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Abstract 

The Dream Catcher test defines the criteria for a genuine discovery of the neural constituents 

of phenomenal consciousness. Passing the test implies that some patterns of purely brain-

based data directly correspond to the subjective features of phenomenal experience, which 

would help to bridge the explanatory gap between consciousness and brain. Here, we 

conducted the Dream Catcher test for the first time in a graded and simplified form, capturing 

its core idea. The experiment involved a Data Team, who measured participants’ brain 

activity during sleep and collected dream reports, and a blinded Analysis Team, who was 

challenged to predict better than chance, based solely on brain measurements, whether or not 

a participant had a dream experience. Using a serial-awakening paradigm, the Data Team 

prepared 54 one-minute polysomnograms of NREM sleep—27 of dreamful sleep (3 from 

each of the 9 participants) and 27 of dreamless sleep—redacting from them all associated 

participant and dream information. The Analysis Team attempted to classify each recording 

as either dreamless or dreamful using an unsupervised machine learning classifier, based on 

hypothesis-driven, extracted features of EEG spectral power and electrode location. The 

procedure was repeated over five iterations with a gradual removal of blindness. At no level 

of blindness did the Analysis Team perform significantly better than chance, suggesting that 

EEG spectral power does not carry any signatures of phenomenal consciousness. Furthermore, 

we demonstrate an outright failure to replicate key findings of recently reported correlates of 

dreaming consciousness. 

Keywords: NREM sleep, dreams, unconsciousness, EEG correlates, unsupervised machine 

learning 

Highlights 

 The first reported attempt of the Dream Catcher test.  

 The correlates of conscious experience may not lie in EEG spectral power. 

 Reported markers of NREM dreaming consciousness misperformed in a blinded 

setting. 

 Those markers also could not be confirmed in an unblinded setting.  
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Dream Catcher 

Introduction 

Background. If we take consciousness to be a natural, biological phenomenon that depends 

on neural activities inside the brain, then there must be objective patterns of brain activity that 

directly constitute consciousness and therefore correspond to the subjective features of 

experience. Whatever type of neural activity consciousness turns out to be, it must be 

something that incarnates the spatiotemporal patterns of phenomenal experience. 

The Dream Catcher test was introduced as an empirical criterion for what would constitute a 

genuine scientific discovery of the underlying neural constituents of phenomenal 

consciousness (Revonsuo, 2006). The present empirical study, which we call the Dream 

Catcher experiment, is the first attempt to execute such a test. The test itself was originally an 

idealized thought experiment, devised to address the explanatory gap that exists between the 

physical explanation of consciousness and the phenomenal experience of consciousness 

itself—the so-called “hard problem” (Chalmers, 1995; Levine, 1983). Arguably, even if we 

were able to identify the neural correlates of consciousness, these would not suffice to bridge 

the explanatory gap: correlations do not in themselves provide an explanation for a 

phenomenon. Revonsuo (2006) proposed that consciousness would be genuinely explained 

by the discovery of constitutive mechanisms of consciousness at the phenomenal level. For 

the crucial distinction between correlates and constituents, see also Revonsuo (2001) and 

Miller (ed.) (2015). 

To determine the constitutive mechanisms of consciousness, the Dream Catcher test requires 

researchers to make predictions about the qualitative features of participants’ phenomenal 

experience through use of purely brain-based data, without access to any information about 

the participant’s stimulus environment, subjective experience, or correlated brain patterns to 

known perceptual stimuli. This is achieved by the following stipulations. First, the study of 

consciousness is restricted to the domain of sleep to ensure that the contents of consciousness 

are largely independent of external stimuli. Second, the researchers charged with testing their 

brain-based model of consciousness are blinded to participants’ subjective reports, which are 

instead recorded by an independent team. Together, these restrictions bring the design closer 

to a no-report paradigm (Tsuchiya, Wilke, Frässle, & Lamme, 2015), which aims to prevent 

conflation between processes underlying conscious experience and those underlying the act 

of reporting conscious experience. 

