Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology

GeneWeld: a method for efficient targeted integration directed by short homology

Wesley A. Wierson ${ }^{1,8}$, Jordan M. Welker ${ }^{1,8}$, Maira P. Almeida ${ }^{1,8}$, Carla M. Mann ${ }^{1}$, Dennis A. Webster 2, Melanie E. Torrie ${ }^{1}$, Trevor J. Weiss ${ }^{1}$, Macy K. Vollbrecht ${ }^{2}$, Merrina Lan ${ }^{1}$, Kenna C. McKeighan ${ }^{1}$, Jacklyn Levey ${ }^{1}$, Zhitao Ming ${ }^{1}$, Alec Wehmeier ${ }^{1}$, Christopher S. Mikelson ${ }^{1}$, Jeffrey A. Haltom ${ }^{1}$, Kristen M. Kwan ${ }^{3}$, Chi-Bin Chien ${ }^{4}$, Darius Balciunas ${ }^{5}$, Stephen C. Ekker ${ }^{6}$, Karl J. Clark 6, Beau R. Webber ${ }^{7}$, Branden Moriarity ${ }^{7}$, Staci L. Solin ${ }^{2}$, Daniel F. Carlson ${ }^{2}$, Drena L. Dobbs ${ }^{1}$, Maura McGrail ${ }^{1}$, Jeffrey J. Essner ${ }^{1 *}$

1. Department of Genetics, Development and Cell Biology, lowa State University, IA, USA
2. Recombinetics, Inc., St. Paul, MN, USA
3. Department of Human Genetics, University of Utah School of Medicine, UT, USA
4. Department of Neurobiology and Anatomy, University of Utah Medical Center, UT, USA
5. Department of Biology, Temple University, PA, USA
6. Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
7. Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
8. These authors contributed equally.
*Corresponding author and lead contact: jessner@iastate.edu

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology

Wierson et al. describe a targeted integration strategy, called GeneWeld, and a vector series for gene tagging, pGTag, which promote highly efficient and precise targeted integration in zebrafish, pig fibroblasts, and human cells. This approach establishes an effective genome engineering solution that is suitable for creating knock-in mutations for functional genomics and gene therapy applications. The authors describe high rates of germline transmission (50\%) for targeted knock-ins at eight different zebrafish loci and efficient integration at safe harbor loci in porcine and human cells.

Abstract

Choices for genome engineering and integration involve high efficiency with little or no target specificity or high specificity with low activity. Here, we describe a targeted integration strategy, called GeneWeld, and a vector series for gene tagging, pGTag (plasmids for Gene Tagging), which promote highly efficient and precise targeted integration in zebrafish embryos, pig fibroblasts, and human cells utilizing the CRISPR/Cas9 system. Our work demonstrates that in vivo targeting of a genomic locus of interest with CRISPR/Cas9 and a donor vector containing as little as 24 to 48 base pairs of homology directs precise and efficient knock-in when the homology arms are exposed with a double strand break in vivo. Our results suggest that the length of homology is not important in the design of knock-in vectors but rather how the homology is presented to a double strand break in the genome. Given our results targeting multiple loci in different species, we expect the accompanying protocols, vectors, and web interface for homology arm design to help streamline gene targeting and applications in CRISPR and TALEN compatible systems.

Keywords

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology

CRISPR/Cas9, knock-in, homology mediated-end joining, targeted integration, zebrafish, pig fibroblasts, human K-562 cells

Introduction

Designer nucleases have rapidly expanded the way in which researchers can utilize endogenous DNA repair mechanisms for creating gene knock-outs, reporter gene knock-ins, gene deletions, single nucleotide polymorphisms, and epitope tagged alleles in diverse species (Bedell et al., 2012; Beumer et al., 2008; Carlson et al., 2012; Geurts et al., 2009; Yang et al., 2013). A single dsDNA break in the genome results in increased frequencies of recombination and promotes integration of homologous recombination (HR)-based vectors (Hasty et al., 1991; Hoshijima et al., 2016; Orr-Weaver et al., 1981; Rong and Golic, 2000; Shin et al., 2014; Zu et al., 2013). Additionally, in vitro or in vivo linearization of targeting vectors stimulates homologydirected repair (HDR) (Hasty et al., 1991; Hoshijima et al., 2016; Orr-Weaver et al., 1981; Rong and Golic, 2000; Shin et al., 2014; Zu et al., 2013). Utilizing HDR or HR at a targeted doublestrand break (DSB) allows base-pair precision to directionally knock-in exogenous DNA, however, frequencies remain variable and engineering of targeting vectors is cumbersome.

Previous work has shown Xenopus oocytes have the ability to join or recombine linear DNA molecules that contain short regions of homology at their ends, and this activity is likely mediated by exonuclease activity allowing base pairing of the resected homology (Grzesiuk and Carroll, 1987). More recently, it was shown in Xenopus, silkworm, zebrafish, and mouse cells that a plasmid donor containing short ($\leq 40 \mathrm{bp}$) regions of homology to a genomic target site can promote precise integration at the genomic cut site when the donor plasmid is cut adjacent to

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology
the homology (Aida et al., 2016; Hisano et al., 2015; Nakade et al., 2014). Gene targeting is likely mediated by the alternative-end joining/microhomology-mediated end joining (MMEJ) pathway or by a single strand annealing (SSA) mechanism (Ceccaldi et al., 2016). In contrast, in human cell culture, linear donors using a similar strategy with homologous ends have been reported to show inefficient integration until homology domains reach ~600 bp (Zhang et al., 2017), suggesting that different repair pathways may predominate depending on cell type. In the initial reports using short regions of homology for in vivo gene targeting in zebrafish, the level of mosaicism in F0 injected animals was high, resulting in inefficient recovery of targeted alleles through the germline (Aida et al., 2016; Hisano et al., 2015; Nakade et al., 2014).

Here, we present GeneWeld, a strategy for targeted integration directed by short homology, and demonstrate increased germline transmission rates for recovery of targeted alleles. We provide a detailed protocol and a suite of donor vectors, called pGTag, that can be easily engineered with homologous sequences (hereafter called homology arms) to a gene of interest, and a web interface for designing homology arms (www.genesculpt.org/gtaghd/). We demonstrate that 24 or 48 base pairs of homology directly flanking cargo DNA promotes efficient gene targeting in zebrafish, pig, and human cells with frequencies up to 10 -fold higher than other HR strategies. Our results also suggest that longer homology arms up to 1 kb in length provide no advantage to knock-in frequencies over short homology, and the important aspect of knock-in design is the ability to expose the homology on the knock-in cassette ends. Using short homology-arm mediated end joining, we can achieve germline transmission rates averaging approximately 50% across several zebrafish loci. Southern blot analysis in the F1 generation reveals that the GeneWeld strategy can yield alleles with precise integration at both 5' and 3' ends, as well as alleles that are precise on just one end. Finally, we present a strategy to delete and replace up to 48 kb of genomic DNA with a donor containing homology arms flanking two distal CRISPR/Cas9 sites in a gene. These tools and methodology provide a

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology
tractable solution to creating precise targeted integrations and open the door for other genome editing strategies using short homology.

Results

The GeneWeld strategy takes advantage of two simultaneous actions to initiate targeted integration directed by short homology (Fig. 1a). First, a high efficiency nuclease introduces a DSB in the chromosomal target. Simultaneously, a second nuclease makes a DSB in the pGTag vector integration cassette exposing the short homology arms. The complementarity between the chromosomal DSB and the donor homology arms activates a MMEJ/SSA or other non-NHEJ DNA repair mechanism, together referred to as homology-mediated end joining (HMEJ). The reagents needed for this gene targeting strategy include Cas9 mRNA to express the Cas9 nuclease, a guide RNA targeting the genomic sequence of interest, a universal gRNA (UgRNA) that targets two sites in the pGTag series donor vectors to expose the homology arms, and a pGTag/donor vector with gene specific homology arms (Fig. 1a). The universal gRNA (UgRNA) has no predicted sites in zebrafish, pig, or human genomes. Alternatively, a gene specific guide RNA can be used to expose homology arms in the donor vector. For simplicity we will refer to this set of reagents as 'GeneWeld reagents'. Using GeneWeld reagents to target various loci, we demonstrate widespread reporter gene expression in injected F0 zebrafish embryos, porcine fibroblasts, and human K-562 cells that correlates with efficient and precise inframe integration in multiple species and cell systems.

A single 48bp short homology domain drives efficient CRISPR targeted integration

To develop baseline gene targeting data, we engineered variable length homology domains to target noto. Homology lengths were based on observations that DNA repair enzymes bind DNA and search for homology in 3 or 4 base pair lengths (Fig. S1a) (Conway et

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology
al., 2004; Singleton et al., 2002). Injection of a noto sgRNA that targets noto exon 1 and the 5' homology domain cloned into a 2A-TagRFP-CAAX-SV40 donor vector, efficient targeted integration was observed as notochord-specific RFP expression (Fig. S1a-c; Table S1-S3). The frequency of embryos with notochord-specific RFP expression increased with the length of the homology arm up to 48 bp (Fig. S1b). Somatic junction fragment analysis revealed precise integration efficiencies reaching 95% of sequenced alleles (Fig. S1d), indicating a strong correlation between expression of the reporter gene and precise somatic targeting of noto.

Following these initial experiments, a 3 bp spacer sequence was included in all homology arm designs in order to separate the donor CRISPR/Cas9 target PAM and the homology domain (Fig. S2a). The spacer was included to prevent arbitrarily increasing the length of the targeting domain, since single base pair alterations in the homology region affected the tissue specific expression and presumed knock-in efficiency up to 2-fold in somatic tissue (Fig. S2b). Based on these observations the following experiments were carried out with either 24 or 48 base pairs of homology to the double strand break in the targeted gene.

A universal guide RNA to liberate donor homology for targeted integration

To simplify donor design and liberate donor cargo in vivo with reproducible efficiency, a universal guide RNA sequence UgRNA, with no predicted targets in zebrafish, pig, or human genomes, was designed using optimal base composition in CRISPRScan (Fig. S3a) (MorenoMateos et al., 2015). To test the ability of the guide to direct a Cas9 double strand break and efficient targeted integration, the UgRNA and CGG PAM sequences were cloned 5 ' to the noto homology arm in the 2A-TagRFP-CAAX-SV40 donor vector (Fig. S3b). Zebrafish embryos injected with Cas9 mRNA, UgRNA, noto sgRNA, and donor plasmid resulted in 21% of injected embryos showing notochord RFP, suggesting that Cas9 with the UgRNA efficiently exposes the

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology
donor vector 5 ' homology arm and drive precise targeted integration (Fig. S3c). The high frequency of notochord-specific RFP-positive embryos following injection suggests repair of the DSB preferentially utilizes homology in the targeting construct over the NHEJ pathway.

Dual homology arm liberation directs precise 5^{\prime} and 3^{\prime} integration in somatic tissue

We leveraged the activity of the UgRNA to develop GeneWeld, a strategy for targeted integration that results in high frequency precision repair at both 5^{\prime} and 3^{\prime} ' junctions at the target site. We built a series of vectors, pGTag , which contain sites on both sides of the cargo for cloning a short homology arm that is complementary to the 5 ' or 3 ' sequence flanking the genomic target site. The vectors also include the UgRNA sequence outside the sites for homology arm cloning (Fig. 1a, b). The final donor targeting vector will contain a cargo flanked by 5' and 3 ' homology arms with UgRNA sequences on both ends. Cleavage by Cas9 at the UgRNA sites liberates the DNA cargo from the plasmid backbone and exposes both 5' and 3' donor homology arms for interaction with DNA on either side of the genomic DSB (Fig. 1c).

We extended our analysis of the GeneWeld targeted integration strategy to four genes in zebrafish, noto, tyrosinase (tyr), esama (endothelial cell adhesion molecule a), and connexin 43.4 ($c \times 43.4$), and measured the frequency of precise targeted integration in somatic tissue (Fig. 2 a-d). Injection of 24 or 48 bp homology arm noto 2A-eGFP-SV40 donors resulted in 24% of zebrafish embryos showing extensive reporter expression in the notochord (Fig. $2 \mathrm{a}, \mathrm{e}$), suggesting a similar precise integration efficiency compared to targeting with the single 5^{\prime} homology arm 2A-TagRFP-CAAX-SV40 vector (Fig. S1, Table 1, 2). The results also suggest 24 bp of homology directs targeted integration as efficiently as 48 bp , further simplifying construction of GeneWeld vectors.

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology

Targeting exon 4 of tyr or exon 2 of esama with a 24 bp homology arm 2A-TagRFP-CAAX-SV40 donor did not result in detectable RFP signal, similar to previous reports for tyr (Hisano et al., 2015). However, PCR junction fragments from injected embryos showed the donor was precisely integrated in frame into tyr exon 4 (Fig. S4), suggesting RFP expression was below the threshold of detection. To amplify the fluorescent signal, we built pGTag 24 bp homology arm 2A-Gal4VP16- β-actin3'UTR donors to integrate the Gal4VP16 trans-activator into the tyr and esama target sites, and injected into transgenic zebrafish embryos carrying a 14xUAS-RFP reporter, Tg (UAS:mRFP) ${ }^{\text {tpl2 }}$ (Balciuniene et al., 2013). This resulted in strong RFP signal in 64% of tyr injected animals (Fig. 2b, e), however, the embryos were highly mosaic with only 9\% of RFP embryos displaying extensive expression throughout most of the pigmented cells. Targeting esama exon 2 with 2A-Gal4VP16- β-actin3'UTR in the $\operatorname{Tg}(U A S: m R F P)^{\text {tpl2 }}$ transgenic background resulted in 21% of embryos displaying extensive RFP expression specifically in the vasculature (Fig. 2c, e). This approach was further extended to five additional loci, targeting 2A-Gal4VP16 to filamin a (flna) exon 4, moesin a (msna) exon 2 and 6, aquaporin $1 a 1$ (aqp1a1) exon 1, aquaporin 8 a1 (aqp8a1) exon 1, and annexin a2a (anxa2a) exon 3. At these loci, transient expression of RFP was observed following injection in $4-55 \%$ of $T g(U A S: m R F P)^{\mathrm{tp} \mid 2}$ embryos (Table S1 and S2). Taken together, these results suggest that the GeneWeld targeting method promotes high efficiency targeted integration in zebrafish embryo somatic tissue.

We next compared the frequency of GeneWeld targeted integration in zebrafish embryos with previous methods that used TALEN targeting of long homology arm ($\sim 1 \mathrm{~kb}$) donors in combination with restriction enzyme digestion to liberate the linear donor template (Hoshijima et al., 2016; Shin et al., 2014). Targeted integration of pGTag 24 and 48 bp homology arm 2A-TagRFP-CAAX-SV40 donors into exon 2 of connexin43.4 (cx43.4) resulted in 38-56\% and 29-

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology
47% of injected embryos showing broad RFP expression throughout the nervous system and vasculature (Fig. 2d, f). Increasing the length of the 5' and 3 ' homology arms to 1 kb did not significantly change the frequency of targeted integration compared to $24 \mathrm{bp}(p=0.1693)$ or 48 bp ($p=0.6520$) (Fig. 2 f), with $26-47 \%$ of injected embryos showing the expected neuronal and vascular RFP expression pattern (Table S1, S2). Injection without the UgRNA leaves the 1 kb homology circular donor intact and reduced targeting to 0-3\% (Fig. 2f Circular HR 1 kb; $p=0.0067$; Table S1, S2), as expected given the low frequency of homologous recombination in embryos. In comparison to the GeneWeld method, the frequency of RFP expressing embryos after injection of linear 1 kb homology arm donor template was significantly reduced to 2-9\% (Fig. 2 f Linear HR $1 \mathrm{~kb} ; p=0.0111$; Table S1, S2). Together, these results suggest long regions of homology in the donor template do not enhance the frequency of integration at the genomic target site, compared with short 24 or 48 bp homology, when using the GeneWeld approach. The increased efficiency compared to linear donor injection may be that introduction of linear DNA into the embryo normally leads to concatemers through NHEJ. We propose that simultaneous targeting of DSBs at the genomic site and in the donor prevents early concatemer formation and favors homology directed repair.

The effect of homology length on GeneWeld integration efficiency was also tested with the 2A-Gal4VP16- β-actin3'UTR donor targeting esama exon 2. The esama gene is expressed primarily in the vascular system. Increasing homology length from 24 bp to 1 kb dramatically increased the percentage of RFP positive embryos, from $20-23 \%$ to $82-94 \%$ ($p=0.0001$ Fig. S5, Table S1, S2), but the majority of RFP was not vascular specific, suggesting off-target expression. A high frequency of RFP-positive embryos was also observed when the donor template was injected without UgRNA (27-53\%) (Fig. S5 Circular HR 1kb) or the donor template was linearized before injection (83-94\%) (Fig. S5 Linear HR 1 kb). Common repetitive elements, enhancers, or a cryptic promoter in the intronic sequence of the esama 1 kb homology arms

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology
together may lead to off target integration and ectopic RFP expression. These results underscore the utility of the GeneWeld short homology approach for simple donor vector construction and efficient precision targeted integration.

Efficient germline transmission of GeneWeld precision targeted integration events

Three out of five (60\%) noto-2A-TagRFP-CAAX-SV40 injected founder fish raised to adulthood transmitted noto-2A-TagRFP-CAAX-SV40 tagged alleles through the germline (Fig. 3, Table 1, S3 and S4). Although RFP expression in tyr-2A-Gal4VP16- β-actin injected $T g(U A S: m R F P)^{\mathrm{tp} 12}$ embryos was not uniform throughout melanophores, three out of eight RFP mosaic embryos raised to adulthood transmitted germline tagged alleles (37.5\%) (Fig. 3, Table 1, S3 and S4). Similarly, for esama-2A-Gal4VP16- β-actin, $12 / 18$ (66.7\%) F0s displaying widespread vasculature RFP expression were raised to adulthood transmitted esama-2A-Gal4VP16- β-actin alleles to the F1 generation. We extended the germline transmission analysis to include 6 additional loci: flna, two target sites in msna (exon 2 and 6), aqp1a1, aqp8a1, and anxa2a. Overall, the data reveal a combined transmission rate to the F1 generation of 49\% across all GeneWeld targeted loci (Fig. 3, Table 1, S3 and S4). Taken together, these results demonstrate the GeneWeld method promotes targeted integration that is efficiently transmitted through the germline in zebrafish.

Precise 5' and 3' junctions and single copy integration in F1 germline GTag alleles

We performed Genomic Southern blot analyses and PCR junction fragment sequencing of F1 GTag germline alleles to determine whether GeneWeld targeting lead to precise integration at the 5' and 3' sides of the genomic target site. Southern blot analysis and sequencing of tyr-2A-Gal4VP16- β-actin F1 progeny demonstrated a single copy integration of the Gal4VP16 cassette (Fig. 4 a-c) with precise sequence at both 5 ' and 3 ' ends of the

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology
integration site (Fig. S6). Analysis of four F1 progeny from two noto-2A-TagRFP-CAAX-SV40 founder adults confirmed a single copy integration in noto exon 1 (Fig. 4, d-f). However, sequencing of PCR junction fragments in F1 progeny revealed precise 5' integration but imprecise integration at the 3 ' ends that could represent NHEJ repair (Fig. S6).

Junction fragment analysis of F1s alleles from 5 additional targeted sites in esama, flna, msna, aqp1a1, and aqp8a1 revealed precise events were primarily recovered at the 5 ' for all genes examined (30/31 or 97\% across seven genes) (Fig. S6). This result is expected, since screening for fluorescent reporter expression from the integrated donor cargo selects for precise 5' integration. For esama, the 3' junctions were also precise in 9/10 of the F1s examined from 6 different F0s, and both aqp1a1 and app8a1 had precise 3 ' junctions. This is compared to msna E2 targeting with 2A-Gal4VP16- β-actin, where only one out of the 12 F1s examined had a precise 3' junction. Together, these results indicate that GeneWeld reagents can promote with high frequency precise single copy integration at a genomic cut site without insertion of donor vector backbone sequences, although events involving NHEJ at the at the 3 ' end are also recovered.

Homology Engineered to Distal Genomic gRNA Sites Seeds Deletion Tagging in Somatic

 TissueTo further demonstrate the utility of GeneWeld targeted integration, we tested whether the pGTag donor could function to bridge two CRISPR/Cas9 genomic cuts, resulting in simultaneous deletion of endogenous sequences and integration of exogenous DNA to create a "deletion tagged" allele. The pGTag-2A-Gal4VP16 donor was cloned with 48bp homology arms to two gRNA target sites in the zebrafish retinoblastoma1 (rb1) gene. Guide RNAs were designed to sites in exons 2 and 4, which are located 394 bp apart, or exons 2 and 25 which are separated by $\sim 48.4 \mathrm{~kb}$ (Fig. 5a). The 5 ' homology arm contained sequence upstream of the cut

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology
site in exon 2, while the 3 ' homology arm contained sequence downstream of the cut site in either exon 4 or exon 25 . GeneWeld targeting with the corresponding exon 2-4 or exon 2-25 pGTag-2A-Gal4VP16- β-actin donor into $\operatorname{Tg}(U A S: m R F P)^{\text {tpl2 }}$ embryos resulted in injected embryos showing broad and ubiquitous RFP expression (Fig. 5b-c). Using the same approach, we targeted the zebrafish gene moesina (msna) at exons 2 and 6 , located 7.8 kb apart, with 2 A Gal4VP16 using 48 bp of homology (Fig. 5d), and found RFP expression in a pattern consistent with the expression of msna (Fig. $5 \mathrm{e}, \mathrm{e}$ '). The frequency of RFP positive embryos was similar after targeting rb1 exon 2-4 (44-78\%) and msna exon 2-6 (50-85\%), and did not seem to be affected by increasing the size of the deleted region from 394 bp to 48.4 Kb in rb1 exon 2-25 (49-70\%) (Fig. 5f). Somatic junction fragment analysis detected precise integration of 2AGal4VP16 in both genes at the 5' upstream exon (rb1 97\%; msna 85\%) and 3' downstream exon (rb1 67\%; msna 45\%) (Fig. S7). However, only one out of 16 (6\%) rb1 e2-25-2AGal4VP16 targeted F0 founders transmitted a precise 5' junction through the germline, but the 3' junction could not be amplified by PCR (Table S3, S4). None of the 10 msna e2-e6 2AGal4VP16 targeted F0 zebrafish transmitted a deletion tagged allele to the next generation. In contrast, targeting 2A-Gal4VP16- β-actin to exon 2 or 6 alone resulted in 2 out of 7 F0s transmitting a targeted allele to the next generation (Table S3, S4).

Together, these results demonstrate simultaneous targeting of two distal genomic cut sites can create precise HMEJ integration at both ends of a pGTag reporter cassette in somatic tissue, but these events are not easily passed through the germline. This was reinforced by attempting deletion tagging at additional loci, including kdrl, s1pr1, and vegfaa, which showed 32-81\% expression in F0 embryos, but no germline transmission to the F1 generation (Table S2, S3).

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology

Integration of Exogenous DNA Using HMEJ in Porcine and Human Cells is More Efficient than HR

To determine if HMEJ integration directed by short homology functions efficiently in large animal systems, we tested the GeneWeld targeting strategy in S. scrofa fibroblasts. The ROSA26 safe harbor locus was targeted with a cassette that drives ubiquitous eGFP expression from the UbC promoter (Fig. 6a-c). GeneWeld reagents, where the genomic sgRNA was replaced with mRNAs encoding a TALEN pair to generate a genomic DSB in the first intron of ROSA26, were delivered to pig fibroblasts by electroporation. This strategy was compared to cells electroporated with just the TALEN pair and a HR donor containing approximately 750 bp of homology flanking the genomic target site. GFP expression was observed in 23% of colonies using GeneWeld reagents, compared to 2% of colonies using the HR donor with $\sim 750 \mathrm{bp}$ homology arms. Co-occurring precise 5' and 3 ' junctions were observed in over 50% of the GFP+, GeneWeld engineered colonies while none of the GFP+, HR colonies contained both junctions. Sequencing of junctions from 8 GFP+, GeneWeld engineered colonies that were positive for both junctions showed precise integration in $7 / 8$ colonies at the 5 ' junction and $8 / 8$ colonies at the 3 ' junction.

The GeneWeld strategy was also used to target integration of a MND:GFP reporter (Halene et al., 1999) into the AAVS1 safe harbor locus in human K-562 cells (Fig. 6d-f). Integrations were attempted with either GeneWeld reagents or an HR donor targeting the AAVS1 cut site by electroporation of K-562 cells. Cells were FACs sorted by GFP at day 14 following electroporation. With GeneWeld reagents over 50% of cells were GFP positive, compared to only 6\% of cells electroporated with the HR donor. This suggests the GeneWeld strategy promoted efficient integration and stable expression of the MND:GFP cassette at the AAVS1 locus (Fig. S8). Expression was maintained over 50 days, and 5' precise junction fragments were observed following PCR amplification in bulk cell populations (Fig. S9). The

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology
results above demonstrate that the GeneWeld strategy outperforms traditional HR techniques in mammalian cell systems and is effective without antibiotic selection.

Discussion

The results described here demonstrate the utility of short homology-based gene targeting for engineering precise integration of exogenous DNA and expand the potential of efficient tagging to diverse loci with differing endogenous expression levels. Key to our strategy was to observe reporter gene expression that correlated with precise integration (Fig. 2 and Fig. S 1) and selecting these animals for examination of germline transmission to the F1 generation. However, we have observed that restricted patterns of gene expression such as noto do not necessary correlate with the degree of precise integration throughout the embryo following injection (data not shown). Moreover, we show that using short homology to bridge distal ends together simultaneously creates a deletion and a reporter integration, however, these events are not easily passed through the germline. This emphasizes that the events observed in the somatic tissue of the zebrafish embryo following injection do not necessarily predict transmission through the germline. We demonstrate efficient integration of cargos up to approximately 2 kb in length in zebrafish, pig fibroblasts, and human cells, and in zebrafish, these events can be passed through the germline in nearly 50% of the injected embryos. Both CRISPR/Cas9 and TALENs are effective as GeneWeld genomic editors, providing flexibility in deployment and genome-wide accessibility.

