACATCCCGCGCCCGCTGCTGATGGCAGTAATCTACCTGTGCCAGT TCCTGGAAGTACAGTACGCTGGTAAAGATAACTTCACTCGCATGGGCGACGAATACAAACACCTGATCAA ATCCCTGCTGGTTTACCCGATGTCCATC

nDHFR

ATGGTTCGACCATTGAACTGCATCGTCGCCGTGTCCCAAAATATGGGGATTGGCAAGAACGGAGACCTAC CCTGGCCTCCGCTCAGGAACGAGTTCAAGTACTTCCAAAGAATGACCACAACCTCTTCAGTGGAAGGTAA ACAGAATCTGGTGATTATGGGTAGGAAAACCTGGTTCTCCATTCCTGAGAAGAATCGACCTTTAAAGGAC AGAATTAATATAGTTCTCAGTAGAGAACTCAAAGAACCACCACGAGGAGCTCATTTTCTTGCCAAAAGTT TGGATGATGCCTTAAGACTTATTGAACAACCGGAATTGGGTACC

CDHFR

ATGAGTAAAGTAGACATGGTTTGGATAGTCGGAGGCAGTTCTGTTTACCAGGAAGCCATGAATCAACCAG GCCACCTCAGACTCTTTGTGACAAGGATCATGCAGGAATTTGAAAGTGACACGTTTTTCCCAGAAATTGA TTTGGGGAAATATAAACTTCTCCCAGAATACCCAGGCGTCCTCTCTGAGGTCCAGGAGGAAAAAGGCATC AAGTATAAGTTTGAAGTCTACGAGAAGAAAGAC
nDHFR fusion linker

GGGAGCAGTGCTAGCGGAACTTCTAGCACTAGTTCCGGAATT
cDHFR fusion linker

LgBIT

ATGGTCTTCACACTCGAAGATTTCGTTGGGGACTGGGAACAGACAGCCGCCTACAACCTGGACCAAGTCC TTGAACAGGGAGGTGTGTCCAGTTTGCTGCAGAATCTCGCCGTGTCCGTAACTCCGATCCAAAGGATTGT CCGGAGCGGTGAAAATGCCCTGAAGATCGACATCCATGTCATCATCCCGTATGAAGGTCTGAGCGCCGAC CAAATGGCCCAGATCGAAGAGGTGTTTAAGGTGGTGTACCCTGTGGATGATCATCACTTTAAGGTGATCC TGCCCTATGGCACACTGGTAATCGACGGGGTTACGCCGAACATGCTGAACTATTTCGGACGGCCGTATGA AGGCATCGCCGTGTTCGACGGCAAAAAGATCACTGTAACAGGGACCCTGTGGAACGGCAACAAAATTATC GACGAGCGCCTGATCACCCCCGACGGCTCCATGCTGTTCCGAGTAACCATCAACAGC

SmBIT

ATGGTGACCGGCTACCGGCTGTTCGAGGAGATTCTG

LgBIT and ddFP fusion linker

GGTAGCGGCAGCGGCAG

SmBIT fusion linker

GGTAGCGGCAGCGGCAGGGTAGCGGCTTCT

ddRFPb

ATGGTGAGCAAGGGCGAGGAGACCATCAAAGAGTTCATGCGCTTCAAGGTGCGCATGGAGGGCTCCATGA ACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCT GAAGGTGACCAAGGGCGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCCCAGTTCATGTACGGCTCC GAGGCGTACGTGAGGCACCCCGCCGACATCCCCGATTACAAGAAGCTGCCCTTCCCCGAGGGCTTCAAGT GGGAGCGCGTGATGAACTTCGAAGACGGCGGTCTGGTGACCGTTACCCAGGACTCCTCCCTGCAGGACGG CACGCTGATCTGCAAGGTGAAGATGCGCGGCACCAACTTCCCCCCCGACGGCCCCGTAATGCAGAAGAAG ACCATGGGCTGGGAGGCCTCCACCGAGATGCTGTACCCCGAAGACGGCGTGCTGAAGGGCCATAGCTATC AGGCCCTGAAGCTGAAGGACGGCGGCCACTACCTGGTGGAGTTCGAGACCATCTACATGGCCAAGAAGCC CGTGCAACTGCCCGGCGATTACTGTGTGGACACCAAGCTGGACATCACCTCCCACAACGAGGACTACACC ATCGTGGAACAGTACGGGCGCTCCGAGGGCCGCCACCGTCTGGGCATGGACGAGCGGTACAAG

