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Supplementary Document 1 

Sleep Data Collection Methods 

Early night serial awakening. The experimental data were collected during four non-

consecutive experimental nights, which took place between 10 p.m. and 6 a.m., with at least 

three nights between any two sessions. The participants were requested to avoid any 

stimulants, such as caffeine (6 hours prior to the experiment) or over-the-counter medication 

and alcohol (24 hours prior to the experiment), which was controlled for by asking 

participants to fill out a questionnaire before each session. The participants slept in a separate 

room and were observed through a video camera. The team constantly monitored their PSG 

on a computer screen and communicated with participants through a digital sound system 

device. 

During each experimental night, participants were awakened during the first 3–4 hours on 

average 8.17 times (SD = 1.24, range 6–11), yielding a total of 294 awakenings (9 

participants × 4 nights). This early night serial awakening protocol was shown to be an 

efficient paradigm for collecting large samples of dream reports while maintaining the 

stability of EEG spectral power measurements throughout the session (Noreika et al., 2009). 

The experimenters awakened the participants by playing a beep sound after confirming 

through online monitoring of PSG that they had been in Stages 2 or 3 of NREM sleep for at 

least 1 to 3 minutes. Post-hoc examination of the EEG confirmed that most of the awakenings 

took place during NREM Stages 2–3 (87%) over the 1-minute period before awakening. 

Given that serial awakenings from NREM sleep acted as selective REM sleep deprivation, 

episodes of sleep-onset REM occasionally intruded into the normal progression of sleep 

stages (13%), in which case participants were awakened as usual. Data from REM 

awakenings were omitted from this study. 

Before the experimental session, the participants were instructed in advance that, 

immediately after being awakened by the sound signal, they were to give a free oral report of 

“everything that was going through their mind before awakening”; the procedure was 

practised during the adaptation night. This instruction was not repeated again after the 

individual awakenings throughout the night, as a non-prompted free dream report was 

expected to interfere as little as possible with the very delicate process of remembering their 

experiences. If the experimenter judged that a free report from the participant contained any 

pre-awakening thoughts or perceptual experiences, the participant was further examined with 

a pre-recorded set of 21 questions played on a computer via the sound system (see 

Supplementary Document 2 for detailed instructions given to participants). The questions 

included inquiries about objects, feelings, self, and the subjective duration of the dream. 

Several questions aimed to reinforce recall. If the experimenter judged that a free report from 

the participant contained no pre-awakening thoughts or perceptual experiences, it was 

followed by three questions regarding the subjective certainty of dreamless sleep. In cases 

where these three questions prompted the participant to remember any experiences, they were 

presented with the set of 21 questions concerning the contents of their dream. If necessary, an 

unstructured interview was conducted at the end to clarify unclear or ambiguous parts of the 

report. The experimental night was ended at the wish of the participant or when the number 

of awakenings was satisfactory. All reports, questionnaire answers, and interviews were 

recorded on a computer. 
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EEG acquisition. The EEG montage included 21 electrodes placed according to the standard 

10-20 system and 4 additional electrodes (TP7, TP8, PO7, PO8) placed according to the 10-

10 system (Oostenveld & Praamstra, 2001). All these electrodes were referenced to the right 

ear mastoid, and the ground electrode was placed on the temple. In addition, two bipolar 

EOG electrodes were placed near the lateral canthus and the lower eyelid to measure eye 

movement, and a pair of bipolar electrodes was placed on the mentalis and submentalis 

muscles to record chin EMG. Recordings were carried out on a SynAmps amplifier and 

NeuroScan (4.1.1) data acquisition software at a 2,000 Hz sampling rate. EEG data were 

saved in the frequency band of 0.05–100 Hz (with a 50 Hz notch filter and a gain of 1,000), 

EOG data in the band 0.05–30 Hz (gain 1,000), and EMG data in the band 5–500 Hz (gain 

2,500). Electrodes were silver chloride and attached to the skin using Grass EC2 electrode 

cream. 

Content analysis of post-awakening reports. The post-awakening reports and interviews 

were transcribed for content analysis, consisting of the following two stages. 

First, all reports were divided by two independent raters (Master students in psychology) into 

four categories: 1) dreamless sleep, 2) white dream, 3) uncertain, and 4) dream (following 

Dement, 1955). Reports were scored as dreamless if the participant was confident they had no 

experiences right before awakening. Reports were scored as white dreams if the participant 

strongly felt they had had some experiences right before awakening, but could not recall any 

specific content. Reports were scored as uncertain if the participant was unsure whether they 

had been dreaming or had dreamless sleep right before awakening. Finally, reports were 

scored as dreams if participants reported any experiences (e.g., perceptions in any sensory 

modality, sensations, thoughts, feelings, and emotions). Inter-rater reliability for the 4-way 

categorisation of reports was 94% ( = .92). 

Second, the dream reports were further categorised by the same two independent raters using 

Orlinsky’s Modified Scale for Perceptual Complexity of Dreams (Noreika et al., 2009; 

Orlinsky, 1962). This scale consists of 7 perceptual complexity categories, ranging from 

“1=Participant remembers a specific topic but in isolation: a fragmentary percept, unrelated 

to anything else” to “7=Participant remembers a long, detailed dream in which the whole 

scene is replaced by other scenery more than once”. Categories 1–4 depict static dreams that 

lack any change or temporal progression, whereas categories 5–7 depict dynamic dreams that 

contain a change of at least one perceptual experience (Noreika et al., 2009). The inter-rater 

reliability for the 7-way categorisation of dream reports was 83.8% (weighted  = .89), with 

most errors consisting of reports assigned to adjacent complexity categories. During both 

stages of content analysis, the two raters discussed scoring disagreements until agreement 

was achieved, or—in a few cases—a third rater (author VN) was asked to judge which of the 

two suggested categories was more accurate. 

Sleep scoring. Sleep stages were manually scored by authors VN and KV, and each 1-minute 

EEG recording was scored as three 20-second epochs. Initially, the scorers agreed on 76% of 

the epochs. For the remaining 24%, the scorers discussed them until they reached a consensus. 

Scoring criteria defined by Rechtschaffen and Kales (1968) were followed, which allowed for 

a more fine-grained consideration of the amount of delta waves during slow wave sleep than 

the most recent sleep scoring guidelines (Berry et al., 2012).  
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Supplementary Document 2 

Dream Report Interview Procedure 

Preface 

The following is an English translation of the original dream report interview procedure 

instructions in Finnish, used by the Data Team to conduct the post-awakening dream report 

interviews. Some examples of the dream reports are given in Supplementary Document 3. 

Introduction 

The aim of this research project is to investigate the neural correlates of dream experiences 

during NREM sleep. You will spend five nights in the sleep laboratory: one adaptation night 

during which we will wake you up four times and you can practise dream reporting, and then 

four experimental nights during which we will wake you up several times (5–10) from early 

night sleep, both from light sleep and from deep sleep, and request you to report any dream 

experiences you might have had. Due to the awakenings, your total sleep time will be shorter 

than usual, and you may feel tired in the morning and the next day. If you wish to terminate 

the experiment, you can do so at any time. 

