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Abstract 

The functions of many eukaryotic genes are still poorly understood. We 

developed and validated a new method, termed GeneBridge, which is based 

on two linked approaches to impute gene function and bridge genes with 

biological processes. First, Gene-Module Association Determination (G-MAD) 

allows the annotation of gene function. Second, Module-Module Association 

Determination (M-MAD) allows predicting connectivity among modules. We 

applied the GeneBridge tools to large-scale multi-species expression 

compendia—1,700 datasets with over 300,000 samples from human, mouse, 

rat, fly, worm, and yeast—collected in this study. Unlike most existing 

bioinformatics tools, GeneBridge exploits both positive and negative 

gene/module-module associations. We constructed association networks, 

such as those bridging mitochondria and proteasome, mitochondria and 

histone demethylation, as well as ribosomes and lipid biosynthesis. The 

GeneBridge tools together with the expression compendia are available at 

systems-genetics.org, to facilitate the identification of connections linking 

genes, modules, phenotypes, and diseases. 
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Introduction 

The identification of gene function and the integrated understanding of their 

roles in physiology are core aims of many biological and biomedical research 

projects — an effort that is still far from being complete (Edwards et al. 2011; 

Pandey et al. 2014; Dolgin 2017; Stoeger et al. 2018). Traditionally, gene 

function has been elucidated through experimental approaches, including the 

evaluation of the phenotypic consequences of gain- or loss-of-function 

(G/LOF) mutations (Austin et al. 2004; Dickinson et al. 2016), or by genetic 

linkage or association studies (Williams and Auwerx 2015). A large number of 

bioinformatics tools have been developed to predict gene function based on 

sequence homology (Marcotte et al. 1999; Radivojac et al. 2013; Jiang et al. 

2016), protein structure (Roy et al. 2010; Radivojac et al. 2013; Jiang et al. 

2016), phylogenetic profiles (Pellegrini et al. 1999; Tabach et al. 2013; Li et al. 

2014), protein-protein interactions (Rolland et al. 2014; Hein et al. 2015; 

Huttlin et al. 2017), genetic interactions (Tong et al. 2004; Costanzo et al. 

2010; Horlbeck et al. 2018), and co-expression (Langfelder and Horvath 2008; 

Warde-Farley et al. 2010; Greene et al. 2015; van Dam et al. 2015; 

Szklarczyk et al. 2016; Li et al. 2017; Obayashi et al. 2019).  

With the development of transcriptome profiling technologies, 

thousands of high-throughput studies have generated a wealth of genome-

wide data that has become a valuable resource for systems genetics 

analyses. A few web resources, including GEO (Barrett et al. 2013), 

ArrayExpress (Kolesnikov et al. 2015), GeneNetwork (Chesler et al. 2004), 

and Bgee (Bastian et al. 2008) amongst others, have created repositories of 

such expression data for curation, reuse, and integration. Several tools, such 
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as GeneMANIA (Warde-Farley et al. 2010), GIANT (Greene et al. 2015), 

SEEK (Zhu et al. 2015), GeneFriends (van Dam et al. 2015), WeGET 

(Szklarczyk et al. 2016), COXPRESdb (Obayashi et al. 2019), WGCNA 

(Langfelder and Horvath 2008), and CLIC (Li et al. 2017), are able to assign 

putative new functions to genes by means of correlations or co-expression 

networks. At their core, these methods rely on the concept of guilt-by-

association – that transcripts or proteins exhibiting similar expression patterns 

tend to be functionally related (Eisen et al. 1998). By using over-

representation analyses on sub-networks or modules, one can then deduce 

aspects of gene functions.  

However, these approaches generally depend on discrete sets of 

genes whose expression correlations exceed either a hard or soft threshold, 

which would strongly influence the final results. In addition, such analyses 

typically focus on positive or absolute values of correlations among datasets. 

The key polarity of interactions is often lost among gene products and linked 

modules (Warde-Farley et al. 2010; Greene et al. 2015; van Dam et al. 2015; 

Zhu et al. 2015; Li et al. 2017). Gene set analyses, such as gene set 

enrichment analysis (GSEA) (Subramanian et al. 2005), have been developed 

to identify processes or modules that are affected by certain genetic or 

environmental perturbations (Khatri et al. 2012). While GSEA removes the 

necessity of assigning a certain threshold, its application has mainly been 

limited to studying G/LOF models or environmental perturbations, where 

comparisons are inherently among discrete categories. This limits its 

applicability in most populations, in which variations among individuals are 

often subtle and continuous (Williams and Auwerx 2015).  
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Here we developed the GeneBridge toolkit that uses two 

interconnected approaches to improve upon the identification of gene function 

and to bridge genes to phenotypes using large-scale cross-species 

transcriptome compendia collected for this study. First, we describe a 

computational approach, named Gene-Module Association Determination (G-

MAD), to impute gene function. G-MAD considers expression as a continuous 

variable and identifies the associations between genes and modules. Second, 

we developed the Module-Module Association Determination (M-MAD) 

method to identify connections between modules based on the transcriptome 

compendia. The data and GeneBridge tools described here are available at 

systems-genetics.org, an open resource, which will facilitate the identification 

of novel connections between genes, modules, phenotypes, and diseases.  

 

Results 

Current status of gene annotations 

Despite great efforts to annotate the cellular and physiological role of genes, 

many of their functions remain poorly understood. One of the most widely 

used resources of gene annotation for genes is the Gene Ontology (GO), 

which characterizes gene function based on three ontologies, i.e. biological 

process, molecular function, and cellular component (Ashburner et al. 2000). 

Over 54% (10,543 genes) of all the protein-coding genes in humans have no 

more than 10 annotations, including the uncurated IEA annotations (Inferred 

from electronic annotation) (Fig. 1A), whereas the most annotated gene TP53 

has more than 800 annotations (Fig. 1B). In fact, the top 20% most annotated 

genes have more than 64% of all annotations in GO (Fig. 1C). From these 
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perspectives, it is clear that most human genes are still poorly annotated. The 

pattern is similar in other model species. Specifically, over 48% (10,166 

genes) in mouse, 60% (11,833 genes) in rat, 61% (8,514 genes) in fly, 29% 

(5,885 genes) in worm, and 26% (1,566 genes) in yeast, have fewer than 10 

entries in GO (Supplemental Fig. S1). This is also true for gene annotations 

retrieved from other sources, such as GeneRIF (Gene Reference Into 

Function) (Mitchell et al. 2003) (Fig. 1D-F), as well as for publications archived 

in PubMed (Barrett et al. 2013; Dolgin 2017) (Fig. 1G-I, Supplemental Fig. 

S1). The phenomenon that many genes are ignored in biological research has 

been pointed out before (Edwards et al. 2011; Pandey et al. 2014; Stoeger et 

al. 2018). Several possible reasons for this bias, such as prior knowledge, 

publication bias, and priorities of funding support have been raised (Edwards 

et al. 2011; Greene and Troyanskaya 2012; Stoeger et al. 2018). Therefore, 

an unbiased approach for gene function analysis would most likely provide 

many novel insights for future research.  

Gene-Module Association Determination (G-MAD)  

Owing to the fact that a large number of genes are still not well annotated or 

even uncharacterized, we propose here a new computational strategy, “Gene- 

Module Association Determination” (G-MAD), which uses expression data 

from large-scale cohorts to propose potential functions of genes. We use the 

term “modules” to refer the knowledge-based gene sets, ontology terms, and 

biological pathways from different resources for simplicity in the rest of the 

paper. The differences between gene sets or directed or undirected pathways 

are important in many contexts, but for our purpose they can be treated in the 

same manner as modules and will not be distinguished. The basic concept is 
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similar to classic pathway/gene set analysis, i.e. genes that possess similar 

functions tend to have similar expression patterns (Subramanian et al. 2005). 