ddGFPa

ATGGCGAGCAAGAGCGAGGAGGTCATCAAAGAGTTCATGCGCTTCAAGGTGCGCTTGGAGGGCTCCATGA ACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCTTACGAGGGCACCCAGACCGCCAAGCT GAAGGTGACCAAGGGCGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCCCTGATCATGTACGGCTCC AAGATGTACGTGAAGCACCCCGCCGACGTCCCCGATTACATGAAGCTGTCCTTCCCCGAGGGCTTCAAGT GGGAGCGCGTGATGCACTTCGAGGACGGCGGTCTGGTGACCGCGACACAGGACTCCTCCCTGCAGGACGG CACGCTGATCTACAAGGTGAAGATGCGCGGCACCAACTTCCCCCCCGACGGCCCCGTAATGCAGAAGAAG ACCTTGGGCTGGGATTATGCCACCGAGCGCCTGTACCCCGAAGAAGGCGTGCTGAAGGGCGAGCTCCTGG GGCGCCTGAAGCTGAAGGACGGCGGCCTCAACCTGGTGGAGTCCAAGACCATCTACATGGCCAAGAAGCC CGTGCAACTGCCCGGCTACTACTTCGTGGACACCAAGCTGGACATCACCTCCCACAACGAGGACTACACC ATCGTGGAACAGTACGAGCGCTCCGAGGGCCGCCACCACCTGGGGCATGGTACAGGTAGCACAGGCAGC

T7 RNA polymerase

ATGAACACGATTAACATCGCTAAGAACGACTTCTCTGACATCGAACTGGCTGCTATCCCGTTCAACACTC TGGCTGACCATTACGGTGAGCGTTTAGCTCGCGAACAGTTGGCCCTTGAGCATGAGTCTTACGAGATGGG TGAAGCACGCTTCCGCAAGATGTTTGAGCGTCAACTTAAAGCTGGTGAGGTTGCGGATAACGCTGCCGCC AAGCCTCTCATCACTACCCTACTCCCTAAGATGATTGCACGCATCAACGACTGGTTTGAGGAAGTGAAAG CTAAGCGCGGCAAGCGCCCGACAGCCTTCCAGTTCCTGCAAGAAATCAAGCCGGAAGCCGTAGCGTACAT CACCATTAAGACCACTCTGGCTTGCCTAACCAGTGCTGACAATACAACCGTTCAGGCTGTAGCAAGCGCA ATCGGTCGGGCCATTGAGGACGAGGCTCGCTTCGGTCGTATCCGTGACCTTGAAGCTAAGCACTTCAAGA AAAACGTTGAGGAACAACTCAACAAGCGCGTAGGGCACGTCTACAAGAAAGCATTTATGCAAGTTGTCGA GGCTGACATGCTCTCTAAGGGTCTACTCGGTGGCGAGGCGTGGTCTTCGTGGCATAAGGAAGACTCTATT CATGTAGGAGTACGCTGCATCGAGATGCTCATTGAGTCAACCGGAATGGTTAGCTTACACCGCCAAAATG CTGGCGTAGTAGGTCAAGACTCTGAGACTATCGAACTCGCACCTGAATACGCTGAGGCTATCGCAACCCG TGCAGGTGCGCTGGCTGGCATCTCTCCGATGTTCCAACCTTGCGTAGTTCCTCCTAAGCCGTGGACTGGC ATTACTGGTGGTGGCTATTGGGCTAACGGTCGTCGTCCTCTGGCGCTGGTGCGTACTCACAGTAAGAAAG CACTGATGCGCTACGAAGACGTTTACATGCCTGAGGTGTACAAAGCGATTAACATTGCGCAAAACACCGC