Several components of the GeneWeld strategy may lead to enhanced somatic and germline targeting efficiencies in zebrafish as compared to previous reports (Hisano et al., 2015). Canonical NHEJ is highly active during rapid cell divisions in early zebrafish embryogenesis (Bedell et al., 2012). However, given the correct sequence context surrounding

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology
the dsDNA break, MMEJ is the preferred method of non-conservative repair (Ata et al., 2018; He et al., 2015; Kent et al., 2015). GeneWeld homology arms are rationally designed based on the known homology searching activity of RAD51 and strand annealing activity of RAD52 (Conway et al., 2004; Singleton et al., 2002). In our experiments at noto, gene targeting is significantly reduced when 48 bp homology arms are altered by 1 bp to 47 or 49 bp (Fig. S3). This suggests that optimal short homology arms should be designed in groups of 3 and/or 4 bp increments. We are currently testing this hypothesis further. Additionally, Shin et al., 2014 showed the highest rates of somatic targeting when their donor was linearized in vitro inside a ~ 1 kb 5' homology arm, leaving 238 bp of homology flanking the knock-in cargo. Thus, it is tempting to speculate that gene targeting in these experiments proceeded not through HR, but through other related HMEJ DNA repair pathway more similar to the findings presented here.

Using GeneWeld reagents we observed that the length of the homology arm does not influence the observed somatic frequency of reporter gene expression when examined between 24 bp and 1 kb in length. However, there are distinct disadvantages to using long homology arms in experimental design and execution. First, longer homology arms often require the use of intronic sequences which are highly enriched of repetitive sequences that can potentially mediate random integrations across the genome. Second, alternative promoters and enhancer sequences present in intronic regions can also affecting the efficiency of reporter gene expression, as we likely observed with the esama gene. Lastly, cloning of the homology arms can be arduous, since intronic sequences are highly variable across individuals, and therefore, it is recommended that the longer homology arms are cloned from individuals used for gene targeting. Taken together, we suggest that using the GeneWeld method with short homology arms is a preferable choice for efficient precise exogenous DNA integration.

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology

The dramatic shift of DNA repair at genomic DSBs from cis-NHEJ to trans-HMEJ using GeneWeld donors likely also influences enhanced editing of the germline. Across all zebrafish experiments with germline transmission, 49% of founders transmitted tagged alleles, with 17.4% of gametes carrying the edited allele of interest (Table S3, S4), demonstrating decreased germline mosaicism and increased germline transmission from previous reports. Given that our somatic knock-in and germline transmission rates are higher than most published reports, we conclude that GeneWeld is a more effective homology-based method for generating precisely targeted knock-in alleles in zebrafish.

While targeting noto with 5' only homology shows an increase in targeting efficiency with longer homology, increasing homologies on both ends of the cargo DNA did not increase targeting efficiency (Fig. 2e). Positive events are selected only by fluorescently tagged alleles, indicating precise 5 ' integration patterns. We speculate that inclusion of homology at the 3 ' end of our cargo creates competition for the donor DNA ends, as not all editing events are precise at both 5^{\prime} and 3^{\prime} junctions (Fig. 4 and Fig. S4). Thus, it is conceivable that precise events at the 3^{\prime} end could preclude precise integration at the 5 ' end during some editing events, and vice versa. It is tempting to speculate that this data hints at synthesis dependent strand annealing (SDSA) as a possible DNA repair mechanism for pGTag donor integration (Ceccaldi et al., 2016). After strand invasion using either of the homology domains and replication through the reporter, second DNA end capture may abort before or after replication through the opposing homology domain, resulting in imprecision, as greater than or equal to 150 bp is required for proper second end capture in yeast (Mehta et al., 2017). Experiments to address this hypothesis by varying homology arm lengths flanking the donor cassettes and including negative selection markers are of note for future work in determining the genetic mechanisms that promote efficient integration.

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology

Timing and turnover of Cas9 during the genomic editing event can influence cut efficiency and somatic mosaicism/germline transmission rates (Clarke et al., 2018; Zhang et al., 2018), increasing the interest of using RNP during all precision gene editing applications. However, we were unable to observe fluorescence following injection of GeneWeld components with RNPs or detect targeted integrations at a high frequency (unpublished data). We hypothesize this is due to Cas9 and UgRNA locating and binding to the UgRNA sites on the pGTag donors during dilution of the injection mixture. This heteroduplex either activates DSBs on the donor in vitro, or directly after injection, before the genomic gRNA can locate and cut the genome. Thus, the stochastics of DNA end availability are altered using RNPs and integration activity is greatly reduced. Injection of the GeneWeld plasmid donor and RNPs in separate injection mixtures does not produce integration in zebrafish embryos (unpublished data). Further experiments could address these limitations through the use of inducible nuclease systems.

Targeting genes with lethal phenotypes, such as tumor suppressors or other genes required for embryogenesis, is of interest to the zebrafish community. However, using fluorescence to screen for targeted events can be misleading. For example, the RFP signal is dramatically reduced or lost upon biallelic inactivation of noto, likely when notochord cells transfate to muscle cells (Melby et al., 1996; Talbot et al., 1995). Additionally, though deletion tagging using two target sites in the genome seems to be robust in somatic tissue (Fig. 5), germline transmission of deletion tags is rare. This suggests that edited germ cells may be lost to apoptosis due to the additional cut in the genome, or that heterozygous deletion tagged alleles are recognized during homologous chromosome pairing and are repaired or lost as germ cells mature. Similar susceptibility of stem cells to apoptosis following gene editing has been previously observed (Ihry et al., 2018; Li et al., 2018). In both of these cases, it may be

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology
necessary to modulate GeneWeld reagent concentrations in order to avoid biallelic inactivation of the genomic target, or to ensure homozygous deletion tagging.

Amplification of the fluorescence signal using GAL4/VP16 allowed us to target several genes for which we did not observe a fluorescence report from integration of a fluorescent protein directly. While this approach is advantageous for selecting correctly targeted embryos to examine for germline integration, GAL4/VP16 may have toxic effects as reported previously (Ogura et al., 2009). For example, we found dominant phenotypes in the F1 generation for both msna and flna which could reflect toxicity from high levels of expression of GAL4/VP16.

Alternatively, these gene could also display haploinsufficiency or express a partial protein product that functions in a dominant manner. Heterozygous msna mutants targeting exon 5 in the F1 generation display phenotypes similar to morpholino targeting of this gene (Wang et al., 2010) (data not shown), suggesting haploinsufficiency or a dominant negative peptide is a likely explanation.

GeneWeld is also an effective strategy to precisely control exogenous DNA integration in mammalian cell lines. While our data shows an approximate 10 -fold increase in targeted integration using 48 bp of homology to drive HMEJ versus HR, Zhang et al. (2017) concluded that targeted integration did not appreciably increase until homology arms of ~ 600 bp were used (Zhang et al., 2017). However, this could reflect differences in the experimental design or cell types used and suggest different DNA repair pathways may be more prevalent in certain conditions. Deciphering the DNA repair pathway used for HMEJ in zebrafish and mammalian cells is paramount to increasing editing efficiencies in basic research and for gene therapy.

Given the high efficiency and precision of GeneWeld, additional applications to efficiently introduce other gene modifications, such as single or multiple nucleotide polymorphisms, by

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology
exon or gene replacement is possible using the deletion tagging method. Further, GeneWeld could be used to create conditional alleles by targeting conditional gene break systems into introns (Clark et al., 2011). In conclusion, our suite of donor vectors with validated integration efficiencies, methods, and web interface for pGTag donor engineering will serve to streamline experimental design and broaden the use of designer nucleases for homology-based gene editing at CRISPR/Cas9 and TALEN cut sites in zebrafish. We also demonstrate an advanced strategy for homology-based gene editing at CRISPR/Cas9 and TALEN cut sites in mammalian cell lines. Our results open the door for more advanced genome edits in animal agriculture and human therapeutics.

Methods

Contact for reagent and resource sharing

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jeffrey Essner (jessner@iastate.edu).

Experimental model and subject details

Zebrafish were maintained in Aquatic Habitats (Pentair) housing on a 14 hour light/10 hour dark cycle. Wild-type WIK were obtained from the Zebrafish International Resource Center. The Tg(miniTol2/14XUAS:mRFP, γ Cry:GFP) $)^{\text {ppl2 }}$, shortened to $\operatorname{Tg}\left(\right.$ UAS:mRFP) ${ }^{t \mid 1 / 2}$, was previously described (Balciuniene et al., 2013). All experiments were carried out under approved protocols from lowa State University IACUC.

The human K-562 chronic myelogenous leukemia cell line (ATCC CCL-243) used in gene targeting experiments was cultured at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ in RPMI-1640 (Thermo Fisher

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology

Scientific) supplemented with 10% fetal bovine serum (FBS) and
Penicillin/Streptomycin. Electroporation was conducted with 1.5×10^{5} cells in a $10 \mu \mathrm{l}$ tip using the Neon electroporation device (Thermo Fisher Scientific) with the following conditions: 1450V, $10 \mathrm{~ms}, 3 \mathrm{x}$ pulse. Nucleic acid dosages were as follows: $1.5 \mu \mathrm{~g}$ Cas 9 mRNA (Trilink Biotechnologies), $1 \mu \mathrm{~g}$ each chemically modified sgRNA (Synthego), and $1 \mu \mathrm{~g}$ donor plasmid.

Fibroblasts were cultured in DMEM (high glucose) supplemented to 10% vol/vol FBS, 20 mM L-glutamine and 1X Pen/ Strep solution and transfected using the Neon ${ }^{\text {TM }}$ system (Invitrogen). Briefly, 1×10^{6} fibroblasts were transfected with 1 ug of polyadenylated ROSA TALEN mRNA, $1 \mu \mathrm{~g}$ of universal gRNA mRNA, $1 \mu \mathrm{~g}$ of polyadenylated Cas 9 mRNA and $1 \mu \mathrm{~g}$ of donor plasmid. Transfected cells were cultured for 3 days at $30^{\circ} \mathrm{C}$ before low density plating, extended culture (10 days) and colony isolation. Individual colonies were aspirated under gentle trypsanization, replated into 96 - well plates and cultured for 3-4 days.

pGTag series vectors

To build the pGTag vector series, 2A-TagRFP, 2A-eGFP, and 2A-Gal4/VP16 cassettes were assembled from a 2A-TagRFP-CAAX construct, p494. To clone the eGFP cassette, the plasmid p494 was amplified with primers F-p494-Xhol and R-p494-Spel to generate unique enzyme sites in the backbone. The eGFP coding sequence (Clontech Inc.) was amplified with the primers F-eGFP-Spel and R-eGFP-Xhol to generate the corresponding enzyme sites on the eGFP coding sequence. Fragments were digested with Spel-HF and Xhol (NEB) and following column purification with the Qiagen miniprep protocol, were ligated to the plasmid backbone with T4 ligase (Fisher).

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology

The Gal4/VP16 coding sequence and zebrafish β-actin 3 ' untranslated region was amplified from vector pDB783 (Balciuniene et al., 2013) with primers F-2A-Gal4-BamHI and R-Gal4-Ncol to add a 2A peptide to the 5' end of the Gav4Vp16 cDNA. The resulting PCR product was then cloned into the intermediate Topo Zero Blunt vector (Invitrogen) and used for mutagenesis PCR with primers F and R '-gal4-Ecofix’ to disrupt the internal EcoRI restriction site. The resulting Gal4/VP16 sequence was cloned into the BamHI and Ncol sites in the p494 backbone.

The 5' universal/optimal guide site and lacZ cassette were added to pC-2A-TagRFP-CAAX-SV40, pC-2A-eGFP-SV40, and pC-2A-Gal4VP16- β-actin with the following steps. The lacZ was first amplified with primers F-lacZ and R-lacZ, which add the type IIS enzyme sites to either end of the lacZ. The resulting PCR product was then cloned into an intermediate vector with the Zero Blunt® TOPO® PCR Cloning Kit (Invitrogen). This intermediate was used as a template in a nested PCR to add the Universal guide sequence GGGAGGCGTTCGGGCCACAGCGG to the end of the lacZ sequence. The nested PCR used primers F-lacZ-universal-1 and R-lacZ-universal-BamHI to add the first part of the universal guide to one end and a BamHI site to the other. This was used as template for PCR with the primers F-lacZ-universal-EcoRI and R-lacZ-universal-BamHI to add the remainder of the universal guide and an EcoRI site. The fragment was column purified as above, digested with EcoRI-HF and BamHI-HF and cloned into the appropriate sites in the three vectors.

The 3' universal guide and type 2 restriction enzyme sites were cloned into each vector in two steps. A segment from a Carp beta-actin intron containing a 99 bp spacer flanked by two BspQI sites was amplified using the primers F-3'-uni-1 and R-3'-uni-1 to add the

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology
universal site to one side of the spacer. This product was column purified as above and used as template for the second amplification with primers F-3'-uniNco1 and R-3'-uniEagl to add cloning sites. This product was column purified and cloned using the Topo zero blunt kit. This intermediate was digested with Ncol-HF and EagI, and the BspQI fragment purified and cloned into the three vectors as above. Ligations were grown at $30^{\circ} \mathrm{C}$ to reduce the possibility of recombination between the two universal guide sites.

Correct clones for pU-2A-TagRFP-CAAX-U, pU-2A-eGFP-U, and pU-2A-Gal4/VP16U were selected and used as template for mutagenesis PCR with KOD to remove extra BspQI sites from the backbone with primers F/R-BBfix, digested with DpnI (NEB), and ligated with T4 ligase. A correct pU-2A-TagRFP-CAAX-U clone was used as template for PCR with F/R-TagRFPfix to interrupt the BspQI site in the TagRFP coding sequence as above. A correct clone of pU-2A-Gal4/VP16-U was selected and used as template with primers F/R-Bactfix to remove the BspQl site in the Beta-actin terminator, the product was re-cloned as above. All constructs were sequence verified.

Homology arm design and donor vector construction

For detailed methods, see Supplementary gene targeting protocol. In brief, homology arms of specified length directly flanking a genomic targeted double strand break were cloned into the pGTag vector, in between the UgRNA sequence and the cargo. A three nucleotide buffer sequence lacking homology to the genomic target site was engineered between the donor UgRNA PAM and the homology arms, in order to maintain the specified homology arm length. To generate 1 kb homology arms for zebrafish genes cx43.4 and esama, $\sim 2 \mathrm{~kb}$ of genomic DNA surrounding the CRISPR target site was PCR amplified from adult WIK finclips using the proofreading enzyme KOD, and then sequenced to identify polymorphisms.

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology
pGTag 1 kb homology arm vectors were injected into embryos from adults with the matching genomic sequence. See Table S4 for all homology arms, gRNA target sites, and spacers.

Zebrafish embryo injection

pT3TS-nCas9n was a gift from Wenbiao Chen (Addgene plasmid \# 46757). Xbal linearized pT3TS-nCas9n was purified under RNase-free conditions with the Promega PureYield Plasmid Miniprep System. Linear, purified pT3TS-nCas9n was used as template for in vitro transcription of capped, polyadenylated mRNA with the Ambion T3TS mMessage mMachine Kit. mRNA was purified using Qiagen miRNeasy Kit. The genomic and universal sgRNAs were generated using cloning free sgRNA synthesis as described in (Varshney et al., 2015) and purified using Qiagen miRNeasy Kit. Donor vector plasmid DNA was purified with the Promega PureYield Plasmid Miniprep System. noto, cx43.4, tyrosinase, and moesina, were targeted by co-injection of 150 pg of nCas9n mRNA, 25 pg of genomic sgRNA, 25 pg of UgRNA (when utilized), and 10 pg of donor DNA diluted in RNAse free $\mathrm{ddH}_{2} \mathrm{O}$. The rb1 targeting mixture contained 300 pg nCas9n mRNA. 2 nl was delivered to each embryo.

Recovery of zebrafish germline knock-in alleles

Injected animals were screened for fluorescence reporter expression on a Zeiss
Discovery dissection microscope and live images captured on a Zeiss LSM 700 laser scanning confocal microscope. RFP/GFP positive embryos were raised to adulthood and outcrossed to wildtype WIK adults to test for germline transmission of fluorescence in F1 progeny. tyr, esama, rb1 and msna embryos targeted with Gal4VP16 were crossed to $\operatorname{Tg}(U A S: m R F P)^{t+1 / 2}$.

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology

DNA isolation and PCR genotyping

Genomic DNA for PCR was extracted by digestion of single embryos in 50 mM NaOH at $95^{\circ} \mathrm{C}$ for 30 minutes and neutralized by addition of $1 / 10^{\text {th }}$ volume 1 M Tris- HCl pH 8.0. Junction fragments were PCR-amplified with primers listed in Table S6 and the products TOPOTA cloned before sequencing.

Southern blot analysis

Genomic Southern blot and copy number analysis was performed as described previously (McGrail et al., 2011). PCR primers used for genomic and donor specific probes are listed in Table S6.

Junction fragment analysis in pig fibroblasts

Individual colonies were scored for GFP expression and prepared for PCR by washing with 1X PBS and resuspension in PCR-safe lysis buffer (10 mM Tris-CI, pH 8.0; 2 mM EDTA; 2.5\% (vol/vol) Tween-20; 2.5\% (vol/vol) Triton-X 100; $100 \mu \mathrm{~g} / \mathrm{mL}$ Proteinase K followed by incubation at $50^{\circ} \mathrm{C}$ for 60 min and $95^{\circ} \mathrm{C}$ for 15 min . PCR was performed using 1X Accustart Supermix (Quanta) with the primers: 5' junction F-5'

TAGAGTCACCCAAGTCCCGT-3', R-5'- ACTGATTGGCCGCTTCTCCT-3'; 3' junction F-5'-GGAGGTGTGGGAGGTTTTT-3', R-5'- TGATTTCATGACTTGCTGGCT-3'. ROSA TALEN sequences are: TAL FNG NI NI HD HD NG NN NI NG NG HD NG NG NN NN; TAL RHD NN NG NI HD NI HD HD NG NN HD NG HD NI NI NG.

K-592 Flow Cytometry

K-562 cells were assessed for GFP expression every 7 days for 28 days following electroporation. Flow cytometry was conducted on an LSRII instrument (Becton Dickinson) and data was analyzed using FlowJo software v10 (Becton Dickinson). Dead cells were excluded

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology
from analysis by abnormal scatter profile and exclusion based on Sytox Blue viability dye (Thermo Fisher Scientific).

Junction PCR to detect targeted integration was conducted using external genomic primers outside of the 48bp homology region and internal primers complementary to the expression cassette. PCR was conducted using Accuprime HIFI Taq (Thermo Fisher Scientific). PCR products from bulk population were sequenced directly.

Quantification and statistical analysis

Statistical analysis was performed using GraphPad Prism software. Data plots represent mean $+/-$ s.e.m. of n independent experiments, indicated in the text. p values were calculated with two-tailed unpaired t-test. Statistical parameters are included in the Figure legends.

Data and software availability

The webtool GTagHD was developed to assist users in designing oligonucleotides for targeted integration using the pGTag vector suite. GTagHD guides users through entering: 1) the guide RNA for cutting their cargo-containing plasmid; 2) the guide RNA for cutting their genomic DNA sequence; (3) the genomic DNA sequence, in the form of a GenBank accession number or copy/pasted DNA sequence; and 4) the length of microhomology to be used in integrating the plasmid cargo. If the user is utilizing one of the pGTag series plasmids, GTagHD can also generate a GenBank/ApE formatted file for that plasmid, which includes the user's incorporated oligonucleotide sequences. GTagHD is freely available online at http://genesculpt.org/gtaghd/ and for download at https://github.com/DobbsLab/GTagHD.

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology

Key resources table

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Bacterial and Virus Strains		
NEB Stable Competent E. coli	NEB	CAT\#C3040I
One Shot TOP10 Chemically Competent E. coli	ThermoFisher	CAT\#C404010
Biological Samples		
Chemicals, Peptides, and Recombinant Proteins		
Critical Commercial Assays		
pCR4 TOPO TA Cloning Kit for Sequencing	ThermoFisher	CAT\#K457502
Deposited Data		
Experimental Models: Cell Lines		
Human: K562 cell line	ATCC	$\begin{aligned} & \text { CAT\# ATCC CCL- } \\ & 243 \end{aligned}$
Porcine: Fibroblast cell line	Recombinetics, Inc.	Recombinetics, Inc.
Experimental Models: Organisms/Strains		
Zebrafish: WIK strain	ZIRC	CAT\#ZL84
Zebrafish: pDB790	Balciunas Lab	Upon request
Oligonucleotides		
See Table S6 for all primers used	This paper	N/A
Recombinant DNA		
p494-2a-TagRFP-CAAX-SV40	This paper	Deposited at AddGene
pGTag-2A-TagRFP-CAAX-SV40	This paper	Eeposited at AddGene
pGTag-2A-Gal4VP16-bactin	This paper	Deposited at AddGene
pGTag-2A-eGFP-SV40	This paper	Deposited at AddGene
Software and Algorithms		
GTagHD	This paper	https://github.com/D obbs-Lab/GTagHD
Other		

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology

Acknowledgements

This work was supported by NIH grants R24OD020166 (JJE, MM, DLD, KJC, SCE), GM088424 (JJE), and GM63904 (SCE).

Author Contributions

WAW, JMW, MM and JJE conceived the study; WAW, JMW, MM and JJE wrote the manuscript with input from SCE and KJC; WAW, JMW, MPA, MET, KCM, ML, ZM, AW and JAH designed and performed the zebrafish experiments; JMW and TJW designed and created the vector suite with input from WAW, KJC, SCE, KMK, C-BC, DB, MM, and JJE; CMM created the web interface with input from JMW, WAW, CSM and DLD; SLS, DAW, MKV and DFC designed and performed the pig fibroblast experiments. BSM and BRW designed and performed the human cell line experiments.

Declaration of interests

JJE, MM, SLS, KJC, DW, and DFC have a financial conflict of interest with Recombinetics, Inc.; JJE and SCE with Immusoft, Inc.; JJE, MM, WAW, KJC and SCE with ForgeBio and LifEngine and LifEngine Animal Technologies; BSM and BRW with B-MoGen Biotechnologies, Inc.

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology

Figure Legends

Figure 1. GeneWeld strategy and pGTag vector series (a) GeneWeld reagent components are designed for simultaneous genome and donor nuclease targeting to reveal short regions of homology. Red arrowheads represent in vivo designer nuclease DSBs. Components include: 1 Designer nuclease mRNA, either Cas9 to target both the genome and donor, or Cas9 to target the donor and TALEN to cut the genome; 2 - sgRNA for targeting Cas9 to genome; 3 - Universal sgRNA to liberate donor cargo and homologous ends; and 4 - pGTag donor of interest with short homology arms. (b) Type Ils restriction endonucleases BfuAI and BspQI create incompatible ends outside of their recognition sequence, allowing digestion and ligation of both homology arms into the vector in a single reaction. Homology arm fragments are formed by annealing complementary oligonucleotides to form dsDNA with sticky ends for directional cloning into the vector. XFP $=$ Green or Red Fluorescent Protein. $\mathrm{pA}=\mathrm{SV} 40$ or β-actin 3' untranslated region. Red and green fluorescent proteins were cloned into the pGTag vectors, and for each color, subcellular localization sequences for either nuclear localization (NLSs) and membrane localization (CAAX) are provided (c) Schematic of GeneWeld targeting in vivo. After designer nuclease creates targeted double-strand breaks in the genome and donor, end resection likely precedes homology recognition and strand annealing, leading to integration of the donor without vector backbone. Red arrowheads represent in vivo designer nuclease DSBs.

Figure 2. HMEJ strategy promotes efficient somatic targeting of knock-in cassettes in zebrafish. (a-d) Live confocal images of F0 injected embryos showing fluorescent reporter expression after GeneWeld targeted integration. noto-2A-eGFP-SV40 at mid somite stage (a, a^{\prime}). tyr-2A-Gal4VP16- β-actin; Tg(UAS:mRFP) ${ }^{\text {tpl2 }}$ at 5 days post fertilization (dpf) (b, b'). esama-2A-Gal4VP16- β-actin;Tg(UAS:mRFP) ${ }^{\text {tpl2 }}$ at 2 dpf (c) and $3 \mathrm{dpf}\left(c^{\prime}\right)$. cx43.4-2A-tagRFP-CAAXSV40 at 31 hours post fertilization (d, d'). (e) Frequency of embryos with reporter gene

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology
expression following GeneWeld targeting at noto, tyr and esama. 5' and 3' homology lengths flanking donor cargos indicated in base pairs as $24 / 24$ or 48/48. (f) Comparison of the frequency of RFP expressing embryos after targeting cx43.4 exon 2 using GeneWeld 24/24 bp homology, GeneWeld 48/48 bp homology, Geneweld 1kb/1kb homology, Circular HR 1kb/1kb (injection did not include UgRNA, ${ }^{*} p=0.0067$), Linear HR $1 \mathrm{~kb} / 1 \mathrm{~kb}$ (donor was linearized before injections, * $p=0.0111$). Data represents mean $+/-$ s.e.m. of 3 independent targeting experiments. p values calculated using Students t test. Scale bars, $100 \mu \mathrm{~m}$.