However, instead of using binary group settings (e.g., control vs. treatment, or 

wild-type vs. knockout) as commonly used in gene set analysis, we consider 

the continuous expression levels of the gene-of-interest across a population 

and determine its possible functions based on its co-expression patterns 

against all genes. We applied a competitive gene set testing method — 

Correlation Adjusted MEan RAnk gene set test (CAMERA), which adjusts for 

inter-gene correlations (Wu and Smyth 2012) — to compute the enrichment 

between gene-of-interest and biological modules. Gene-module connections 

with enrichment p-values that survived multiple testing corrections of the gene 

or module numbers were allocated connection scores of 1 or -1, based on the 

enrichment direction, and 0 otherwise. The results were then meta-analyzed 

across datasets, and gene-module association scores (GMAS) were 

computed as the averages of the connection scores weighted by the sample 

sizes and inter-gene correlation coefficients within modules (Fig. 2A).  

We collected transcriptome datasets with over 80 samples from 6 

species (human, mouse, rat, fly, worm and yeast), from GEO, ArrayExpress, 

dbGaP, GeneNetwork, and other data repository sources (Supplemental 

Table S1). For example,	 1’337 datasets containing over 265’000 human 

samples with whole genome transcript levels were analyzed in this study 

(Supplemental Table S1). Genes annotated to some modules have higher co-

expression in datasets from certain tissues than others (Supplemental Fig. 

S2A), suggesting the tissue-specific activation of these modules. For instance, 

genes involved in pancreatic secretion have much higher co-expressions in 
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datasets obtained from pancreas (Fig. 2B). Genes belonging to “collecting 

duct acid secretion” module are highly co-expressed in kidney (Supplemental 

Fig. S2B-D), while genes in the “lamellar body” module are highly co-

expressed in lung (Supplemental Fig. S2E-G).  

One should be aware of the fact that modules can overlap partially or 

completely. For example, GO categories have a hierarchical structure. Each 

GO term has "parent" terms (related usually by "part of" or "is a" relations), 

and all genes annotated to the term will also be annotated to its parents. 

Symmetrically, a GO term can be the parent term of other GO terms 

(Ashburner et al. 2000). In addition, modules from different sources can be 

very similar in composition. For example, oxidative phosphorylation (84 

genes) from GO biological process, and respiratory chain (80 genes) from GO 

cellular component have 65 genes (66%) in common in humans. Therefore, 

we computed the similarities across all modules, and generated a global 

module similarity network. As expected, redundant modules formed clusters in 

the network, and we were able to extract 62 distinct module clusters in the 

human module similarity network (Fig. 2C, Supplemental Table S2).  

We assessed the performance of G-MAD in prioritizing known genes for 

modules through cross validations. We then compared the area under the 

receiver operating characteristic (ROC) curve (AUC) with the ones obtained 

from WeGET, a method predicting novel genes for various modules based on 

weighted co-expression of around 1,000 expression datasets (Szklarczyk et 

al. 2016). G-MAD exhibits better predictive performance than WeGET 

(Supplemental Fig. S3). Furthermore, in order to determine the threshold of 

significance of gene-module associations, we computed the GMAS of all the 
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known gene-module pairs. To be stringent in proposing novel gene-module 

associations, we consider only 10% of all the known gene-module pairs as 

significant, and picked a GMAS threshold of 0.268 (Fig. 2D). With this 

threshold, we saw only 0.24% of unknown gene-module pairs are significant, 

which is 40 times less than the known pairs.  

The gene-module connections predicted by G-MAD provide a resource, 

which researchers can use as a reference when annotating gene functions. 

We describe below some examples on how the G-MAD results can be used to 

facilitate the discovery of novel gene functions or the identification of new 

members of modules. WDFY4 was recently annotated as a crucial gene	 in 

activating immunological T cells in antiviral and antitumor immunity through a 

functional CRISPR screen (Theisen et al. 2018). Through G-MAD, we found 

that WDFY4 is indeed associated with antigen processing, T cell activation, 

and immune response in human, mouse, and rat (Fig. 2E, Supplemental Fig. 

S4A-B), verifying its functions conserved across species. Cholesterol is critical 

in cell differentiation and growth. We identified 20 genes (AACS, ACLY, 

ACSL3, ACSS2, CYB5B, DBI, ELOVL6, ERG28, FADS1, FASN, INSIG1, 

PANK3, PCSK9, PCYT2, PNPLA3, RDH11, SLC25A1, STARD4, TMEM41B, 

TMEM97) associated to cholesterol biosynthesis conserved in human, mouse, 

and rat (Fig. 2F, Supplemental Fig. S4C-E). Several of these genes, including 

FASN (Carroll et al. 2018) and TMEM97 (Bartz et al. 2009), have already 

been described to have relevant functions in cholesterol metabolism.  

G-MAD can also highlight tissue-specific gene-module associations 

using datasets from specific tissues. EHHADH is a peroxisomal protein highly 

expressed in liver and kidney (Fig. 3A) (Uhlen et al. 2015). Although best 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 24, 2019. ; https://doi.org/10.1101/649079doi: bioRxiv preprint 

https://doi.org/10.1101/649079
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

11 

known for its key role in the peroxisomal oxidation pathway, recent report 

demonstrated that EHHADH mutations cause renal Fanconi's syndrome 

(Klootwijk et al. 2014). G-MAD of EHHADH in liver and kidney identifies its 

conserved role in peroxisome and fatty acid oxidation, and also recovers its 

specific functions in liver (e.g. bile acid biosynthesis) and kidney (e.g. brush 

border membrane) (Fig. 3B-E, Supplemental Table S3). SLC6A1 is one of the 

major gamma-aminobutyric acid (GABA) transporters in the neurotransmitter 

release cycle in brain (Carvill et al. 2015). However, SLC6A1 is also highly 

expressed in the liver (Supplemental Fig. S5A), and its function in liver 

remains poorly understood. G-MAD of SLC6A1 in all datasets and only 

datasets from brain confirms its function as neurotransmitter transporters in 

GABA release cycle (Supplemental Fig. S5B-C), while G-MAD using datasets 

from liver identifies its possible role in carboxylic acid transport and 

metabolism (Supplemental Fig. S5D-E, Supplemental Table S4).  

G-MAD determines novel genes linked to mitochondria  

Mitochondria are the main powerhouses of cells and harvest energy in the 

form of ATP through mitochondrial respiration. There are around 1,100 genes 

known to encode mitochondria-localized proteins (mito-proteins), depending 

on the source used (e.g. 1,158 mito-proteins in Mitocarta (Calvo et al. 2016), 

1,074 in Human Protein Atlas (Uhlen et al. 2015)); however, many of these 

genes remain uncharacterized, and the list of mito-proteins is still incomplete 

(Williams et al. 2018).  

By using the genes annotated to be involved in respiratory electron 

transport chain (ETC, Reactome: R-HSA-611105), we searched for genes 

potentially related to respiratory electron transport, by applying G-MAD to 
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expression datasets in human, mouse, and rat. As expected, genes annotated 

in the ETC module are strongly enriched; moreover, other known ETC genes 

that were not included in the module were also positively enriched, providing 

proof that G-MAD can recover known gene functions (Fig. 4A, Supplemental 

Fig. S6A-B). Based on G-MAD results from human, mouse and rat, there 

were 707 genes showing conserved associations with the ETC (Fig. 4B). 