Wake-up procedure and reporting instructions 

When you have fallen asleep and are in a specific sleep stage, we will wake you up with a 

sound signal. When you hear the sound signal and wake up, try to stay still and calm, as this 

way your dream recall is least compromised. We will not ask any questions at this point. 

Your task is to give us a free recall report: tell us whether you remember having a dream 

experience during sleep and what the experience was like. Tell us every detail you can 

remember. By dream experience, we mean every image or thought you had in mind just 

before waking up. 

We do not expect you to recall a dream every time we wake you up. For this research project, 

it is of utmost importance that you honestly report what you remember, and also honestly 

report if you don’t remember anything. 

When you have recited everything you recall of the dream, we will ask further questions. The 

questions have been pre-recorded, and we will ask all participants the same questions. 

Therefore, some of the questions may not feel relevant in the context of your dream. 

Regardless, try to answer as well as you can, and be honest. If you cannot answer a question, 

let us know that you cannot remember or tell more about the requested detail. You also have 

the right to protect your privacy: If you do not wish to share a specific detail of your dream, 

tell us, and we will not ask further questions about this detail. 

If you do not recall any experiences, we will also ask some further questions. Again, the 

questions have been pre-recorded, and we will present the same questions to all participants. 

If we wish to know more about your dream than the recorded questions reveal, we may also 

ask you some specific, unique questions after the recorded questions. 

We will record all your answers to be able to later assess them. 
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The dream interview and how to answer the questions 

If you do not recall a dream: 

If, after the sound signal, you report that you do not remember any dream experiences, we 

will ask you the following questions (N1–N3): 

N1) How certain, on a scale from 1 to 5, you are that you did not have any dream 

experiences? 

1 = very uncertain 

2 = quite uncertain 

3 = cannot say 

4 = quite certain 

5 = very certain 

N2) Do you have the impression that you had a dream experience but cannot recall any 

specific content? 

If you have the impression that you were dreaming, but cannot recall any content at all, 

answer yes. If you are certain that you did not have any dream experiences, answer no. 

N3) What is the last thing you recall? 

Tell us the last thing you remember. You don’t need to know whether this was from before 

falling asleep or whether it occurred while asleep. 

If you recall a dream: 

After you have heard the sound signal and you have reported your dream in as much detail as 

you can remember, we will ask the following questions (P1–P17): 

P1) Did you have the experience just before waking up? 

Your task is to estimate when the dream took place. Did the sound signal wake you up in the 

middle of the experience? Answer yes if you feel that this was the case. If you feel that the 

dream took place earlier and you had no experiences at the time you woke up, answer no. 

P2) How certain, on a scale from 1 to 5, are you that the dream experience took place just 

before you woke up? 

1 = very uncertain 

2 = quite uncertain 

3 = cannot say 

4 = quite certain 

5 = very certain 

P3) Describe the setting where the dream took place. 

Your task is to describe the environment in which the dream events occurred. What was the 

setting like? 
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P4) List all the objects in your dream. 

Your task is to list all the objects you recall appearing in the dream. No object is too 

irrelevant to be named. 

P5) List all the sounds you heard in your dream. 

Your task is to list all the sounds you recall hearing in the dream, such as speech, traffic, or 

music. 

P6) List all the characters in your dream, including also those other than human. 

Your task is to list all the human and other animate characters you recall appearing in the 

dream (animals, fantasy figures, etc.). 

P7) Describe all the emotions and feelings and moods you experienced in the dream. 

Your task is to describe all the emotions, moods, and feelings you recall having in the dream 

(e.g., happiness, joy, love, affection, sadness, hate, anger, fear, anxiety, disgust, surprise). 

If you did not have any emotional experiences in the dream, report that no emotions were 

present. Then we will move on with the questions. If you recall having experienced at least 

one emotion in the dream, we will ask you two additional questions (P7a–P7b): 

P7a. What dream event were the emotions related to? 

Describe the event, thought, action or character the emotion was related to or in 

response to. If you had several emotional experiences, list each, and describe the 

element each emotion was related to. 

P7b. Estimate the intensity of the emotion on a scale from 1 to 5. 

Your task is to estimate the intensity of the emotion. If you experienced several 

separate emotions, please state the name of the emotion first and then estimate its 

intensity. 

1 = very low 

2 = quite low 

3 = moderate 

4 = quite intense 

5 = very intense 

P8) List all the changes that took place in your dream. 

If an object changed into another, if something changed in the setting in which the dream 

took place, or if a new thought or emotional state appeared, list those. 

P9) Were you present or embodied in the dream? 

Your task is to tell us whether you were present in the dream and participating in the dream 

events. If you had a body in the dream, answer yes. If you experienced the dream as a 
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bodiless spectator or an outside observer, like watching a movie, answer no. If you answer 

yes, we will ask you two additional questions (P9a–P9b): 

P9a. Describe your dream body. 

Describe what kind of a body you had in the dream. Was your dream body identical 

or similar to your physical body? If it was different to your physical body, how was it 

different? Aim to describe your dream body in as much detail as possible. 

P9b. Were you an active participant in the dream or just an observer? 

Describe whether you participated actively in the dream events from an embodied 

perspective (e.g., talking, thinking, moving, looking around) or whether you were 

merely a passive spectator or observer. 

P10) How clear was the perceptual quality in your dream, on a scale from 1 to 5, compared to 

how you perceive the world when you are awake? 

Your task is to estimate how well the perceptual quality of your dream experience matched 

the perceptual quality of normal waking experiences. Evaluate how clear the visual, auditory, 

olfactory, gustatory, tactile and kinaesthetic perceptions and sensations were compared to 

comparable experiences during wakefulness: 

The quality of the perceptions and sensations was 

1 = very vague and obscure 

2 = quite vague and obscure 

3 = almost as clear and defined as during wakefulness 

4 = equally clear and defined as during wakefulness 

5 = extremely clear and defined, more so than during wakefulness 

P11) Estimate the duration of your dream experience. 

Estimate how many minutes or seconds your dream experience lasted. If you cannot make an 

estimation, guess. 

1 = about few seconds 

2 = about half a minute 

3 = about one minute 

4 = longer than three minutes 

5 = longer than ten minutes 

6 = longer than half an hour 

P12) How certain are you of your answer to the previous question (P11)? 

1 = very uncertain 

2 = quite uncertain 

3 = cannot say 

4 = quite certain 

5 = very certain 

P13) How quick was the passage of time in your dream? 
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Your task is to evaluate the subjective experience of passage of time in your dream. How 

quickly did time seem to be passing compared to how time passes during wakefulness? How 

fast did the objects or characters move or change in your dream compared to wakefulness? 

Time passed: 

1 = much slower 

2 = a bit slower 

3 = comparably to waking experiences 

4 = a bit faster 

5 = a lot faster 

P14) How certain are you of your answer to the previous question (P13)? 

1 = very uncertain 

2 = quite uncertain 

3 = cannot say 

4 = quite certain 

5 = very certain 

P15) What were the factors that allowed you to estimate the passage of time in your dream? 

P16) Estimate how long you slept. 

Estimate how many minutes or hours you had slept (since the last awakening) before we 

woke you up. 

P17) Do you remember anything else? 

If you recall anything else that you have not reported yet, please report what these 

experiences were. 