Figure 3. Live confocal images of F 1 zebrafish with inherited germline alleles of integrated GTag reporters. (a, a') Tg(noto-2A-TagRFP-CAAX-SV40) embryo at mid somite stage showing expression in the notochord and floor plate. (b, b') Tg(tyr-2A-Gal4Vp16- β-actin) displaying expression in the melanocytes in a 5 dpf larva. (c, c') Tg(esama-2A-Gal4Vp16- β actin) larva showing expression in the vascular system at 4 dpf . (d, d') Tg (flna-2A-Gal4VP16- β actin) embryo at 1 dpf showing widespread expression. (e, e' and f, f') Tg(msna-2A-Gal4VP16-β-actin) targeted to either exon 2 or exon 6 showed expression in the central nervous system and vasculature at 2 dpf. (g, g ' and h, h ') Tg(aqp1a1-2A-Gal4VP16- β-actin) and Tg(aqp8a1-2A-Gal4VP16- β-actin) display expression in the trunk and tail vasculature at 2 dpf . All images are lateral views, and the Gal4VP16 integrations have $\operatorname{Tg}(U A S: m R F P)^{\text {tpl2 }}$ in the background for visualization of expression. Scale bars are $100 \mu \mathrm{~m}$.

Figure 4. Molecular analysis of F1 GeneWeld GTag targeted alleles at tyr and noto. (a-c) Molecular analysis of Tg(tyr-2A-GAL4NP16) F1 offspring from a single targeted F0 founder. (a) Schematic of expected integration pattern for tyr targeted with pGTag-2A-GAL4/VP16. 148 bp tyr probe in Exon 3 and 583bp probe in GAL4/VP16 are indicated. (b) GAL4/VP16 and (c) tyr probed Southern blots of genomic DNA from wild type (WIK) and 4 individual GAL4/VP16

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology
positive F1s. The expected 7400 bp band is detected with both probes, suggesting a single copy integration. (d-f) Tg(noto-2A-RFP) F1 targeted integration alleles from 2 independent F0 founders. (d) noto gene model with location of restriction enzymes used for genomic Southern blot analysis. Location of the 513 bp noto probe is indicated (dark lines). The predicted and recovered alleles are shown. (e) Southern blots of F1 Tg(noto-2A-RFP) individuals hybridized with RFP probe. F1 from founder F0\#1 contain a ~ 2100 bp band corresponding to integration plus deletion of $\sim 400 \mathrm{bp}$ in noto. F1 progeny from founder F0\#2 show two bands: $\mathrm{a} \sim 3700 \mathrm{bp}$ band corresponding to integration of the reporter plus 2000 bp of vector backbone, and a ~1500 bp band which may represent an off-target integration. Loading controls (10, 1) correspond to 10 copies or 1 copy of RFP containing plasmid. WIK, wild type control DNA. (f) Southern blot in (d) stripped and re-hybridized with the noto-specific probe. A 1342 bp band representing the wild type allele was detected in all individuals. The integration allele in F1s from F0 \#1 was not detected due to deletion of the region containing the probe. F1s from F0 \#2 contain the ~ 3700 bp band corresponding to the noto-2A-RFP integration allele.

Figure 5. Deletion tagged alleles created with the GeneWeld strategy in zebrafish somatic
tissue. (a) Schematic for Gal4VP16 reporter integration to tag a deletion allele of rb1 exons 2-4 (top) and rb1 exons 2-25 (bottom). Arrowheads designate CRISPR/Cas9 DSBs. CRISPR gRNAs in two exons are expected to excise the intervening genomic DNA. The targeting vector contains a 5' homology arm flanking the upstream exon target site and a 3' homology arm flanking the downstream exon target site. (b-c) Live confocal image of $\mathrm{F} 0 \mathrm{Tg}(U A S: m R F P)^{\text {tpl2 }}$ embryo after 2A-Gal4VP16 deletion tagging rb1 exons 2-4 (b, b') and rb1 exons 2-25 (c, c'). (d) Schematic for 2A-Gal4VP16 deletion tagging of msna exons 2-6. (e, e') Live confocal image of F0 Tg(UAS:mRFP) ${ }^{\text {tpl2 }}$ embryo after 2A-Gal4VP16 deletion tagging at msna exons 2-6. (f) Somatic reporter efficiency of targeted deletion tagging using 48 bp homology arms for $r b 1$

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology
exons 2-4, rb1 exons 2-25, and msna exons 2-6. Data represents mean +/- s.e.m. of 4 (rb1) and 5 (msna) independent targeting experiments. Scale bars $200 \mu \mathrm{~m}\left(\mathrm{~b}, \mathrm{c}, \mathrm{c}^{\prime}, \mathrm{e}\right) ; 100 \mu \mathrm{~m}\left(\mathrm{~b}^{\prime}, \mathrm{e}^{\prime}\right)$.

Figure 6. HMEJ-based targeted integration with UgRNA-based vectors promotes efficient knock-in in porcine fibroblasts and human K-562 cells. (a) Strategy for integration using HMEJ and HR donors into intron 1 of S. scrofa ROSA26 locus. Arrowheads CRISPR/Cas9 (for HMEJ donor) and TALEN (genome) DSBs. (b) Targeting efficiency of the HMEJ donor vs the HR donor as reported by GFP positive colonies out of total colonies. (c) Percent of GFP positive colonies analyzed containing properly sized junction fragments, comparing HMEJ and HR donors. Data are from three independently targeted cell populations. Data represents mean $+/-$ s.e.m. of 3 independent targeting experiments. (d) Diagram of HR and HMEJ strategies for targeted integration of a MND:GFP reporter cassette into the human AAVS1 locus. (e) Flow cytometry analysis of GFP expression 14 days post-electroporation for each targeting modality: HR (left), HMEJ without universal sgRNA (middle), and HMEJ with universal sgRNA (right). Stable gate was drawn to measure the uniformly expressing population formed by targeted integration and was set based on episome only controls. (f) Quantitation of stable GFP expressing population as measured by flow cytometry at day 14. Data are from three independently targeted cell populations. Data represents mean +/- s.e.m. of 3 independent targeting experiments. p values calculated using two-tailed unpaired t-test.

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology

Tables

Table 1. Germline transmission of zebrafish GeneWeld GTag integrations.

Genomic target	Exon	Homology	F0 expression	F0s transmitting	Germline transmission percentage
noto	E1	$24 / 24$	24%	$3 / 5$	60%
tyr	E4	$24 / 24$	64%	$3 / 8$	38%
cx43.4*	E2	$24 / 24$	50%	$0 / 1$	0%
cx43.4*	E2	$48 / 48$	38%	$0 / 4$	0%
esama	E4	$24 / 24$	21%	$12 / 18$	67%
flna	E4	$48 / 42$	100%	$3 / 4$	75%
msna	E2	$48 / 48$	55%	$1 / 4$	25%
msna	E6	$48 / 48$	26%	$1 / 3$	33%
aqp1a1	E1	$48 / 48$	4%	$2 / 9$	22%
aqp8a1	E1	$48 / 48$	14%	$1 / 1$	100%
anxa2a^	E3	$48 / 48$	35%	$4 / 4$	100%
			Total	$30 / 61$	49%

F0's raised to adulthood were outcrossed and screened for germline transmission of properly localized fluorescent signal. F0s transmitting/F0s outcrossed x $100=$ Germline transmission percentage. F0s were considered screened if 75 F1 embryos were examined for fluorescence. *Other experiments showed cx43.4 alleles could be transmitted through the germline in 3 out 11 F0 fish or 27% with a similar vector (data not shown). TALEN indels of cx43.4 result in sex determination defects, suggesting germline defects could contribute to variable frequencies for germline transmission (data not shown).
${ }^{\wedge}$ Transmission is based on expression in the vasculature only.
$m s n$ and flna integrations display a dominant or haploinsufficient phenotype in the F0 and F1 generations.

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology

References

Aida, T., Nakade, S., Sakuma, T., Izu, Y., Oishi, A., Mochida, K., Ishikubo, H., Usami, T., Aizawa, H., Yamamoto, T., et al. (2016). Gene cassette knock-in in mammalian cells and zygotes by enhanced MMEJ. BMC Genomics 17, 979.
Ata, H., Ekstrom, T.L., Martinez-Galvez, G., Mann, C.M., Dvornikov, A.V., Schaefbauer, K.J., Ma, A.C., Dobbs, D., Clark, K.J., and Ekker, S.C. (2018). Robust activation of microhomologymediated end joining for precision gene editing applications. PLoS Genet 14, e1007652. Balciuniene, J., Nagelberg, D., Walsh, K.T., Camerota, D., Georlette, D., Biemar, F., Bellipanni, G., and Balciunas, D. (2013). Efficient disruption of Zebrafish genes using a Gal4-containing gene trap. BMC Genomics 14, 619.
Bedell, V.M., Wang, Y., Campbell, J.M., Poshusta, T.L., Starker, C.G., Krug, R.G., 2nd, Tan, W., Penheiter, S.G., Ma, A.C., Leung, A.Y., et al. (2012). In vivo genome editing using a highefficiency TALEN system. Nature 491, 114-118.
Beumer, K.J., Trautman, J.K., Bozas, A., Liu, J.L., Rutter, J., Gall, J.G., and Carroll, D. (2008). Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci U S A 105, 19821-19826.
Carlson, D.F., Tan, W., Lillico, S.G., Stverakova, D., Proudfoot, C., Christian, M., Voytas, D.F., Long, C.R., Whitelaw, C.B., and Fahrenkrug, S.C. (2012). Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A 109, 17382-17387.
Ceccaldi, R., Rondinelli, B., and D'Andrea, A.D. (2016). Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol 26, 52-64.
Clark, K.J., Balciunas, D., Pogoda, H.M., Ding, Y., Westcot, S.E., Bedell, V.M., Greenwood, T.M., Urban, M.D., Skuster, K.J., Petzold, A.M., et al. (2011). In vivo protein trapping produces a functional expression codex of the vertebrate proteome. Nat Methods 8, 506-515.
Clarke, R., Heler, R., MacDougall, M.S., Yeo, N.C., Chavez, A., Regan, M., Hanakahi, L., Church, G.M., Marraffini, L.A., and Merrill, B.J. (2018). Enhanced Bacterial Immunity and Mammalian Genome Editing via RNA-Polymerase-Mediated Dislodging of Cas9 from DoubleStrand DNA Breaks. Mol Cell 71, 42-55 e48.
Conway, A.B., Lynch, T.W., Zhang, Y., Fortin, G.S., Fung, C.W., Symington, L.S., and Rice, P.A. (2004). Crystal structure of a Rad51 filament. Nat Struct Mol Biol 11, 791-796.

Geurts, A.M., Cost, G.J., Freyvert, Y., Zeitler, B., Miller, J.C., Choi, V.M., Jenkins, S.S., Wood, A., Cui, X., Meng, X., et al. (2009). Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325, 433.
Grzesiuk, E., and Carroll, D. (1987). Recombination of DNAs in Xenopus oocytes based on short homologous overlaps. Nucleic Acids Res 15, 971-985.
Halene, S., Wang, L., Cooper, R.M., Bockstoce, D.C., Robbins, P.B., and Kohn, D.B. (1999). Improved expression in hematopoietic and lymphoid cells in mice after transplantation of bone marrow transduced with a modified retroviral vector. Blood 94, 3349-3357.
Hasty, P., Rivera-Perez, J., Chang, C., and Bradley, A. (1991). Target frequency and integration pattern for insertion and replacement vectors in embryonic stem cells. Mol Cell Biol 11, 45094517.

He, M.D., Zhang, F.H., Wang, H.L., Wang, H.P., Zhu, Z.Y., and Sun, Y.H. (2015). Efficient ligase 3-dependent microhomology-mediated end joining repair of DNA double-strand breaks in zebrafish embryos. Mutat Res 780, 86-96.
Hisano, Y., Sakuma, T., Nakade, S., Ohga, R., Ota, S., Okamoto, H., Yamamoto, T., and Kawahara, A. (2015). Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci Rep 5, 8841.

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology

Hoshijima, K., Jurynec, M.J., and Grunwald, D.J. (2016). Precise Editing of the Zebrafish Genome Made Simple and Efficient. Dev Cell 36, 654-667.
Ihry, R.J., Worringer, K.A., Salick, M.R., Frias, E., Ho, D., Theriault, K., Kommineni, S., Chen, J., Sondey, M., Ye, C., et al. (2018). p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med 24, 939-946.
Kent, T., Chandramouly, G., McDevitt, S.M., Ozdemir, A.Y., and Pomerantz, R.T. (2015). Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase theta. Nat Struct Mol Biol 22, 230-237.
Li, X.L., Li, G.H., Fu, J., Fu, Y.W., Zhang, L., Chen, W., Arakaki, C., Zhang, J.P., Wen, W., Zhao, M., et al. (2018). Highly efficient genome editing via CRISPR-Cas9 in human pluripotent stem cells is achieved by transient BCL-XL overexpression. Nucleic Acids Res. McGrail, M., Hatler, J.M., Kuang, X., Liao, H.K., Nannapaneni, K., Watt, K.E., Uhl, J.D., Largaespada, D.A., Vollbrecht, E., Scheetz, T.E., et al. (2011). Somatic mutagenesis with a Sleeping Beauty transposon system leads to solid tumor formation in zebrafish. PLoS One 6, e18826.
Mehta, A., Beach, A., and Haber, J.E. (2017). Homology Requirements and Competition between Gene Conversion and Break-Induced Replication during Double-Strand Break Repair. Mol Cell 65, 515-526 e513.
Melby, A.E., Warga, R.M., and Kimmel, C.B. (1996). Specification of cell fates at the dorsal margin of the zebrafish gastrula. Development 122, 2225-2237.
Moreno-Mateos, M.A., Vejnar, C.E., Beaudoin, J.D., Fernandez, J.P., Mis, E.K., Khokha, M.K., and Giraldez, A.J. (2015). CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods 12, 982-988.
Nakade, S., Tsubota, T., Sakane, Y., Kume, S., Sakamoto, N., Obara, M., Daimon, T., Sezutsu, H., Yamamoto, T., Sakuma, T., et al. (2014). Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5, 5560.
Ogura, E., Okuda, Y., Kondoh, H., and Kamachi, Y. (2009). Adaptation of GAL4 activators for GAL4 enhancer trapping in zebrafish. Dev Dyn 238, 641-655.
Orr-Weaver, T.L., Szostak, J.W., and Rothstein, R.J. (1981). Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A 78, 6354-6358.
Rong, Y.S., and Golic, K.G. (2000). Gene targeting by homologous recombination in Drosophila. Science 288, 2013-2018.
Shin, J., Chen, J., and Solnica-Krezel, L. (2014). Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development 141, 3807-3818.
Singleton, M.R., Wentzell, L.M., Liu, Y., West, S.C., and Wigley, D.B. (2002). Structure of the single-strand annealing domain of human RAD52 protein. Proc Natl Acad Sci U S A 99, 1349213497.

Talbot, W.S., Trevarrow, B., Halpern, M.E., Melby, A.E., Farr, G., Postlethwait, J.H., Jowett, T., Kimmel, C.B., and Kimelman, D. (1995). A homeobox gene essential for zebrafish notochord development. Nature 378, 150-157.
Varshney, G.K., Pei, W., LaFave, M.C., Idol, J., Xu, L., Gallardo, V., Carrington, B., Bishop, K., Jones, M., Li, M., et al. (2015). High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res 25, 1030-1042.
Wang, Y., Kaiser, M.S., Larson, J.D., Nasevicius, A., Clark, K.J., Wadman, S.A., Roberg-Perez, S.E., Ekker, S.C., Hackett, P.B., McGrail, M., et al. (2010). Moesin1 and Ve-cadherin are required in endothelial cells during in vivo tubulogenesis. Development 137, 3119-3128.
Yang, H., Wang, H., Shivalila, C.S., Cheng, A.W., Shi, L., and Jaenisch, R. (2013). One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154, 1370-1379.

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology

Zhang, J.P., Li, X.L., Li, G.H., Chen, W., Arakaki, C., Botimer, G.D., Baylink, D., Zhang, L., Wen, W., Fu, Y.W., et al. (2017). Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol 18, 35. Zhang, Y., Zhang, Z., and Ge, W. (2018). An efficient platform for generating somatic point mutations with germline transmission in the zebrafish by CRISPR/Cas9-mediated gene editing. J Biol Chem 293, 6611-6622.
Zu, Y., Tong, X., Wang, Z., Liu, D., Pan, R., Li, Z., Hu, Y., Luo, Z., Huang, P., Wu, Q., et al. (2013). TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods 10, 329-331.

Figure 1

Figure 2

Figure 3

Figure 4

d noto

Predicted integration from noto F1s from F0 \#1

Predicted integration from noto F1s from F0 \#2

Figure 5

msna E2-E6

Figure 6

f

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology

GeneWeld: a method for efficient targeted integration directed by short homology

Supplementary Figure 1. Short homology to the noto gene from a single homology arm 5'

 to the gRNA target site targets integration in zebrafish embryos. (a) Schematic for noto homology arm and donor vector design. gRNA is the noto non-coding template strand. Black bars represent 12,24 , and 48 bp homology arms. PAM sequences are underlined. (b) Targeting efficiency of 12,24 , and 48 bp noto 5 ' only donors. Data represents mean $+/-$ s.e.m. of 3 independent targeting experiments. p values calculated using two-tailed unpaired t -test. (c) Live confocal image of noto-2A-TagRFP-CAAX-SV40 targeted embryo showing specific RFP expression in the notochord. Scale bar is $100 \mu \mathrm{~m}$. (d) Sanger sequencing of cloned 5 ' junction fragments from RFP positive F0 embryos, aligned to the expected sequence from a precise integration event.Supplementary Figure 2. Single base pair differences in homology arm length 5' to the Cas9/gRNA cut site influence integration frequencies in zebrafish embryos. (a) Schematic for targeting 2A-TagRFP-CAAX-SV40 into noto exon 1 with 5 ' homology to the Cas9/gRNA cut site containing 47, 48, or 49 bp of homology. (b) The frequency of injected zebrafish embryos displaying notochord RFP expression after targeting noto exon 1 with donors containing 47, 48, or 49 bp of 5 ' homology. Data represents mean +/- s.e.m. of $3(47 \mathrm{bp}, 49 \mathrm{bp})$ or $7(48 \mathrm{bp})$ independent targeting experiments. p values calculated using two-tailed unpaired t -test.

Supplementary Figure 3. The Universal gRNA (UgRNA) promotes high efficiency targeted

 integration. (a) Universal gRNA (UgRNA) sequence. Cas9 PAM underlined. (b) Schematic showing the sequence of UgRNA in the targeting domain of the knock-in cassette. Sequence in green from the noto gene is the engineered homology in the donor vector for HMEJ. The Cas9Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology

PAM is underlined. (b) Frequency of injected embryos displaying RFP expression in the notochord compared to total injected embryos following noto targeting using UgRNA to liberate the homology in the donor.

Supplementary Figure 4. Integration of Gal4/VP16 amplifies signal of targeted tyr. (a) PCR of 5' junction fragments and sequencing results from junction fragments between the pGTag vector and the tyr locus amplified from randomly selected RFP negative embryos after injection with GeneWeld reagents for targeting tyr with 2A-tagRFP-CAAX-SV40pA. Most F0 injected zebrafish contain the expected 5' junction fragment (marked with an '*'). The junction fragments from F0-1 and -2 were isolated for sequencing, and precise integrations were observed (b) Efficiency of 5' homology integration to target RFP or GAL4/VP16 into tyr and detect RFP expression. Data represents mean $+/-$ s.e.m. of 3 independent targeting experiments. p values calculated using two-tailed unpaired t-test.

Supplementary Figure 5. GeneWeld targeting efficiency comparison. Comparison of the frequency of RFP expressing embryos after targeting esama exon 2 using GeneWeld 24/24 bp homology, Geneweld $1 \mathrm{~kb} / 1 \mathrm{~kb}$ homology, Circular HR $1 \mathrm{~kb} / 1 \mathrm{~kb}$ (injection did not include UgRNA), Linear HR $1 \mathrm{~kb} / 1 \mathrm{~kb}$ (donor was linearized before injections). Increasing the length of the homology arm to 1 kb significantly increased the frequency of RFP expressing embryos using GeneWeld ($p=0.0001$), Circular, or Linear template. Data represents mean $+/-$ s.e.m. of 3 independent targeting experiments. p value calculated using Students t test.

Supplementary Figure 6. Sequence of PCR junction fragments amplified from genomic

 DNA from F1 transgenic zebrafish adults generated by GeneWeld targeted integration.Precise integration at the 5' and 3' ends in F1 progeny from F0 founder fish targeted at tyr,

Wierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology
esama, flna, msna, aqp1a1, and aqp8a1. noto F1 progeny from founder \#1 had a precise 5' junction and imprecise 3' junction. noto F1 progeny from founder \#2 had 5' precise junction; no 3' junction was amplified by PCR. Lowercase letters represent "padding" nucleotides used to bring homology in frame of the coding region based on Cas9 cut site. Red letters represent mismatches unless otherwise noted below. esama F1 3' junctions contain a single nucleotide variant shown in red. One exama F1 3' junction included a 20 bp insertion (strike-through).

Supplementary Figure 7. Sequences of 5' and 3' junction fragments from rb1 exon 2-4, rb1 exon 2-25, and msna exon 2-6 deletion tagged alleles in F0 injected embryos.

 Detection of precise and imprecise 5' and 3' junction fragments in somatic tissue of F0 embryos targeted with two guides targeting two exons and a pGTag-Gal4VP16 donor with 5' and 3' homology arms corresponding to the 5' exon and 3' exon target sites. Cloned PCR amplicons were sequenced from 3 individual embryos for each targeted deletion tagging experiment.
Supplementary Figure 8. HMEJ-mediated targeted integration of an MND:GFP reporter at

 the AAVS1 locus in human K-562 cells. FACs sorted percent of GFP+ cells out of total K-562 cells at day 7, 21, 28, and 50. (b) Summary data for percent of stable GFP+ K-562 cells from day 7, 14, 21, and 28. (b') Summary data for percent of total cells GFP+ from day 7, 14, 21, 28, and 50. Data represents mean $+/-$ s.e.m. of 3 independent targeting experiments. p values calculated using two-tailed unpaired t-test.
Supplementary Figure 9. Direct sequencing of 5' junction PCR products derived from

 three independently targeted bulk cell populations. (a) Direct sequencing of 5' junction PCR products derived from three independently targeted bulk cell populations. 48 bp HMEJ homology region and remainder of genomic AAVS1 gRNA are indicated. Genomic sequence isWierson, Welker, Almeida et al. GeneWeld: a method for efficient targeted integration directed by short homology
directly left of the 48 bp HMEJ region and vector sequence is directly to the right of the AAVS1
gRNA cut site.