Many of these genes, for example DMAC1/C9orf123 (Arroyo et al. 2016; 

Stroud et al. 2016; Horlbeck et al. 2018), NDUFAF8/C17orf89 (Floyd et al. 

2016), and FMC1/C7orf55 (Lefebvre-Legendre et al. 2001; Li et al. 2017) 

were not included in the respiratory electron transport module, but have been 

recently validated to be involved in mitochondrial respiration (Fig. 4B, 

Supplemental Table S5). DDT is among the top genes associated with the 

ETC (Fig. 4A-B), and there is no previous study linking it to mitochondria. G-

MAD reveals that DDT is strongly associated with mitochondrial respiration 

across different species, including the invertebrate C. elegans (Fig. 4C-D, 

Supplemental Fig. S6C-G), suggesting a conserved role of DDT in 

mitochondria. We experimentally validated this finding through RNAi-mediated 

DDT knockdown in HEK293 cells, which led to reduced transcript levels of 

genes encoding for the ETC subunits (Fig. 4E) and decreased oxygen 

consumption rate (OCR) (Fig. 4F, Supplemental Fig. S5H), confirming that 

DDT impacts mitochondrial respiration. Similarly, we also confirmed the 

involvement of BOLA3 in the ETC using G-MAD and experimental validations 

(Cameron et al. 2011) (Supplemental Fig. S7).  

Contrary to the existing methods that predict only positive gene-module 

associations based on gene co-expression, G-MAD is also able to exploit 
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negative associations. For example, ARID1A exhibits significant negative 

associations with the respiratory electron transport in human and mouse (Fig. 

4A,G-H, Supplemental Fig. S8). ARID1A is a known member of the SWI/SNF 

family, and the inactivating mutations of SWI/SNF complex genes (mainly 

SMARCA4 and ARID1A) have recently been linked to increased expression of 

ETC genes and mitochondrial respiration (Lissanu Deribe et al. 2018). To 

further validate its regulatory role, we checked an extant public dataset from 

mice with uterus-specific Arid1a knock-out (Kim et al. 2015), and confirmed 

that dysfunction of Arid1a led to the increased expression of mitochondrial 

genes (Fig. 4I), especially those involved in respiratory electron transport (Fig. 

4J).  

Module-Module Association Determination (M-MAD)  

Biological processes and modules, such as metabolism, cellular signaling, 

biogenesis, and degradation are interconnected and coordinated (Barabasi et 

al. 2011). However, there are few reports exploring the connections between 

modules in a systematic fashion (Li et al. 2008). Here we extend G-MAD to 

develop Module-Module Association Determination (M-MAD) to investigate 

the connections between modules based on the expression compendia. 

Results for individual modules against all genes, obtained from G-MAD, were 

used to compute their associations against all modules. The enrichment 

scores of all genes for the target module were used as the gene-level 

statistics to calculate the enrichment against all modules using CAMERA (Wu 

and Smyth 2012). The resulting enrichment p-values across modules were 

transformed to 1, 0, or –1 based on the Bonferroni threshold, and then meta-
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analyzed across all datasets to obtain the module-module association scores 

(MMAS) (Fig. 5A).  

Module-module associations with an absolute MMAS of over 0.268, 

corresponding to 4% of the total number of module pairs, were considered 

significant and were used to construct a module association network (Fig. 5B). 

Modules were represented as nodes with the same colors as the module 

clusters from Fig. 2C. While the module similarity network in Fig. 2C is based 

solely on existing gene annotations, the module association network relies on 

analyzing the full expression datasets. It can thus reveal new biological 

connections among modules, which were not included in literature-based 

annotations. We compared the two networks (Supplemental Fig. S9) obtained 

from module similarity (Fig. 2C) and module association (Fig. 5B). 

Interestingly, there are numerous module pairs with no similarity/overlap of 

annotated genes, but with high association based on expression (M-MAD) 

(Fig. 5C). Moreover, many module pairs have predicted negative associations 

(Fig. 5C). Therefore, these results provide a resource for hypothesis 

generation and validation of the module connections.  

By applying M-MAD, we observed a strong positive link between 

mitochondrial modules and the proteasome (Fig. 5D, Supplemental Fig. 

S10A-C). Most of the genes encoding proteasome subunits exhibit 

remarkable association with the ETC in human and mouse (Supplemental Fig. 

S10G), indicating a conserved co-regulatory mechanism. Dysfunction of 

mitochondria and the ubiquitin-proteasome system (UPS) are hallmarks of 

aging and aging-related neurodegenerative diseases, such as Alzheimer's, 

Parkinson's, and Huntington's diseases (Ortega and Lucas 2014; Ross et al. 
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2015; D'Amico et al. 2017). Abnormalities that perturb the crosstalk between 

these two modules have been demonstrated to contribute to the pathogenesis 

of these diseases and several mechanisms have been proposed (D'Amico et 

al. 2017; Harrigan et al. 2017). It has also been shown that ETC disruption 

leads to proteasome impairment (D'Amico et al. 2017), while conversely the 

inhibition of the UPS causes mitochondrial dysfunction (Ross et al. 2015).  

Similar to G-MAD, M-MAD can also predict negative connections 

between modules. For example, we found strong negative connections 

between histone demethylation processes and mitochondrial modules (Fig. 

5E, Supplemental Fig. S10D-F). The link between epigenetics and 

mitochondria is a research focus for many groups, including ours (Schroeder 

et al. 2013; Merkwirth et al. 2016; Tian et al. 2016). It has been reported that 

mitochondrial dysfunction affects histone methylation, and conversely histone 

lysine demethylases can impact mitochondrial functions (Merkwirth et al. 

2016). Most of the histone lysine demethylases showed negative associations 

with the ETC in human and mouse (Supplemental Fig. S10G), suggesting a 

conserved negative connection between histone demethylation and 

mitochondrial function.  

As another example of M-MAD, we investigated modules connected with 

lipid biosynthetic modules. Interestingly, ribosome modules exhibited strong 

negative association with lipid biosynthetic modules (Fig. 6A-B, Supplemental 

Fig. S11A-B). This is in line with our previous finding that a ribosomal protein, 

Rpl26, negatively correlates with body weight and fat mass (Li et al. 2018). In 

support of this connection, liver and adipose transcripts of most ribosomal 

protein genes negatively correlated with metabolic phenotypes, such as body 
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weight, fat mass, and cholesterol levels in the BXD mouse cohort (Wu et al. 

2014) (Fig. 6C, Supplemental Fig. S11C), as well as in a CAST/EiJ and 

C57BL/6J F2 intercross (Schadt et al. 2008) (Fig. 6D, Supplemental Fig. 

S11D). Finally, RNAi targeting 9 of the identified ribosomal protein genes out 

of total 13 tested led to the accumulation of lipid droplets in C. elegans (Fig. 

6E, Supplemental Fig. S11E-G), further validating the robustness of the lipid 

synthesis-ribosome connection across species.  

 

Discussion 

Significant efforts in biological research have been devoted to defining the 

molecular and physiological functions of genes. However, many genes are 

still not well annotated and even remain uncharacterized (Edwards et al. 