ATGGAAAATCAACAAGAAAGTCCTAGCGGTCGCCAACGTAATCACCAAGTGGAAGCATTGTCCGGTCGAG GACATCCCTGCGATTGAGCGTGAAGAACTCCCGATGAAACCGGAAGACATCGACATGAATCCTGAGGCTC TCACCGCGTGGAAACGTGCTGCCGCTGCTGTGTACCGCAAGGACAAGGCTCGCAAGTCTCGCCGTATCAG CCTTGAGTTCATGCTTGAGCAAGCCAATAAGTTTGCTAACCATAAGGCCATCTGGTTCCCTTACAACATG GACTGGCGCGGTCGTGTTTACGCTGTGTCAATGTTCAACCCGCAAGGTAACGATATGACCAAAGGACTGC TTACGCTGGCGAAAGGTAAACCAATCGGTAAGGAAGGTTACTACTGGCTGAAAATCCACGGTGCAAACTG TGCGGGTGTCGATAAGGTTCCGTTCCCTGAGCGCATCAAGTTCATTGAGGAAAACCACGAGAACATCATG GCTTGCGCTAAGTCTCCACTGGAGAACACTTGGTGGGCTGAGCAAGATTCTCCGTTCTGCTTCCTTGCGT TCTGCTTTGAGTACGCTGGGGTACAGCACCACGGCCTGAGCTATAACTGCTCCCTTCCGCTGGCGTTTGA CGGGTCTTGCTCTGGCATCCAGCACTTCTCCGCGATGCTCCGAGATGAGGTAGGTGGTCGCGCGGTTAAC TTGCTTCCTAGTGAAACCGTTCAGGACATCTACGGGATTGTTGCTAAGAAAGTCAACGAGATTCTACAAG CAGACGCAATCAATGGGACCGATAACGAAGTAGTTACCGTGACCGATGAGAACACTGGTGAAATCTCTGA GAAAGTCAAGCTGGGCACTAAGGCACTGGCTGGTCAATGGCTGGCTTACGGTGTTACTCGCAGTGTGACT AAGCGTTCAGTCATGACGCTGGCTTACGGGTCCAAAGAGTTCGGCTTCCGTCAACAAGTGCTGGAAGATA CCATTCAGCCAGCTATTGATTCCGGCAAGGGTCTGATGTTCACTCAGCCGAATCAGGCTGCTGGATACAT GGCTAAGCTGATTTGGGAATCTGTGAGCGTGACGGTGGTAGCTGCGGTTGAAGCAATGAACTGGCTTAAG TCTGCTGCTAAGCTGCTGGCTGCTGAGGTCAAAGATAAGAAGACTGGAGAGATTCTTCGCAAGCGTTGCG CTGTGCATTGGGTAACTCCTGATGGTTTCCCTGTGTGGCAGGAATACAAGAAGCCTATTCAGACGCGCTT GAACCTGATGTTCCTCGGTCAGTTCCGCTTACAGCCTACCATTAACACCAACAAAGATAGCGAGATTGAT GCACACAAACAGGAGTCTGGTATCGCTCCTAACTTTGTACACAGCCAAGACGGTAGCCACCTTCGTAAGA CTGTAGTGTGGGCACACGAGAAGTACGGAATCGAATCTTTTGCACTGATTCACGACTCCTTCGGTACCAT TCCGGCTGACGCTGCGAACCTGTTCAAAGCAGTGCGCGAAACTATGGTTGACACATATGAGTCTTGTGAT GTACTGGCTGATTTCTACGACCAGTTCGCTGACCAGTTGCACGAGTCTCAATTGGACAAAATGCCAGCAC TTCCGGCTAAAGGTAACTTGAACCTCCGTGACATCTTAGAGTCGGACTTCGCGTTCGCG