Postface 

The following are summary statistics to some answered questions that the reader might find 

relevant, counted over the 27 dreamful reports used in the Dream Catcher experiment. 

P2) How certain, on a scale from 1 to 5, are you that the dream experience took place just 

before you woke up? 

85% very certain or certain 

7% cannot say 

7% quite uncertain 

P10) How clear was the perceptual quality in your dream, on a scale from 1 to 5, compared to 

how you perceive the world when you are awake? 

15% very vague and obscure 

30% quite vague and obscure 

33% almost as clear and defined as during wakefulness 

19% equally clear and defined as during wakefulness 

4% extremely clear and defined, more so than during wakefulness 
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P11) Estimate the duration of your dream experience. 

22% about few seconds 

33% about half a minute 

26% about one minute 

11% longer than three minutes 

7% longer than ten minutes 

0% longer than half an hour  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 27, 2019. ; https://doi.org/10.1101/643593doi: bioRxiv preprint 

https://doi.org/10.1101/643593


DREAM CATCHER 51 

 

Supplementary Document 3 

Examples of Dream Reports 

The following are examples of subjects’ dream reports after being awakened, translated from 

the original Finnish reports. All reports were scored as static in Orlinsky’s scale (score 1–4). 

Most were composed of several interconnected perceptions (score 3–4), and most also 

included a unified background scene (score 4). 

Subject 4, 3rd experimental night, awakening 8 

“There was a dry open field, and a dog on an agility track. On the track, there was a tube and 

hurdles. I was uncertain what I was supposed to do there.” 

Orlinsky score = 3 

Subject 5, 1st experimental night, awakening 2 

“I dreamt about a green car parked on a street. I saw the car from the side; it was bright green, 

and I heard the engine running.” 

Orlinsky score = 3 

Subject 8, 4th experimental night, awakening 3 

“I saw a cafeteria patio on a street.” 

Orlinsky score = 1 

Subject 11, 3rd experimental night, awakening 3 

“I was in a harbour, and I think I had loaded something in some boat. It looked like a Greek 

harbour, with several boats tied to poles. The sun was shining; on the other side was the sea; 

and on the other, a forest or something. I think my boyfriend and friends were there with me.” 

Orlinsky score = 4 

Subject 15, experimental night 1, awakening 3 

“I dreamt I was in this lab, in this room, and about the electrodes in my head. This bed was 

there, and someone was putting on the electrodes. In the background, there was a sound of 

someone talking.” 

Orlinsky score = 4 

Subject 16, experimental night 2, awakening 5 

“I was at a party—I think it was my graduation party. We were outdoors in a yard; there was 

grass, and tables with white table cloths; some dishes and a cake on the table. There were a 

few people there; I heard them talking.” 

Orlinsky score = 4  
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Supplementary Document 4 

Analysis Team Briefing Document 

Preface 

The following is the briefing document provided by the Data Team to the Analysis Team 

prior to the commencing the Dream Catcher experiment. 

Dream Catcher Experiment: Gradual removal of blindness 

CRG, Turku 

17-03-2008 

Data and general procedure 

Our data set comes from 9 subjects with 3 dream and 3 dreamless sleep reports from each: in 

total, there are 54 EEG recordings. 

The data will be provided to you in 5 steps from the most complex to the easiest one; a 

following step will always take place only when a previous one has been completed and its 

success rate has been evaluated. With this kind of procedure, we will get several different 

decisions where the chance level of successful rating can be evaluated. Consequently, we will 

be able to see whether the EEG contain information about dreaming, and at what level that 

information is embedded (e.g. at the level of individual pairs of data cases, at the level of 

single subjects, or at the level of conditions). 

Actual EEG data will be provided only for the Step 1 analysis. During Steps 2-5, only new 

file names will be given, which, in addition to new information, will always retain the 

previous ID codes of cases, pairs, subjects, etc. 

Glossary 

Case: a single 1 min pre-awakening EEG recording of either dream or dreamless sleep 

(provided in Step 1). 

Pair: two 1 min pre-awakening EEG recordings of the same subject; one of them is dream 

and another one dreamless sleep recording (provided in Step 2). 

Subject: information about each subject providing 3 pairs of EEG cases (provided in Step 3). 

Group: within each subject, two groups of 3 EEG cases are formed; one group consists of 3 

dream cases and another group consists of 3 dreamless sleep cases (provided in Step 4). 

Condition: the whole data set is divided into two condition with 27 cases in each; one 

condition has only dreamless sleep cases and another – only dream cases (provided in Step 5).  
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Step 1: 54 cases are provided 

DATA: 

Data is provided as 54 coded EEG cases: 27 dream and 27 dreamless sleep recordings (see 

Fig. 1). You remain blind to which EEG case originates from dreaming and which from 

dreamless sleep. Each subject will provide 6 cases – 3 dreams and 3 dreamless, but 

information on which cases belong to the same subject won’t be given at this stage. 

 

Figure 1. Example of 54 coded files names for the Step 1 analysis. 

TASK: 

Your task is to decide which EEG case is “dreaming” and which is “dreamless sleep”, and to 

classify the cases better than at the chance level. Decisions must be based on the analysis of 

individual cases! 

RESULTS: 

At least 38 cases out of 54 should be correctly identified in order to succeed above chance 

level. Also, each research group is expected to provide methodological rationale on what 

basis the decision was made, that is, which features in the EEG predict dreaming or non-

dreaming. 

Feedback will be given about overall success rate only, not about correct classification of 

individual cases.  
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Step 2. Single pairs of dream and dreamless sleep are provided 

DATA: 

Data is provided in 27 coded EEG pairs, with 1 dream and 1 dreamless case in each pair (see 

Fig. 2). You remain blind to which EEG case originates from dreaming and which from 

dreamless sleep. Both cases of a single pair come from the same subject. Each subject will 

provide 3 pairs, but information on which 3 pairs belong to the same subject won’t be given. 

 

Figure 2. Example of 54 coded files names for the Step 2 analysis. 

TASK: 

Your task is to decide which case in each EEG pair is “dreaming” and which is “dreamless 

sleep”, and to classify the cases better than at the chance level. Decisions must be based on 

the analysis of individual pairs, i.e. independent from other pairs! 

RESULTS: 

At least 18 pairs out of 27 should be correctly identified in order to succeed above chance 

level. Also, each research group is expected to provide methodological rationale on what 

basis the decision was made, that is, which features in the EEG predict dreaming or non-

dreaming. 

Feedback will be given about overall success rate only, not about correct classification of 

individual pairs.  
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Step 3: Subject information for pairs is provided 

DATA: 

Data is provided in 27 EEG pairs with 1 dream and 1 dreamless case in each, but it is not 

indicated which is a dreamless and which is a dream case (see Fig. 3). This time, however, 3 

pairs of each subject are identified, so that comparison of pairs from the same subject is 

possible. 

 

Figure 3. Example of 54 coded files names for the Step 3 analysis. 

TASK: 

Your task is to decide which case in each pair is “dreaming” and which “dreamless sleep”, 

and to classify the pairs higher than at chance level. Still, decision should be done pairwise 

only, as no averaging between pairs is possible at this stage (averaging based on correct 

pooling of the type of cases is made possible at the next stage). At this stage, it is possible to 

compare EEGs of different individuals, and different pairs within the same individual, which 

should reduce variability in the data analysis. 