Conscious mentation is not just frequent in REM sleep but also occurs throughout the 

majority of non–rapid eye movement (NREM) sleep (Nielsen, 2000; Nir & Tononi, 2010; 

Noreika, Valli, Lahtela, & Revonsuo, 2009; Windt, Nielsen, & Thompson, 2016). Recently, 

specific spectral changes in sleep electroencephalography (EEG) have been found in studies 

contrasting periods of NREM sleep associated with reports of dreaming against periods 

without dreaming (Chellappa, Frey, Knoblauch, & Cajochen, 2011; Esposito, Nielsen, & 

Paquette, 2004; Scarpelli et al., 2017; Siclari et al., 2017; Siclari, Bernardi, Cataldi, & Tononi, 

2018; Siclari, LaRocque, Bernardi, Postle, & Tononi, 2014). (For a review, see Ezquerro-

Nassar & Noreika, 2019.) These studies concurred that reduced low-frequency EEG power 

correlates with dream recall, although they neither agreed on the source location of this 

difference, nor on whether high-frequency activity was also correlated with dream reports. 

We decided to put these findings under stricter scrutiny in our study, implementing the first 

reported attempt of the Dream Catcher test. 
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The Dream Catcher test’s proposed blinding aspects elevate it above most conventional 

approaches to the study of consciousness. Blinding also distinguishes our study from the 

previous studies, cited earlier, on the neural correlates of dreaming. Finally, the disconnection 

between external stimuli and subjective experience during sleep further prevents the 

conflation between conscious experience and external stimulus processing, which—while 

central to waking perception—plays a minimal role in dreams. 

For our study, the Dream Catcher experiment, we have highly simplified the original Dream 

Catcher test due to the current limitations of neuroscientific knowledge and brain activity 

measuring capability. Instead of requiring researchers to reconstruct the content of 

phenomenal experience from a comprehensive set of brain activity data, we introduced a 

more realistic requirement: to identify the presence vs. absence of dreaming (i.e., the 

presence vs. absence of conscious experience) from polysomnograms, without access to 

information on whether participants had reported a dream after awakening or not. Although 

some studies have investigated neural correlates of specific dream content (Dresler et al., 

2012; Horikawa & Kamitani, 2017; Horikawa, Tamaki, Miyawaki, & Kamitani, 2013; Siclari 

et al., 2017), reconstruction of the full phenomenal level would be a step for the distant future. 

Measures of consciousness. Early polysomnography (PSG) measured voltage fluctuations at 

various sites of the body, traced onto continuous paper feed, to be interpreted and classified 

by researchers by eye. Based on such features as the frequency of oscillations at the scalp, 

intensity of muscle tone activity and type of eye movement, researchers found that they could 

classify distinct stages of sleep and correlate them with dream reports (Aserinsky & Kleitman, 

1953; Jouvet, 1967). Researchers have since increased the array of tools for analysing these 

same data, including spectral methods, phase coherence measures and the vast variety of 

methods devoted to time series analysis in general (Arsiwalla & Verschure, 2018; Cohen, 

2014). Many features of brain electrophysiology have been investigated and reported to 

correlate with different conscious processes or even the level of consciousness. Spectral 

power differences have been commonly found at characteristic frequency bands; notably, 

lack of consciousness has been associated with increased power at low frequencies (delta 

waves: <4 Hz) in multiple contexts, including sleep stage depth, dream recall within a sleep 

stage, and anaesthetic depth (Chellappa et al., 2011; Evans, 2003; Hobson & Pace-Schott, 

2002; Murphy et al., 2011; Scarpelli et al., 2017; Siclari et al., 2017, 2018; Thomsen, 

Rosenfalck, & Nørregaard Christensen, 1991). Higher levels of consciousness (or arousal) 

have also been suggested to correlate with a lower spectral exponent (Colombo et al., 2019), 

higher signal entropy or complexity (Bein, 2006; Bruhn, Röpcke, & Hoeft, 2000; D’Andola 

et al., 2017; Hudetz, Liu, Pillay, Boly, & Tononi, 2016; King et al., 2013; Liang et al., 2013; 

Ouyang, Li, Liu, & Li, 2013; Sarasso et al., 2015; Schartner et al., 2015), stronger phase 

coherence between brain areas (Bola et al., 2017; Lee et al., 2017; Mikulan et al., 2017), and 

more causally integrated brain areas (Barrett et al., 2012; D’Andola et al., 2017; Fasoula, 

Attal, & Schwartz, 2013). 