Supplemental figure 1

Supplemental figure 2

Supplemental figure 3

a 5'- GGGAGGCGUUCGGGCCACAGCGG -‘ 3
b

5'-GGGAGGCGTTCGGGCCACAGCGGACGGATCGGATCTGAGTCGGGATA-3'
3'-СССТССGCAAGCCCGGTGTCGCCTGCCTAGCCTAGACTCAGСССТАT-5'

Supplemental figure 4

[^0]Total 7/7 clones precise integration

Supplemental figure 5

Supplemental figure 6

```
tyr F1 junction fragments - DNA from single F1
24 base pair homology arms -
5' F1 junction
    Tyr <--- 24 bp domain ---> Vector
Precise junction - ACAACGACGGATACTTCATGGTGCCCTTCAttGGATCC
F1 - ACAACGACGGATACTTCATGGTGCCCTTCAttGGATCC
3' F1 junction
    vector<--- 24 bp domain ---> Tyr
Precise junction - CCATGGTCССТСТСТАСAGGAACGGAGACTATTTTC
F1 - CСATGGTCCCTСTСTACAGGAACGGAGACTATTTTC
```


noto $F 1$ junction fragments from DNA represented on

Southern Blot

24 base pair homology arms -
5' F1 junctions from FO \#1
noto <--- 24 bp domain --->Vector
Precise junction - TACCGGAGCATAACCAACCAAACGCCTGTCGGATCC
F1 \#1 - TACCGGAGCATAACCAACCAAACGcCTGTCGGATCC
F1 \#2 - TACCGGAGCATAACCAACCAAACGcCTGTCGGATCC
F1 \#3 - TACCGGAGCATAACCAACCAAACGcCTGTCGGATCC
F1 \#4 - TACCGGAGCATAACCAACCAAACGcCTGTCGGATCC

3' F1 junctions from F0 \#1

--24bp homology domain-- Alternate homology
Knock-in alignment - TCCAGCTCTGCGCTCCCGCTTATT------ATCTGCTCTCCAACTCACT F1 \#1 no sequencing performed
F1 \#2 - TCCAGCTCTGCGCTCCCGCTTATTCCGCTTATCTGCTCTCCAACTCACT
F1 \#3 - TCCAGCTCTGCGCTCCCGCTTATTCCGCTTATCTGСТСТССААСТСАСТ
F1 \#4 - TCCAGCTCTGCGCTCCCGCTTATTCCGCTTATCTGСТСТССААСТСАСТ

5' F1 junctions from FO \#2

noto <--- 24 bp domain --->Vector
Precise junction - TACCGGAGCATAACCAACCAAACGCCTGTCGGATCC
F1 \#5 - TACCGGAGCATAACCAACCAAACGCCTGTCGGATCC
F1 \#6 - TACCGGAGCATAACCAACCAAACGcCTGTCGGATCC

F1 \#7 - TACCGGAGCATAACCAACCAAACGCCTGTCGGATCC
F1 \#8 - TACCGGAGCATAACCAACCAAACGCCTGTCGGATCC

3' F1 junctions from F0 \#2

No junctions obtained

5' F1 junctions

esama <--- 24 bp domain ---> Vector
Precise junction - CTTATGAAAATGTGGATGTGATCCAAGGGAttGGATCC
F0\#4, F1\#1 - CTTATGAAAATGTGGTTGTGATCCAAGGGAttGGATCC
FO\#4, F1\#2 - CTTATGAAAATGTGGATGTGATCCAAGGGAttGGATCC
FO\#5, F1\#1 - CTTATGAAAATGTGGATGTGATCCAAGGGAttGGATCC
F0\#5, F1\#2 - GATAAGAAAATGTGGATGTGATCCAAGGGAttGGATCC
F0\#6, F1\#1 - CTTATGAAAATGTGGATGTGATCCAAGGGAttGGATCC
F0\#6, F1\#2 - CTTATGAAAATGTGGATGTGATCCAAGGGAttGGATCC
FO\#7, F1\#1 - СTTATGAAAATGTGGATGTGATCCAAGGGAttGGATCC
F0\#7, F1\#2 - CTTATGAAAATGTGGATGTGATCCAAGGGAttGGATCC
F0\#9, F1\#1 - CTTATGAAAATGTGGATGTGATCCAAGGGAttGGATCC
F0\#11,F1\#1 - СTTATGAAAATGTGGATGTGATCCAAGGGAttGGATCC

3'F1 junctions

F0\#4, F1\#1 - CCATGGAGATGGTGGTGCTGCAGGCTTCATATTCGA
F0\#4, F1\#2 - CCATGGAGATGGTGGTGCTGCAGGCTTCATATTCGA
F0\#5, F1\#1 - CCATGGAGATGGTGGTGCTGCAGGCTTCATATTCGA
F0\#5, F1\#2 - CCATGGAGATGGTGGTGCTGCAGGCTTCATATTCGA
F0\#6, F1\#1 - CCATGGAGATGGTGGTGCTGCAGGCTTCATATTCGA
F0\#6, F1\#2 - CCATGGAGATGGTGGTGCTGCAGGCTTCATATTCGA
F0\#7, F1\#1 - CCATGGAGATGGTGGTGCTGCAGGCTTCATGAAGGTGGTGCAGGCTTCATATTCGA
F0\#7, F1\#2 - CCATGGAGATGGTGGTGCTGCAGGCTTCATATTCGA
F0\#9, F1\#1 - CCATGGAGATGGTGGTGCTGCAGGCTTCATATTCGA
F0\#11, F1\#1 - CCATGGAGATGGTGGTGCTGCAGGCTTCATATTCGA
flna F1 junction fragments
48 base pair homology arm -

5' F1 junctions
flna <--- 48 bp domain --->Vector
Precise junction - ATGACTTACCTGTCCCAGTTTCCCAAAGCCAAACTCAAGCCTGGTGCCCCTCTGGGATCC
F1\#1 - ATGACTTACCTGTCCCAGTTTCCCAAAGCCAAACTCAAGCCTGGTGCCCCTCTGGGATCC
F1\#2 - ATGACTTACCTGTCCCAGTTTCCCAAAGCCAAACTCAAGCCTGGTGCCCCTCTGGGATCC
F1\#3 - ATGACTTACCTGTCCCAGTTTCCCAAAGCCAAACTCAAGCCTGGTGCCCCTCTGGGATCC
F1\#4 -

3' F1 junctions

not determined

msna $F 1$ junctions for exon 2 inteqration

48 base pair homology arm -

5' F1 junctions

$$
\text { msna <--- } 48 \text { bp domain ---> Vector }
$$

Precise junction - GTGTTCGTGTGACTACAATGGATGCCGAGCTGGAGTTTGCCATCCAACCCGGATccGGAGCC
F1\#1 - GTGTTCGTGTGACTACAATGGATGCCGAGCTGGAGTTTGCCATCCAACCCGGATccGGAGCC

F1\#2 - GTGTTCGTGTGACTACAATGGATGCCGAGCTGGAGTTTGCCATCCAACCCGGATccGGAGCC
F1\#3 - GTGTTCGTGTGACTACAATGGATGCCGAGCTGGAGTTTGCCATCCAACCCGGATccGGAGCC
F1\#4 - GTGTTCGTGTGACTACAATGGATGCCGAGCTGGAGTTTGCCATCCAACCCGGATccGGAGCC
F1\#5 - GTGTTCGTGTGACTACAATGGATGCCGAGCTGGAGTTTGCCATCCAACCCGGATccGGAGCC
F1\#6 - GTGTTCGTGTGACTACAATGGATGCCGAGCTGGAGTTTGCCATCCAACCCGGATccGGAGCC
F1\#7 - GTGTTCGTGTGACTACAATGGATGCCGAGCTGGAGTTTGCCATCCAACCCGGATccGGAGCC
F1\#8 - GTGTTCGTGTGACTACAATGGATGCCGAGCTGGAGTTTGCCATCCAACCCGGATccGGAGCC
F1\#9 - GTGTTCGTGTGACTACAATGGATGCCGAGCTGGAGTTTGCCATCCAACCCGGATccGGAGCC
F1\#10 - GTGTTCGTGTGACTACAATGGATGCCGAGCTGGAGTTTGCCATCCAACCCGGATccGGAGCC
F1\#11 - GTGTTCGTGTGACTACAATGGATGCCGAGCTGGAGTTTGCCATCCAACCCGGATccGGAGCC
F1\#12 - GTGTTCGTGTGACTACAATGGATGCCGAGCTGGAGTTTGCCATCCAACCCGGATccGGAGCC

3' F1 junction
Vector<--- 48 bp domain ---> msna

Precise junction - AGGAAGCAGCACCACAGGGAAACAGTTATTTGACCAGGTTTGTGTGTGGCCTCTTTTTTT
F1 - AGGAAGCAGCACCACAGGGAAACAGTTATTTGACCAGGTTTGTGTGTGGCCTCTTTTTTT

Supplemental figure 6 continued

aqpla1 F1 junction fragments

5' F1 junction

	48 bp domain		---> Vector
Precise junction	- CCGTCAGTCAGTCAGTCATGAACGAGCTGAAGAGCAAGGCTTTCTGGCGGGCCGccGGATCC		
F2 line 1	- CCGTCAGTCAGTCAGTCATGAACGAGCTGAAGAGCAAGGCTTTCTGGCGGGCCGccGGATCC		
3' F1 junction			
	Vector<-	48 bp domain	>aqpala
Precise junction - AGGAAGTCCTGGCCGAGCTGCTGGGAATGACCCTGTTCATCTTCCTCAGCATTACAGCAG			
F2 line 1	- AGGAAGTCCTGGCCGAGCTGCTGGGAATGACCCTGTTCATCTTCCTCAGCATTACAGCAG		

aqp8a1 F1 junction fragments

5' F1 junction

aqpla1<--- 48 bp domain ---> Vector
Precise junction - GAGTCGTCGGCTCTTTCСTСTTCATGTTTGTGGGCTGCGTGTCCGTCATGGGCAttGGATCC
F1\#1 - GAGTCGTCGGCTCTTTCCTCTTCATGTTTGTGGGCTGCGTGTCCGTCATGGGCAttGGATCC

3' F1 junction
Vector<--- 48 bp domain --->aqpala
Precise junction - AGGAAGACGTGGGCATCAGCGGGAGCATCCAGCCCGCCCTGGCACACGGACTAGCACTGG
F1\#1 - AGGAAGACGTGGGCATCAGCGGGAGCATCCAGCCCGCCCTGGCACACGGACTAGCACTGG
bioRxiv preprint doi: https://doi.org/10.1101/431627; this version posted May 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Supplemental Figure 7

rb1 e2-e4 deletion tagging

rb1 e2-e25 deletion tagging

msna e2-6 deletion tagging
5' junction

$$
\text { msna <---- } 48 \mathrm{bp} \text { domain } \quad \text {--->Vector }
$$

Precise junction - GATCAGTGTTCGTGTGACTACAATGGATGCCGAGCTGGAGTTTGCCATCCAACCCGGATCC
Embryo 1 - GATCAGTGTTCGTGTGACTACGATGGATGCCGAGCTGGAGTTTGCCATCCAACCCGGATCC $4 / 4$ clones single SNP
Embryo 2 - GATCAGTGTTCGTGTGACTACAATGGATGCCGAGCTGGAGTTTGCCATCCAACCCGGATCC 4/5 clones precise
Embryo 3 - GATCAGTGTTCGTGTGACTACAATGGATGCCGAGCTGGAGTTTGCCATCCAACCCGGATCC 3/4 clones precise
3' junction
vector<---- 48 bp domain ---> msna

Precise junction - AGGAAGCAAGGGCATGTTGAGGTACAGACAATGGAATGTGCTCTTGCTATTTTTCTGTTT
Embryo 1 - No junction obtained
Embryo 2 - AGGAAGCAAGGGCATGTTGAGGTACAGACAATGAAATGTGCTCTTGCTATTTTTCTGTTT 1/5 clones single SNP AGGAAGCAAGGGCATGTTGAGGTACAGACAATGGAATGTGCTCTTGCTATTTTTCTGTTT $2 / 5$ clones precise AGGAAGCAAGGGCATGTTGAGGTACAGACAATGGAATGGGCTCTTGCTATTTTTCTGTTT $2 / 5$ clones single SNP
Embryo 3

- AGGAAGCAAGGGCATGTTGAGGTACAGACAATGGAATGTGCTCTTGCTATTTTTCTGTTT $4 / 5$ clones precise

Supplemental Figure 8

Supplemental figure 9

AAVS1 5' junction

	AAVS1 <-	48 bp domain	>Vecto
Predicted junction - GCTCTGGTTCTGGGTACTTTTATCTGTCCCCTCCACCCCACAGTGGGGCCACTACGATCG			
Repetition 1	GCTCTGGTTC	TGTCCCCTCCACC	CACTACGATCG
Repetition	GCTCTGGTTCTGGGTACTTTTATCTGTCCCCTCCACCCCACAGTGGGGCCACTACGATCG		
epetition 3	- GСТСтGGTTCTGGGTACTTTTATCTGTCСССтССАССССАСАGTGGGGCCACTACGATCG		

Supplementary Table 1-Gene targeting experiments and knock-in averages.								
Genomic target	Donor vector	Donor sgRNA target (genomic or UgRNA)	Homolog y length (5'/3')	$\begin{gathered} \text { Experime } \\ \text { nt } \\ \text { number } \end{gathered}$	Reporter positive embryos	Total embryos	Percent with positive report	Standard Error
noto E1	$\begin{gathered} \text { 2A-TagRFP-CAAX- } \\ \text { SV40 } \end{gathered}$	genomic sgRNA	12/x	Average	22	178	12.4\%	0.55\%
noto E1	$\begin{gathered} \text { 2A-TagRFP-CAAX- } \\ \text { SV40 } \end{gathered}$	genomic sgRNA	24/x	Average	30	131	22.9\%	0.74\%
noto E1	$\begin{gathered} \text { 2A-TagRFP-CAAX- } \\ \text { SV40 } \end{gathered}$	genomic sgRNA	48/x	Average	40	114	35.1\%	1.01\%
noto E2	$\begin{gathered} \text { 2A-TagRFP-CAAX- } \\ \text { SV40 } \end{gathered}$	UgRNA	24/x	Average	32	150	21.3\%	0.66\%
noto E1	$\begin{gathered} \text { pGTag-2A-eGFP- } \\ \text { SV40 } \end{gathered}$	UgRNA	24/24	Average	45	185	24.3\%	0.90\%
noto E1	$\begin{gathered} \hline \text { pGTag-2A-eGFP- } \\ \text { SV40 } \end{gathered}$	UgRNA	48/48	Average	44	172	25.6\%	0.82\%
tyr E4	pGTag-2A-Gal4VP16-bactin	UgRNA	24/24	Average	84	132	63.6\%	1.44\%
cx43.4 E2	pGTag-2A- TagRFP-CAAX- SV40	UgRNA	24/24	Average	42	84	50.0\%	4.39\%
cx43.4 E2	pGTag-2A- TagRFP-CAAX- SV40	UgRNA	48/48	Average	31	81	38.3\%	4.15\%
esama E2	ag-2A-Gal4VP16-bs	UgRNA	48/48	Average	34	162	21.0\%	0.59\%
msna E2	pGTag-2A- Gal4VP16-bactin	UgRNA	48/48	Average	102	185	55.1\%	9.87\%
msna E6	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	Average	25	96	26.0\%	
$a n \times a 2 a \mathrm{E} 3$	$\begin{gathered} \text { pGTag-2A- } \\ \text { Gal4VP16-bactin } \end{gathered}$	UgRNA	48/48	Average	12	34	35.3\%	
flna E4	$\begin{gathered} \text { pGTag-2A- } \\ \text { Gal4VP16-bactin } \end{gathered}$	UgRNA	48/42	Average	9	9	100.0\%	
aqp1a1 E1	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	Average	1	25	4.0\%	
aqp8a1 E1	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	Average	3	21	14.3\%	
rb1 E2-E4	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	Average	273	463	59.0\%	6.44\%
rb1 E2-E25	pGTag-2A- Gal4VP16-bactin	UgRNA	48/48	Average	292	486	60.1\%	3.78\%
msna E2-E6	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	Average	91	151	60.3\%	5.92\%
kdrl E3-E30	pGTag-2A-Gal4VP16-bactin	UgRNA	42/48	Average	8	23	34.8\%	
s1pr1 E2-E2	pGTag-2A-Gal4VP16-bactin	UgRNA	48/27	Average	76	94	80.9\%	
vegfaa E3-E7	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	Average	29	92	31.5\%	
cx43.4 E2	pGTag-2A- TagRFP-CAAX- SV40	UgRNA	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	Average	60	177	33.9\%	5.24\%
cx43.4 E2	pGTag-2A- TagRFP-CAAX- SV40	n/a	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	Average	0	211	0.0\%	0.00\%
cx43.4 E2	pGTag-2A- TagRFP-CAAX- SV40	na	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	Average	2	127	1.6\%	0.80\%
cx43.4 E2	pGTag-2A- TagRFP-CAAX- SV40	UgRNA	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	Average	0	81	0.0\%	0.00\%
cx43.4 E2	pGTag-2A- TagRFP-CAAX- SV40	n/a	1Kb/700	Average	5	94	5.3\%	2.12\%
cx43.4 E2	pGTag-2A- TagRFP-CAAX- SV40	n/a	1Kb/700	Average	0	82	0.0\%	0.00\%

bioRxiv preprint doi: https://doi.org/10.1101/431627; this version posted May 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Supplementary Table 2-Gene targeting experiments and knock-in percentages.

Genomic target	Donor vector	Donor sgRNA target (genomic or UgRNA)	Homology length ($5^{\prime} / 3^{\prime}$)	Experiment number	Reporter positive embryos	Total embryos	Percent with positive report	Standard Error
noto E1	2A-TagRFP-CAAX-SV40	genomic sgRNA	12/x	1	4	32	12.5\%	
	2A-TagRFP-CAAX-SV40	genomic sgRNA	12/x	2	12	91	13.2\%	
	2A-TagRFP-CAAX-SV40	genomic sgRNA	12/x	3	6	55	10.9\%	
				Average	22	178	12.4\%	0.55\%
noto E1	2A-TagRFP-CAAX-SV40	genomic sgRNA	24/x	1	10	47	21.3\%	
		genomic sgRNA	24/x	2	10	41	24.4\%	
	2A-TagRFP-CAAX-SV40	genomic sgRNA	24/x	3	10	43	23.3\%	
				Average	30	131	22.9\%	0.74\%
noto E1	2A-TagRFP-CAAX-SV40	genomic sgRNA	48/x	1	10	29	34.5\%	
	2A-TagRFP-CAAX-SV40	genomic sgRNA	48/x	2	15	40	37.5\%	
	2A-TagRFP-CAAX-SV40	genomic sgRNA	48/x	3	15	45	33.3\%	
				Average	40	114	35.1\%	1.01\%
noto E2	2A-TagRFP-CAAX-SV40	UgRNA	24/x	1	13	62	21.0\%	
	2A-TagRFP-CAAX-SV40	UgRNA	24/x	2	10	49	20.4\%	
	2A-TagRFP-CAAX-SV40	UgRNA	24/x	3	9	39	23.1\%	
				Average	32	150	21.3\%	0.66\%
noto E1	pGTag-2A-TagRFP-CAAX-SV40	UgRNA	24/24	1	18	68	26.5\%	
	pGTag-2A-TagRFP-CAAX-SV40	UgRNA	24/24	2	9	38	23.7\%	
	pGTag-2A-TagRFP-CAAX-SV40	UgRNA	24/24	3	6	28	21.4\%	
	pGTag-2A-TagRFP-CAAX-SV40	UgRNA	24/24	4	12	51	23.5\%	
				Average	45	185	24.3\%	0.90\%
noto E1	pGTag-2A-eGFP-SV40	UgRNA	48/48	1	9	33	27.3\%	
	pGTag-2A-eGFP-SV40	UgRNA	48/48	2	17	71	23.9\%	
	pGTag-2A-eGFP-SV40	UgRNA	48/48	3	18	68	26.5\%	
				Average	44	172	25.6\%	0.82\%
tyr E4	pGTag-2A-Gal4VP16-bactin	UgRNA	24/24	1	21	31	67.7\%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	24/24	2	21	33	63.6\%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	24/24	3	42	68	61.8\%	
				Average	84	132	63.6\%	1.44\%
	2A-TagRFP-CAAX-SV40	genomic sgRNA	24/x	1	0	41	0.0\%	
	2A-TagRFP-CAAX-SV40	genomic sgRNA	24/x	2	0	22	0.0\%	
				Average	0	63	0.0\%	0.00\%
cx43.4 E2	pGTag-2A-TagRFP-CAAX-SV40	UgRNA	24/24	1	8	21	38.1\%	
	pGTag-2A-TagRFP-CAAX-SV40	UgRNA	24/24	2	15	29	51.7\%	
		UgRNA	24/24	3	19	34	55.9\%	
				Average	42	84	50.0\%	4.39\%
cx43.4 E2	pGTag-2A-TagRFP-CAAX-SV40	UgRNA	48/48	1	10	34	29.4\%	
	pGTag-2A-TagRFP-CAAX-SV40	UgRNA	48/48	2	15	32	46.9\%	
	pGTag-2A-TagRFP-CAAX-SV40	UgRNA	48/48	3	6	15	40.0\%	
				Average	31	81	38.3\%	4.15\%
esama E2	pGTag-2A-Gal4VP16-bactin	UgRNA	20/20	1	1	18	5.6\%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	20/20	2	2	32	6.3\%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	20/20	3	1	36	2.8\%	
				Average	4	86	4.7\%	0.87\%
esama E2	pGTag-2A-Gal4VP16-bactin	UgRNA	24/24	1	9	40	22.5\%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	24/24	2	13	65	20.0\%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	24/24	3	12	57	21.1\%	
				Average	34	162	21.0\%	0.59\%
msna E2	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	1	11	34	32.4\%	
			48/48	2	91	151	60.3\%	
				Average	102	185	55.1\%	9.87\%
msna E6	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	1	25	96	26.0\%	
				Average	25	96	26.0\%	
anxa2a E3	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	1	12	34	35.3\%	
				Average	12	34	35.3\%	
flna E4	pGTag-2A-Gal4VP16-bactin	UgRNA	48/42	1	9	9	100.0\%	
				Average	9	9	100.0\%	
aqp1a1 E1	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	1	1	25	4.0\%	
				2	n/a	n/a	n / a	
				Average	1	25	4.0\%	
aqp8a1 E1	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	1	3	21	14.3\%	
				Average	3	21	14.3\%	
rb1 E2-4	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	1	48	108	44.0\%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	2	56	111	50.0\%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	3	53	96	55.0\%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	4	116	148	78.0\%	
				Average	273	463	59.0\%	6.44\%
rb1 E2-25	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	1	47	76	62.0\%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48		58	119	49.0\%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	3	87	149	58.0\%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	4	100	142	70.0\%	
				Average	292	486	60.1\%	3.78\%
msna E2-E6	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	1	8	13	61.5\%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	2	29	34	85.3\%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	3	17	34	50.0\%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	4	26	48	54.2\%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	5	11	22	50.0\%	
				Average	91	151	60.3\%	5.92\%
kdrl E3-E30	pGTag-2A-Gal4VP16-bactin	UgRNA	42/48	1	8	23	34.8\%	
				Average	8	23	34.8\%	
s1pr1 E2-E2	pGTag-2A-Gal4VP16-bactin	UgRNA	48/27	1	76	94	80.9\%	
				Average	76	94	80.9\%	
vegfaa E3-E7	pGTag-2A-Gal4VP16-bactin	UgRNA	48/48	1	29	92	31.5\%	
				Average	29	92	31.5\%	
cx43.4 E2	pGTag-2A-TagRFP-CAAX-SV40	UgRNA	1Kb/1Kb	1	22	72	30.6\%	
GeneWeld	pGTag-2A-TagRFP-CAAX-SV40	UgRNA	1Kb/1Kb	2	24	51	47.1\%	
	pGTag-2A-TagRFP-CAAX-SV40	UgRNA	1Kb/1Kb	3	14	54	25.9\%	

bioRxiv preprint doi: https://doi.org/10.1101/431627; this version posted May 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

				Average	60	177	33.9\%	5.24\%
cx43.4 E2	pGTag-2A-TagRFP-CAAX-SV40	n/a	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	1	0	78	0.0\%	
Plasmid Control	pGTag-2A-TagRFP-CAAX-SV40	n / a	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	2	0	50	0.0\%	
	pGTag-2A-TagRFP-CAAX-SV40	n / a	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	3	0	83	0.0\%	
				Average	0	211	0.0\%	0.00\%
cx43.4 E2	pGTag-2A-TagRFP-CAAX-SV40	n/a	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	1	1	30	3.3\%	
Genomic Guide only	pGTag-2A-TagRFP-CAAX-SV40	n/a	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	2	1	46	2.2\%	
	pGTag-2A-TagRFP-CAAX-SV40	n/a	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	3	0	51	0.0\%	
				Average	2	127	1.6\%	0.80\%
cx43.4 E2	pGTag-2A-TagRFP-CAAX-SV40	UgRNA	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	1	0	44	0.0\%	
Universal Guide only	pGTag-2A-TagRFP-CAAX-SV40	UgRNA	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	2	0	24	0.0\%	
	pGTag-2A-TagRFP-CAAX-SV40	UgRNA	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	3	0	13	0.0\%	
				Average	0	81	0.0\%	0.00\%
cx43.4 E2	pGTag-2A-TagRFP-CAAX-SV40	n/a	$1 \mathrm{~Kb} / 700$	1	1	31	3.2\%	
Grundwald Linear Templa	pGTag-2A-TagRFP-CAAX-SV40	n/a	$1 \mathrm{~Kb} / 700$	2	4	45	8.9\%	
	pGTag-2A-TagRFP-CAAX-SV40	n / a	$1 \mathrm{~Kb} / 700$	3	0	18	0.0\%	
				Average	5	94	5.3\%	2.12\%
cx43.4 E2	pGTag-2A-TagRFP-CAAX-SV40	n/a	1Kb/700	1	0	23	0.0\%	
Linerar Control	pGTag-2A-TagRFP-CAAX-SV40	n / a	1Kb/700	2	0	16	0.0\%	
	pGTag-2A-TagRFP-CAAX-SV40	n/a	1Kb/700	3	0	43	0.0\%	
				Average	0	82	0.0\%	0.00\%
esama E2	pGTag-2A-Gal4VP16-bactin	UgRNA	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	1	17	19	89.5\%	
GeneWeld	pGTag-2A-Gal4VP16-bactin	UgRNA	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	2	18	22	81.8\%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	3	30	32	93.8\%	
				Average	65	73	89.0\%	2.87\%
esama E2	pGTag-2A-Gal4VP16-bactin	n/a	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	1	2	12	16.7\%	
Plasmid Control	pGTag-2A-Gal4VP16-bactin	n / a	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	2	9	35	25.7\%	
	pGTag-2A-Gal4VP16-bactin	n/a	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	3	1	18	5.6\%	
				Average	12	65	18.5\%	4.76\%
esama E2	pGTag-2A-Gal4VP16-bactin	n/a	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	1	8	15	53.3\%	
Genomic Guide only	pGTag-2A-Gal4VP16-bactin	n / a	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	2	3	11	27.3\%	
	pGTag-2A-Gal4VP16-bactin	n/a	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	3	8	20	40.0\%	
				Average	19	46	41.3\%	6.14\%
esama E2	pGTag-2A-Gal4VP16-bactin	UgRNA	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	1	11	17	64.7\%	
Universal Guide only	pGTag-2A-Gal4VP16-bactin	UgRNA	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	2	13	18	72.2\%	
	pGTag-2A-Gal4VP16-bactin	UgRNA	$1 \mathrm{~Kb} / 1 \mathrm{~Kb}$	3	9	20	45.0\%	
				Average	33	55	60.0\%	6.63\%
esama E2	pGTag-2A-Gal4VP16-bactin	n/a	$1 \mathrm{~Kb} / 700$	1	27	31	87.1\%	
Grundwald Linear Templa	pGTag-2A-Gal4VP16-bactin	n/a	1Kb/700	2	20	24	83.3\%	
	pGTag-2A-Gal4VP16-bactin	n/a	1Kb/700	3	16	17	94.1\%	
				Average	63	72	87.5\%	2.58\%
esama E2	pGTag-2A-Gal4VP16-bactin	n/a	1Kb/700	1	17	18	94.4\%	
Linerar Control	pGTag-2A-Gal4VP16-bactin	n/a	1Kb/700	2	29	31	93.5\%	
	pGTag-2A-Gal4VP16-bactin	n/a	1Kb/700	3	20	21	95.2\%	
				Average	66	70	94.3\%	0.40\%