RESULTS: 

At least 18 pairs out of 27 should be correctly identified in order to succeed above chance 

level. Also, each research group is expected to provide methodological rationale, on what 

EEG basis the decision was made, that is, which features in the EEG predict dreaming or 

non-dreaming. 

Feedback will be given about overall success rate only, not about correct classification of 

individual pairs.  
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Step 4: Groups of cases within each subject are provided 

DATA: 

Within each subject, two groups of different experimental conditions are provided (see Fig. 

4). One group contains 3 EEGs prior to awakenings leading to dream report, and another 

group has 3 EEG cases from dreamless sleep of the same subject. However, it won’t be 

revealed, which is which. You will get 18 such groups coming from 9 subjects, yet, no 

identification across all subjects and their groups will be provided. 

 

Figure 4. Example of 54 coded files names for the Step 4 analysis. 

TASK: 

Your task is to compare within-subject EEG groups, and to decide, for each subject 

separately, which group is “dreaming”, and which is “dreamless sleep”. At this stage, 3 vs. 3 

EEGs can be grouped together and within-subject averaging can be made. Yet, between-

subject comparisons are still impossible. 

RESULTS: 

At least 14 EEG pairs of samples out of 9 should be correctly identified in order to succeed 

above chance level. Also, each research group is expected to provide methodological 

rationale, on what EEG basis the decision was made, that is, which features in the EEG 

predict dreaming or non-dreaming. 

Feedback will be given about overall success rate only, not about correct classification of 

individual groups.  
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Step 5: Conditions of data set are provided 

DATA: 

Finally, all data will be classified between-subjects into 2 conditions with 27 EEG cases per 

each (see Fig. 5). 

 

Figure 5. Example of 54 coded files names for the Step 5 analysis. 

TASK: 

Your task will be to decide, which one of the two conditions is “dreaming” and which is 

“dreamless sleep”. All possible analysis can be made at this stage, as both within- and 

between-subjects averaging is possible. 

RESULTS: 

Each research group will report findings of comparison between these two groups. 

Unfortunately, correct identification of the groups won’t be accepted as success above chance 

level anymore at this stage (because there is 50% chance to get it right by guessing).  
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Supplementary Document 5 

Themed Feature Set Candidates for Step 1 Blind Classification 

The Analysis Team constructed eight sets of features, which were themed around various 

analyses of time series data. The sets were called: Power, PowerFine, ACC, PermEn, ApEn, 

Siclari, EogRms and EmgRms. Their constructions are explained below. As described in the 

main text, the team eventually chose the PowerFine features for Step 1 of blind classification 

due to its high temporal consistency. See Table S5.1 for a summary. 

Table S5.1. 

Candidate feature sets of Step 1 

Set name Measure Channels Time Parameters Total features 

Power PSD Fp1, Fpz, Fp2, F7, F3, Fz, 

F4, F8, T3, C3, Cz, C4, T4, 

TP7, TP8, T5, P3, Pz, P4, 

T6, PO7, PO8, O1, Oz, O2 

(25) 

0–60 s 

(1) 

{0.5–4, 4–8, 8–14, 

14–40, 40–50} Hz 

(5) 125 

PowerFine PSD As above 

(25) 

As above 

(1) 

0–49.5 Hz in 0.5 Hz 

steps 

(99) 

2,475 

ACC RMS P3-Fp1, P4-Fp2 

(2) 

0–60 s in 2-s 

steps in 2-s 

windows 

(30) 

(1) 

660 

Autocorrelation 

coefficient 

As above 

(2) 

As above 

(30) 

First 10 coefficients 

(10) 

PermEn Permutation 

entropy with 

autoregressive 

modelling 

As in Power 

(25) 

0–60 s 

(1) 

m = {2, 3, 4} 

t = {1, 2, 4} 

p = {0, 1, 2} 

(33 = 27) 

675 

ApEn Approximate 

entropy with 

autoregressive 

modelling 

As in Power 

(25) 

 

As above 

(1) 

m = {2, 3} 

r = {0.15, 0.2, 0.25} 

t = {1, 2, 4} 

p = {0, 1, 2} 

(2 × 33 = 54) 

1,350 

Siclari PSD average of 

electrodes 

Fp1, Fpz, Fp2, F7, F3, Fz, 

F4, F8, T3, C3, Cz, C4, T4, 

TP7, TP8, T5, P3, Pz, P4, 

T6, PO7, PO8, O1, Oz, O2 

(25 → 1) 

40–60 s 

(1) 

18–50 Hz 

(1) 

11 

As above As above 

(1) 

As above 

(1) 

1–12 Hz 

(1) 

As above P3, Pz, O1 

(3 → 1) 

{40–60, 50–

60, 56–60} s 

(3) 

As above 

(1) 

As above Fz, F4, F8, Cz, C4, T4 

(6 → 1) 

As above 

(3) 

18–50 Hz 

(1) 

As above Cz, C4, T4, Pz, P4 

(5 → 1) 

58–60 s 

(1) 

25–50 Hz 

(1) 
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As above T6 

(1) 

As above 

(1) 

As above 

(1) 

As above T5 

(1) 

As above 

(1) 

As above 

(1) 

EogRms RMS E2-E1 

(1) 

{0–20, 20–

40, 40–60} s 

(3) 

(1) 

3 

EmgRms RMS SM-M2 

(1) 

As above 

(3) 

(1) 
3 

Note. The number of elements in entries of columns Channel, Time, and Parameters are given in parentheses. 

Their products on each row, summed for each feature set, should result in the number of total features of that 

feature set. 

 

Power 

The Analysis Team constructed the Power feature set to provide information about both brain 

activity levels and locations. The set consisted of PSD estimates for each EEG electrode. 

They evaluated PSDs over the whole 60-s duration in five frequency bands corresponding to 

delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–14 Hz), beta (14–40 Hz) and gamma (40–50 Hz) 

wave activity (Noachtar et al., 1999). The electrodes used were a subset of the 10-20 and 10-

10 system electrodes (Chatrian, Lettich, & Nelson, 1985; Klem, Luders, Jasper, & Elger, 

1999) totalling 25 in number: Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, TP7, 

TP8, T5, P3, Pz, P4, T6, PO7, PO8, O1, Oz and O2. The feature set in total had 125 features 

(5 frequency bands × 25 channels) for each case. 

The Analysis Team preprocessed the EEG time series data offline using the EEGLAB Matlab 

toolbox (version 13.5.4b; Delorme & Makeig, 2004). From the raw EEG recordings, they 

detrended the signals and downsampled them from 2000 Hz sampling rate to 100 Hz. They 

then applied a finite impulse response high-pass filter, windowed using a Hann window of 31 

s, at the cutoff frequency of 0.1 Hz. Finally, they re-referenced the channels to the average 

common electrode. This preprocessed data is also reused in the methods for other feature sets. 