With an ever increasing number of methods, we must be wary that almost surely a proportion 

of reported effects will be false positives. Particularly in cognitive neuroscience and 

psychology, the high prevalence of unreplicable studies has been a serious issue (Fanelli, 

2009; Kriegeskorte, Simmons, Bellgowan, & Baker, 2009; Schooler, 2014; Vul, Harris, 

Winkielman, & Pashler, 2009). In this regard, a virtue of the Dream Catcher test is its blinded 

nature; it prevents biasing researchers towards a certain outcome due to knowing the true 

conditions of their samples. Thus, while the Dream Catcher test can generally be considered a 

paradigm for confirming the constitutive mechanisms of phenomenal consciousness, in our 
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experiment it can be considered to confirm reported measures of the presence vs. absence of 

consciousness. 

Study design. The Dream Catcher experiment involved two teams. The first team was 

composed of Valdas Noreika, Levente Móró, Antti Revonsuo, and Katja Valli, who designed 

and collected data for the overall experiment and the Dream Catcher protocol—we’ll call this 

the Data Team. The second team was composed of William Wong, Jennifer Windt, and 

Naotsugu Tsuchiya, who analysed and classified the brain-based data with restricted access to 

participants’ dream reports—we’ll call this the Analysis Team. At the beginning of the 

experiment the Analysis Team only knew (a) published details of the Dream Catcher’s data 

collection method using the early night serial awakening protocol (Noreika et al., 2009), (b) 

the scientific literature on dreaming and consciousness published at the time (pre-2018), (c) 

the instruction sheet (Supplementary Document 4), and (d) some additional background 

information from occasional email exchanges with the Data Team regarding the Dream 

Catcher procedure. 

The Dream Catcher experiment is a first step towards carrying out the core idea of the Dream 

Catcher test by focussing on dreams during carefully matched NREM sleep stages 2–3. By 

contrasting the recorded brain activity between dreaming and non-dreaming states in NREM 

sleep, we expected to better isolate the effect of the presence vs. absence of dreams in the 

data. Unlike in REM sleep, which has a dream recall prevalence of about 80% (Hobson, 

Pace-Schott, & Stickgold, 2000; Nielsen, 2000), the frequency of dream reports obtained 

from stage 2 NREM sleep is roughly equal to that of non-dream reports (Nielsen, 2000; 

Noreika et al., 2009). NREM dreams tend to be more fragmented, thought-like, and less vivid 

than REM sleep dreams (Mutz & Javadi, 2017). There is a contention that the non-vivid sleep 

mentation in NREM sleep should be categorised separately and that only multimodal, 

narratively complex, and often emotional experiences, which are typical of REM sleep, 

should be classified as dreaming (Hobson et al., 2000). However, as we are interested in the 

presence vs. absence of even minimal forms of consciousness, we shall refer to all reports of 

mentation during NREM sleep as dreams in this paper (for the detailed discussion of this 

theoretical position, please see Discussion). 

Please note the unusual structure of our paper, which stems from our complex experimental 

setup. In the General Methods section, we describe the Data Team’s data collection 

procedures and the Dream Catcher experiment protocol, and give an overview of the Analysis 

Team’s strategy for blind classification. The particular procedures and results of the Analysis 

Team at each blinded step are described in the section Blind Classification Methods and 

Results, which is written from the Analysis Team’s point of view. This is followed by the 

Post Hoc Evaluation section, which describes the post-experimental analyses we performed 

to give further context to our results. We close with a discussion of the theoretical and 

methodological implications of the results for the Dream Catcher paradigm and dream 

research. 