Supplementary table 3 -
Germline Transmission

Genomic target	FOs outcrossed	FOs transmitting	Germline transmission percentage
noto E1 24/24	5	3	60.0%
tyr E4 48/48	8	3	37.5%
cx43.4 24/24	1	0	0.0%
cx43.3 48/48	4	0	0.0%
esama E2 48/48	18	12	66.7%
msna E2 48/48	4	1	25.0%
msna E6 48/48	3	1	33.3%
anxa2a E3 48/48	4	4	100.0%
fIna E4 48/42	3	3	100.0%
aqp1a1 E1 48/48	9	2	22.2%
aqp8a1 E1 48/48	1	1	100.0%
rb1 E2-E4 48/48	10	0	0.0%
rb1 E2-E25 48/48	16	1	6.3%
msna E2-E6 48/48	8	0	0.0%
kdrl E3-E30 44/48	3	0	0.0%
s1pr1 E2-E2 48/48	24	0	0.0%
vegfaa E3-E7 48/48	16	0	0.0%
mmp14a E1-E10 48/48	4	0	0.0%

bioRxiv preprint doi: https://doi.org/10.1101/431627; this version posted May 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Supplementary Table FO outcrosses for transmission; asteris denotes in-cross							
Genomic target	Knockin	Homology length	Individual F^{0}	Crossed to	$\begin{aligned} & \text { Reporter } \\ & \text { positive } \\ & \text { F1 } \\ & \text { embryos } \end{aligned}$	Total F 1 embryos	$\begin{gathered} \text { Percent } \\ \text { germline } \\ \text { transmission } \end{gathered}$
noto E1	pGTag-2A-TagRFP-CAAX-SV40	$24 / 24$	1	Casper	4	28	${ }^{14.38}$
noto E1	pGTag-2A-TagRFP-CAAX-SV40	24/24	2	Casper	0	172	0.0\%
noto E1	pGTag-2A-TagRFP-CAAX-SV40	$24 / 24$	3	Casper	0	15	0.0\%
noto E1	pGTag-2A-TagRFP-CAAX-SV40	$24 / 24$	4	Casper	69	146	47.3\%
noto E1	$\begin{aligned} & \hline \text { pGTag-2A-TagRFP- } \\ & \text { CAAX-SV40 } \end{aligned}$	24/24	1	Casper	11	${ }^{61}$	18.\%
noto E1	pGTag-2A-TagRFP- CAAX-SV40	24/24	2	Casper	0	81	0.0\%
tyr E4	$\begin{aligned} & \text { pGTag-2A-Gal4VP16- } \\ & \text { bactin } \end{aligned}$	24/24	1	UAS:RPP	0	174	0.0\%
tyre4	pGTag-2A-Gal4VP16bactin	24/24	2	UAS:RFP	0	122	0.0\%
tyr E4	pGTag-2A-Gal4UP16bactin	24/24	3	Uas:RFP	0	45	0.0\%
tyre E4	$\begin{aligned} & \text { pGTag-2A-Gal4VP16- } \\ & \text { bactin } \end{aligned}$	24/24	4	Uas:RFP	0	87	0.0\%
tyre $\mathrm{E}^{\text {a }}$	pGTag-2A-Gal4VP16bactin	24/24	5	UAS:RFP	0	103	0.0\%
tyr E4	pGTag-2A-Gal4VP16bactin	24/24	6	UAS:RFP	8	89	9.\%\%
tyre $\mathrm{E}^{\text {a }}$	pGTag-2A-Gal4VP16. bactin	24/24	7	UAS:RFP	13	151	8.6\%
tyre $\mathrm{E}^{\text {a }}$	pGTag-2A-Gal4VP16bactin	24/24	8	UAS:RFP	0	113	0.0\%
tyre4	$\begin{aligned} & \text { pGTag-2A-Gal4VP16- } \\ & \text { bactin } \end{aligned}$	24/24	${ }^{9}$	UAS:RFP	19	155	12.3\%
c443.4 E2	${ }^{\text {PGGTag-2A-TagR PP- }}$	$24 / 24$	1	flil:EGFP	0	39	0.0\%
c43.4	pGTag-2A-TagRFP- CAAX-SV42	24/24	2	flil:Ggp	0	0	N/A
c<43.4 E2	pGTag-2A-TagRFP-CAAX-SV43	24/24	3	fliil:G6P	0	0	N/A
c434.4 E2	pGTag-2A-TagRFP-CAAX-SV44	24/24	4	fliil:GFP	0	15	.0\%
c433.4 52	pGTag-2A-TagRFP-CAAX-SV45	24/24	5	flil:EGFP	0	26	0.0\%
c433.4 E 2	pGTag-2A-TagRFP-CAAX-SV46	24/2	6	fli: GGfP	0	0	N/A
ca43.4 E2	pGTag-2A-TagRFP-CAAX-SV47	24/24	7	fliil:G6P	0	23	5.\%
c433.4 E 2	pGTag-2A-TagRFP- CAAX-SV48	24/24	8	flil:EGFP	0	0	N/A
c443.4 42	pGTag-2A-TagRFP-CAAX-SV49	24/24	9	filigGep	0	45	0.0\%
c433.4 52	$\begin{gathered} \text { pGTag-2A-TagRFP- } \\ \text { CAAX-SV50 } \\ \hline \end{gathered}$	24/24	10	fli :EGFP	0	82	0.0\%
c443.4 E2	$\begin{aligned} & \text { pGTag-2A-TagRFP- } \\ & \text { CAAX-SV40 } \end{aligned}$	48/48	1	flil:Ggf	0	${ }^{130}$	0.0\%
c443.442	pGTag-2A-TagRFP-CAAX-SV40	48/48	2	fli:EGFP	0	100	0.0\%
c433.4 52	pGTag-2A-TagRFP-CAAX-SV40	48/48	3	flil:EGFP	0	75	0.0\%
c443.4 E2	pGTag-2A-TagRFP. CAAX-SV40	48/48	4	flil:GgF	0	52	0.0\%
c43.4 E 2	pGTag-2A-TagRFP- CAAX-SV40	48/48	5	fili:Ggp	0	0	N/A
43.4 E2	pGTag-2A-TagRFP-CAAX-SV40	48/48	6	fli:EGFP	0	12	0.0\%
c433.4 E 2	pGTag-2A-TagRFP. CAAX-SV40	48/48	7	flil:EGfP	0	0	N/A
c433.4 E^{2}	pGTag-2A-TagRFP-CAAX-SV40	48/48	8	flil:GGP	0	0	N/A
33.4 E2	pGTag-2A-TagRFP- CAAX-SV40	48/48	9	flil:EGFP	0	34	0.0\%
c443.4 E2	pGTag-2A-TagRFP. CAAX-SV40	48/48	10	flil:EGFP	0	${ }^{86}$	0.0\%
c434.4 E2	pGTag-2A-TagRFP-CAAX-SV40	48/48	11	flil:Ggf	0	0	N/A
c433.4 E2	pGTag-2A-TagRFP-CAAX-SV40	48/48	12	flil:GGP	0	0	N/A
c433.4 52	pGTag-2A-TagRFP- CAAX-SV40	48/48	13	fli:EG	0	0	N/A
c433.4 E2	$\begin{gathered} \text { pGTag-2A-TagRFP- } \\ \text { CAAX-SV40 } \\ \hline \end{gathered}$	48/48	14	flil:EGFP	0	0	N/A
esama E2	$\underset{\substack{\text { pGTag-2A-Gal4VP16- } \\ \text { bactin }}}{ }$	24/24	1	pD8790	0	21	0.0\%
na E2	pGTag-2A-Gal4VP16bactin	24/24	2	pD8790	0	212	0.0\%
esama E2	pGTag-2A-Gal4vP16bactin	24/24	3	p08790	0	31	0.0\%
esama E2	pGTag-2A-Gal4VP16bactin	24/2	4	p08790	1	4	25.0
esama E2	pGTag-2A-Gal4VP16bactin	24/24	5	p08790	1	12	8.3\%
esama E2	pGTag-2A-Gal4VP16. bactin	24/24	6	p08790	14	104	13.5\%
esama E2	pGTag-2A-Gal4VP16. bactin	24/24	7	p08790	0	87	0.0\%
esama E2	pGTag-2A-Gal4VP16bactin	24/24	8	p08790	0	209	0.0\%
esama E2	pGTag-2A-Gal4VP16- bactin	24/24	9	p08790	0	132	0.0\%
esama E2	pGTag-2A-Gal4VP16bactin	24/24	10	p08790	4	18	22.2\%
esama E2	pGTag-2A-Gal4VP16bactin	24/24	11	pD8790	0	37	0.0\%
esama E2	$\begin{aligned} & \text { pGTag-2A-GalAVP16- } \\ & \text { bactin } \end{aligned}$	24/24	${ }^{12}$	pD8790	11	${ }^{43}$	25.6\%
ama E2	pGTag-2A-Gal4VP16. bactin	24/24	13	pD8790	14	97	14.4\%
esama E2	pGTag-2A-Gal4VP16bactin	24/24	14	p08790	0	91	0.0\%
esama E2	pGTag-2A-Gal4vP16bactin	24/24	15	pD8790	7	${ }^{127}$	5.5\%
esama E2	pGTag-2A-Gal4VP16bactin	24/24	16	pD8790	0	25	0.0\%
esama E 2	pGTag-2A-Gal4VP16- bactin	24/24	17	p08790	30	137	9\%
esama E2	pGTag-2A-Gal4VP16bactin	24/24	18	PD8790	8	265	3.0\%
ama E2	$\begin{aligned} & \text { pGTag-2A-Gal4VP16- } \\ & \text { bactin } \end{aligned}$	24/24	19	pD8790	${ }^{31}$	227	13.7\%
esama E2	PGTag-2A-GalAVP16- bactin	24/24	20	p08790	11	146	7.5\%
esama E2	pGTag-2A-Gal4VP16bactin	24/24	${ }^{21}$	pD8790	0	188	0.0\%
esama E2	pGTag-2A-GalavP16- bactin	24/24	22	pD8790	3	66	4.5\%
msna E2	$\begin{aligned} & \text { PGTag-2A-Gal4VP16- } \\ & \text { bactin } \end{aligned}$	48/48	1	pD8790	${ }^{42}$	144	29.2\%
msna E2		48/48	2	pD8790	0	377	0.0\%

bioRxiv preprint doi: https://doi.org/10.1101/431627; this version posted May 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

msna E2	pGTag-2A-Gal4VP16. bactin pGTag-2A-Gal4VP16-	$48 / 48$ $48 / 48$	3 4	PDB790 pD8790	0	202 150	0.0% 0.0%
msna E6	pGTag-2A-Gal4VP16bactin	48/48	1	pD8790	${ }^{23}$	${ }^{311}$	7.4\%
msna E6	pGTag-2A-Gal4VP16bactin	48/48	2	p08790	0	67	0.0\%
msna E6	$\begin{gathered} \text { PGTag-2A-Gal4VP16- } \\ \text { bactin } \end{gathered}$	48/48	3	PD8790	0	54	0.0\%
anха2a ез	PGTag-2A-Gal4VP16- bactin	48/48	1	${ }^{\text {POB790 }}$	16	${ }^{73}$	21.9\%
onxa2a е3	pGTag-2A-Gal4VP16bactin	48/48	2	pD8790	10	22	45.5\%
anx2a ез	pGTag-2A-Gal4VP16- bactin	48/48	3	pD8790	37	70	52.9\%
anxa2a ез	$\begin{gathered} \text { PGTag-2A-GalIVP16- } \\ \text { bactin } \end{gathered}$	48/48	4	${ }^{\text {POB790 }}$	23	36	63.9\%
flna E4	pGTag-2A-Gal4VP16- bactin	48/42	1	pDB790	21	64	32.8\%
fna E4	pGTag-2A-Gal4VP16bactin	48/42	2	p08790	1	52	\%
flna E4	$\begin{aligned} & \text { PGTag-2A-GalIVP16- } \\ & \text { bactin } \end{aligned}$	48/42	3	pD8790	4	21	19.0\%
oqp1a1 E1	$\begin{aligned} & \text { PGTag-2A-Gal4VP16- } \\ & \text { bactin } \end{aligned}$	48/48	1	pob790	0	N/A	N/A
aqp1al E1	pGTag-2A-Gal4VP16- bactin	48/48	2	po8790	19	281	\%
aqpalat E1	pGTag-2A-Gal4VP16bactin	48/48	3	pob790	0	N/A	N/
aqpalat E1	pGTag-2A-Gal4VP16bactin	48/48	4	pob790	n>1	N/A	N/A
aqpalat E1	pGTag-2A-Gal4VP16- bactin	48/4	5	pD8790	0	N/A	N/A
aqpalat E1	pGTag-2A-Gal4VP16- bactin	48/48	6	pob790	0	N/A	N/A
aqp1a1 E1	pGTag-2A-Gal4VP16bactin	48/48	7	pDB790	0	N/A	n/A
aqp1a1 E1	pGTag-2A-Gal4VP16- bactin	48/48	8	po8790	0	N/A	N/A
aqp1aa E1	$\begin{aligned} & \text { PGTag-2A-GalIVP16- } \\ & \text { bactin } \end{aligned}$	48/48	9	pD8790	0	N/A	N/A
aqp801 E1		48/48	1	po8790	1	7	1.3\%
rb1 E2-E4	pGTag-2A-Gal4VP16- bactin	48/48	1	po8790	0	${ }^{38}$	\%
	pGTag-2A-Gal4VP16bactin	48/48	2	pDB790	0	103	0.0\%
${ }_{\text {rb }} \mathrm{E} 2$ 2¢ 4	pGTag-2A-Gal4VP16bactin	48/48	3	p08790	0	${ }_{61}$	0.0\%
${ }_{\text {rbi }}$ E2-E4 4	pGTag-2A-Gal4VP16- bactin	48/48	4	pD8790	0	73	0.0\%
	pGTag-2A-Gal4VP16- bactin	48/48	5	pob790	0	57	0.0\%
rb1 E2-E4	pGTag-2A-Gal4VP16- bactin bactin	48/48	6	pDB790	0	69	0.0\%
- 4	pGTag-2A-Gal4VP16- bactin	48/48	7	pob790	0	37	.0\%
	pGTag-2A-Gal4VP16bactin	48/48	8	pD8790	0	113	0.0\%
${ }_{\text {rb }} \mathrm{E} 2$ 2¢ 4	pGTag-2A-Gal4VP16bactin	48/48	9	p08790	0	79	0.0\%
rb1	pGTag-2A-Gal4VP16- bactin	48/48	10	pob790	0	20	.0\%
${ }_{\text {rb }} 1$ E2-E4 4	pGTag-2A-Gal4VP16bactin	48/48	11	pob790	0	136	0.0\%
${ }_{\text {rb }} \mathrm{E} 2$ 2¢ 4	pGTag-2A-Gal4VP16bactin	48/48	12	p08790	0	124	0.0\%
$r_{\text {rib }} \mathrm{E} 2 \mathrm{E}$ E	pGTag-2A-Gal4VP16- bactin	18/48	13	pD8790	0	129	0.0\%
${ }_{\text {rb1 }}^{162} \mathbf{2}$ E4 4	pGTag-2A-Gal4VP16bactin	48/48	14	pob790	0	39	0.0\%
	$\begin{aligned} & \text { pGTag-2A-GalAVP16- } \\ & \text { bactin } \end{aligned}$	48/4	15	pD8790	0	123	0.0\%
$r_{\text {b1 }}^{162-E 4}$	pGTag-2A-Gal4VP16- bactin	48/48	16	pob790	0	40	0.0\%
rb1 E2-E4	pGTag-2A-Gal4VP16bactin	48/48	17	PD8790	0	99	0.0\%
${ }_{\text {rb1 }}^{\text {E2-E4 }}$	pGTag-2A-Gal4VP16bactin	48/4	18	p08790	0	208	0.0\%
${ }_{\text {rb1 }}^{162} \mathbf{2}$ - 4	$\begin{gathered} \text { PGTag-2A-GalIVP16- } \\ \text { bactin } \end{gathered}$	48/48	19	pD8790	0	241	0.0\%
${ }_{\text {rb }}$ E2-225	$\begin{aligned} & \text { pGTag-2A-Gal4VP16- } \\ & \text { bactin } \end{aligned}$	48/48	1	p08790	0	49	0.0\%
rb1 E2-225	pGTag-2A-Gal4VP16bactin	48/48	2	${ }^{\text {PDB790 }}$	0	78	0.0\%
${ }_{\text {rb1 }}$ E2-225	pGTag-2A-Gal4VP16bactin	48/48	3	pD8790	0	162	0.0\%
${ }_{\text {rb1 } 12-225 ~}^{\text {2 }}$	pGTag-2A-Gal4VP16bactin	48/48	4	P08790	12	25	48.0\%
r61 E2-225	$\begin{aligned} & \text { pGTag-2A-GalAVP16- } \\ & \text { bactin } \end{aligned}$	48/48	5	P08790	0	79	0.0\%
	pGTag-2A-Gal4VP16- bactin	48/48	6	p08790	0	4	0.0\%
${ }_{\text {rb1 }}$ E2-225	pGTag-2A-Gal4VP16bactin	48/48	7	PD8790	0	200	0.0\%
${ }_{\text {rb }} 12$ 2-225	pGTag-2A-Gal4VP16bactin	48/48	8	p08790	0	${ }^{38}$	0.0\%
	pGTag-2A-Gal4VP16- bactin	48/48	9	P08790	0	128	0.0\%
rb1 E2-225	pGTag-2A-Gal4VP16bactin	48/48	10	pob790	0	7	0.0\%
${ }_{\text {rb }} 12$ 2-225	pGTag-2A-Gal4VP16 bactin	48/48	11	p08790	0	119	0.0\%
$r_{\text {b1 } 12-225 ~}^{\text {2 }}$	pGTag-2A-Gal4VP16bactin	48/48	12	pD8790	0	136	0.0\%
${ }_{\text {rb1 } 12-225 ~}^{\text {2 }}$	pGTag-2A-Gal4VP16bactin	48/48	13	po8790	0	76	0.0\%
$r_{\text {bl } 1 \text { E2-22 }}$	pGTag-2A-Gal4VP16- bactin	48/4	14	pDB790	0	159	0.0\%
	pGTag-2A-Gal4VP16- bactin	48/48	15	pob790	0	168	0.0\%
${ }_{\text {rb1 }}$ E2-225	pGTag-2A-Gal4VP16bactin	48/48	16	pDB790	0	139	0.0\%
${ }_{\text {rb1 }}$ E2-225	pGTag-2A-Gal4VP16bactin	48/48	17	p08790	0	25	0.0\%
	pGTag-2A-Gal4VP16. bactin	48/48	18	pob790	0	4	0.0\%
rb1 E2-225	pGTag-2A-Gal4VP16bactin	48/48	19	po8790	0	81	0.0\%
rb1 E2-225	pGTag-2A-Gal4VP16bactin	48/48	20	pD8790	-	71	0.0\%
$r_{\text {b1 } 12-225 ~}^{\text {2 }}$	pGTag-2A-Gal4VP16bactin	48/48	21	pD8790	0	75	0.0\%
$r_{\text {bl } 1 \text { E2-22 }}$	pGTag-2A-Gal4VP16bactin	48/48	22	pob790	0	81	0.0\%
${ }^{\text {rb1 1 E2-225 }}$	pGTag-2A-Gal4VP16- bactin bactin	48/48	23	${ }^{\text {PDB790 }}$	0	76	0.0\%
$r_{\text {b1 } 12-225 ~}^{\text {2 }}$	pGTag-2A-Gal4VP16- bactin	48/48	24	po8790	0	72	0.0\%
$r_{\text {r1 } 1 \text { E2-E2 } 25}$	pGTag-2A-Gal4VP16bactin	48/48	${ }^{25}$	pD8790	0	69	0.0\%

bioRxiv preprint doi: https://doi.org/10.1101/431627; this version posted May 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