PSDs for each electrode were estimated using a modified Welch’s method (Welch, 1967) 

with time segments of 6.2 s overlapping by 80%, windowed by Hann windows. The Analysis 

Team performed fast Fourier transform on each window. The power of a frequency band was 

taken as the mean power (not log-transformed) across frequency bins, from and including the 

lower limit of the band, up to and exclusive of the upper limit. The Analysis Team modified 

Welch’s method by trimming off time segments with values in both the upper and lower 5% 

range prior to taking the mean power of the remaining time segments for each band. 

PowerFine 

The PowerFine feature set was identical the Power feature set, except that the PSDs were 

calculated for much finer-resolution, more uniformly-spaced frequency bins. This was chosen 

to offer more complete frequency information. The frequency edges of the bins were from 0 

to 49.5 Hz in 0.5 Hz steps. PSDs for each electrode were estimated using the modified 

Welch’s method with time segments of 9.3 s overlapping by 80%, windowed by Hann 

windows. The feature set in total had 2,475 features (25 channels × 99 frequencies) extracted 

for each observation. 
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ACC 

This feature set’s name was abbreviated from “autocorrelation coefficients”, and consisted of 

features replicated from a study to assess anaesthetic depth following machine learning 

through cluster analysis (Thomsen et al., 1991). The performance of their method appeared 

superior to other single parametric measures of spectral distribution (i.e., median and spectral 

edge frequencies) suggested for assessing anaesthetic depth at the time. Their features were 

based on autoregressive modelling of EEG signals in 2-s time windows, taking the form of 10 

normalised autocorrelation coefficients and 1 root-mean-square measure (RMS). 

To replicate this feature set, the Analysis Team utilised the preprocessed (high passed and re-

referenced) EEG data performed for the Power feature set. From the preprocessed EEG, two 

bipolar–re-referenced channels were extracted to summarise the activity of the two 

hemispheres of the brain: electrodes P3-Fp1 and P4-Fp2. They then further filtered those 

channels, in following with Thomsen’s method, with a pre-emphasising first order high-pass 

filter at 4.2 Hz, and a fourth order low-pass filter at 25 Hz using Matlab’s Butterworth filter 

design tools. For each channel, the Analysis Team segmented the signal into 30 × 2-s time 

segments, and calculated the RMS and first 10 normalised sample autocorrelation coefficient 

lags of each segment. The feature set in total had 660 features (2 bipolar channels × 30 time 

segments × 11 coefficients) extracted for each observation. 

PermEn and ApEn 

The Analysis Team explored information theory measures of time series data in the form of 

entropy: specifically through permutation entropy (Bandt & Pompe, 2002) in the PermEn 

feature set, and approximate entropy (Pincus, Gladstone, & Ehrenkranz, 1991) in the ApEn 

feature set. Entropy in signals is a measure of the complexity of a system from which the 

signals were taken. In the context of consciousness research, entropy has been proposed as a 

way to monitor loss of consciousness via anaesthetic depth (Bein, 2006; Liang et al., 2015). 

For the PermEn feature set, the Analysis Team used a Matlab implementation by Ouyang 

(2012) to compute measures of permutation entropy. Specifically, for each channel of EEG 

recording (after re-referencing followed by high-pass filtering, as in Power feature set), they 

extracted permutation entropy for all 27 combinations of three parameters of the analysis: the 

embedding dimension m (2, 3 or 4), the downsampling time delay t (1, 2 or 4), and 

autoregressive order p (0, 1 or 2). Parameters m and t were direct inputs for the permutation 

entropy function. The Analysis Team varied m no higher than 4 so as to conserve 

computation time. Before computing permutation entropies, they performed autoregressive 

modelling of order p on single EEG signals, and then subtracted the modelled time course 

from the EEG signals. This was done to reveal the evolution of a time series that may not be 

linearly dependent on its immediate past states, which may closer reflect signals related to 

consciousness. The Analysis Team carried out autoregression in Matlab with the function 

provided by the System Identification Toolbox, using the default forward-backward approach 

to the least-squares autoregressive fitting algorithm. The feature set in total had 675 features 

(25 electrodes × 3 embedding dimensions × 3 downsampling delays × 3 autoregressive 

orders) extracted for each case. 

For the ApEn feature set, the Analysis Team used a Matlab function implemented by Lee 

(2012) to calculate approximate entropy. Similarly to ApEn, for each preprocessed channel of 

EEG recording, they extracted approximate entropy for all 54 combinations of four 

parameters: the embedding dimension m (2 or 3), the filter tolerance r (0.15, 0.2 or 0.25; 
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relative to each signal’s sample standard deviation), the downsampling time delay t (1, 2 or 4), 

and autoregressive order p (0, 1 or 2). The values for m were typical choices by Pincus et al 

(1991). Like in PermEn the Analysis Team subtracted the pth-order autoregressed time course 

before computing approximate entropy. The feature set in total had 1,350 features (25 

channels × 2 embedding dimensions × 3 filter tolerances × 3 downsampling delays × 3 

autoregressive orders) extracted for each observation. 

Siclari 

The extraction of the Siclari feature set was designed to approximate the features described 

by Siclari, LaRocque, Bernardi, Postle, & Tononi (2014) in their preprint manuscript of a 

study later published in Nature Neuroscience (Siclari et al., 2017). They found a number of 

significant differences in low- and high-frequency activity of specific brain regions, as 

recorded with high-density EEG (256 channels), correlating with conscious experience 

during sleep. Due to the technical differences between our protocols, the Siclari feature set 

here does not constitute a direct replication. We note the following differences in our 

protocols. (a) We had considerably fewer channels recorded (25 vs. 256). Owing to this, (b) 

the Analysis Team deferred from performing source localization, as its reliability is lowered 

by decreasing the number of channels. For the same reason, (c) they did not perform 

independent component analysis for the removal of ocular, muscular and cardiac artefacts; 

however, cases were already chosen to have a minimum of such artefacts. 

The Siclari feature set consisted of 11 of these differences: the average power across all 

electrodes at low- (1–12 Hz) and high-frequencies (18–50 Hz); low-frequency power in 

parieto-occipital channels over the 20, 10 and 4 s till awakening; high-frequency power in 

frontal channels over the final 20, 10 and 4 s till awakening; and high-frequency (25–50 Hz) 

power over the final 2 s preceding awakening at regions correlated with conscious experience 

of either spatial setting, movement, or speech. 

The Analysis Team utilised the preprocessed EEG data performed for the Power feature set 

and performed further operations in order to derive a scalp current source density estimate 

(CSD) of the EEG signal. They calculated the CSD using Perrin’s method of taking the 

Laplacian of spherical splines (Perrin et al., 1989; Perrin, Pernier, Bertrand, & Echallier, 

1990), as implemented for Matlab in CSD Toolbox (Kayser, 2010; Kayser & Tenke, 2006a, 

2006b). The parameters for this method were based on those recommended by Kayser & 

Tenke (2015): a spline flexibility of 4, and smoothing constant of 10-5. The Analysis Team 

assumed a head radius of 8.9 cm, and thus produced CSDs for each of the 25 original 

electrode locations for each case. 

PSDs for each electrode were estimated following Siclari et al.’s procedure: using Welch’s 

method with time segments of 2 s overlapping by 50%, windowed by Hamming windows. 