2011; Dolgin 2017; Stoeger et al. 2018). Here we developed an approach, 

termed G-MAD, to facilitate the identification of novel gene functions and to 

establish robust connections between genes and modules. Using 

transcriptome datasets from cohorts ranging from human to mouse, rat, fly, 

worm, and yeast, we identified millions of gene-module connections, many of 

which are novel. Unlike usual co-expression analyses for predicting gene 

functions, G-MAD can identify not only positive gene-module connections, but 

also negative associations between genes and modules or processes. We 

illustrated the predictive power of G-MAD in revealing potential gene-module 

connections using the mitochondrial electron transport chain (ETC) module as 

an example. 707 genes were consistently associated with the ETC in human, 

mouse and rat, of which DDT and BOLA3 were validated through 
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experiments. A negative connection between ARID1A, a member of the 

SWI/SNF family, and the ETC was also identified using G-MAD, which was 

consistent with a report that inactivation of SWI/SNF complex increased 

mitochondrial respiration (Lissanu Deribe et al. 2018). Meanwhile, tissue-

specific functions of genes, for example EHHADH and SLC6A1, can also be 

identified using datasets derived from respective tissues.  

In addition, we extended G-MAD to M-MAD, to uncover connections 

between modules. Association scores of one module against all genes from 

G-MAD were used to compute its associations with all modules. Similar to G-

MAD, M-MAD can identify both positive and negative module associations. 

For example, in humans we identified around 2,000,000 associations between 

all modules, over 170,000 of which negative. We constructed a module 

association network based on these connected modules, and compared it to 

the module similarity network. Interestingly, many of the associated module 

pairs have low or no similarities in gene compositions. By applying M-MAD on 

the ETC module, we discovered a conserved connection between 

mitochondria and the proteasome in various organisms (D'Amico et al. 2017). 

In addition, we identified negative associations between histone lysine 

demethylation and mitochondrial modules, underscoring the inverse 

connection between epigenetic regulation and mitochondrial function 

(Schroeder et al. 2013; Merkwirth et al. 2016; Tian et al. 2016). Moreover, we 

discovered and validated a novel negative regulatory role of ribosomal 

proteins on lipid biosynthesis (Li et al. 2018).  

In summary, we described here a set of approaches to identify gene 

function and module connectivity, that we collectively termed GeneBridge, to 
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reflect their capacity to bridge genes to biological functions and phenotypes. 

The GeneBridge toolset is accessible through our open web resource 

(systems-genetics.org) to the research community for hypothesis generation 

or validation. It should be noted that although only protein-coding genes were 

included in our analysis, the same approach can be applied to non-coding 

genes to reveal their potential functions. Similarly, GeneBridge can also be 

utilized to identify novel gene-disease associations based on known disease-

associated genes from databases, such as the Human Disease Ontology 

(DO) (Schriml et al. 2019) or DisGeNET (Pinero et al. 2017). The GeneBridge 

toolkit could also be applied to large-scale proteomics datasets after 

correcting for the background of all measured proteins. Integration of 

GeneBridge with other well-established databases, such as BioGRID (Stark et 

al. 2006) and STRING (Szklarczyk et al. 2015), will facilitate the investigation 

of the connections between genes, modules, and diseases.  

 

Methods 

Gene annotations / Modules. Gene ontology (GO) annotations (Ashburner 

et al. 2000) were downloaded from http://www.geneontology.org/ on Oct 4, 

2017, with versions indicated by submission date below. Gene Reference Into 

Function (GeneRIF) (Mitchell et al. 2003) was downloaded from 

ftp://ftp.ncbi.nih.gov/gene/GeneRIF/ on Oct 11, 2017. Publication information 

from PubMed was downloaded from 

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2pubmed.gz on Mar 15, 2018.  
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Module data for all the species were retrieved from GO (Ashburner et al. 

2000), Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al. 

2012), and Reactome (Croft et al. 2011). Annotations from GO with evidence 

codes of IEA (inferred from electronic annotation), ND (No biological data 

available), NR (Not recorded), NAS (Non-traceable author statement) were 

removed from the analysis. The parent-child hierarchical structure of GO was 

ignored. All modules, including the redundant modules (modules with similar 

gene components), as well as parent-child modules, were considered as 

independent in the analysis.  

Modules with less than 15 genes or larger than 1,000 genes were 

excluded, resulting in 6,979, 7,489, 7,462, 3,811, 2,495, and 2,381 modules 

for human, mouse, rat, fly, worm, and yeast, respectively, for the analysis.  

Module similarity calculation. Similarity between two modules were defined 

as the Jaccard index 𝐽 𝐴,𝐵 = !∩!
!∪!

, i.e. the number of genes in A and B 

divided by the number of genes in A or B. It measures the intersection 

between the modules as a fraction of the total size.  

Gene expression across tissues 

Expression patterns of EHHADH and SLC6A1 in mRNA and protein levels 

across human tissues were obtained from the Human Protein Atlas (Uhlen et 

al. 2015), and are available from v18.proteinatlas.org/ENSG00000113790-

EHHADH/tissue and v18.proteinatlas.org/ENSG00000157103-SLC6A1/tissue, 

respectively.  

Transcriptome datasets. Human GTEx transcriptome datasets were 

downloaded from https://www.gtexportal.org (GTEx_Consortium 2013). Most 
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of the microarray and RNAseq datasets were downloaded from GEO (Barrett 

et al. 2013) and ArrayExpress (Kolesnikov et al. 2015), with processed human 

and mouse RNAseq datasets obtained from ARCHS4 (Lachmann et al. 2018). 

The rest of the datasets were downloaded from other sources, including the 

database of Genotypes and Phenotypes (dbGaP) (Mailman et al. 2007), 

Mouse phenome database(Bogue et al. 2018), and other data repository 

websites. Data from single cell RNA-seq were excluded from the study 

because they contain the many zero counts. Detailed information can be 

found at systems-genetics.org/datasets.  

Data preprocessing of transcriptome datasets. For microarray datasets, 

the expression for a given gene with more than one probe set was 

represented by the average values of all its probe sets. Un-annotated probe 

sets were removed in the data pre-processing step. Only protein coding 

genes were considered in the analysis, as non-coding genes are often not 

well measured in microarray platforms. For RNAseq datasets, CPM (Count 

Per Million) were calculated to normalize the gene expression across samples 

and log2(CPM) were used for further analysis. Only protein coding genes were 

considered in the analysis to match the data in microarray datasets.  

Transcriptome data were standardized by quantile-transformation to fit a 

normal distribution to avoid model misspecification when performing gene-

level statistics. The expression values of all genes were normalized to the 

range of 0 to 1. Samples and genes with more than 30% missing values were 

removed from the analysis, and the remaining missing data were imputed 

using nearest neighbor averaging by the impute.knn function in the “impute” R 

package.  
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For all the datasets, covariates were manually annotated and curated 

based on the metadata available from the respective data sources. Datasets 

containing data from different tissues were separated into single tissues. To 

account for confounding sources of expression variations, the effects of 

known covariates, including age, gender, genotype, platform, disease, 

treatment, batch, etc, as well as hidden determinants of gene expression were 

estimated and removed by using PEER (probabilistic estimation of expression 

residuals) (Stegle et al. 2012), and the expression residuals were used for 

further analysis.  

Gene-Module Association Determination (G-MAD). G-MAD makes use of 

the expression residuals of transcriptome datasets from large cohorts 

(datasets with over 80 samples). The expression levels of the gene-of-interest 

(target gene 𝑇) are used as a continuous trait to test whether a module M is 

enriched when 𝑇 is highly expressed or, alternatively, whether it is depleted. 

The analysis uses the competitive gene set testing method CAMERA, which 

adjusts for inter-gene correlations (Wu and Smyth 2012). This adjustment is 

important, because left unadjusted too many significant results would emerge. 

To perform CAMERA, we first regress all genes 𝐺  on 𝑇  according to the 

following relationship 

𝐺 = 𝜇 + 𝛽!→!𝑇 + 𝑒. 

The fitting of this model equation to the observations is done separately for 

each data set by using the least squares method. The result is one fitted 

values 𝛽!→! per gene. These coefficients define a set of statistics numerically 

characterizing the connection between the target gene 𝑇 and any gene 𝐺. 