General Methods 

Study design, data collection and the blinding procedure were performed exclusively by the 

Data Team before any contact with the Analysis Team. The study protocol was approved by 

the Ethical Board of the University of Turku, and all participants signed informed consent 

following the Declaration of Helsinki. Data collection was conducted at the Sleep Laboratory 

at the Centre for Cognitive Neuroscience at the University of Turku. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 27, 2019. ; https://doi.org/10.1101/643593doi: bioRxiv preprint 

https://doi.org/10.1101/643593


DREAM CATCHER 6 

 

Dream reports and PSGs were collected following an early night serial awakening paradigm 

(Noreika et al., 2009). Refer to Supplementary Document 1 for our sleep data collection 

procedures and methods, Supplementary Document 2 for the interview procedure, and 

Supplementary Document 3 for transcribed, exemplar dream reports. 

Participants 

Fifteen Finnish-speaking volunteers were recruited to the study. They were screened to have 

no issues with psychological and neurological health, take no psychoactive drugs or have any 

sleep disorders at the time of the study. Aiming to assess the participants’ sleep latency and 

ability to give clear dream reports as well as to familiarize them with sleep laboratory 

environment, participants spent one adaptation night in the sleep laboratory. Five participants 

were excluded following adaptation nights due to sleeping difficulties in the laboratory, 

unclear dream reports upon awakening from NREM sleep, and/or sleep EEG artefacts due to 

sweating. The remaining 10 participants spent 4 experimental nights in the laboratory, for 

which each participant was compensated in total with 100 euros. 

One of these participants did not recall any dreams upon awakening from NREM sleep, and 

hence this person’s data were not used in the Dream Catcher experiment. Thus, the final data 

utilised in the study was collected from 9 participants (4 males), aged 21 to 34 years (M = 27, 

SD = 5.39). Handedness was tested by means of the Edinburgh Handedness Questionnaire 

(Oldfield, 1971): eight of the participants were fully right-handed and one was fully left-

handed. 

Data selection and blinding. All collected dream reports were divided by two blind raters 

(Master students in psychology) into four categories: 1) dreamless sleep, 2) white dream, 3) 

uncertain, and 4) dreamful (following Dement, 1955). For the Dream Catcher experiment, 

only the 1) dreamless and 4) dreamful categories were considered. The lowest number of 

reports from either category from a single participant was 3. Following this constraint, 3 

dreamful and 3 dreamless sleep reports were selected from the 9 participants, yielding a pool 

of 54 reports and corresponding 1-minute pre-awakening EEG segments. The following 

criteria were applied in the data selection: (a) Both blind raters should have independently 

agreed on the basic recall category of the report; (b) in order to reduce the variability of 

reports (which might be reflected in the underlying brain activity to be blindly classified by 

the Analysis Team), all included dreams should be static (i.e., Orlinsky’s Modified Scale for 

Perceptual Complexity of Dreams, categories 1–4, 89% belonged to categories 3 & 4; 

Orlinsky, 1962; Noreika et al., 2009): we aimed to generate a perceptually homogeneous 

sample of dream reports, whereas the proportion of dynamic dreams is generally very low 

during early night NREM sleep; (c) the 60-s pre-awakening EEG should contain only NREM 

Stage 2 and/or Stage 3 epochs (i.e., three consecutive such 20-s epochs); (d) there should be 

comparable within-participant and between-participant proportions of Stage 2 and Stage 3 

pre-awakening epochs across recall categories; and (e) selected EEG recordings should have 

a minimal amount of artefacts. 