They performed fast Fourier transform on each window. The power of a frequency band was 

taken as the mean (not log-transformed) power across frequency bins, inclusive of the band’s 

specified edges. 

The 11 features were extracted as follows. Two features of power for low and high 

frequencies respectively were taken as means across all electrode locations in the bands 1–12 

Hz and 18–50 Hz over the final 20 s preceding awakening. Three features of low-frequency, 

average parieto-occipital power were taken across electrodes P3, Pz and O1 in the band 1–12 

Hz over the final 20, 10 and 4 s till awakening. Three features of high-frequency, average 

frontal power were taken across electrodes Fz, F4, F8, Cz, C4 and T4 in the band 18–50 Hz 
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over the final 20, 10 and 4 s till awakening. Three features for dream contents were taken: 

spatial setting content power as the average power over electrodes Cz, C4, T4, Pz and P4 in 

the band 25–50 Hz for the final 2 s till awakening; movement content power as that of 

electrode T6; and speech content power as that of electrode T5. 

EogRms and EmgRms 

The EogRms and EmgRms feature sets contained information about eye movement and 

muscle tone, measured as RMS, over three time segments. 

For EogRms, the Analysis Team used electrooculograms, taken as the bipolar re-referenced 

channel E2-E1, resampled to a rate of 60 Hz from 2000 Hz. They applied a first-order 

Butterworth high-pass filter with a cutoff frequency of 0.5 Hz, to remove particularly slow 

voltage changes and not saturate the RMS calculation. Three RMS features were calculated 

for equally divided time segments: 0–20, 20–40 and 40–60 s from awakening. 

For EmgRms, the Analysis Team used electromyograms, taken as the bipolar re-referenced 

channel SM-M2, retaining its 2000 Hz sampling rate and online 5–500 Hz bandpass. Three 

RMS features were calculated for equally divided time segments as in EogRms.  
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Supplementary Document 6 

Feature Sets and Sub-Clustering Used in Steps 2–5 of Blind Classification 

The Analysis Team tailored and carried out unique procedures for each step of blind 

classification. A summary of their extracted features for each step is given in Table S6.1, and 

details are described thereafter. 

Table S6.1. 

Summary of feature sets and sub-clustering used in the blind classification experiment 

Step no. Features 

Total 

features Sub-clustering 

1 PSD 99 frequency bins (0–49.5 Hz), 

25 electrodes 

2,475 k-means 

2 PSD 19 logarithmic frequency bins (0–50 Hz), 

averaged over all 25 electrodes, 

0–60 s 

50 Pairwise orientation 

Siclari 11 features (refer to Supp. Table 1) 

EOG 2 time segments, 

5 quantiles, 

bandpass RMS (1–30 Hz), 

bipolar electrode E2-E1 

EMG 2 time segments, 

5 quantiles, 

bandpass RMS (5–500 Hz), 

bipolar electrode SM-M2 

3 (ICA) PSD 19 logarithmic frequency bins (0–50 Hz), 

0–60 s 

19 k-means 

3 

(Same as Step 2) 

50 1) Pooled pairwise orientation 

2) Participant pairwise orientation 

3) Pooled k-means 

4) Participant k-means 

4 

(Same as Step 2) 

50 1) Pooled pairwise orientation 

2) Participant pairwise orientation 

3) Pooled k-means 

4) Participant k-means 

5 SBP low 1 PSD (1–4 Hz), 

averaged over 24 CSD locations (C5, C3, 

C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, 

CP6, P3, P1, Pz, P2, P4, PO7, PO3, POz, 

PO4, PO8, O1, Oz, O2), 

40–60 s 

3 None 

 SBP high 1 PSD (20–50 Hz), 

averaged over 23 CSD locations (F3, F1, 

Fz, F2, F4, FC5, FC3, FC1, FCz, FC2, 

FC4, FC6, T7, C1, Cz, C2, T8, TP7, TP8, 

P7, P5, P6, P8), 

40–60 s 
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 Scarpelli 1 PSD (0.5–4.75 Hz) 

averaged over 8 electrodes (C3, CP5, F3, 

FC1, FC5, Fp1, P7, T7), 

0–60 s 

Note. PSD: power spectral density; ICA: independent component analysis; CSD: current source density. 

 

Step 2 

The PowerFine feature set used in Step 1 of blind classification consisted of 2,475 features 

(25 EEG channels × 99 frequencies) that measured only EEG PSDs. The resulting 

classification accuracy was near chance level. By Step 2, the Analysis team suspected that the 

poor performance might have resulted partly from the large number of features that they used, 

causing overfitting of data (Domingos, 2012). They also suspected that their clustering 

algorithm might have performed better with a more encompassing feature set than one that 

looked only at EEG. The Analysis Team therefore decided to change the feature set for Step 

2 to be more concise and to include information from EMG and EOG (different to that from 

Step 1). Summarily, they reduced the number of EEG features from Step 1 by taking the 

average PSD over all 25 electrodes and reducing the number of frequency bins to 19; to avoid 

losing all spatially specific EEG information, they added PSD estimates for localised brain 

areas based on the Siclari et al. (2014) report (identical to the Siclari feature set in 

Supplementary Document 5). In total, the Analysis Team used 50 features for Step 2 (19 

from average EEG, 10 from EMG, 10 from EOG, and 11 from Siclari EEG)—more than a 

100-fold reduction from Step 1. 

For 19 features of average EEG power, the Analysis Team evaluated PSDs for each electrode 

in 18 frequency bins with edges logarithmically spaced between 1.3-3 and 1.315 Hz 

(approximately 0.46–51 Hz), and a lowermost bin with edges at 0 and 1.3-3 Hz. These were 

evaluated in a way similar to the Power feature set in Step 1 (see Supplementary Document 

5), with one difference being that the time segments used for Welch’s method have lengths of 

9.3 s instead of 6.2 s. 

Eleven more features were taken directly from the Siclari feature set from Supplementary 

Document 5. Lastly, they extracted 10 features each for EOG and EMG modalities. The data 

was preprocessed similarly to EogRms and EmgRms as described in Supplementary 

Document 5, but for 2 time segments each instead of 10. Thus, for each of these 30-s 

segments of EMG or EOG, they computed the RMS values of all consecutive 1-s time 

windows, and took the 0th, 25th, 50th, 75th, and 100th percentiles of those as features. 

Step 3 

The analysis in Step 3 followed two stages. In the first stage, to take advantage of the 

revealed participant grouping, the Analysis Team used independent component analysis 

(ICA) to remove specific components that were likely to affect incorrect clustering results. 

They considered a component to cluster incorrectly if any pair of cases were to be clustered 

together rather than apart. The first stage involved extracting the independent components, 

testing them for incorrect clustering, removing components that were significantly incorrect, 

and then recomposing the remaining components back into cases for feature extraction. The 

second stage consisted of combination clustering using a more elaborate sub-clustering 

procedure than previous Steps. Both stages will now be described. 
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ICA 

The ICA cleaning stage was performed on each participant-group of cases. See Fig. S6.1 for a 

schematic overview.  

 
Figure S6.1. Flowchart overview of ICA cleaning. The procedure is performed for each 

participant-group of cases. 