CAMERA provides a test of the null hypothesis that the average values of the 
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𝛽 coefficients for the genes 𝐺 in the module M are equal to the values for the 

genes not in the module. In order to correct for the inter-gene correlations a 

variance inflation factor is computed based on the average correlation 

coefficient 𝜌!  computed from the expression residuals obtained and only 

using the genes in the module M. When the average association scores 

between genes in the set and genes outside the set, !!∈! !→!
|!|

  and  
!!∉! !→!

|!"#"$\!|
 , 

are compared on the final step, 𝜌!is included in the variance inflation factor. 

The resulting statistic revealing the association between the target gene 𝑇 and 

M we refer to as the enrichment score 𝐸𝑆! (𝑇). 

The same procedure was conducted for all the genes in the analyzed 

datasets to obtain the enrichment p-value matrix between genes and modules 

in all the datasets. Two types of analyses can be applied on the gene-module 

p-value matrix. One can extract the p-values for one gene against all modules 

across the datasets to obtain the association between this gene and all 

modules; or extract the p-values for one module against all genes to check 

the association between this module and all genes. To avoid the situation 

where the final association scores are highly influenced by a few datasets with 

extremely low p-values, we converted the p-values to discrete association 

scores based on a significance threshold for each dataset. For the Bonferroni 

multiplicity correction, the significance thresholds for the p-values are either 

assessing genes for fixed modules 𝑝!|! = !.!"
# !"#$%&'

 or assessing modules for 

fixed genes 𝑝!|! =
!.!"

# !"#"$
. Gene-module associations with p-values that 

survived multiple testing corrections were set equal to 1 or −1, based on the 
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enrichment direction, and 0 otherwise: 𝑆 𝑝!|! =  ±1,        𝑝!|! < !.!"
# !"#$%&'

0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
, 

where 𝑝!|!  are one-sided p-values, corresponding to either positive or 

negative associations. The resulting 𝑆 𝑝!|!  values were then meta-analyzed 

across the datasets, and the gene-module association scores (GMAS) were 

computed as the weighted averages of the scores with the weights functions 

of the sample sizes combined with the inter-gene correlation coefficients 

within modules. Denote 𝐷! , 𝑗 = 1,… , 𝐽 available datasets with corresponding 

sample sizes 𝑛! , 𝑗 = 1,… , 𝐽 , and average inter-gene correlations  𝜌!  , 𝑗 =

1,… , 𝐽 . Let the p-value obtained for the 𝑗!!  dataset is 𝑝!|!(𝑗) . The final 

association score is then computed as 

GMAS =  
𝑤!𝑆(𝑝!|!(𝑗))

!
!!!

𝑤!
!
!!!

,  

where weight for the 𝑗!! dataset is 𝑤! =  𝑛!𝜌!. Under the null hypothesis, if 

we consider the positive and negative associations separately, the random 

variables 𝑆 𝑝!|!(𝑗)  follow a Bernoulli distribution with probability of success 

= !.!"
# !"#$%&'

 . Therefore, statistic GMAS is the weighted sum of Bernoulli 

variables, whose theoretical distribution is hard to establish. The weight is 

proportional to the square root of the sample size in the 𝑗!! dataset. Another 

important component of 𝑤!  is the average correlation coefficients among 

genes in the module in the 𝑗!! dataset, 𝜌!, which reflects the co-expression or 

“level of activation” of the module for this dataset. 

For the final decision we use thresholding of GMAS. We selected a very 

stringent threshold for GMAS, so that only a small proportion of the known 
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gene-module connections are recovered. We found that a threshold of 0.268 

enables us to recover 10% of the known gene-module links.  

Module-Module Association Determination (M-MAD). M-MAD takes the 

association p-value matrix between a target module and all genes in all 

datasets (Fig. 2A bottom-left), and uses the –log10(p) values as a continuous 

trait to test whether other biological modules are enriched by containing genes 

that are highly associated with the target module. The analysis again uses the 

competitive gene set testing method CAMERA. Our function, -log10(p), 

transforms the p-values near zero to high positive values and p-values near 1 

to transformed values near zero. Applied to p-values uniformly distributed in 

the interval between 0 and 1, the resulting transformed values have an 

exponential distribution skewed towards 0. CAMERA will then compute a p-

value for testing the equality of the average transformed values for the genes 

in the other biological modules compared to all other genes. It will result in a 

small p-value when many of the genes in the other biological modules are 

relatively highly connected to the target module. The same analysis is 

performed for all modules to achieve a final association p-value matrix 

between modules. The Bonferroni correction was used to correct for the 

multiple testing errors with !.!"
 #!"#$%&'

 as the significance threshold. To avoid the 

situation where the final association scores are highly influenced by a few 

datasets with extreme low p-values, module-module connections with 

enrichment p-values that survived multiple testing corrections were allocated 

1 or -1, based on the enrichment directions, and 0 otherwise. The results were 

then meta-analyzed across the datasets, and the module-module association 

scores (MMAS) were computed as the weighted averages of the connection 
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scores by the sample sizes and inter-gene correlation coefficients within 

modules across datasets.  

Module network analysis. Module networks were constructed using Gephi 

0.9.2 (Mathieu et al. 2009) based on either the module similarities or module 

connections from M-MAD. The Fruchterman-Reingold algorithm (Fruchterman 

and Reingold 1991) was used to create the network layout with a gravity value 

of 10. Iterations were stopped when the network reached stability. The node 

colors were obtained using the community detection algorithm (Vincent et al. 

2008) embedded as the modularity tool in Gephi. Clusters with more than 20 

nodes were colored to illustrate the module communities. The most frequent 

10 biological terms (excluding biological meaningless words, such as “of”, “in”, 

or “and”) were used to represent the modules of these communities. The 

statistical characteristics of the module networks were computed using Gephi. 

For the network visualization of G-MAD results for one gene, modules were 

plotted according to their x and y coordinates of the module similarity network, 

and the gene-module association scores (GMAS) against all modules were 

used to color the modules using indicated color codes.  

Gene correlation network analysis. Gene correlation networks were 

constructed based on the Pearson correlation among genes of indicated 

modules in respective datasets using the “layout_with_fr” function in the 

igraph R package. Edges with correlation p-values lower than the indicated 

cutoffs in the figure panels were plotted.  

Cross validation. In order to test the predictive performance of G-MAD and 

compare it with the available methods using co-expression, we performed a 

cross validation analysis by removing groups of genes from modules, re-
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computing the associations between the removed genes and the reduced 

module and testing if we can rediscover the removed genes (Szklarczyk et al. 

2016). We applied leave-one-out cross validation for modules with no more 

than 50 genes, and 10-fold cross validation for larger modules. The area 

under the receiver operating characteristic (ROC) curve (AUC) is used to 

estimate the performance of prediction, with an AUC of 1 indicating perfect 

prediction and 0.5 indicating random guess.  

Gene set enrichment analysis. Transcriptome data of uterus-specific Arid1a 

knockout mice(Kim et al. 2015) were downloaded from GEO under the 

accession number GSE72200. For enrichment analysis, genes were ranked 

based on their fold changes between Arid1a knockout and control samples, 

and gene set enrichment analysis (GSEA) was performed to identify the 

enriched gene sets using the R/fgsea package (Subramanian et al. 2005; 

Sergushichev 2016).  

Transcript-phenotype correlation analysis in mouse cohorts. Phenotype 

data, as well as transcriptome data of liver and white adipose tissue, from the 

BXD (Wu et al. 2014) and CTB6F2 (Schadt et al. 2008) mouse cohorts were 

downloaded from GeneNetwork (www.genenetwork.org). Spearman’s 

correlation coefficient rho was used to calculate the correlation between the 

transcript levels of ribosomal protein genes and metabolic phenotypes.  