The blind classification phase of the study was to be undertaken by the Analysis Team. Data 

blinding for the Analysis Team was performed using a custom Perl script. This 219-line code 

loaded the metadata (such as the original recording number, the original participant number, 

the Session number 1 to 4, and the Condition “dreamful” or “dreamless”) from a comma-

separated values file describing the parameters of the 54 samples. The recordings were 

randomly assigned labels with a consecutive numerical range: a general recording label 

(ID01–ID54), a participant label (S1–S9), a dreamfulness condition label (C1–C2), a 
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participant-grouped condition label (G01–G18; i.e., 9 Participants × 2 Conditions), and a 

pairing label (P01–P27; i.e., 9 Participants × 3 Sessions) for pairs of dreamful vs. dreamless 

recordings from the same participant under the same condition. All these labels were logged 

into a Microsoft Excel table to be used by the Data Team for evaluating the Analysis Team’s 

blinded results. Finally, the script output a Windows batch file that renamed the original 

recording files to their randomised ID01–ID54 file names, to be received by the Analysis 

Team. 

Blind Classification Methods and Results 

We refer to the individual 1-minute PSG recordings, given to the Analysis Team, as “cases”. 

In Table 1, we present a review of what information was given to the Analysis Team at each 

step of this blind classification task, as well as the terms we use in this article to refer to the 

various groupings of the cases revealed during the experiment. The terms are also illustrated 

in Figure 1. 

 
Figure 1. Illustration of blinding information at each step of classification. 
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Table 1. 

Blinding of information at each step of classification 

Step no. Collective name for data Available case information to Analysis Team 

1 “Case” - - - - 

2 “Pair” Pairwise: 

dreamful vs. 

dreamless, same 

participant. 

- - - 

3 “Participant-group” Pairwise: 

dreamful vs. 

dreamless, same 

participant. 

Groups of 6 

cases: same 

participant. 

- - 

4 “Participant-condition 

group” 

Pairwise: 

dreamful vs. 

dreamless, same 

participant. 

Groups of 6 

cases: same 

participant. 

Groups of 3 

cases: same 

dreamfulness, 

same participant. 

- 

5 “Condition group” Pairwise: 

dreamful vs. 

dreamless, same 

participant. 

Groups of 6 

cases: same 

participant. 

Groups of 3 

cases: same 

dreamfulness, 

same participant. 

All dreamful vs. 

all dreamless. 

 

 

Overall strategy. The methods described in this section were devised independently of the 

Data Team. The Analysis Team approached the classification problem firstly as a clustering 

problem. They assumed that brain states would be more homogeneous during non-dreaming 

than during dreaming, possibly because various contents of dreaming would diversify brain 

states. Such homogeneity would be amenable to cluster analysis, which is ideally suited to 

discover and group observations of high similarity in an objective manner, based on extracted 

features of the data. Only in the last step, where the two final clustered groups were classified 

for dreamfulness (a choice with only two alternatives), would the Analysis Team make a 

subjective determination of dreamfulness in line with previous findings. 

The Analysis Team operated primarily in the Matlab software environment (The MathWorks, 

Inc., 2012); some of the EEG data handling was facilitated by the EEGLAB toolbox in 

Matlab (Delorme & Makeig, 2004). We will specify otherwise where relevant. 

Clustering Method 

For clustering algorithms, the Analysis Team chose an evidence accumulation clustering 

(EAC) approach (Fred & Jain, 2005) with modifications. It was chosen over more common 

clustering techniques, such as k-means clustering and hierarchical clustering, for its 

demonstrated improved ability to identify clusters of arbitrary shapes and sizes. Throughout 

the blind classification procedure, the Analysis Team clustered cases into two groups based 

on the similarity of extracted features. For specific purposes of the study, they made changes 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 27, 2019. ; https://doi.org/10.1101/643593doi: bioRxiv preprint 

https://doi.org/10.1101/643593


DREAM CATCHER 9 

 

to EAC. See Figure 2 for a comparison; details in Wong & Tsuchiya (in prep.). Here, we 

provide only a cursory description of the adopted EAC method. 

EAC works by accumulating the results of multiple clusterings—evidence—of the same data. 