rb1 e2-E25 rb1 E2-E25	$\begin{gathered} \text { pGTag-2A-Gal4VP16- } \\ \text { bactin } \\ \text { pGTag-2A-Gal4VP16- } \\ \text { bactin } \end{gathered}$	$48 / 48$ $48 / 48$	26 27	pDB790 pDB790	0	33 74	0.0\% 0.0\%
msna E2-E6	$\begin{aligned} & \text { pGTag-2A-Gal4VP16- } \\ & \text { bactin } \end{aligned}$	48/48	1	pD8790	0	180	0.0\%
msna E2-E6	$\underset{\text { pGTac-2A-GalivP P16. }}{\text { bactin }}$	48/48	2	pDB790	0	53	0.0\%
msna E2-E6	$\underset{\substack{\text { pGTag-2A-GalaVP16. } \\ \text { bactin }}}{\text {. }}$	48/48	3	pD8790	0	0	n/A
msna E2-E6	$\begin{aligned} & \text { pGTag-2A-GalAVP16. } \\ & \text { bactin } \end{aligned}$	48/48	4	pD8790	0	0	N/A
msna E2-E6	pGTag-2A-Gal4VP16bactin	48/48	5	pD8790	0	93	0.0\%
msna E2-E6	pGTag-2A-Gal4VP16bactin	48/48	6	pD8790	0	23	0.0\%
msna E2-E6	$\underset{\text { bactin }}{\text { pGTag-2A-Gal4VP16- }}$	48/48	7	pD8790	0	357	0.0\%
msna E2-E6	pGTag-2A-Gal4vP16- bactin	48/48	8	pDB790	0	100	0.0\%
msna E2-E6	$\underset{\substack{\text { pGTag-2A-Gal4VP16- } \\ \text { bactin }}}{ }$	48/48	9	pDB790	0	235	0.0\%
msna E2-E6	$\underset{\text { pGTag-2A-Gal4VP16- }}{\text { bactin }}$	48/48	10	pDB790	0	237	0.0\%
msna E2-E6	pGTag-2A-Gal4VP16bactin	48/48	11	pDB790	0	${ }^{84}$	0.0\%
msna E2-66	$\begin{gathered} \text { PGTag-2A-Gal4VP16- } \\ \text { bactin } \end{gathered}$	48/48	12	pDB790	0	117	0.0\%
kdrl E3-E30	$\begin{aligned} & \text { pGTag-2A-Gal4VP16. } \\ & \text { bactin } \end{aligned}$	42/48	1	p08790	0	250	0.0\%
kdrl E3-E30	$\underset{\text { bGTag-2A-Gal4VP16. }}{\text { bactin }}$	42/48	2	p08790	0	250	0.0\%
kdrl E3-E30	$\begin{array}{\|l} \text { pGTag-2A-Ga14VP16- } \\ \text { bactin } \end{array}$	42/48	3	pDB790	0	250	0.0\%
sipr1 E2-E2	PGTag-2A-Gal4VP16- bactin bactin	48/27	1	s1pr1 E2-E2 Animal 2	0	150	0.0\%
s1pri E2-E2	$\begin{aligned} & \text { pGTag-2A-GaIAVP16- } \\ & \text { bactin } \end{aligned}$	48/27	2	s1pr1 E2-E2 Animal 1	0	150	\%
sipri e2-E2	$\underset{\text { bactin }}{\text { pGTag-2A-GalAPP16. }}$	48/27	3	s1pr1 E2-E2 Animal 4	0	150	0.0\%
stpr1 E2-E2	$\underset{\text { bGTag-2A-Gal4VP16- }}{\text { bactin }}$	48/27	4	s1pr1 E2-E2 Animal 3	0	150	0.0\%
stpr1 E2-E2	PGTag-2A-Gal4VP16- bactin	48/27	5	$\begin{gathered} \text { s1pr1 E2-E2 } \\ \text { Animal } 6 \end{gathered}$	0	150	0.0\%
s1pri E2-E2	pGTag-2A-Gal4VP16. bactin	48/27	6	s1pr1 E2-E2 Animal 5	0	150	0.0\%
stpri E2-E2	PGTag-2A-Gal14PP16-	48/27	7	s1pr1 E2-E2 Animal 8	0	150	0.0\%
slpri E2-E2	$\underset{\substack{\text { pGTag-2A-Gal4VP16- } \\ \text { bactin }}}{ }$	48/27	8	s1pr1 E2-E2 Animal 7	0	150	0.0\%
stpri e2-E2	pGTag-2A-Gal4VP16-	48/27	9	s1pr1 E2-E2 Animal 10	0	150	0.0\%
stpr1 E2-E2	PGTag-2A-Gal4VP16- bactin	48/27	10	$\begin{gathered} \text { s1pr1 E2-E2 } \\ \text { Animal } 9 \end{gathered}$	0	150	0.0\%
slpri e2-E2	$\underset{\substack{\text { pGTag-2A-Gal4VP16- } \\ \text { bactin }}}{ }$	48/27	11	s1pr1 E2-E2 Animal 12	0	150	0.0\%
s1pr1 E2-E2	pGTag-2A-Gal4VP16bactin	48/27	12	s1pr1 E2-E2 Animal 11	0	150	0.0\%
stpri E2-E2	PGTag-2A-Gal4VP16- bactin	48/27	13	sipr1 E2-E2 Animal 14	0	150	0.0\%
slpri E2-E2	$\underset{\text { pGTac-2A-GalivP P16. }}{\text { bactin }}$	48/27	14	s1pr1 E2-E2 Animal 13	0	150	0.0\%
s1pri E2-E2	$\underset{\text { bactin }}{\text { pGTag-2A-Gal4VP16. }}$	48/27	15	s1pr1 E2-E2 Animal 16	0	150	0.0\%
s1pri E2-E2	$\begin{aligned} & \text { pGTag-2A-GalAVP16. } \\ & \text { bactin } \end{aligned}$	48/27	16	$\begin{gathered} \text { s1pr1 E2-E2 } \\ \text { Animal } 15 \end{gathered}$	0	150	0.0\%
sipr1 E2-E2	pGTag-2A-Gal4VP16bactin	48/27	17	s1pr1 E2-E2 Animal 18	0	150	0.0\%
slpri E2-E2	pGTag-2A-Gal4VP16bactin	48/27	18	s1pr1 E2-E2 Animal 17	0	150	0.0\%
slpri E2-E2	$\underset{\text { bactin }}{\text { pGTag-2A-Gal4VP16- }}$	48/2	19	s1pr1 E2-E2 Animal 20	0	150	0.0\%
slpri E2-E2	$\underset{\substack{\text { pGTag-2A-Gal4VP16- } \\ \text { bactin }}}{ }$	48/27	20	$\begin{gathered} \text { s1pr1 E2-E2 } \\ \text { Animal } 19 \end{gathered}$	0	150	0.0\%
s1pr1 E2-E2	$\begin{aligned} & \text { pGTag-2A-Ga14VP16- } \\ & \text { bactin } \end{aligned}$	48/27	21	s1pr1 E2-E2 Animal 22	0	150	0.0\%
slpri e2-E2	PGTag-2A-GalAVP16- bactin	48/27	22	s1pr1 E2-E2 Animal 21	0	150	0.0\%
slpri E2-E2	$\underset{\text { pGTac-2A-GalivP P16. }}{\text { bactin }}$	48/27	23	s1pr1 E2-E2 Animal 24	0	150	0.0\%
stpri 12-E2	$\begin{aligned} & \text { pGTag-2A-GalAVP16. } \\ & \text { bactin } \end{aligned}$	48/27	24	s1pr1 E2-E2 Animal 23	0	150	0.0\%
vegfaa E3-E7	$\begin{aligned} & \text { pGTag-2A-GalAVP16- } \\ & \text { bactin } \end{aligned}$	48/	1	$\begin{gathered} \text { vegfaa } \mathrm{E3-E7} \\ \text { Animal } 2 \end{gathered}$	0	150	0.0\%
vegfaa E3-E7	$\underset{\text { bGTag-2A-Gal4VP16. }}{\text { bactin }}$	48/48	2	vegfaa E3-E7 Animal 1	0	150	0.0\%
vegfaa E3-E7	$\underset{\text { bGTag-2A-GalivVP16. }}{\text { bactin }}$	48/48	3	$\begin{gathered} \text { vegfaa E3-E7 } \\ \text { Animal 4 } \end{gathered}$	0	150	0.0\%
vegfac E3-E7	pGTag-2A-Gal4VP16bactin	48/4	4	vegfaa $\mathrm{E3}-\mathrm{E7}$ Animal 3	0	150	0.0\%
vegfae E3-E7	PGTag-2A-Gal4VP16- bactin	48/48	5	$\begin{aligned} & \text { Vegfa E3-E7 } \\ & \text { Animal } 6 \end{aligned}$	0	150	0.0\%
vegfau E3-E7	$\underset{\text { bactin }}{\text { pGTag-2A-GalAPP16. }}$	48/48	6	$\begin{gathered} \text { vegfaa E3-E7 } \\ \text { Animal } 5 \end{gathered}$	0	150	0.0\%
vegfaa E3-E7	$\underset{\text { bGTag-2A-Gal4VP16- }}{\text { bactin }}$	48/48	7	vegfaa E3-E7 Animal 8	0	150	0.0\%
vegfae E3-E7	PGTag-2A-Gal4VP16- bactin	48/48	8	vegfaa E3-E7 Animal 7	0	150	0.0\%
vegfaa E3-E7	pGTag-2A-Gal4VP16. bactin	48/48	9	vegfaa E3-E7 Animal 10	0	150	0.0\%
vegfac E3-E7	PGTag-2A-Gal14PP16-	48/4	10	vegfaa E3-E7 Animal 9	0	150	0.0\%
vegfaa E3-E7	$\underset{\substack{\text { pGTag-2A-Gal4VP16- } \\ \text { bactin }}}{ }$	48	11	vegfaa E3-E7 Animal 12	0	150	0.0\%
vegfaa E3-E7	$\begin{aligned} & \text { pGTag-2A-Ga14VP16- } \\ & \text { bactin } \end{aligned}$	48/48	12	vegfaa E3-E7 Animal 11	0	150	0.0\%
vegfaa E3-E7	pGTag-2A-Gal4VP16bactin	48/48	13	vegfaa E3-E7 Animal 14	0	150	0.0\%
vegfaa E3-E7	pGTag-2A-Gal4vP16- bactin	48/48	14	vegfaa E3-E7 Animal 13	0	150	0.0\%
vegfaa E3-E7	$\begin{aligned} & \text { pGTag-2A-Gal14P16- } \\ & \text { bactin } \end{aligned}$	48/48	15	vegfaa E3-E7 Animal 16	0	150	0.0\%
vegfae E3-E7	$\underset{\text { pGTag-2A-GalAVP16- }}{\substack{\text { bactin }}}$	48/48	16	$\begin{gathered} \text { vegfaa E3-E7 } \\ \text { Animal } 15 \\ \hline \end{gathered}$	0	150	0.0\%
mmp14a E1-E10	$\begin{aligned} & \text { PGTag-2A-GalAVP16. } \\ & \text { bactin } \end{aligned}$	48/48	1	mmp 14a E1-E10 Animal 2	0	112	0.0\%
mmp14a E1-E10	$\underset{\text { bactin }}{\text { pGTag-2A-Gal4VP16. }}$	48/48	2	mmp14a E1-E10 Animal 1	0	112	0.0\%
mmp1at E1-E10	$\begin{aligned} & \text { pGTag-2A-GalAVP16. } \\ & \text { bactin } \end{aligned}$	48/48	3	$\begin{gathered} \text { mmp14a E1-E10 } \\ \text { Animal } 4 \end{gathered}$	0	150	0.0\%
mmp1aa E1-E10	$\begin{aligned} & \text { pGTag-2A-Ga14VP16- } \\ & \text { bactin } \end{aligned}$	48/48	4	$\begin{gathered} \text { mmp14a E1-E10 } \\ \text { Animal 3 } \end{gathered}$	0	150	0.0\%

Genomic target	Donor vector	Genomic target sequence	Donor target sequence	5 ' Spacer sequence	5 ' Hom	($5^{\text {' homology am }}$	3' spacet	3^{3} Hom	3' homology arm
noto E1	2A-TagRPP-CAAX-SV40	GGGAGCGCAGAGCTGGAGACAGG	GGGAGGGCAGAGCTGGAGACAGG		12	CaAACGCCTGTC	N/A	N/A	N/A
noto E1	2A-TagRPP-CAAX-SV40	g gatagcagagctganalagg	gGgagcgcagagctgatacagg		24	agcata accanccaacgectatc	N/A	N/A	N/A
noto E1	2A-TagRFP-CAAX-SV40	GGGAGCGCAGAGCTGGAGACAGG	GGGAGGGCAGAGCTGGAGACAGG		48	agagaicgancaacgegtaccggagcatanccaaccanacgctetc	N/A	N/A	N/A
noto E2	2A-TagRPP-CAAX-SV40	GActggagangagtrgcgcg	gactggagaigagtcgcccg		24	ctetccagactggaganagatic	N/A	N/A	N/A
noto E2	2A-TagRPP-CAAX-SV40	GActggagangagtcgcccg	GGGAGGGGTCGGGCCACAG $¢$		24	CTGTCCAGActgGaganagattc	N/A	N/A	N/A
noto E1	pGTag-2A-TagRFP-CAAX-SV40	gGgagcgeagagctgaagacagg	GGGAGGGGTTGGGCCACAG GGG		24	agcataiccaaccaacgectotc	N/A	24	TCCAGCTttecgecccgetatt
noto E1 tyr E4	pGTag-2A-eGFP-SV40 pGTag-2A-Gal4VP16-bactin	GGGAGGGCAGAGCTGGAGACAGG GTTCCTGTAGAGAGGGATGAAGG	GGGAGGCGTTCGGGCCACAGCGG GGGAGGCGTTCGGGCCACAGCGG		$\begin{aligned} & 48 \\ & 24 \end{aligned}$	agagaacgaacaancgcgtaccggagcataaccaaccaaacgcctgtc ACGGATACTTCATGGTGCCCTTCA	$\begin{aligned} & \substack{\mathrm{gg} \\ \mathrm{~N} / \mathrm{A}} \end{aligned}$	$\begin{aligned} & 48 \\ & 24 \end{aligned}$	TCCAGCTCTGCGCTCCCGCTTATTTACTCGCAGATGCCACACTTCG GG TCCCTCTCTACAGGAACGGAGACT
cx43.4 E2	pGTag-2A-TagRFP-CAAX-SV40 GAGCCATATCTGCCCACGAAGG		GGGAGGGGTTGGGCCACAG $¢$		24	AAATCTCCAACCACTCCACCTTCG	gg	24	tGgGcangatatggctcacgtat
cx43.4 E2	pGTag-2A-TagRFP-CAAX-SV40 GAGCCATATCTGCccacgang		GGGAGGGGTTGGGCCACAGCG6		48	GтtTCTACGGGGTtGttgatgaatctcanccactccacttcg	aаa	48	TGGGCAAGATATGGGTCACGTTATCATCATCTTCGCATTG TTTGA
cx43.4 E2	pGTag-2A-TagRFP-CAAX-SV40 GAGCCATATCTGCCCACGAAGG		GGGAGGGGTTGGGCCACAGCO6		20	стССаACCACtccacttcg	ggg	20	tgggcangatatggctcacg
cx43.4 E2	pGTag-2A-TagRFP-CAAX-SV40 GAGCCATATCTGCccacgang		GGGAGGGGTTGGGCCACAGCG6		40	AGGGGGTGTTGGAtGAAATCTCAACCACTCCACCTCG	aаa	40	tgGgcangatatggctacgrattcatcatcticcgat
cx43.4E2	${ }^{\text {2A-TagRPP-CAAX-SV40 }}$	gagccatatcticccacgang	GGGAGGGGTtcGGGccacag cog		18	сСаАсСастсСасттTC	N/A	N/A	N/A
cx43.4 E^{2}		GAGCCATATCTGCccacgang	GGGAGGGGTTGGGGCCACAGCGG		20	стсСаAсcactcactitcg	N/A	N/A	N/A
cx43.4 E^{2}	2A-TagRPP-CAAX-SV40	GAGCCATATCTGCCCACGAAGG	GGGAGGGGTTGGGCCACAGCO6		24	a Aatctccaiccactrcaccteg	N/A	N/A	N/A
cx43.4 E2	2A-TagRFP-CAAX-SV40	GAGCCATATCTGCCCACGAAGG	GGGAGGGGTCGGGCCACAGCGG		${ }^{36}$	GGttettgaatganatctccancaactccacttcg	N/A	N/A	N/A
cx43.4 E2	2A-TagRfP-CAAX-sV40	GAgccatatctrcccacgang	GGGAGGGGTTGGGCCACAG 6		40	ACGCGGTGTtGgatganatctcanccactccacticg	N/A	N/A	N/A
cx43.4 E2	2A-TagRFP-CAAX-Sv40	GAGCCATATCTGCCCACGAAGG	GGGAGGGGTCGGGCCACAGCG		48	GTTTCTACGGGGTtGttgatgaatctccanccactcancttc	N/A	N/A	N/A
cx43.4 E^{2}	2A-TagRFP.CAAX-SV40	GAGCCATATCTGCCCACGAAGG	GGGAGGCGTTCGGGCCACAGCOG		60	CCATGAGCTGGAGTTTTCTACGCGGTTGTTGGATGAAATCTCCAACCACT CCACCTICG	N/A	N/A	N/A
cx43.4 E2	2A-TagRPP.CAAX-SV40	GAGCCATATCTGCCCACGAAGG	GGGAGGGGTTGGGCCACAGCG6		72	CTCTTGAAGCACCATGAGCTGGAGTTTCTTACGGGGTTGTTGGATGAA АТСТССААССАСТССАССТTCG	N/A	N/A	N/A
cx43.4 E2	2A-TagRfp-CAAX-sv40	gagccatatctacccacgang	GGGAGGcGttcgeccacagcog		96	TCATCGAGGACTGAGACGGTGGTACTTCTTGAAGCACCATGAGCTGGAG TTTCTTACGCGGTGTTGGATGAAATCTCCAACCACTCCACCTTCG	N/A	N/A	N/A
c443.4E2	2A-TagRFP-CAAX-SV40 pGTag-2A-Gal4VP16-bactin	gagccatatctrccacgang	GGGAGGGGtcGGGccacagcge		1027	ATAGATAGAGAACAACATGTCTTTTтTтTाTTTTTGTAACA	N/A	1032	tGGGCAAGATATGGGTCACGTATTCATCATCTCCGCATTG TTTG ActGT
esama E2		gGatgtaatccaaggaagaigg	GGGAGGGttcgacccacagcog		24	AAAATGTGGATGTGATCCAGGGGA	gag	24	тсССтGGatcacatcanattr
msna E2	GTag 2A-Gal4VP16-bactin pGTag-2A-Gal4VP16-bactin		GGGAGGGGTTGGGCCACAG 6 C6		48	TGTTCGTGTGACTACAATGGATGCGGAGCTGGAGTTGCCATCCAACC	gcg	48	cagacaca aggraacagattattgaccaggtttg tettggectet
msna E6		GTCTGGCACGAGGAGCACAAGGG	GGGAGGGGTTGGGCCACAG 6 G6		48	GAataAgGagcaitggaaganagaitcagcttggcacgaggacca	aaa	48	CAAGGGCatG TGAGGTACAGACAATGGAATGTG Ctetgctattr
anxaza E3	pGTag-2A-Gal4VP16-bactin pGTag-2A-Gal4VP16-bactin	TCTG GATCAAAGTTGGCCTCTGG	GGGAGGGGTTCGGGCCACAGCG6		48	CTCGAACTGGGGGGAGGAGAGCCCACTTACCTACTGTTGTTCCAGAG	$G_{G G}$	48	GCCAACTTGATCCAGACAAAGATG GTGCCAGGATGAGACCGCTATC
flna E4		GGATGAGTTGGGCCTCAGAGG	GGGAGGGGTTCGGGCCACAGCG6		48	TACCTGTCCCAGTTTCCCAAAGCCAAACTCAAGCCTGGTGCCCCTCTG	ccc	42	AGGCCCAAACTCAATCCCAAAAAGGCCCGTGCTATGGACCA
aqp1a1 E1			GGGAGGGGTTGGGCCACAG		48	GTCAGTCAGTCATGAACGAGGTGAAGAGCAAGGCTTTCGGcGGGccg	TT	48	TCCTGGCCGAGGTGTGGGAATGACCCTGTTCATCTCCTCAGCATA
aqp8a1 $^{1} 1$	pGTag-2A-Gal4VP16-bactin pGTag-2A-Gal4VP16-bactin	CGTGTCCGTCATGGGCAAGGIGG	GGGAGGGGTTCGGGCCACAG¢ $¢$		48		TT	48	ACGTGGGCATCAGGGGGAGCATCCAGCCCGccctegcacacggactag
rb1 E2-E4	pGTag-2A-Gal4vP16-battin	E2 GGAGAGGGAGATCAGATCGATGG, E4 GTCACAGCAGAGTTCACTTAGG	GGGAGGGGTTGGGGCCACAGCG6		48	Gctccastccactaatccatctetgatcatgcatggagaitatgga	N/A	48	ACCCGCCTAGAGAACAAATACGATGTGACTTGGCCCTCTACCAAAGA
rb1 E2-E25	pGTag-2A-Gal4VP16-bactin pGTag-2A-Gal4VP16-bactin pGTag-2A-Gal4VP16-bactin pGTag-2A-Gal4VP16-bactin pGTag-2A-Gal4VP16-bactin pGTag-2A-Gal4VP16-bactin HME donor	E2 GGAGAGGGAGATCAGATCGATGG, E25 GTCAAAGCGCAGCCTCTCAGG 6	GGGAGGGGTTGGGCCACAG 6 G		48	GctccagtccactaactccatctotgatcatccatgangatatgGga	N/A	48	Atgaacgaacaigatgangcagacgaaigtggragtatgatcagt
msna E2-E6		E2 6 ¢TTCCCTGTGGTGCTGGGTIG6, E6 GTCTGGCACGAGGAGCACAAG6G	GGGAGGGGTTGGGCCACAGC66		48	TGTCGTGTGACTACAATGGATGCCGAGctgGagttgccatccancc	ааа	48	CaAGgGCate tgaggtachachatggatctg ctetgctattr
kdrl E3-E30		E3 GGTAGCAGAATGTGTCATCGG, 30 G GAGGAct'GTCCCTTGACTCGG	GGGAGGCGTTCGGGCCACAGCO6		42	GATCAACTGCACTGCACTGGAGGCTGGCtagcagaiatg tot	N/A	48	actegragatgagtgtacagtctectctcagactataactatgtg
s1pr1 E2-E2		E2 GGAGAACCAGAACATTTCCAGG, e2 GGGAAACCATAGTGTCTTCTG6	GGGAGGGGTTGGGCCACAGC66		48	AGCGGActctGttetercatcatciatgctectcatcatcctgea	GGG	48	TCTGGGAATATCACCTCTTCTCTTAAAGGACTATCGTGAACTT
vegfaa E3-E7		E3 GTGCAAGACCCG AGAGCTG CTGE, e7 CGTTCGCTCGATCATCATCTGG	GGGAGGGGTTGGGCCACAGC66		48	TTCCCTTCATGGATGTGTATAAAAGAGTGGGTGCAAGACCCGAGAGC	ccc	48	
RoSA26		TААССТGATCTTGGGGGTGTCTGCAGGGGATGAGCAGGTGTACGA	GGGAGGGGTtcGG6ccacagcob	tgat	48		ccc	48	AGGAGGTGGTCATATGAAGTGGACGGTCGGAGGGGGGAGCCATGG
					48	TGGGCGGGATTCTTGCCCTGGCTTAACCTGATCTTGGGCGTGTC	Gct	48	tGCag gggattgagcaggtetacgag gacgagccaattctetatat
						GGAGAGAGCTGCACAAGAGGGCGGTGTcGGctcctgcgegg baig			TGCAG GGGATTGAGCAGGTGTACGAGGACGAGCCCAATTCTCTATATT
									ССССАСАGTTTGAGTTTGTGTCACAAAATAATTATAGTGGGGTGGAGAT
						CCGGGGGAGTCGGTTACCCGCCGGCTGCTCGGCTTGGTATCTGATTGG			
						CTGCTGAAGTCCTGGGAACGGCCCCTTGTTATGGCTTGGGTCCCAAATG AGCGAAACCACTACGCGAGTCGGCAGGGAGGCGGTCTTGGTACGGCCC			CGTGTTATTACTAAAGATCTTGTGTCGCAATTCCTGATGAAGGGAGAT AGGTTAAAAAGCACGGATCTACTGAGTTTACAGTCATCCCATTGTAGA
						GCAGGAAGGGGGGGCAGGAGGGGGGGGcGGGctsccgeccccag ict			
						TCTGGGTGGTGGTGACTGCGGCTCCGCCCTGGGCGTCCGCCGCCCGAAG GACGAGACTAGCTCTACCTGCTCTCGGACCCGTGGGGGTGGGGGGTGG			TTAAGCCCATTTGTTGTTGTACTTGCTCATCCAGTCCCAGACATAGCAT TGGCTTTCTCCTCACTTGTTTAGGTAGCCAGCAAGTCATGAAATCAGATA
						AGGAAGGAGTGGGGGGTCGGTCTGCTGGCTTGGGGGTGGGAGGGGC		736	
						ATGTTCTCCAAAAACCGGCGGGAGGTGCAATCTGAGGGAGcticaigig			
						GAGGAGGGGGAGAGAAGGCCGCACCCTTCTCCGCAGGGGGAGGGGAG			ПCTTT¢TTAAGCTGGGATT ACTCCTGACCCTATTTACAGTCAGATGA
									TCTGGACTACCACTGGGATTGGACCTGAGGTTCAGCAATACTCCCCTTTAT GTCTTTAATACTITCAATAATCTGTITTATTCATTAGTAGTAAC
						ATGTCAGTTGCTCCTTCTCGATTATGGGCGGGATCTTTTGCCCTGGCTT AACCTGATTCTGGGGGTTGTCC			tGAgctcaittcccetatct
	HR donorHME donor	TAACCTGATCTTGGGCGTGTCCTGCAGGGGATGAGCAGGTGTACGA GTCACCAATCCTGTCCCTAGTGG	${ }_{\text {GGGAGGGGTtGGGCCACAGGGG }}^{\text {N/A }}$	N/A	760		N/A		
${ }_{\text {AAVS }}$					48	GTTCTGGGTACTTTATCTGTCCCCTCCACCCCACAGTGGGGCCACTA tccagggetccagaggetcagttagtttcttctctccaaccceggeccectatgtccacttaggac agcatgtttectgctccaggeatcctgtt tcceccagectegacecacttatattccaggec ggtaatgtggtctggttctgg tactttatctgtcectctcaccecacaagtggge	aaa	48	GGGACAGGATGGTGACAGAAAAGCCCCATCCTTAGGCTTCTTCCTC
									gattggtga cagaaaagccccatccttaggcctcctccttcctagtctcctgatattgggtctaac ccccacctcctgttaggcagattccttatctggtg acacacccccatttcctggagccatctctctc
									gg caggeggtgggaggeaaggegggatg cgtgacctgcccggttctcagtgeccaccttgc
									gctaccttctcccag aacttgag $c t g c t c t g a c g ~ c g g c t g t c t g g t g c g t t c a c t g a t c c t t g g t g ~$ ctgcag cttccttacacttcccaagaggagaagcagtttggaaaaacaaaatcagaataagt
									ggtcctgagttctaactttggtcttcacettctagttccccaatttatattgttctctcgtg cgtcag
									ttttacctgtgagataaggccag tagcagccccgtcctggcaggetgtggtgaggaggegg
								1000	gtgtccgtgtggaaaactccctttgtgagaatggtg cgtcctaggtgtcaccaggtcgtggccg cctctactccctttcttttctccatccttcttccttaaagagtccccagtgctatctggga atattc
									ctccgeccagag cagggtccegcttccttag agccetgctetggecttctgggtttgagtecttgg caagcccaggagaggcgctcaggettccetgtcccccttcctcgtcca ccatctcatgcccctggc
									cccacgagaggccaccccagccectgtctaccaggetg cttttggg ggatctctcccaa ctgtg ggetgactgcttgg
AAvS1	HR donor	GTCACCAATCCTGTCCTAGtGG	N/A	N/A	804		N/A		