Cell culture and siRNA transfection. Human embryonic kidney (HEK) 293 

cells were cultured in DMEM supplemented with 10% fetal bovine serum, 100 

IU/ml penicillin and 100 µg/ml streptomycin. HEK 293 cells were grown to 

approximately 70% confluence in 12-well plate. The cells were treated with 

either scrambled siRNA, or human DDT / BOLA3 siRNA (Dharmacon) mixed 
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with lipofectamine 2000 to yield a final concentration of 100nM according to 

the supplier’s protocol. After siRNA treatment for 48 hours, cells were 

collected for quantitative real-time PCR assay. Primers used in this assay are 

listed in Supplemental Table S5. Statistical significance was determined by 

two-tailed Student’s t-test.  

Mitochondrial function assay. Mitochondrial oxygen consumption rate 

(OCR) was measured on a Seahorse XFe96 analyzer (Agilent) according to 

the manufacturer’s protocol. HEK 293 cells were seeded on to 96-well XF 

analyzer assay plate. Cells were treated with scrambled siRNA or human 

DDT / BOLA3 siRNA. After 48 hours siRNA treatment, Seahorse XFe96 

analyzer was used to measure OCR of the cells. After basal OCR levels were 

measured, HEK 293 cells were cumulatively treated with 1µM Oligomycin 

(ATP synthase inhibitor), then 3µM carbonyl cyanide 4-(trifluoromethoxy) 

phenylhydrazone (FCCP, mitochondrial uncoupler). Then, a mixture of 1µM 

Antimycin A (mitochondrial respiratory chain Complex III inhibitor) and 1µM 

Rotenone (Complex I inhibitor) was added. OCR levels were normalized to 

total protein content per well determined by Lowry protein assay. Statistical 

significance was determined by two-tailed Student’s t-test. 

C. elegans experiments. Lipid droplets were stained in C. elegans as 

described previously (Li et al. 2018). Inhibition of ribosome in early stage of 

worms affects their development and growth, so RNAi was performed after 

the worms reached adulthood. Specifically, L1 larvae of N2 worms were 

grown on regular nematode growth media (NGM) plates at 20°C for 2 days 

until reaching adulthood. Then worms were then transferred to RNAi plates 

with 1mM IPTG containing HT115 bacteria expressing RNAi clones for 
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ribosomal genes or empty vector. After 2 days of RNAi treatment, worms were 

collected, washed twice with 1x PBS and then suspended in 120 µl of PBS. 

Then 120 µl 2x MRWB buffer (160 mM KCl, 40 mM NaCl, 14 mM Na2EGTA, 

30 mM PIPES pH 7.4, 1 mM Spermidine, 0.4 mM Spermine, 2% 

paraformaldehyde, 0.2% beta- mercaptoethanol) was added. The worms were 

taken through 3 freeze-thaw cycles between dry ice/ethanol mixture and warm 

running tap water, followed by 1 minute spinning at 14,000g. Worms were 

then washed once using PBS to remove paraformaldehyde. Oil Red O 

staining of lipid droplets was performed after fixation. Worms were re-

suspended and dehydrated in 60% isopropanol. 250 µl of 60% Oil Red O 

stain was added to each sample, and samples were incubated overnight at 

room temperature. Worms were washed twice in 60% isopropanol solution 

after Oil Red O staining. The region immediately behind the pharynx of each 

worm was used for imaging of the lipid droplets (Li et al. 2018). The lipid 

droplets were quantified using Fiji (ImageJ) as previously described (Li et al. 

2018). Statistical significance was determined by two-tailed Student’s t-test.  

 

Data access 

Data Availability. All data included in the study is available from 

https://systems-genetics.org/. Code Availability. Code used in the study is 

available from https://github.com/lihaone/GeneBridge.  
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Figures and Figure legends 

 