Evidence consists of multiple runs of simpler clustering algorithms, where each may give 

incomplete but diversified information about similarities in the data. Here, we shall call these 

sub-clusterings so as not to confuse them with the hierarchical clustering procedure that 

follows the evidence accumulation step. In Fred and Jain’s experiments, the authors 

implemented sub-clustering using multiple, randomly seeded runs of k-means clustering 

(MacQueen, 1967) and then counted the frequency of co-association between each pair of 

data points. In the evidence accumulation step, these sub-clustering results were summed to 

produce the co-association similarity matrix, upon which they performed evidence 

accumulation via hierarchical clustering, with either single- or average-linkage criterion 

(Sokal & Michener, 1958). They finally thresholded the linkage distance so as to obtain the 

natural number of clusters present in the data. 

 
Figure 2. Contrast between Fred and Jain’s evidence accumulation clustering method and 

our method. 

 

The Analysis Team modified EAC for three reasons. First, unlike in the original EAC, the 

team knew from the outset that they were dealing with two equal-sized clusters. They 

therefore modified the final step from finding the natural number of clusters in the data to 

finding just two clusters. However, especially for noisy data sets, a linkage threshold that 

produces two clusters often produces ones of asymmetric sizes, wherein the smaller cluster 

may consist of one or a few outliers. To cope with this problem, the Analysis team chose the 

highest threshold that produced at least one cluster that is as close to 50% of the cases as 

possible, and all other clusters were reclassified as belonging to the other class. This forced 

the clustering results to produce two classes of close-to-equal sizes, where at least one of 

them was guaranteed to contain cases with similar features (i.e., are more homogeneous); the 

Analysis team postulated that this might represent dreamless cases. 

Evidence 
accumulation 

Sub-clustering 

Cluster result 

Fred & Jain 
(2005) Our method 

 

 
Natural number of 
clusters (longest 
lifetime criterion) 

Average 
Weighted average 
(by sub-clustering 
quality) 

Forced 2 clusters 
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Second, as the feature spaces consisted of up to 2,475 dimensions (or features), this far 

exceeded the maximum of 64 dimensions demonstrated by Fred and Jain. To avert a possible 

curse-of-dimensionality problem (see Bellman, 1957), the Analysis team limited the number 

of features to consider only up to nine at a time for each run. They populated the clustering 

ensemble with sub-clusterings of many different combinations of features. 

Third, to give greater weight to more meaningful sub-clusterings during evidence 

accumulation, the Analysis Team also introduced weighting of sub-clustering results by a 

goodness-of-clustering metric. 

The modified evidence accumulation clustering algorithm consisted of modifiable 

subcomponents: including sub-clustering, weighting, and hierarchical clustering. We will 

describe the specific methods used for each Step as they appear. 

Step 1 

Method. The task in the first step of blind classification was to classify 54 blinded 1-minute 

polysomnograms—referred to as cases—for dreamfulness. Data included simultaneous 25-

channel EEG, 2-channel electrooculography (EOG) and 2-channel electromyography (EMG); 

the channels’ nominal locations were provided. The Analysis Team approached classification 

at this step with an exploration of feature extractions, followed by clustering based on a 

focussed set of features using the modified EAC (Wong & Tsuchiya, in prep.). 

At this step, minimal information was known besides the data that could be used for 

classification. First, the Analysis Team considered eight different methods of analysis based 

on the previous EEG literature on levels of consciousness (e.g., sleep, anaesthesia, brain 

injury), listed with detailed methods in Supplementary Document 5. These were spectral 

power at established frequency bands, spectral power at fine frequency resolution, 

autocorrelation features as described by Thomsen et al. (1991), permutation entropy, 

approximate entropy, EOG root mean square (RMS) activity, EMG RMS activity, and 

spectral power in temporo-occipito-parietal areas (Siclari et al., 2014). As more features 

would be expected to result in overfitting (Domingos, 2012), the Analysis Team aimed to 

select only a few features fit for purpose. 

The Analysis Team sought features that produced cluster results consistent with correct 

classification of dream report condition. In the absence of any ground truth, they looked into 

how consistently features clustered data when the data was split into four 15-s time segments. 

They looked for (a) clustering results that were consistent across temporally adjacent 

segments of time, or (b) results that were increasing in consistency for time segments more 

proximal to the time of awakening. A consistency metric between the clusterings of any two 

segments was formulated as follows. 