 

Using the software package FastICA for Matlab 7.x and 6.x (version 2.5; Gävert, Hurri, 

Särelä, & Hyvärinen, 2005), the Analysis Team applied ICA to the combined EEG and EOG 

time series, concatenating in time across all six cases for a given participant. Independent 

components were computed using the FastICA “symmetric” approach with a “tanh” 

nonlinearity function (Rogasch et al., 2014). 
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At this step of blind classification, case pairing information (that each pair came from the 

same participant and had different dream report conditions) was already known. Therefore, 

each of the 26 independent components could be used to cluster the cases of a single 

participant, and components that reliably clustered contrary to pairing information (i.e., 

components that represented dissimilar cases as similar) could be identified and removed 

from the original case recording. The Analysis Team identified these problem components by 

observing whether they reliably clustered cases of the same pair together rather than apart. To 

do this, they used a feature set consisting of spectral power in 19 frequency bins, calculated in 

identical fashion to that in Step 2. Ensemble clustering with modifications was carried out on 

this feature set extracted for each independent component. Due to the small sample size 

(three cases) of each participant-group, the Analysis Team tried to avoid overfitting by sub-

clustering in up to three dimensions with k = 3, and not weighting sub-cluster results by their 

quality of clustering. They also replaced the agglomerative clustering step of combination 

clustering with one that used an exhaustive cluster configuration search on the co-association 

similarity matrix, made feasible due to the small sample size per participant-group. 

The search objective operationalised by finding the clustering outcome that maximised 

overall cluster quality as measured by the mean silhouette value (Rousseeuw, 1987). 

Silhouette values quantify the cohesion of individual members of a cluster and their 

separation from other clusters, as expressed in the following equation: 

𝑠(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

𝑚𝑎𝑥{𝑎(𝑖),𝑏(𝑖)}
, (1) 

where a(i) is the average dissimilarity (i.e., distance) of member i to all other members of its 

cluster, and b(i) is the average dissimilarity of member i to all members of the next nearest 

cluster. 

For the exhaustive search, the Analysis Team restricted the set of possible clusterings to 

search within by considering only configurations consisting of four clusters: one cluster to 

represent three cases from one dream report condition group, and the remaining other three 

clusters to each represent one case from the other dream report condition group. This 

restriction was imposed to accommodate the possibility of one dream report condition having 

higher variance cases than the other. There were 20 such configurations (6 choose 3). 

An independent component was considered to cluster incorrectly when, after clustering on its 

extracted feature set, the larger cluster did not consist of exactly one case from each pair. The 

statistical significance of this effect was measured by bootstrapping the sub-clustering results 

on which the evidence accumulation clustering was performed. The Analysis Team 

bootstrapped 1,000 similarity matrices by randomly sampling from the pool of all sub-

clustering results with replacement. Formally, they tested the hypothesis that the independent 

component being considered clustered incorrectly with respect to dream report condition by 

assuming the null hypothesis that they clustered relevantly to condition. The Analysis Team 

would reject this null hypothesis if the proportion of bootstrapped clusterings, in which the 

larger cluster consisted of exactly one case from each pair, was lower than 5%. Significantly 

incorrect independent components by this criterion were subsequently removed. They then 

recomposed the EEG and EOG traces from the remaining independent components. On 

average, 14 components were retained, with a range of 5 to 23. 

Sub-clustering. A new set of sub-clustering procedures was devised to take into account the 

newly revealed participant labels. The Analysis Team could remove unwanted participant 
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effects by sub-clustering cases within each participant; however, this would prevent the 

analysis from finding similarities amongst cases between participants. The team also 

suspected that the method of sub-clustering in Step 2—dividing case pairs along the mean 

orientation of the difference of pairs—may have been discarding other useful information 

about in the cases’ actual positions in feature space, as was possible with k-means clustering. 

Therefore, they intended to devise a sub-clustering procedure that additionally retained 

clustering information from unconstrained case features and from the whole pool of 

participants. 

In fact, the Analysis Team sub-clustered the cases in four different ways and combined the 

results. In two of the ways, similar to Step 2, they sub-clustered cases in a pairwise manner: 

firstly with respect to the mean orientation amongst all pairs, and secondly with respect to the 

mean orientation of each pair’s own participant. In the other two ways, they took the method 

of Step 1’s k-means sub-clustering and sub-clustered the unpaired cases: firstly amongst all 

cases, and secondly amongst each participant-group of cases. Therefore, there were four ways 

which they performed sub-clustering by. The scheme is illustrated in Figure S6.2. After 

correcting for their average pairwise similarity distance, the Analysis Team averaged those 

results, thereby performing evidence accumulation, to obtain the final co-association 

similarity matrix. For per-participant sub-clusterings, they limited the maximum number of 

features in a combination to 2 due to the effective reduction in data size.  
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Figure S6.2. Four Step 3 sub-clustering schemes. Each circle corresponds to a case in 

feature space; each dashed line corresponds to a case pair or difference vector. Colours 

indicate different sub-clusters that cases belong to. Non-pairwise sub-clustering was 

implemented as k-means clustering. 

 

What follows are the details for each of the four ways of sub-clustering. 

Pooled pairwise sub-clustering. For sub-clustering cases in the pooled pairwise manner, the 

Analysis Team dichotomously grouped each case of every pair with respect to the average 

pair difference vector orientation across all participants, as done in Step 2. For each sub-

cluster’s resulting co-association similarity matrix, prior to evidence accumulation, they 

weighted the matrix such that they took on a mean co-association distance equal to their 

goodness of clustering value—being 1 minus the mean cosine similarity of the difference 

vectors. 

Pooled non-pairwise sub-clustering. For sub-clustering cases in the pooled non-pairwise 

manner, the Analysis Team performed k-means clustering over all cases with k = 18 (the 
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number of participant-condition groups in our data), after subtracting the means of each 

participant. For each sub-cluster’s resulting co-association similarity matrix, prior to evidence 

accumulation, they forced any incorrectly co-associated pairs of cases to be recorded as not 

associated, and then weighted the matrix to take on a mean co-association distance equal to 

their mean silhouette value. 

Per-participant pairwise sub-clustering. For sub-clustering cases in the per-participant 

pairwise manner, the Analysis Team dichotomously grouped each case of every pair per 

participant with respect to the participant’s average pair difference vector orientation. They 

weighted each sub-cluster’s co-association similarity matrix prior to evidence accumulation 

just like for pooled pairwise sub-clustering. They then combined the results from all 

individual participants into the co-association similarity matrix for all cases, where the 

uncalculated pairwise similarity distances between different participants were simply set to 

the average of the calculated similarity distances. 

Per-participant non-pairwise sub-clustering. For sub-clustering cases in the per-participant 

non-pairwise manner, the Analysis Team performed k-means clustering on all cases per 

participant with k = 4 (which accommodates for one low-variance and one high-variance 

dream report condition group for each participant, where the high-variance group consisted of 

three single-membered clusters). For each sub-cluster’s resulting co-association similarity 

matrix, prior to evidence accumulation, they forced any incorrectly co-associated pairs of 

cases to be recorded as not associated, then weighted the matrix prior to evidence 

accumulation just like for per-participant non-pairwise sub-clustering. They then combined 

the results of all individual participants into the co-association similarity matrix for all cases, 

just like for per-participant pairwise sub-clustering. 