Supplementary Notes and References

1. Adapted from: Mandell, D.J., Backbone Flexibility in Computational Design, PhD Dissertation, UCSF, ProQuest Dissertations Publishing, 3412217, (2010).
2. A. Zanghellini, L. Jiang, A. M. Wollacott, G. Cheng, J. Meiler, E. A. Althoff, D. Rothlisberger, D. Baker, New algorithms and an in silico benchmark for computational enzyme design. Protein Sci 15, 2785-2794 (2006).
3. R. L. Dunbrack, Jr., F. E. Cohen, Bayesian statistical analysis of protein side-chain rotamer preferences. Protein Sci 6, 1661-1681 (1997).
4. I. W. Davis, D. Baker, RosettaLigand docking with full ligand and receptor flexibility. J Mol Biol 385, 381-392 (2009).
5. D. Rothlisberger, O. Khersonsky, A. M. Wollacott, L. Jiang, J. DeChancie, J. Betker, J. L. Gallaher, E. A. Althoff, A. Zanghellini, O. Dym, S. Albeck, K. N. Houk, D. S. Tawfik, D. Baker, Kemp elimination catalysts by computational enzyme design. Nature 453, 190195 (2008).
6. L. Jiang, E. A. Althoff, F. R. Clemente, L. Doyle, D. Rothlisberger, A. Zanghellini, J. L. Gallaher, J. L. Betker, F. Tanaka, C. F. Barbas, 3rd, D. Hilvert, K. N. Houk, B. L. Stoddard, D. Baker, De novo computational design of retro-aldol enzymes. Science 319, 1387-1391 (2008).
7. D. J. Mandell, E. A. Coutsias, T. Kortemme, Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat Methods 6, 551-552 (2009).
8. M. Babor, D. J. Mandell, T. Kortemme, Assessment of flexible backbone protein design methods for sequence library prediction in the therapeutic antibody Herceptin-HER2 interface. Protein Sci 20, 1082-1089 (2011).
9. E. L. Humphris, T. Kortemme, Prediction of protein-protein interface sequence diversity using flexible backbone computational protein design. Structure 16, 1777-1788 (2008).
10. N. Ollikainen, R. M. de Jong, T. Kortemme, Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity. PLoS Comput Biol 11, e1004335 (2015).
11. C. A. Smith, T. Kortemme, Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction. J Mol Biol 380, 742-756 (2008).
12. P. Conway, M. D. Tyka, F. DiMaio, D. E. Konerding, D. Baker, Relaxation of backbone bond geometry improves protein energy landscape modeling. Protein Sci 23, 47-55 (2014).
13. J. N. Pelletier, F. X. Campbell-Valois, S. W. Michnick, Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proc Natl Acad Sci U S A 95, 12141-12146 (1998).
14. D. M. Hoover, J. Lubkowski, DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res 30, e43 (2002).
15. C. Engler, R. Kandzia, S. Marillonnet, A one pot, one step, precision cloning method with high throughput capability. PLoS One 3, e3647 (2008).
16. M. E. Lee, W. C. DeLoache, B. Cervantes, J. E. Dueber, A Highly Characterized Yeast Toolkit for Modular, Multipart Assembly. ACS Synth Biol 4, 975-986 (2015).
17. Z. Z. Sun, C. A. Hayes, J. Shin, F. Caschera, R. M. Murray, V. Noireaux, Protocols for implementing an Escherichia coli based TX-TL cell-free expression system for synthetic biology. J Vis Exp, e50762 (2013).
18. A. S. Dixon, M. K. Schwinn, M. P. Hall, K. Zimmerman, P. Otto, T. H. Lubben, B. L. Butler, B. F. Binkowski, T. Machleidt, T. A. Kirkland, M. G. Wood, C. T. Eggers, L. P. Encell, K. V. Wood, NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells. ACS Chem Biol 11, 400-408 (2016).
19. H. K. Binz, P. Amstutz, A. Kohl, M. T. Stumpp, C. Briand, P. Forrer, M. G. Grutter, A. Pluckthun, High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol 22, 575-582 (2004).
20. G. Winter, xia2: an expert system for macromolecular crystallography data reduction. Journal of Applied Crystallography 43, 186-190 (2010).
21. W. Kabsch, Xds. Acta Crystallogr D Biol Crystallogr 66, 125-132 (2010).
22. P. Evans, Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 62, 72-82 (2006).
23. J. E. Padilla, T. O. Yeates, A statistic for local intensity differences: robustness to anisotropy and pseudo-centering and utility for detecting twinning. Acta Crystallogr D Biol Crystallogr 59, 1124-1130 (2003).
24. A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni, R. J. Read, Phaser crystallographic software. J Appl Crystallogr 40, 658-674 (2007).
25. P. D. Adams, P. V. Afonine, G. Bunkoczi, V. B. Chen, I. W. Davis, N. Echols, J. J. Headd, L. W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve, A. J. McCoy, N. W. Moriarty, R. Oeffner, R. J. Read, D. C. Richardson, J. S. Richardson, T. C. Terwilliger, P. H. Zwart, PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-221 (2010).
26. K. A. Kantardjieff, B. Rupp, Matthews coefficient probabilities: Improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein Sci 12, 1865-1871 (2003).
27. C. X. Weichenberger, B. Rupp, Ten years of probabilistic estimates of biocrystal solvent content: new insights via nonparametric kernel density estimate. Acta Crystallogr D Biol Crystallogr 70, 1579-1588 (2014).
28. P. V. Afonine, R. W. Grosse-Kunstleve, N. Echols, J. J. Headd, N. W. Moriarty, M. Mustyakimov, T. C. Terwilliger, A. Urzhumtsev, P. H. Zwart, P. D. Adams, Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr 68, 352-367 (2012).
29. M. C. Thompson, Identifying and Overcoming Crystal Pathologies: Disorder and Twinning. Methods Mol Biol 1607, 185-217 (2017).
30. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486-501 (2010).
31. N. W. Moriarty, R. W. Grosse-Kunstleve, P. D. Adams, electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr D Biol Crystallogr 65, 1074-1080 (2009).
32. F. C. Bernstein, T. F. Koetzle, G. J. Williams, E. F. Meyer, Jr., M. D. Brice, J. R. Rodgers, O. Kennard, T. Shimanouchi, M. Tasumi, The Protein Data Bank: a computerbased archival file for macromolecular structures. J Mol Biol 112, 535-542 (1977).
33. M. A. Kramer, S. K. Wetzel, A. Pluckthun, P. R. Mittl, M. G. Grutter, Structural determinants for improved stability of designed ankyrin repeat proteins with a redesigned C-capping module. J Mol Biol 404, 381-391 (2010).
34. P. A. Karplus, K. Diederichs, Linking crystallographic model and data quality. Science 336, 1030-1033 (2012).
35. A. T. Brunger, Free R value: cross-validation in crystallography. Methods Enzymol 277, 366-396 (1997).
36. V. B. Chen, W. B. Arendall, 3rd, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson, D. C. Richardson, MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66, 12-21 (2010).

[^0]: * from reference (33)