Firstly, let us denote each case as D(i) (where i = 1, 2, …, 54), and divide it into 4 segments 

as Dj(i) (where j = 1, 2, 3, 4). Clustering would assign to each Dj(i) a membership label for 

one of two clusters: c1 and c2. Importantly, these clusters were not classified for 

dreamfulness; thus, c1 in one segment can correspond to either c1 or c2 in any other segment. 

But, because we always labelled the data by one of two clusters, there are only two possible 

ways to map c1 from one segment to c1 from another. Let us denote the proportion of cases 

that remain in the same cluster between segment m and n under the first and second mappings 

as π1(m,n) and π2(m,n). Then, the equality π1(m,n) + π2(m,n) = 1 holds for any clustering 

result. We thus define consistency of clustering between segment m and n as follows: 
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𝐶(𝑚, 𝑛) = 2 × |𝜋1(𝑚, 𝑛) − 0.5| = 2 × |𝜋2(𝑚, 𝑛) − 0.5|, (1) 

in which C(m,n) takes the value 0 when the clustering is not consistent at all, and 1 for perfect 

consistency. 

The Analysis Team performed clustering on all cases for each time segment separately, and 

with each of the eight methods of feature extraction. Based on this consistency measure, in 

Step 1, they chose to classify dreamfulness based on the PowerFine feature set (detailed in 

Supplementary Document 5). 

Briefly, the PowerFine feature set consisted of cases’ power spectral density (PSD) estimates 

for each EEG electrode, in frequency bins between 0 to 49.5 Hz in 0.5 Hz steps (i.e., 99 

features per electrode). The feature set in total had 2,475 features for each case (99 x 25 

electrodes). Note that PSDs were estimated throughout this study using fast Fourier transform 

and Welch’s method (Welch, 1967): Hann windows with 80% overlap. The Analysis Team 

performed the sub-clustering stage of EAC 82,475 times; 2,475 sub-clusterings were 

performed corresponding to each unique feature, and 10,000 random combinations of features 

were sub-clustered for each number of features k between 2 and 9 inclusively. Following the 

completion of the EAC procedure, the Analysis Team contrasted each feature between the 

two clusters by taking the Cohen’s d effect size (Cohen, 1988) of their values after log-

transformation. Cohen’s d is calculated as 

𝑑 =
𝜇1 − 𝜇2

𝜎
, (2) 

where the term μ1 − μ2 is the difference between the clusters’ means, and σ is their pooled 

standard deviation. The Analysis Team finally classified the cluster with overall higher low-

frequency activity and lower high-frequency content to be from the dreamless condition, 

concordant with Siclari et al.’s (2014) findings. 

Results. The temporal consistency results are summarised in Figure 3A. The PowerFine 

candidate feature set exhibited highest consistency (> .9) for three pairs of consecutive time 

segments (i.e., 1 vs. 2, 2 vs. 3, and 3 vs. 4). This meant that class memberships of cases A and 

B tended to be consistent across four 15-s time segments, despite clustering being performed 

completely independently across segments. This and three other candidates were found 

significantly consistent following Bonferroni correction for multiple comparisons (two-tailed 

Binomial test, N = 54, unadjusted p ≤ .001), including PermEn, Siclari and EmgRms. With 

regard to positive trends in temporal consistency within individual participants, only EmgRms 

exhibited a difference between the temporal consistencies of the first half and last half (one-

tailed permutation test, p = .0002, Bonferroni-corrected). 

Using the PowerFine feature set, the Analysis Team performed modified EAC and obtained 

two clusters with unequal membership numbers (28 vs. 26). The dendrogram in Figure 3B 

gives a visualisation of the separation between the clusters. Figure 3C shows the mean 

difference in power by Cluster 1 subtracted from Cluster 2, and Figure 3D shows its effect 

size in Cohen’s d. The Analysis Team observed generally lower high-frequency power (ca. 