Step 4 

Like in Step 3, ICA was performed with the intention to remove specific independent 

components that were likely to affect incorrect clustering results. Specifically, the Analysis 

Team tested components for clustering contrary to the revealed participant-condition 

grouping information in addition to pairing information. 

They slightly altered the statistical procedure for testing the significance of bad independent 

components. Instead of rejecting the null hypothesis if the proportion of valid bootstrapped 

clusterings was lower than 5%, they calculated a different threshold for each component 

tested using the Benjamini–Hochberg–Yekutieli procedure (Benjamini & Yekutieli, 2001) to 

control the false discovery rate to α = .05. On average, four components were retained, with a 

range of one to six. 

For the proper combination clustering stage on the recomposed case–averaged participant-

condition groups, the Analysis Team sub-clustered these groups as nine pair difference 

vectors in combinations of up to eight features. They used the same sub-clustering procedure 

as that of Step 2 on these difference vectors. 

Step 5 

In Step 5, the Analysis team extracted features based on significant differences reported by 

Siclari et al. (2017) and Scarpelli et al. (2017). Two features were the low frequency and high 

frequency power, which was named respectively SBP low and SBP high (SBP for the initials 
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of the first three authors of the Siclari paper), and one feature was of the low frequency 

activity reported by Scarpelli et al., which was named Scarpelli. 

To replicate the SBP features, they started by downsampling the raw 2000 Hz EEG case 

recordings to 500 Hz sampling rate and applying a band-pass filter for frequencies 1–50 Hz. 

The EEG montage was then re-referenced to the common average electrode. They next 

calculated the CSD using Perrin’s method, as described in Supplementary Document 5 for the 

Siclari feature set. Electrodes for SBP low were C5, C3, C4, C6, CP5, CP3, CP1, CPz, CP2, 

CP4, CP6, P3, P1, Pz, P2, P4, PO7, PO3, POz, PO4, PO8, O1, Oz and O2; for SBP high were 

electrodes F3, F1, Fz, F2, F4, FC5, FC3, FC1, FCz, FC2, FC4, FC6, T7, C1, Cz, C2, T8, TP7, 

TP8, P7, P5, P6 and P8. Electrodes were interpolated where missing using spherical splines. 

The Analysis Team next estimated the PSDs of each electrode for the 20-s duration until 

awakening using Welch’s method with 2-s Hamming windows and 50% overlap. Finally, for 

SBP low, they took the average power across all its electrodes between 1 and 4 Hz; and for 

SBP high, they took the average power across all its electrodes between 20 and 50 Hz. 

To replicate Scarpelli’s feature, the Analysis Team started by resampling the raw EEG case 

recordings down to 250 Hz and applying a band filter for frequencies 0.5–30 Hz. They then 

retained or interpolated electrodes C3, CP5, F3, FC1, FC5, Fp1, P7 and T7 using the 

spherical spline method. They next estimated PSDs of each electrode, using Welch’s method 

with 4-s rectangular windows and no overlap, for frequencies 0.5 to 4.75 Hz in 0.25 Hz steps. 

Finally, they calculated the average power across the above-mentioned 8 electrodes and 

frequencies, and took its natural logarithm as the feature.  
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Supplementary Document 7 

Test Decoding of Electrocorticograms 

The Analysis Team tested the decoder, used in the Dream Catcher post hoc analysis, on a 

different set of electrophysiological recordings with known representation of visual stimulus–

evoked information. They demonstrated its utility in decoding this embedded information 

with a high success rate. 

Method 

Data 

The experimental setup and collection of data used here have been described in previously 

published studies; please refer to Baroni et al. (2017) and Haun et al. (2017). The Analysis 

Team used data consisting of electrocorticogram evoked potentials from epilepsy patient 153, 

taken during the period of epilepsy monitoring after electrode implantation. Out of a grid 

electrode array installed over the right temporal lobe, they used recordings from two bipolar 

re-referenced channels, found over the ventral fusiform area, that were sensitive to faces. No 

recordings were performed within 48 hours of a major seizure. Visual stimuli—consisting of 

upright faces, upside-down faces, houses, line drawings of tools, and Mondrian patterns—

were presented in a continuous cycle while the participant fixated on a cross at the centre of 

the display. 

The Analysis Team arranged the data recordings into a set of two groups for four separate 

decoding experiments—each group was composed of a set of 27 evoked potentials to either 

face or non-face stimuli, and from either one or two electrodes, as shown in Table S7.1. 

Table S7.1. 

Data sets 

Data set Stimuli Electrodes Timing (ms) 

A Face vs. non-face 2 intermixed 100–300 

B Face vs. non-face 2 intermixed 400–600 

C Face vs. Mondrian Single 100–300 

D Face vs. Mondrian 2 intermixed 400–600 

Note. Face stimuli consisted of both upright and inverted 

faces. Non-face stimuli consisted of houses, tools, and 

Mondrian images. Timing is relative to stimulus onset. 

 

For each evoked potential, they extracted a set of 19 power spectral density (PSD) features in 

19 logarithmically spaced frequency bins between 0 Hz and the Nyquist frequency, based on 

the 19 EEG PSD features used in Step 2 of the Dream Catcher blind classification 

experiments (see Supplementary Document 6). They calculated PSDs using the multitaper 

method (Thomson, 1982) with five Slepian tapers before binning. The Analysis Team 

evaluated their decoder by decoding for stimulus category in each data set. 
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Decoder 

The Analysis Team used a support vector machine (SVM; Cortes & Vapnik, 1995) for 

decoding. Specifically, they employed the LIBSVM implementation for Matlab (version 

3.18; Chang & Lin, 2011, 2014). They used the nu-SVC model, with a Gaussian kernel type, 

the regularisation parameter set to the default nu = 0.5, and the model set to output 

probability estimates. They estimated decoding accuracy using leave-one-out cross-validation 

on the data as partitioned into pairs of face-non-face evoked potentials. For each fold of 

cross-validation, the Analysis Team classified the pairs dichotomously based on their relative 

probability estimate outputs. They preprocessed the power features by taking their natural 

logarithm, and standardising them across all features by Studentisation. 

Results 

The supervised SVM decoder generally performed well for all data sets (Table S7.2). The 

average accuracy across all sets was 89%, with the lowest being 74% for Set B. Their 95% 

confidence intervals, estimated using the Clopper-Pearson method (Clopper & Pearson, 1934), 

were all greater than 50%, indicating statistically significant performance in all sets. 

Table S7.2. 

Decoding results 

Data set 

Cross-validation accuracy 

n correct 

(out of 27) 

% 

Average 95% CI 

A 25 93 [76, 99] 

B 20 74 [54, 89] 

C 27 100 [87, 100] 

D 24 89 [71, 98] 

Note. CI: confidence interval. All values were 

statistically significant. 

 

The Analysis Team achieved the highest accuracy in data set C, in which the evoked 

potentials were not of mixed electrodes (one-tailed Fisher’s exact test against all other sets 

collapsed, p = .025). This suggested that the inclusion of a second, unrelated factor negatively 

impacted the decoding performance, but the decoder was resilient enough to preserve 

significant discriminability. 
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