bioRxiv preprint doi: https://doi.org/10.1101/431627; this version posted May 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Supplementary table 6-Primes and oligos			
Primer name	Sequence	Purpose	
notoixn5'f	GCTTTTTGGACTAAACAGACGCCATG	Junction fragment analysis	
notojxn3'r	cttgtgcgtacaagagtcaacg	Junction fragment analysis	
notojxn3'delr	CGATGTTATACTTGCTTCTTTTTAGTtTTGTACATAT	Junction fragment analysis	
trixn5'f	CATCTTTGAGCAGTGGTTGAGGAGA	Junction fragment analysis	
tyjixn3'r	esam	Junction fragment analysis	
esamajxn5'f	ggttttcagtcagcgagttaatgtc	Junction fragment analysis	
esamajxn3'r	CATTTCAGTGCTGGTAGCAGACTG	Junction fragment analysis	
cx43.4ixn5'	GCAGGACTGAGACGGTGGTA	Junction fragment analysis	
cx43.4fxn3'r	CaAAtGCatcgtagcaancg	Junction fragment analysis	
Rb2jF	AAGGACAAGGATCCTGAGTTTG	Junction fragment analysis	
galjf	GCAAACGGCCTTAACTTTCC	Junction fragment analysis	
Galir	GсСтTGAtTCCACTTCTGTCA	Junction fragment analysis	
Rb4ik	GстTTGCATCACAACCTCAA	Junction fragment analysis	
Rb25jR	AgCcagcttctegatcagt	Junction fragment analysis	
RFP5'jxnr	CCTTAATCAGTTCCTCGCCCTTAGA	Junction fragment analysis	
sv403'ixnf	GGGGAGGTGTGGGAGGTTTT	Junction fragment analysis	
gfp ${ }^{\text {'R }}$	GCTGAACTTGTGGCCGTTTA	Junction fragment analysis	
GFP3'F	ACATGGTCCTGCTGGAGTTC	Junction fragment analysis	
F-msna-exon2	тТССттСаттСАТТСАТТGACA	Junction fragment analysis	
R-msna-exon2	GGGCACGGCtacaatgat	Junction fragment analysis	
R-msna-exon6	CGTGTGATTGACAGGGTCAC	Junction fragment analysis	
F-msna-exon6	GttctGgagcagcacaagc	Junction fragment analysis	
anxa2as'Cut3'XxnPrR	CTTCCAGACAGGACGAGTGA	Junction fragment analysis	
anxa2a5'Cut'JxnPrF	TTTCCTCATTGTTTGGCTGT	Junction fragment analysis	
F-1ajunc	agattagaggcgtagtccg	Junction fragment analysis	
R -1a1junc	gctgaggagatgaacaggg	Junction fragment analysis	
KDRLEx33xnF	TTGTtTTTGTTGTGACTTCCAAT	Junction fragment analysis	
KDRLEx30].xnR	GGGTGGTGTGGAGtaACGAA	Junction fragment analysis	
S1PR1.5'5xnF	ACAAGGACCCGGGACTCA	Junction fragment analysis	
S1PR1.3'3 ${ }^{\text {² }}$ R	cgagacganaangitcacga	Junction fragment analysis	
vegfaeax 3.5 ' $\mathrm{J} \times \mathrm{F}$	ААСАСтстСGСtтtGcttc	Junction fragment analysis	
	tGctetgccettanaiagtt	Junction fragment analysis	
R-8a1-exon1 Junc	tgattccccaaaaattget	Junction fragment analysis	
F-8a1-exon1 1 junc	gccettettlcgagacataca	Junction fragment analysis	
notosbf	CAGATGCCACACTTCGCGT	Southern blot analysis	
notosbr	CGATGTtATACTTGCTTCTTTTTAGTtTTGTACATAT	Southern blot analysis	
tyrse3f	GTtTTGCTAATCCTGAGACGGGTtTG	Southern blot analysis	
tyrsee3r	CtGtcaitanaagcatgatgtatgatganaitg	Southern blot analysis	
esamasBe3f	ATCATCTCATTCGTCAATGGAGACtTCAG	Southern blot analysis	
esamasBiar	CACAGTGTGGCAGTGAGCATTC	Southern blot analysis	
gal4Sbr	CTGAAGAACAACTGGGAGTGTCGC	Southern blot analysis	
gal4sbf	tTACATATCCAGAGGGCGGtagG	Southern blot analysis	
rffS ${ }^{\text {ff }}$	ATGGTGTCTAAGGGGGAAGAGC	Southern blot analysis	
rfps ${ }^{\text {r }}$	AGCTTCAGGGCCATGTCGC	Southern blot analysis	
$\begin{aligned} & \text { F-2A-Gal4-BamHI } \\ & \text { R-Gal4-Ncol } \end{aligned}$	GGATCCGGAGCCACGAACTTCTCTCTGTTAAAGCAAGCAGGAGACGTGGAAGAAAACCCCGGTCCTtctagaAAGCTACT gcatCCATGGTAATTTATTTAGCAGTAGATAGCTATATTGTGTGAAACGC	pGTag vector cloning pGTag vector cloning	
F-eGFP-spel	agacatactagtatggtgagcaaggegaggagtg	pGTag vector cloning	
R-eGFP-Xhol	tggatctctgagttacttgtacagetcgt	pGTag vector cloning	
F-p 494 -Xhol	cgctgcttcgagGGcGcccctctagaictatag	pGTag vector cloning	
R-p494-Spel	agcatactagtAGGACCGGGGTTTTCTT	pGTag vector cloning	
F-lacz	tgatacacgcaggtgcgcaacgcaattaatgtgagtt	pGTag vector cloning	
R-lacz	atctetgtggcaggtcattrgccattcaggtgc	pGTag vector cloning	
R-lacz-universal-BamH ctgatcgeatcttgtgeaggtcattcg		pGTag vector cloning	
		pGTag vector cloning	
F-lacz-universal-EcoRI gtacatgaattGGGGAGGCGTTCGGGCCACAG		pGTag vector cloning	
	cGTTGTCTAGCAAGGAAGTGAaga	pGTag vector cloning	
	GGGAGGCGTTCGGGCCACAGCGGagagagatatatcaatgtcg	pGTag vector cloning	
F-3-uninco1	tgcaGcatggGGTTGTCTAGCAAGGAAGTGAaga	pGTag vector cloning	
	${ }^{\text {tegagcgegccgacatcCCATCGCTAGCGGG }}$	pGTag vector cloning	
	${ }^{\text {5 }}$ 5'phos cttraatcagttcctegccettag	pGTag vector cloning pGTag vector cloning	
F-B8fix	5'phos $\$ AATACGCAAACCGCCTCTCC & pGTag vector cloning \hline R-Bbfix & 5'phos\GGGCGCaCaTcCGctic & pGTag vector cloning \hline F-Bactix & 5'phos \TTTAAAAGTCAAACCACCATGACTG & pGTag vector cloning \hline R -Bactix & 5 'phos CTGGCAGTTCCTTCCTGTTAA & pGTag vector cloning \hline F-Bact-Ascl & ATATGTGGCGCGCCACGGACTGTTACCACTTCACG & pGTag vector cloning \hline ${ }^{\text {R-Bact-Nool }}$	ACAACGCCATGGTAATTTATTTAGC	pGTag vector cloning
F-gal4-Ecofix	${ }^{\text {5'phos laCAGATCTCTCGAGCGGccce }}$	${ }_{\text {pGTag vector cloning }}^{\text {pGTag vector cloning }}$	
$\frac{\text { R-gal4-Ecofix }}{\text { noto E1 guide }}$	5'phos ATTCCCGGGGTCGACCTCGA	pGTag vector cloning	
noto E2 guide	taatacgattcactataGGGAGCGCAGAGCTGGAGACgtttagagctagaa		
$t y \mathrm{~F}$ E guide	taatacgactactatagGTTCCTGTAGAGAGGGATGAgtttagagctagaa	gRNA oligo A	
cx43.4 E2 guide	taatacgactactataGGGCCATATCTTGCCCACGAgtttagagctagaa	gRNA oligo A	
esama E2 guide	taatacgacttactataGGATGTGATCCAAGGGAAGAgtttagagctagaa	gRNA oligo A	
msna E2 guide	taatacgattactataGGTTCCCTGTGGTG CTGGGTgtttagagctagaa	gRNA oligo A	
msna E6 guide	taatacgacttactataGGCTGGCACGAGGAGCACAAAgtttagagctagaa	gRNA oligo A	
anxaza E3 guide	taatacgattactataGGTGGATCAAAGTTGGCCTCgtttragagttagaa	gRNA oligo A	
flna E4 guide	taatacgattactataGGATTGAGTTTGGGCCTCAGgttttagagctagaa	gRNA oligo A	
aqp1a1 E1	taatacgattactataGGCTTTCTGGCGGGCCGTCCgtttagagctagaa	gRNA oligo A	
aqp8a1 E1	taatacgatteactataGGTGTCCGTCATGGGCAACGgttttagagctagaa	gRNA oligo A	
rb1 E 2 guide	taatacgactcactataGGAGAGGGAGATCAGATCGAgtttagagctagaa	gRNA oligo A	
rb1 E4 guide	taatacgattactataGGCACAGCAGAGTTCACTTTgtttagagctagaa	gRNA oligo A	
rb1 E 25 guide	taatacgacttactataGGCAAAGCGCAGCCTCTTCAgtttagagetagaa	gRNA oligo A	
kdrl E guide	taatacgactcactataGGCTAGCAGAAATGTGTCATg tttagagagagaa	gRNA oligo A	
kdrl E30 guide	taatacgattactataGGAGGACTCGTCCCTTGACTItttagagctagaa	gRNA oligo A	
s1pr1 E2a guide	taatacgactactataGGAGAACCAGAACATTTTCCgtttragagtagaa	gRNA oligo A	
s1pr1 E2b guide	taatacgactactataGGGAAACCATAGTGTCTTCTgtttagagctagaa	gRNA oligo A	
vegfaa E3 guide	taatacgactactataGGGGCAAGACCCGAGAGCTGCgtttagagctagaa	gRNA oligo A	
vegfaa E7 guide	taatacgacttactataGGGTTCGCTCGATCATCATCTgtttragagctagaa	gRNA oligo A	
mmp14a E1 guide	taatacgattactataGGACCAGAAACACACTTGCGgtttagagctagaa	gRNA oligo A	
mmp14a E10 guide	taatacgacttactataGGGAGCGGGCACAGATGAGGgtttagagctagaa	gRNA oligo A	
CRISPR Oligo B	AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC	Oligo B for gRNA synthesis	
noto E15' arm bait A			
12	gatccGacagaccrtrccctcrctccacctcrgcccteccg	Homology arm oligo	
noto E15' arm bait A			
24		Homology arm oligo	
noto E15' arm bait B			
noto E1 5' arm bait A			
noto E1 5' arm bait B			
48		Homology arm oligo	
noto E15' arm A 24	aattcGgGagcccacagctgcagachagaaahccatanccanccanacccctctcg	Homology arm oligo	
noto E15' arm B 24		Homology arm oligo	
noto E13' arm A 24		Homology arm oligo	
noto E1 3' arm B 24	ggcegGgcagcccrtccccccacagcganataigccacaccccagacctgcac	Homology arm oligo	
noto E1 5' arm A 48	GCGGaaaAGAGAACGAACAAACGCGTACCGGAGCATAACCAACCAAACGCCTGTC	Homology arm oligo	
noto E15' arm B 48	atccGACAGGCGTTTGGTTGGTTATGCTCCGGTACGCGTTTGTTCGTTCTCTttt	Homology arm oligo	
noto E1 3' arm A 48	aagTCCAGCTCTGCGcteccectrattractcGcacatcccacactrccccggg	Homology arm oligo	

Gene Targeting Protocol for Integrations with pGTag Vectors using CRISPR/Cas9

Targeting strategy (Figure 1):

A. Selection of a CRISPR/spCas9 target site downstream of the first AUG in the gene of interest
B. Synthesize sgRNA and spCas 9 mRNA
C. Injection of sgRNA and spCas9 mRNA
D. Testing for indel production/mutagenesis
E. Design short homology arms
F. One Pot Cloning of Homology Arms into pGTag Vectors
G. Injection of GeneWeld reagents (spCas9 mRNA, Universal sgRNA (UgRNA), genomic sgRNA and pGTag homology vector) into 1 -cell zebrafish embryos
H. Examine embryos for fluorescence and junction fragments

Figure 1. Targeting integration of the pGTag vectors into the 5' region of a gene. Upon CRISPR/Cas9 targeting and cutting of both the genome (with a sgRNA) and plasmid donor (with UgRNA), the genomic and plasmid DNA likely undergo end resection mediated by the MRN complex and Exol, resulting in annealing of complementary homology arms. This promotes precise homology-directed integration of cargo DNA at the CRISPR/Cas9 double-strand break.
A. Selection of a CRISPR/spCas9 target site downstream of the first AUG in the gene of interest

1. To select a CRISPR/Cas9 target site in a 5' exon, find and download the targeted gene's genomic and coding sequences.
a. At <ensemble.org> Search for the gene name of interest for the species of interest and open the Transcript page.
b. In the left-hand side bar click on "Exons" to find the first coding exon and initiation ATG. If there are alternative transcripts for the gene, make sure there are not alternative initiation ATGs. If there are alternative start codons, target the first 5' exon that is conserved in all transcripts to generate a strong allele.
c. Download the transcript and 5' exon to be targeted as separate sequence files.
d. Using ApE: http://biologylabs.utah.edu/jorgensen/wayned/ape/ annotate the coding sequence with the exons.
2. Use CRISPRScan (http://www.crisprscan.org/) (Moreno-Mateos et al., 2015) to efficiently identify target sites and generate oligos for sgRNA synthesis for the target gene.
a. Select the "Predict gRNAs" on the lower right-hand side of the home page of the CRISPRScan website.
b. Paste the 5 ' exon sequence into the indicated box. If the exon is very large, start with a small amount of sequence. Ideally exon sequence of ~ 200 bp near the desired target site. Do not design CRISPRs to intron/exon borders. If there are problems with the copy and pasting of exon sequence, first paste the sequence into a new ape file, save, then copy and paste from the new file.
c. Select "Zebrafish (Danio rerio)" as the species
d. Select "Cas9 - nGG" as the enzyme.
e. Select "In vitro T7 promoter".
f. Click on "Get sgRNAs." Examine the output. The generated targets are ranked by CRISPRScan from high to low. Select a target site (the 20 bp that are capitalized in the oligo column) from those given by CRISPRScan using the following criteria (The best gRNAs will have all of these):
i. An exact match to the genomic locus., When an oligo is clicked on the page will display additional information to the right. In the section called "Site Type" any mismatches in the oligo are displayed. Exact matches including 5'GG- are ideal for in vitro transcription and 100\% genomic target match.
ii. The target is in the desired location of the gene.
iii. The Target is on the reverse (template) strand. Reverse strand guides are more favorable, but either will work
iv. A high CRISPRScan score, and a lower CFD score. However, lower score sgRNA targets may work fine.
g. Annotate the selected target sequence in the transcript sequence files.
h. For sgRNA synthesis the entire oligo sequence from CRISPRscan containing the selected target will need to be synthesized. This oligo is represented as "Oligo A" in Figure 2.

Figure 2. Cloning-free gRNA synthesis. Oligo A is composed of the T7 promoter at the 5' end, target sequence for gRNA, and gRNA overlap sequence for gRNA synthesis. CRISPRScan provides direct output for Oligo A. The strategy for gRNA production using Oligo A is based on (Varshney et al., 2015).
3. Alternative to CRISPRScan: Designing "CRISPR Oligo A" from a genomic target sequence. Skip this section if Oligo A was designed with CRISPRScan.

If the target sequence was identified using tools other than CRISPRScan, Oligo A can be designed manually. (Note: CRISPRScan will use a shorter overlap region but this does not affect template production). Add T7 and Overlap sequences (see Figure 2) to the 20 bp of target sequence without the PAM. Oligo A for the targeted gene will look like the example below:

5'-TAATACGACTCACTATAGGNNNNNNNNNNNNNNNNNNGTTTTAGAGC TAGAAATAGC-3'

The sequences in blue (first 17 characters) are the T7 promoter, the grey GG are part of the T7 promoter and ideally are part of the target sequence (see below), the Ns are the target
sequence, and the sequence in green (last 20 characters) are the overlap region to synthesize the non-variable part of the sgRNA. The T7 promoter works optimally with the two grey GGs, however, these GGs will be transcribed by T7 and thus become a part of the sgRNA. Target sequences that contain the GGs may work better, but there are differing reports in the literature on the importance of this (Moreno-Mateos et al., 2015). If possible, select a target that starts with GG. Refer to Moreno-Mateos et al., 2015 for other gRNA architectures with variations on the 5'GG motif.
a. If the target sequence did not have two Gs at the beginning, additional G's will need to be added to the start of the target sequence for efficient transcription as outlined below:
*The lower case ' g ' is an extra ' G ' not in the genomic sequence; the upper-case G is in the genomic. Lower case gs will not base pair with the genomic target.
i. without GG: ggN NNN NNN NNN NNN NNN NNN N (22 bp) - 2 bases are added,
ii. with one G: gGN NNN NNN NNN NNN NNN NNN (21 bp) - one base is added, G is part of the target sequence.
iii. with two G: GGN NNN NNN NNN NNN NNN NN (20 bp) - no bases are added, GG is part of the target sequence.
Oligo A is made by taking this target sequence with 5 'GG and pasting it into a clean file.
b. Copy and paste the T7 promoter sequence to the 5 ' end of the target sequence: TAATACGACTCACTATA
c. Copy and paste the Overlap sequence to the 3' end of the target sequence: GTTTTAGAGCTAGAAATAGC
d. Check the sequences to ensure they are correct and that the PAM is NOT present in this oligo.
4. Oligo B design (Figure 2) contains the conserved guide RNA sequence: All Oligo Bs will be the same and can be ordered in large quantities.

5'-GATCCGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTT AACTTGCTATTTCTAGCTCTAAAAC-3'

5. To increase yield of the sgRNA synthesis the primers "T7 primer" (5'-TAATACGACTCACTATA-3') and "3'gRNA primer" (5 '- GATCCGCACCGACTCGGTG-3') are also required.
6. For checking for mutagenesis at the target site, design ~ 20 bp DNA primers for PCR amplification to amplify at least 130 bp of DNA surrounding the target site. Mutagenesis is estimated through comparison of PCR products from injected and uninjected embryos, by visualizing small insertions and/or deletions (Indels) using electrophoresis, or by sequencing.
a. Primer 3 is used for primer design: http://biotools.umassmed.edu/bioapps/primer3 www.cgi
b. Paste DNA sequence surrounding the target site into the web interface. It is recommended to use 160 - 300 bp of exon sequence centered on the cut site for
primer design. Intron sequence can be used, but this often contains polymorphisms that can lead to amplification failure.
c. Locate the target sequence, including the PAM sequence (italicied below), and predict the cut site (3 bp into the target sequence from the PAM represented here by the ' x '). Mark the targeted exon sequence approximately $65-150 \mathrm{bp}$ on both sides of the cut site by putting [square brackets] around it. Primer3 will design primers outside this sequence. This design allows the primers to be used for both checking of mutagenesis and for junction fragment analysis when checking for integration.

Example:
CGGCCTCGGGATCCACCGGCC[AGAATCGATATACTACGATGAACAGAGCAAATTT GTGTGTAATACGGTCGCCACCATGGCCTxCCTCGGTTTGCTACGATGCATTTGCAC CACTCTCTCATGTCCGGTTCTGGG]AGGACGTCATCAAGGAGTTCATGCGCTTCAA GGTGCGCATGGAGGGCTCCGTGAAC
d. Set the "Primer Size" variables to Min = 130, Opt = 170, and Max = 300. Everything else can be left at the defaults.
e. Click on "Pick Primers"
f. Select primers from the output. Note the "product size" expected and the "tm" or melting temperature of each primer/pair. Smaller product sizes are easier to visualize mutagenesis.

B. Synthesize the sgRNA

General guidelines and good laboratory practices for working with DNA and RNA. DNA, RNA and the enzymes are sensitive to contamination from dust and skin. Following these guidelines will prevent the degradation of the DNA and RNA you are trying to make:

- Be clean. Clean the workbench, pipetmen, racks, and centrifuges with RNase Away or something equivalent.
- Wear gloves and change when contaminated. Contamination will occur when gloves contact hair, face, skin, or the floor.
- Keep everything on ice unless the protocol indicates otherwise.
- Centrifuge components to the bottom of the tube before use, after mixing, after use, and after incubation steps.
- Do not vortex enzymes. Gently flick the tube or pipet up and down to mix samples.
- Avoid touching the walls of the tube when pipetting.
- Use a new pipette tip for each new dip.
- Dispense solutions from a pipet to the bottom of the tube, or into the liquid at the bottom of the tube when setting up reactions.
- Only remove 1.5 ml centrifuge tube and PCR tubes from their package while wearing gloves. Reseal the tube package after tubes are removed.

Assembly of CRISPR Oligos A + B into a Transcription Template

1. For synthesis of the gRNA from Oligo A and B, make a $100 \mu \mathrm{M}$ freezer stock and $1 \mu \mathrm{M}$ working stock for each oligo. All oligos are described in Section A starting on page 7.
2. Centrifuge ordered oligos briefly before opening, to move all dried DNA flakes to the bottom of the tube.
3. Add a volume ($x \mu \mathrm{~L}$) of RNase-free water to make a $100 \mu \mathrm{M}$ stock. The tubes should be labeled with the gene name as well as the number of nmol in the tube. The amount of water to be added will need to calculated based on the nanomoles of material contained within.
4. Vortex for 30 seconds.
5. Centrifuge briefly.
6. Make a 100 -fold dilution of each $100 \mu \mathrm{M}$ stock Oligo A and B in separate 1.5 ml tubes.
a. Label one 1.5 mL centrifuge tube per Oligo A with name of oligo, date, and " $1 \mu \mathrm{M}$ " to indicate working stocks.
$1 \mu \mathrm{~L}$ of $100 \mu \mathrm{M}$ Oligo A stock or Oligo B
$99 \mu \mathrm{~L}$ of RNF-water
$100 \mu \mathrm{~L}$ total
b. Vortex.
c. Briefly centrifuge.
d. Store all stocks in freezer at $-20^{\circ} \mathrm{C}$ for long-term storage.
7. Set up the following reaction in PCR tubes. The next two steps will generate a short segment of DNA (gDNA or guideDNA Template) which will be used as a template for synthesis of RNA:
$12.5 \mu \mathrm{~L}$ 2X KOD Master Mix
$1 \mu \mathrm{~L}$ Oligo A ($1 \mu \mathrm{M}$)
$1 \mu \mathrm{~L}$ Oligo B ($1 \mu \mathrm{M}$)
1 uL T7 primer ($10 \mu \mathrm{M}$)
1 uL gRNA 3' primer ($10 \mu \mathrm{M}$)
$8.5 \mu \mathrm{~L}$ RNF-water
$25 \mu \mathrm{~L}$ total
8. Run PCR under the following conditions:

Denature at $98^{\circ} \mathrm{C}$ for 2 minutes
Denature at $98^{\circ} \mathrm{C}$ for 30 sec .
Anneal at $50^{\circ} \mathrm{C} 30 \mathrm{sec}$.
Extend at $70^{\circ} \mathrm{C} 30 \mathrm{sec}$.
Go to (step 2) nine times.
Extend at $70{ }^{\circ} \mathrm{C} 2 \mathrm{~min}$
Hold $4{ }^{\circ} \mathrm{C}$ forever.
9. Run 1.2% agarose gel in 1 X TAE to check that the template was synthesized:
a. Remove $3 \mu \mathrm{~L}$ of the reaction and place in a 1.5 ml tube.
b. Mix in $1 \mu \mathrm{~L}$ of 6 x loading buffer.
c. Load all $4 \mu \mathrm{~L}$ of the sample on the gel. Run the gel at 125 V for 30 minutes. Be sure
to load a molecular weight marker.
d. Check on the transilluminator and image the gel.
e. A single 120 bp band should be detected when $3 \mu \mathrm{~L}$ is loaded on gel.

In vitro transcription (IVT) using the gRNA template

1. Use the Ambion T7 Megascript Kit for transcription reagents, but follow the instructions below.
2. Thaw the T7 10X Reaction Buffer and RNF-water at room temperature, and thaw the ribonucleotides solutions on ice.
3. Vortex the T7 10X Reaction Buffer to make sure all DTT is solubilized. No white flecks should be visible.
4. Microcentrifuge all reagents briefly before opening to prevent loss of reagents and/or contamination by materials that may be present around the rim of the tube(s).
5. Keep the T 7 Enzyme Mix on ice or in a $-20^{\circ} \mathrm{C}$ block during assembly of the reaction.
6. Make a master mix for each reaction. Assemble the reaction at room temperature on the bench. Add reagents from largest to smallest volume, adding the 10X Reaction Buffer second to last and the T7 Enzyme Mix last.

Note: Components in the transcription buffer can lead to precipitation of the template DNA if the reaction is assembled on ice. If the reaction precipitates, the synthesis reaction will not fully occur.
7. Reagent list:
$10 \mu \mathrm{~L}$ of RNF-water
$5 \mu \mathrm{~L}$ of gDNA template (100 to 500 ng total)
$4 \mu \mathrm{~L}$ of NTP ($1 \mu \mathrm{l}$ of each; A, U, C, G)
$1 \mu \mathrm{~L}$ of 10 x transcription buffer - must be fully resuspended at room temp
$1 \mu \mathrm{~L}$ of T 7 polymerase enzyme mix
8. Incubate at $37^{\circ} \mathrm{C}$ for 4 to 16 hours. Longer incubations result in considerably better yields.
9. Add $1 \mu \mathrm{~L}$ of Turbo DNAse and incubate for 15 min at $37^{\circ} \mathrm{C}$. This will digest the template DNA in the sample.
10. Optional quality control step: Run $2 \mu \mathrm{~L}$ of sample on a 1.2% gel in 1X TAE.
a. Clean the gel box, comb and tray with RNase Away, rinse with DI water.
b. Remove $2 \mu \mathrm{l}$ of sample into a clean 1.5 ml (Keep RNA on ice!)
c. Add $3 \mu \mathrm{~L}$ of RNF-water and 5 uL of Ambion RNA loading buffer with formamide.
d. Vortex briefly.
e. Spin down samples briefly.
f. Run all of this mixture on a 1.2% agarose gel/1X TAE, at 100 V for 1 hour.
g. Image gel. 2 bands should be visible at ~ 100 and 120 bp.

Purification of guide RNA

1. Use the miRNeasy Qiagen kit for purification of gRNAs according to the manufacturer's instructions.
2. After Purification verify presence of RNA by running a 1.2% gel in $1 \times$ TAE.
3. Clean the gel box, comb and tray with RNase Away, rinse with DI water. Run on a 1.5% agarose gel/1X TAE, at 100 V for 1 hour as above.
4. Image gel. 2 bands should be visible at ~ 100 and 120 bp .
5. Nanodrop the RNA sample to determine the concentration.
6. Store RNA at $-20^{\circ} \mathrm{C}$.

Preparation of SpCas9 mRNA

1. Digest $\sim 5-10 \mu \mathrm{~g}$ pT3TS-nCas9n plasmid with Xba1 (plasmid Addgene \#46757 (Jao et al., 2013)).
2. Purify digested DNA with Qiagen PCR cleanup kit or Promega PureYield Plasmid Miniprep System. Elute in RNF-water.
3. Run $100-500 \mathrm{ng}$ on 1.2% agarose gel in 1 X TAE to confirm the plasmid is linearized.
4. Use 100 ng to $1 \mu \mathrm{~g}$ DNA as template for in vitro transcription reaction.
5. Use mMESSAGE mMACHINE T3 kit Life Technologies (AM1348) and follow the instructions in the manual.
6. Use the miRNeasy Qiagen kit for purification of nCas9n mRNA according to the manufacturer's instructions.
7. Verify mRNA integrity by mixing 1 uL of purified Cas $9,4 \mu \mathrm{~L}$ of RNF water, $5 \mu \mathrm{~L}$ glyoxl dye (Ambion).
8. Heat mixture at $50^{\circ} \mathrm{C}$ for 30 minutes, then place on ice.
9. Clean the gel box, comb and tray with RNase Away, rinse with DI water.
10. Run all $10 \mu \mathrm{~L}$ of RNA mixture on 1.2% agarose gel in 1 X TAE at 100 V for 1 hour as above. One band should be visible at 4.5 kb .
11. Nanodrop the RNA sample to determine the concentration. Concentrations between 0.45 and $1 \mu \mathrm{~g} / \mu \mathrm{L}$ are expected.
12. Aliquot and store RNA at $-80^{\circ} \mathrm{C}$.