Figure 1. Known annotations for human genes. The number of annotations 
per gene for human genes in GO (A), GeneRIF (D), and number of 
publications in Pubmed (G). The top 10 genes with the most 
annotations/publications in GO (B), GeneRIF (E), and PubMed (H) are rank 
ordered. The percentage of all annotations/publications covering the top 20% 
most annotated genes in human (C, F, I).  
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Figure 2. Gene-Module Association Determination (G-MAD).  
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A, G-MAD methodology. See text and Materials and Methods for detailed 
description.  
B, Co-expressions among genes of pancreatic secretion module across 
tissues in human. The average correlation coefficient across all genes in the 
pancreatic secretion module in around 1,300 human expression datasets from 
18 major tissues is used as to illustrate the co-expressions of this module 
across tissues. Genes in the pancreatic secretion module have higher co-
expression in datasets from the pancreas compared to those from other 
tissues.  
C, Module similarity network showing the composition similarities across all 
module pairs. Modules were detected using community detection algorithm 
embedded in Gephi and indicated in different colors. The 10 most frequent 
words of the module terms in each module were used to represent the 
module, and can be found at Supplemental Table S2.  
D, Distribution of GMAS of all gene-module pairs with known connections in 
human. 10% of the known gene-module pairs have GMAS over 0.268.  
E, G-MAD revealed the potential role of WDFY4 in T cell activation and 
immune response. The threshold of significant gene-module association is 
indicated by the red dashed line. Modules are organized by the module 
similarities. Known modules connected to WDFY4 from annotations are 
shown in red dots (there is no known connected module for WDFY4), and 
other modules with GMAS over the threshold are shown in black dots. Dot 
sizes reflect the GMAS of WDFY4 against the respective modules.  
F, G-MAD identified the involvement of known as well as 20 novel genes in 
cholesterol biosynthesis. The threshold of significant gene-module association 
is indicated by the red dashed line. Genes are organized by the genetic 
positions across chromosomes. Genes annotated to be involved in cholesterol 
biosynthesis are shown in red dots, and novel genes with GMAS over the 
threshold are shown in black dots. Novel genes conserved in human, mouse 
and rat are highlighted in red bold text. 
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Figure 3. G-MAD identifies tissue-specific associated modules for 
EHHADH by using datasets from different tissues.  
A, Expression patterns of EHHADH across tissues. The figure was adapted 
from the Human Protein Atlas.  
B-D, G-MAD of EHHADH in human using datasets from all tissues (B), from 
liver (C), or from kidney (D). The threshold of significant gene-module 
association is indicated by the red dashed line. Modules are organized by 
their similarities. Known modules connected to EHHADH from gene 
annotations are shown in red dots, and other modules with GMAS over the 
threshold are shown by black dots.  
E, Comparison of G-MAD results of EHHADH in liver and kidney. Known 
modules connected to EHHADH are shown in red dots. The threshold of 
significant gene-module association is indicated by the red dashed line. 
Modules significantly associated with EHHADH only in one specific tissue are 
highlighted. The comparison of the association results of EHHADH in liver and 
kidney can be found at Supplemental Table S3.  
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 Figure 4. G-MAD predicts novel genes linked to mitochondria.  
A, G-MAD Manhattan plot of the respiratory electron transport (Reactome: R-
HSA-611105) module in human. Genes are arranged based on their genetic 
positions, and genes annotated to be involved in the module are colored red. 
Genes with absolute GMAS over 0.268 are considered significantly 
associated. DDT, BOLA3, and ARID1A are labeled.  
B, Venn diagram of novel genes associated with respiratory electron transport 
module in human, mouse and rat. 707 genes were predicted to be mito-
proteins by G-MAD in all three species. 351 genes, including 
DMAC1/C9orf123, NDUFAF8/C17orf89, FMC1/C7orf55, and BOLA3, were 
recently annotated to be involved in mitochondrial respiration in at least one 
species. While 356 genes, including DDT, C16orf91, C15orf61, FLAD1, and 
GRHPR, have not been previously linked with mitochondria based on the 
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current annotations. The association results for all genes in human, mouse 
and rat can be found at Supplemental Table S4. 
C, DDT associates with mitochondrial respiratory chain modules in human. 
The threshold of significant gene-module association is indicated by the red 
dashed line. Modules are organized by module similarities. Known modules 
connected to DDT from annotations are highlighted in red, and other modules 
with GMAS over the threshold are colored in black. Dot sizes reflect the 
GMAS of DDT against the respective modules.  
D, Module similarity network showing the modules associated with DDT. 
Modules are plotted based on their layout in Fig. 2C and colored based on 
their GMAS against DDT. 
E, Silencing DDT expression in HEK293 cells decreases expression levels of 
indicated genes involved in mitochondrial respiratory chain complexes. Error 
bars represent standard errors. *, p < 0.05; **, p < 0.01; ***, p < 0.001. n=12.  
F, DDT knockdown leads to the reduction of oxygen consumption rate (OCR) 
as a reflection of mitochondrial respiration in human HEK293 cells. Addition of 
specific mitochondrial inhibitors, including the oligomycin (ATPase inhibitor), 
FCCP (uncoupling agent), and rotenone/antimycin A (electron transport chain 
inhibitors) are indicated by arrows.  
G, ARID1A negatively associates with mitochondrial respiratory chain in 
human. The threshold of significant gene-module association is indicated by 
the red dashed line. Modules are organized by the module similarities. Known 
modules connected to ARID1A from extant annotations are highlighted in red, 
and other modules with GMAS over the threshold are colored in black. Dot 
sizes are proportional to GMAS of the respective modules.  
H, Module similarity network showing the modules associated with ARID1A. 
Modules are colored based on their GMAS against ARID1A.  
I, Arid1a uterine-specific knockout mice showed positive enrichment in 
mitochondrial respiration modules. Nominal p-values from the GSEA results 
are used to plot against normalized enrichment score (NES), with dot sizes 
indicating the number of genes in the modules and transparencies indicating 
the false discovery rate (FDR).  
J, Enrichment plot showing the enrichment of genes included in respiratory 
electron transport in uterus-specific Arid1a knockout mice compared to wild-
type controls. Genes are ranked based on the fold change between Arid1a 
knockout and wild-type mice, and the ranking positions of genes in respiratory 
electron transport are labeled as vertical black bars. NES, normalized 
enrichment score. FDR, false discovery rate.  
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Figure 5. Module-Module Association Determination (M-MAD) reveals 
module connections.  
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A, Scheme of the M-MAD methodology in detecting module connections. 
Intermediate results of G-MAD for all modules are further processed and used 
as the basis of M-MAD. The -log10(p) values of G-MAD for the target module 
against all genes in each dataset are used as the gene statistic for the 
module, and connections between the target module and all modules are 
calculated using CAMERA. The results are then meta-analyzed by taking the 
sample sizes and inter-gene correlations of all datasets to compute the 
module-module association score (MMAS) between modules.  
B, Module association network showing the connections across all modules. 
Colors of nodes represent the module modules defined in the global module 
similarity network in Fig. 2C. Module clusters with respective colors are 
identified and labeled. Modules used as examples in following figures are 
highlighted in circle.  
C, Comparison of pairwise module connections derived from module 
similarities in Fig. 2D and associations (from M-MAD) in Fig. 5B. A red 
dashed line is plotted when the pairwise module similarity equals association. 
The distributions of module similarity and association scores are illustrated in 
the top and at the right of the plot and are colored in red and blue, 
respectively. Two examples of novel module connections are labeled. 
D-E, Subnetworks showing the association between mitochondrial and 
proteasomal modules (D), and mitochondrial and histone demethylation 
modules (E). Edges colors indicate the significance of module connections, 
with red as positive and blue as negative.   
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Figure 6. M-MAD reveals a negative association between the ribosome 
and lipid biosynthetic modules.  
A, Subnetwork for the ribosome and lipid biosynthetic modules. The colors of 
the edges indicate the significance of module connections, with red as 
positive and blue as negative.  
B, Lipid biosynthetic process negatively connected with ribosomal modules in 
human. The threshold of significant module-module connection is indicated by 
the red dashed line. Modules are organized by the module similarities. Dot 
sizes are proportional to MMAS of the respective modules.  
C-D, Transcripts of genes encoding for ribosomal proteins in the liver 
negatively correlate with metabolic traits, such as body weight, fat mass, 
plasma glucose and cholesterol levels, in the BXD (C) and CTB6F2 (D) 
mouse cohorts. *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
E, Feeding adult C. elegans with RNAi clones of ribosomal proteins, including 
rps-10, rpl-14, and rpl-26, results in the accumulation of lipids, as reflected by 
Oil Red O staining. Experimental scheme and additional examples are shown 
in Supplemental Fig. S7. ***, p < 0.001. ev, empty vector. n=3.  
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Supplemental Figures  
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Fig. S1. Statistical summary of available annotations for genes in M. 
musculus (A), R. norvegicus (B), D. melanogaster (C), C. elegans (D), 
and S. cerevisiae (E). The number of annotations per gene in GO (1), 
GeneRIF (3), and the number of publications in PubMed (5) for respective 
species. The percentage of the annotations/ publications covering the top 
20% most annotated genes (2, 4, 6).  
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Fig. S2. Tissue specific co-expression of modules.  