C. Injection of sgRNA and spCas9 mRNA

The injections here are designed to deliver 25 pg of gRNA and 300 pg of Cas9 mRNA in 2 nL of
fluid to embryos at one-cell stage.
Injection trays are cast with 1.2\% agarose with 1X embryo media (Zebrafish Book; zfin.org) in polystyrene petri dishes (Fisher No. FB0875713). Injection trays can be used multiple times and stored at $4^{*} \mathrm{C}$ for up to three weeks between use.

1. Trays are pre-warmed to $28.5^{\circ} \mathrm{C}$ prior to injection by placing them in the $28.5^{\circ} \mathrm{C}$ incubator. Try to mitigate tray cooling while not in use.
2. Glass needles are pulled from Kwik-Fil borosilicate glass capillaries (No. 1B100-4) on a Flaming/Brown Micropipette puller (Model P-97).

Injection samples are made to contain the following diluted in RNF water or injection buffer (final concentration: 12.5 mM HEPES pH 7.5, 25 mM Potassium Acetate, 37.5 mM Potassium Chloride, 0.0125 \% glycerol, 0.025 mM DTT ph 7.5)

a. $12.5 \mathrm{ng} / \mu \mathrm{L}$ of genomic gRNA

b. $150 \mathrm{ng} / \mu \mathrm{L}$ of mRNA for Cas9
3. Needles are loaded with 1.5 to $2.5 \mu \mathrm{~L}$ of sample, and then loaded onto a micromanipulator attached to a micro injector (Harvard Apparatus PLI - 90) set to 30-40 PSI with an injection time of 200 msec.
4. Needles are calibrated by breaking the end of the tip off with sterile tweezers, ejecting 10 times to produce a droplet of fluid, collecting the droplet into a $1 \mu \mathrm{~L}$ capillary tube (Drummond No. 1-000-0010), and measuring the distance from the end of the capillary to the meniscus of the droplet. This distance is converted to volume (where $1 \mathrm{~mm}=30$ nL) and adjusted to achieve an effective injection volume of 2 nL . Volumes are adjusted by changing the injection time. There is a linear relationship between volume and time at a set pressure. Avoid injection times less than 100 msec and over 400 msec .
5. One cell embryos that have been collected from mating cages are pipetted from collection petri dishes to the wells on the injection tray.
6. Use the micro-manipulator and microscope to pierce the one-cell of embryos on the injection tray at an angle of 30° with the needle. Inject 2 nL of sample in the one-cell near the center of the cell-yolk boundary.
7. After embryos have been injected, wash them from the injection tray into a clean petri dish with embryo media.
8. Keep 20-40 embryos separate as uninjected controls. Treat and score the control embryos in the same way as the injected embryos.
9. At 3-5 hrs post injection remove any unfertilized or dead embryos from the dishes. This will prevent death of the still developing embryos.

D. Testing for indel production/mutagenesis

Phenotypic scoring of embryos

1. The gRNA itself may be toxic to the developing embryos. Injection toxicity can be estimated by the number dead embryos from a round of injection compared to the uninjected control dish. Count and remove any brown/dead embryos from injected and uninjected dishes. If there are significantly more dead embryos in the injected dish then the guide may be toxic, impure, or very effective at disrupting a required gene. Reducing the amount of guide or Cas9 mRNA injected may help reduce toxicity.
2. Score and document embryonic phenotypes on days 1-4 post fertilization (dpf). Under a dissection microscope examine the un-injected controls and injected embryos, and sort the embryos into categories.
3. Scoring categories

- -Severe- These embryos have some parts that look like a control embryos, but are missing key features. Examples: embryos that lack their head, eyes, or tail, or embryos that have an unnaturally contorted shape or are asymmetric.
- -Mild- These embryos appear mostly normal, but have slight defects such as small eyes, pericardial edema, shortened trunk/tail, or curled/twisted tails.
- -Normal- appears normal and similar to controls.

Digestion of embryos for isolation of genomic DNA for mutagenesis analysis

Genomic DNA (GDNA) can be isolated from zebrafish embryos aged between 1 and 5 dpf using this protocol. Embryos can be analyzed as individuals or as pools (maximum 5) from the same injection.

1. Dechorionate embryos, if they have not emerged from the chorion.
2. It is recommended to screen a minimum of 3 embryos from each scoring category for mutagenesis. Place each embryo, including controls, into separate PCR tubes. Remove as much of the fish water as possible. If needed, spin briefly and remove additional water.
3. Add $20 \mu \mathrm{~L}$ of 50 mM NaOH per embryo.
4. Heat the embryos at $95^{\circ} \mathrm{C}$ in a thermocycler for 15 minutes.
5. Vortex samples for 10 seconds. Be sure that the tubes are sealed to prevent sample loss while vortexing.
6. Spin samples down and heat for an additional 15 min at $95^{\circ} \mathrm{C}$ in a thermocycler.
7. Vortex samples and then spin the tubes down again. The embryos should be completely dissolved.
8. Neutralize the samples by adding $1 \mu \mathrm{~L}$ of 1 M Tris pH 8.0 per $10 \mu \mathrm{~L} \mathrm{NaOH}$. Mix by vortexing then spin down.
9. Genomic DNA should be kept at $4^{\circ} \mathrm{C}$ while in use and stored at $-20^{\circ} \mathrm{C}$.

Analysis of CRISPR/Cas9 mutagenesis efficiency at targeted gene locus.

1. Set up the following PCR reactions for each tube of digested embryos using the primers designed at the end of section A, page 10.
```
12.5 \muL of 2x GoTaq Mastermix
1 \muL of Forward Primer (10 uM)
1 \muL of Reverse Primer (10 uM)
1 \mu\textrm{L}\mathrm{ of gDNA template (digested embryos)}
9.5 \mu\textrm{L}\mathrm{ of nuclease-free water}
25 \mu\textrm{L}\mathrm{ total}
```

2. Vortex and briefly spin down the PCR reactions.
3. Run the following PCR program to amplify the targeted locus.

$95^{\circ} \mathrm{C}$	2 minutes	
$95^{\circ} \mathrm{C}$	30 seconds	$]$
$55^{\circ} \mathrm{C}$	30 seconds	$] \times 35$ cycles
$72^{\circ} \mathrm{C}$	30 seconds	$]$
$72^{\circ} \mathrm{C}$	5 minutes	
$4^{\circ} \mathrm{C}$	hold	

*if the primers were designed with higher or lower tm's than the annealing temperature in line three, then that temperature will need to be adjusted to $2^{\circ} \mathrm{C}$ below the designed primer tm.
4. Run up to $7 \mu \mathrm{~L}$ of PCR product on a 3.0% agarose gel, 1 X TAE, for 1 hr at $80-100 \mathrm{~V}$.
5. Analyze the gel for DNA bands that appear diffuse or different in size from the control lane. This indicates that the presence of indels in the gene of interest
6. Alternatively clone and sequence PCR products or sequence them directly to verify the presence of indels.

E. Design short homology arms

Homology directed gene targeting allows the integration of exogenous DNA into the genome with precision to the base pair level. However, designing and cloning individual targeting vectors and homology arms for each gene of interest can be time consuming. The pGTag vector series provides versatility for ease of generation of knockout alleles (Figure 3). The vectors contain BfuAl and BspQI type II restriction enzymes for cloning of short homology arms (24 or 48 bp) using Golden Gate cloning. The pGTag vectors require in-frame integration for proper reporter gene function. The reporter gene consists of several parts. First, a 2A peptide sequence causes translational skipping, allowing the following protein to dissociate from the locus peptide. Second and third, eGFP, TagRFP, or Gal4VP16 coding sequences for the reporter protein have a choice of sequence for localization domains, including cytosolic (no) localization, a nuclear localization signal (NLS), or a membrane localization CAAX sequence. Finally translation is terminated by one of two different polyadenylation sequences (pA); a β-actin pA from zebrafish or the SV40pA.

For many genes, the signal from integration of the report protein is too weak to observe. In these cases the Gal4VP16 vector allows for amplification of the report to observable expression levels in FOs and subsequent generations. A 14XUAS/RFP Tol2 plasmid is provided to make a transgenic line for use with the Gal4VP16 vector.

Sequence maps for these plasmids can be downloaded at www.genesculpt.org/gtaghd/

A GTag vector:

B Cargo Suite:

Figure 3. The pGTag vectors allow one step cloning of homology arms.
All vectors can be obtained through Addgene (www.addgene.org). Because the pGTag plasmids contain repeated sequences, they may be subject to recombination in certain strains of bacteria. It is strongly recommended that they are propagated at $30^{\circ} \mathrm{C}$ to reduce the possibility recombination.

The web tool, GTagHD www.genesculpt.org/gtaghd/, allows for quick design of cloning ready homology arm oligos for a gene of interest.
To use the tool, choose the "Submit Single Job" tab. Follow the instructions in the tab.
There should be 4 oligos (two pairs that will be annealed) generated that should be ordered for cloning. If there are any problems with the sequences and values that were entered, the web page will display the errors and give advice on how to fix them.

The following protocol describes how to design homology arm oligos manually:
Note In the following section when orientation words are used, they are used in the context of the reading frame of the genetic locus of interest. Example: A 5' template strand CRISPR means that the target site for the CRISPR is on the template strand at the locus and is toward the 5^{\prime} end of the gene. Upstream homology domains are 5' of the CRISPR cut and downstream homology domains are 3 ' of the cut with respect to the gene being targeted. Also note: Upper case and lower case bases are not specially modified; they are typed the way they are as a visual marker of the different parts of the homology arms.

For the Upstream Homology Domain

1) Open the sequence file for the gene of interest and identify the CRISPR site. (In this example it is a Reverse CRISPR target in Yellow, the PAM is in Orange, coding sequence is in purple)
Copy the 48 bp 5 ' of the CRISPR cut (the highlighted section below) into a new sequence file; this is the upstream homology.

2) Observe the next three bases immediately upstream of the 48 bp of homology, and pick a base not present to be the 3 bp spacer between the homology and the Universal PAM in the vector. (Here the three bases are "GGA" so "ccc" was chosen for the spacer)
Add the spacer to the new file 5' (in front) of the homology, see below. The spacer acts a nonhomologous buffer between the homology and the eventual 6 bp flap from the universal guide sequence that will occur when the cassette is liberated and may improve intended integration rates over MMEJ events.

3) Determine where the last codon is in the homology. Here the 3 ' G in the homology domain is the first base in the codon cut by this CRISPR target. Complete the codon by adding the remaining bases (called padding on GTagHD) for that codon from your sequence to ensure your integration event will be in frame.

4) Add the BfuAl enzyme overhang sequences for cloning, to the ends of the homology domain. 5'-GCGG and 3'-GGAT. (Here both overhangs are added to prevent errors in copying sequence for the oligos in the next two steps.)

5) The Upstream Homology Oligo A will be this sequence from the beginning to the end of the last codon (see highlighted below). Copy and paste this sequence into a new file and save it. In this example this oligo sequence is 5 '-
GCGGcccGTTTTCTTACGCGGTTGTTGGATGAAATCTCCAACCACTCCACCTTCGtg-3'.

6) The Upstream Homology Oligo B will be the reverse compliment of this sequence from beginning of the spacer to the end of the sequence (see highlighted below). Copy the reverse compliment, paste it into a new file, and save it. In this example this oligo sequence is 5^{\prime} -ATCCcaCGAAGGTGGAGTGGTTGGAGATTTCATCCAACAACCGCGTAAGAAAACggg-3'.

For the Downstream Homology Domain
7) Open sequence file for the gene of interest and identify the CRISPR site. (Reverse CRISPR target in Yellow, PAM in Orange, coding sequence is in purple)
Copy the 48 bp 3 ' of the CRISPR cut into a new sequence file; this is the downstream homology.

8) Observe the next three bases downstream of the 48 bp of homology, and pick a base not present to be the 3 bp spacer between the homology and the Universal PAM in the vector. (Here the bases are "CTG" so "aaa" was chosen for the spacer.) Add the spacer to the new file 3' of (after) the homology.

9) Add the BspQl enzyme overhang sequences for cloning, to the ends of the homology domain. 5'-AAG and 3'-CCG. (Here both overhangs are added to prevent errors in copying sequence for the oligos in the next two steps.)

10) The Downstream Homology Oligo A will be this sequence from the beginning of the sequence to the end of the spacer (see highlighted below). In this example this oligo sequence is 5'-AAGTGGGCAAGATATGGCTCACGTTATTCATCATCTTCCGCATTGTTTTGAaaa-3'.

11) The Downstream Homology Oligo B (will be the reverse compliment of this sequence from the beginning of the homology to the end of the sequence (see highlighted below). In this example this oligo sequence is 5^{\prime} -
CGGtttTCAAAACAATGCGGAAGATGATGAATAACGTGAGCCATATCTTGCCCA-3’

$\stackrel{\rightharpoonup}{*}$	*	10	*	20	*	30	*	40	*	50	*	60	*	70	*	80
1				ACGITATTCATCATCITCCECATTGITTTGAaaCCCE												

F. One Pot Cloning of Homology Arms into pGTag Vectors

**Note if the homology arm oligos contain either the sequence " 5 '-ACCTGC-3"" or " 5 '-GAAGAGC-3'" (or their compliments) the cloning reaction will be less efficient. *Note some sequences just don't work very well. Ligation is more efficient with annealed homology arms and the purified $\sim 1.2 \mathrm{~kb}$ and $\sim 2.4 \mathrm{~kb}$ fragments from vectors that have been digested with BfuAl and BspQI. If problems are encountered, one homology arm can also be cloned sequentially.

1. Homology Arm Annealing

Anneal upstream and downstream homology oligo pairs separately:

```
4.5 \mu\textrm{L}\mathrm{ oligo A at }10\textrm{uM}
4.5 \mu\textrm{L}\mathrm{ oligo B at }10\textrm{uM}
4 L 10x Buffer 3.1 from NEB
27 \mu\textrm{L dH2O}
total = 40 \muL
```

Incubate at $98^{\circ} \mathrm{C}$ for $4 \mathrm{~min}, 98^{\circ} \mathrm{C} 45 \sec \times 90$ steps decrementing temp $1^{\circ} \mathrm{C} / \mathrm{cycle}$, $4^{\circ} \mathrm{C}$ hold
(Alternatively heat in $95-98^{\circ} \mathrm{C}$ water for 5 minutes, and then remove the boiling beaker from the heat source and allow it to cool to room temp for 2 hours, before placing samples on ice.)
2. 1-Pot Digest

Assemble the following:
$4.0 \mu \mathrm{~L} \mathrm{dH} 2 \mathrm{O}$
$2 \mu \mathrm{~L}$ Plasmid at $50 \mathrm{ng} / \mathrm{uL}$
$1 \mu \mathrm{~L} 10 \mathrm{x}$ Buffer 3.1 from NEB
$1 \mu \mathrm{~L} 5$ ' annealed homology arm
$1 \mu \mathrm{~L} 3$ ' annealed homology arm
$0.5 \mu \mathrm{~L}$ BfuAl enzyme from NEB
$0.5 \mu \mathrm{~L}$ BspQI enzyme from NEB
10 uL total
Incubate at $50^{\circ} \mathrm{C}$ for 1 hr , place on ice.
3. Ligation

Add the following:
3 uL $5 x$ T4 quick ligase buffer
1.5 uL dH2O
0.5 uL T4 quick ligase

15 uL total
Incubate 8-10 min at room temperature (to overnight). Store at $-20^{\circ} \mathrm{C}$,
4. Transformation
a. On ice, thaw 1 (one) vial competent cells $(50 \mu \mathrm{~L})$ for every 2 ligation reactions. (approx. 5 min). It is recommended to use NEB Stable Competant E. coli (C3040H) cells to limit recombination.
b. While cells are thawing, label the microcentrifuge tubes for each ligation and put on ice.
c. Once the cells are thawed, use a pipette to transfer $25 \mu \mathrm{~L}$ of the competent cells into each labeled tube.
d. Add $1.5 \mu \mathrm{~L}$ of a ligation reaction into competent cells to transform.
a. Amount of ligation reaction added should be less than 5% of volume of competent cells.
e. Mix by tapping the tube several times or gently mixing with the pipet tip.
a. Do NOT mix by pipetting, this will lyse the cells.
f. Incubate on ice for 5 to 20 minutes.
g. Heat shock the cells by submerging the portion of the tube containing the cells in a $42^{\circ} \mathrm{C}$ water bath for $40-50$ seconds.
h. Incubate cells on ice for 2 minutes.
i. Add $125 \mu \mathrm{~L}$ of room temperature LB to each transformation.
j. Incubate cells at $30^{\circ} \mathrm{C}$ for 1-1.5 hour(s) in a shaking incubator.
k. While the transformed cells are recovering, spread $40 \mu \mathrm{~L}$ of X -Gal solution, and 40 $\mu \mathrm{L}$ IPTG 0.8 M on LB Kanamycin selection plates.
a. X-Gal is lethal to cells while wet, it is recommended to first label the plates and then place them in a $30^{\circ} \mathrm{C}$ incubator to dry.
I. After recovery and the X-Gal is dry, Plate $150 \mu \mathrm{~L}$ of each transformation on the corresponding correctly labeled plate.
m . Incubate plates overnight at $30^{\circ} \mathrm{C}$.
5. Growing colonies

Pick 3 white colonies from each plate and grow in separate glass culture tubes with 3 mL LB/Kanamycin.

Or to pre-screen colonies by colony PCR:
a. Pick up to 8 colonies with a pipet tip and resuspend them in separate aliquots of $5 \mu \mathrm{~L}$ dH 2 O . Place the tip in 3 ml of $\mathrm{LB} / \mathrm{Kan}$, label, and store at $4^{\circ} \mathrm{C}$.
b. Make a master mix for your PCR reactions containing the following amounts times the number of colonies you picked.
$7.5 \mu \mathrm{~L} 2 \mathrm{x}$ Gotaq mastermix
$5.5 \mu \mathrm{~L} \mathrm{dH} 2 \mathrm{O}$
$0.5 \mu \mathrm{~L}$ primer at 10 uM "F3'-check" 5'- GGCGTTGTCTAGCAAGGAAG -3'
$0.5 \mu \mathrm{~L}$ primer at 10 uM " 3 '_pgtag_seq" 5 '-ATGGCTCATAACACCCCTTG-3'
$14 \mu \mathrm{~L}$ total
c. Aliquot $14 \mu \mathrm{~L}$ of mixed master mix into separate labeled PCR tubes.
d. Add $1 \mu \mathrm{~L}$ of colony to each reaction as template.
e. or 20 ng purified plasmid as control.
f. Cycle in a thermocycler

$95^{\circ} \mathrm{C}$	2 minutes	
$95^{\circ} \mathrm{C}$	30 seconds	$]$
$57^{\circ} \mathrm{C}$	30 seconds	$] \times 35$ cycles
$72^{\circ} \mathrm{C}$	30 seconds	$]$
$72^{\circ} \mathrm{C}$	5 minutes	
$4^{\circ} \mathrm{C}$	hold	

g. Run $5 \mu \mathrm{~L}$ of PCR product on a 1% agarose gel. You should get bands that are a different size than the control.
6. Mini Prep Cultures

Follow Qiagen Protocol
7. Sequencing of Plasmids

The 5' homology arm can be sequenced by the 5'_pgtag_seq primer:
5'-GCATGGATGTTTTCCCAGTC-3'.
The 3' homology arm can be sequenced with the " 3 '_pgtag_seq"primer:
5'-ATGGCTCATAACACCCCTTG-3'.
G. Injection of GeneWeld Reagents (spCas9 mRNA, Universal sgRNA (UgRNA), genomic sgRNA and pGTag homology vector) into 1-cell zebrafish embryos

Prepare and collect the following reagents for injection

1. Prepare nCas9n mRNA from pT3TS-nCas9n (Addgene \#46757 from (Jao et al., 2013)) as described above (page 14).
2. Synthesize UgRNA and purify as described above (page 11) using the following oligo A :

5'-TAATACGACTCACTATAGGGAGGCGTTCGGGCCACAGGTTTTAGAGCTAGAAATAGC-3'

Corresponding to the universal target sequence: GGGAGGCGTTCGGGCCACAG
Alternatively, the UgRNA can be directly ordered form IDT and resuspended in RNF water.

5'-GGGAGGCGUUCGGGCCACAGGUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGG CUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGCGGAUC-3'

3. The pGTag homology vectors should be purified a second time prior to microinjection under RNase free conditions with the Promega PureYield Plasmid Miniprep System beginning at the endotoxin removal wash and eluted in RNF water.

Embryo Injections for Integration of pGTag vectors

Injections are performed as previously described in 2 nl per embryo with the addition of the UgRNA and targeting pGTag DNA.

Final per embryo:
150 pg of nCas9n mRNA
25 pg of genomic gRNA
25 pg of UgRNA
10 pg of pGTag DNA

Injection mixture:
$75 \mathrm{pg} / \mathrm{nl}$ of nCas 9 n mRNA
$12.5 \mathrm{pg} / \mathrm{nl}$ of genomic gRNA
$12.5 \mathrm{pg} / \mathrm{nl}$ of UgRNA
$5 \mathrm{pg} / \mathrm{nl}$ of pGTag DNA

H. Examine embryos for fluorescence and junction fragments

Embryos are examined for fluorescence under a Zeiss Discovery dissecting microscope with a 1X objective at 70-100X magnification. If weak signals are observed, embryos are manually dechorionated, and viewed on glass depression well slides. If no or weak signals were observed, Gal4VP16 integrations are attempted in a 14XUAS-RFP background. Embryos displaying widespread fluorescence in expression domains consistent with the targeted gene are examined for junction fragments or raised to adulthood for outcrossing.

FO Junction fragment analysis between the genomic locus and the targeting vector is carried out by isolating DNA from embryos followed by PCR. The following primers are used for junction fragment analysis and must be paired with gene specific primers (5' to 3^{\prime}):

5' pGTag junctions:

R-Gal4-5'juncM
R-RFP-5'junc
R-eGFP-5'-junc
3' pGTag junctions:
with a gene specific forward primer

CCTTAATCAGTTCCTCGCCCTTAGA GCTGAACTTGTGGCCGTTTA

F-Gal4-3'juncM	GCAAACGGCCTTAACTTTCC	with a gene specific reverse primer
F-Gal4-3'juncJ	CTACGGCGCTCTGGATATGT	
F-RFP-3'junc	CGACCTCCCTAGCAAACTGGGG	
F-eGFP-3'junc	ACATGGTCCTGCTGGAGTTC	

PCR amplification of junction fragments can be a result of artifacts (Won and Dawid, 2017), so it is important to carryout control amplifications with injected embryos that lack the genomic gRNA. FO analysis by PCR of junction fragments is carried out to examine correct targeting. F-Gal4-3'juncM and F-Gal4-3'juncJ are two alternate primers for amplification of junction fragments from the Gal4 cassette due to gene specific mis-priming depending on the target loci.
$7.5 \mu \mathrm{~L} 2 x$ Gotaq mastermix
$5.5 \mu \mathrm{~L} \mathrm{dH} 2 \mathrm{O}$
$0.5 \mu \mathrm{~L}$ primer at 10 uM genomic primer
$0.5 \mu \mathrm{~L}$ primer at 10 uM pGTag primer
$14 \mu \mathrm{~L}$ total

1. Aliquot $14 \mu \mathrm{~L}$ of mixed master mix into separate labeled PCR tubes.
2. Add $1 \mu \mathrm{~L}$ of genomic DNA to each reaction as template.
3. Cycle in a thermocycler with the following steps:

$95^{\circ} \mathrm{C}$	2 minutes	
$95^{\circ} \mathrm{C}$	30 seconds	$]$
$55^{\circ} \mathrm{C}$	30 seconds	$] \times 35$ cycles
$72^{\circ} \mathrm{C}$	30 seconds	$]$
$72^{\circ} \mathrm{C}$	5 minutes	
$4^{\circ} \mathrm{C}$	hold	

4. Run $5 \mu \mathrm{~L}$ of PCR product on a 1.2 \% agarose gel in 1XTAE. Putative junction fragments should give bands that are of predicted size.

F0 animals that are positive for the reporter gene are raised to adults then outcrossed and examined for fluorescence as above. The Gal4VP16 system can lead to silencing resulting in mosaic patterns in F1 embryos. F1 embryos displaying fluorescence are examined for junction fragments as above, raised to outcross to make F2 families or sacrificed at 3 weeks post fertilization for Southern-Blot analysis of integrations. F0 and F1 identified fish can be incrossed or backcrossed to get an initial impression of the homozyogous phenotypes. It is recommended that lines are continuously outcrossed once established.

References:

Jao, L.E., Wente, S.R., and Chen, W. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110, 13904-13909. Moreno-Mateos, M.A., Vejnar, C.E., Beaudoin, J.D., Fernandez, J.P., Mis, E.K., Khokha, M.K., and Giraldez, A.J. (2015). CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods 12, 982-988.
Varshney, G.K., Pei, W., LaFave, M.C., Idol, J., Xu, L., Gallardo, V., Carrington, B., Bishop, K., Jones, M., Li, M., et al. (2015). High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res 25, 1030-1042.

Won, M., and Dawid, I.B. (2017). PCR artifact in testing for homologous recombination in genomic editing in zebrafish. PLoS One 12, e0172802.

[^0]: 24 base pair homology arm
 Tyr <--- 24 bp homology ---> 2a
 Precise junction - ACAACGACGGATACTTCATGGTGCCCTTCATTGGATCC
 Emb. 1 allele 1 - ACAACGACGGATACTTCATGGTGCCCTTCATTGGATCC 3/4 clones
 Emb. 1 allele 2 - ACAACGACGGATACTTCATGGTGCCCTTCATTGGACCC $1 / 4$ clones
 Emb. 2 allele 1 - ACAACGACGGATACTTCATGGTGCCCTTCATTGGATCC 3/3 clones