A, Heatmap showing the correlation coefficient averages of genes (𝜌) in 
modules from expression data of a subset of all human datasets. Datasets 
from different tissues are arranged and colored (top bar). Modules are 
clustered in rows using hierarchical clustering. 𝜌  values for each module are 
centered and scaled per module.  
B, E, Distribution of the co-expression of genes in the “collecting duct acid 
secretion” (B) or “lamellar body” (E) module across tissues in human. The 
average correlation coefficient of the gene pairs of the module in 1,300 human 
expression datasets from 18 major tissues was used as to illustrate the co-
expressions of this module across tissues. Genes in “collecting duct acid 
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secretion” (B) and “lamellar body” (E) module have higher co-expression in 
datasets from kidney and lung, respectively, indicating the potential to assign 
tissue-specificity.  
C-G, Pearson correlation network of genes in the “collecting duct acid 
secretion” (C, D) or “lamellar body” (F, G) module in representative datasets 
of lung (C, F) and kidney (D, G). The number of genes (nodes) and gene pairs 
(edges) that survive the indicated threshold of correlation significance are 
shown. Genes in the “collecting duct acid secretion” module have higher co-
expression in datasets from the kidney (C) than the lung (D), while genes in 
the “lamellar body” module have higher co-expression in datasets from the 
lung (F) than the kidney (G).   
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Fig. S3. Comparison of the predictive performance of G-MAD with 
available methods. 	
The predictive performance of G-MAD is compared to WeGET using cross-
validation. Cross validation evaluates the robustness of the methods by 
removing the genes from the query module and test the performance in 
redetecting them. Performance of the method is computed as the area under 
the receiver operating characteristic curve (AUC) for each module. A high 
AUC indicates that most of the genes in the module are rediscovered when 
they are removed from the module in the analysis.  
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Fig. S4. G-MAD in mouse and rat confirms the gene-module connections 
between WDFY4 and T cell activation, and links 20 new genes with 
cholesterol biosynthesis. 
A, B, G-MAD of Wdfy4 in mouse (A) and rat (B) confirms its involvement in T 
cell activation and immune response. The threshold of significant gene-
module association is indicated by the red dashed line. Modules are 
organized by the module similarities. Known modules connected to Wdfy4 
from annotations are shown in red dots (no connected modules for Wdfy4), 
and other modules with GMAS over the threshold are shown with black dots. 
C, D, G-MAD confirms the involvement of novel genes in cholesterol 
biosynthesis in mouse (C) and rat (D). The threshold of significant gene-
module association is indicated by the red dashed line. Genes are arranged 
based on their genetic positions. Genes annotated to be involved in 
cholesterol biosynthesis are shown in red dots, and genes with GMAS over 
0.268 are shown in black dots. Novel genes conserved in human, mouse and 
rat are highlighted in red bold text. Mvd and Mvk (highlighted in blue text in D) 
are included in the annotation of cholesterol biosynthesis module in human 
and mouse, but not in rat.  
E, Venn diagram comparing G-MAD results of cholesterol biosynthesis in 
human, mouse, and rat. 20 novel genes were identified with conserved 
associations with cholesterol biosynthesis in all 3 species.   
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Fig. S5. G-MAD identifies tissue-specific associated modules for 
SLC6A1 by using datasets from different tissues.  
A, Expression patterns of SLC6A1 across tissues. The figure was adapted 
from the Human Protein Atlas.  
B-D, G-MAD of SLC6A1 in human using datasets from all tissues (B), from 
brain (C), or from liver (D). The threshold of significant gene-module 
association is indicated by the red dashed line. Modules are organized by 
their similarities. Known modules connected to SLC6A1 from gene 
annotations are shown in red dots, and other modules with GMAS over the 
threshold are shown by black dots.  
E, Comparison of G-MAD results of SLC6A1 in brain and liver. Known 
modules connected to SLC6A1 are shown in red dots. The threshold of 
significant gene-module association is indicated by the red dashed line. 
Modules significantly associated with SLC6A1 only in one specific tissue are 
highlighted. The comparison of the association results of SLC6A1 in brain and 
liver can be found at Supplemental Table S4.  
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Fig. S6. G-MAD verifies the potential involvement of DDT in 
mitochondrial respiration in mouse and rat.  
A, B, G-MAD of respiratory electron transport in mouse (A) and rat (B). The 
threshold of significant gene-module association is indicated by the red 
dashed line. Genes are arranged based on their genetic positions. Genes 
annotated to be involved in respiratory electron transport are shown in red 
dots, and other genes with GMAS over 0.268 are highlighted by black dots.  
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C, D, G-MAD of Ddt in mouse (C) and rat (D) confirms its involvement in 
mitochondrial respiratory chain. The threshold of significant gene-module 
association is indicated by the red dashed line. Modules are organized by 
their similarities. Known modules connected to Ddt from gene annotations are 
shown in red dots, and other modules with GMAS over the threshold are 
shown by black dots.  
E, F, Network plots showing the significantly connected modules of Ddt in 
mouse (E) and rat (F). Modules are colored based on their GMAS against 
Ddt.  
G, G-MAD of ddt/mif-2 in C. elegans confirms its involvement in mitochondrial 
respiratory chain function also in invertebrates. The threshold of significant 
gene-module association is indicated by the red dashed line. Modules are 
organized by their similarities. Known modules connected to ddt/mif-2 from 
gene annotations are shown in red dots, and other modules with GMAS over 
the threshold are shown by black dots.  
H, DDT RNAi reduced basal and maximum oxygen consumption rate (OCR) 
in HEK293 cells. Results were computed from Fig. 4F. ***, p < 0.001.   
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Fig. S7. G-MAD confirms the involvement of BOLA3 in mitochondrial 
respiration. 
A-D, BOLA3/Bola3/bola-3 associates with mitochondrial respiratory chain 
modules in human (A), mouse (B), rat (C), and C. elegans (D). The threshold 
of significant gene-module association is indicated by the red dashed line. 
Modules are organized by module similarities. Known modules connected to 
BOLA3/Bola3/bola-3 from annotations are highlighted in red (no connected 
modules for BOLA3/Bola3/bola-3), and other modules with GMAS over the 
threshold are colored in black. Dot sizes reflect the GMAS of BOLA3 against 
the respective modules.  
E, Silencing BOLA3 expression in HEK293 cells decreases expression levels 
of indicated genes involved in mitochondrial respiratory chain complexes. 
Error bars represent standard errors. *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
n=9.  
F, BOLA3 knockdown leads to the reduction of oxygen consumption rate 
(OCR) as a reflection of mitochondrial respiration in human HEK293 cells. 
Addition of specific mitochondrial inhibitors, including the oligomycin (ATPase 
inhibitor), FCCP (uncoupling agent), and rotenone/antimycin A (electron 
transport chain inhibitors) are indicated.  
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Fig. S8. G-MAD verifies the negative association of Arid1a with 
mitochondrial respiration in mouse and rat. 
A, B, G-MAD of Arid1a in mouse (A) and rat (B) confirms its negative 
association with mitochondrial respiratory chain. The threshold of significant 
gene-module association is indicated by the red dashed line; note that the 
associations are only suggestive in the mouse. Modules are organized by 
their similarities. Known modules connected to Arid1a from gene annotations 
are shown in red dots, and other modules with GMAS over the threshold are 
shown by black dots.  
C, D, Network plot showing the significantly connected modules of Arid1a in 
mouse (C) and rat (D). Modules are colored based on their GMAS against 
Arid1a.   
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Fig. S9. Comparison of module similarity network and module 
association network.  
Module network obtained from module similarity (A) and association (B; M-
MAD) were put together to facilitate the comparison.  
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Fig. S10. M-MAD and G-MAD identify the connections between 
respiratory electron transport chain and proteasome, as well as histone 
lysine demethylation.  
A-F, M-MAD results for proteasome (A-C) and histone lysine demethylation 
(D-F) in human (A, D), mouse (B, E), and rat (C, F). The threshold of 
significant module-module connection is indicated by the red dashed line. 
Modules are organized by the module similarities. Dot sizes are proportional 
to MMAS of the respective modules.  
G, G-MAD results for electron transport chain from human and mouse are 
plotted in the x and y axes, respectively. Genes annotated to be involved in 
respective modules are indicated in different colors.   
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Fig. S11. Validations of the negative association between ribosome and 
lipid biosynthetic modules.  
A-B, M-MAD results for lipid biosynthetic process in mouse (A) and rat (B). 
The threshold of significant module-module connection is indicated by the red 
dashed line; note that the associations are only suggestive in the mouse. 
Modules are organized by the module similarities. Dot sizes are proportional 
to MMAS of the respective modules.  
C-D, Transcripts of genes encoding for ribosomal proteins in the white 
adipose tissue negatively correlate with metabolic traits in the BXD (C) and 
CTB6F2 (D) mouse cohorts. *, p < 0.05; **, p < 0.01; ***, p < 0.001. ScWAT, 
subcutaneous white adipose tissue.  
E, Scheme of the experimental design. L1 worm larvae were grown on regular 
NGM plates at 20°C for 2 days and then transferred to RNAi plates with 1mM 
IPTG containing HT115 bacteria expressing RNAi clones for ribosomal genes 
or empty vector (ev). After 2 days, worms were collected and lipid droplets 
were stained using Oil Red O.  
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F, Representative images of worm lipid droplet staining after RNAi of 
ribosomal genes.  
G, Quantification of the lipid droplet staining intensity in F. *, p < 0.05; **, p < 
0.01; ***, p < 0.001. n=3.  
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