11–30 Hz) in the average of Cluster 1 compared to Cluster 2 (visible in heat maps Fig. 3, C–

D). Thus, based on Siclari et al. (2014)’s findings, the Analysis Team interpreted Cluster 1 to 

contain more dreamless report cases, and Cluster 2 to contain more dreamful ones. (To see 

the exact case-wise classification for this and all proceeding Steps, please refer to Fig. 9.) The 

Analysis Team submitted this classification, and the Data Team determined the accuracy to 
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be 54%, which was not significantly different from chance according to a two-tailed 

Binomial test (N = 54, p = .68). 

The Analysis Team’s clustering turned out to strongly group for participant identity and not 

for dreamfulness. Although full participant information was not revealed until Step 3, we 

show them in Figure 3B below the dendrogram by the upper row of coloured lines, whose 

colours code for each of the 9 participants. The fact that clustering more strongly grouped for 

participant identity was nonetheless determinable by the Analysis Team in Step 2: with the 

revelation of pairing information, it was found that 24 of the 27 pairs of cases were wrongly 

classified as co-occurring in the same cluster. 

 
Figure 3. Step 1 blind classification results. (A) Temporal consistency for each of the 8 

candidate feature sets. The consistency measure quantified the degree of agreement of 

unsupervised clustering between two consecutive 15-s segments of data; a consistency of 1 

corresponded to identical clustering results. The black, grey, and white bars respectively 

correspond to the consistencies between segment 1 and 2, 2 and 3, and 3 and 4. The dashed 

line is the upper bound of the 95% CI for the null model, computed by Monte Carlo 

simulation, with Bonferroni correction. The Analysis Team decided to use the PowerFine 
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feature set for Step 1 classification based on this result. (B) Dendrogram of clustering in the 

PowerFine feature set. The two clustered branches are differentially coloured bright cyan 

(Cluster 1) and darker red (Cluster 2). Cases were hierarchically clustered using UPGMA 

linkage, following evidence accumulation of their pairwise co-association similarity. The 

bottom two colour-coded rows are the true Participant identities (only revealed to the 

Analysis Team after Step 2) and Dreamfulness identities (only revealed after Step 5), 

respectively; cases with the Dreamful condition are in dark green, and Dreamless in bright 

yellow. (C) Mean difference in power spectra (Cluster 2 subtracted by Cluster 1) for all 25 

EEG channels as a heat map. The colour scale is in units corresponding to the natural 

logarithm of μV2/Hz. (D) The effect sizes of the difference in C, quantified in Cohen’s d. 

 

Step 2 

Method. Together with the announcement of the result for Step 1, the Data Team removed 

the first layer of blindness by revealing their grouping into 27 pairs of cases. Each pair 

consisted of one dreamful and one dreamless case from the same participant. Still employing 

the modified EAC method, the Analysis Team was guided by a simple formalism of the 

linear mixed model: 

Cases ~ Dreamfulness + (1|Participant), 

where the observed data (Cases) should reflect the main effect (Dreamfulness) with the added 

random effects (1|Participant). Assuming that the main effect of dreamfulness would be 

constant across participants, the Analysis Team treated the 54 cases as 27 single observations, 

each with feature values taken as the difference between a given pair. If these assumptions 

were correct, one can see that successful classification would be obtained through 

minimization of the variance across paired cases (i.e., alignment of feature vectors along the 

average difference between the two classes). 

Also at this step, the Analysis Team reconsidered the features to use for clustering. In the 

previous step, their feature set consisted of 2,475 features of PSDs across the scalp, which 

they suspected in hindsight to have been excessively numerous and thus contributed to poor 

classification performance due to overfitting data (Domingos, 2012). They also suspected that 

the clustering algorithm might have performed better with a more encompassing feature set 

than one that only looked at EEG. To address these issues, the Analysis Team both 

condensed the EEG PSD features to a smaller number and expanded the diversity of features 

that composed the feature set for classification. (See Supplementary Document 6 for details.) 

In brief, because the spectra across electrodes were apparently similar (see Fig. 3), the 

Analysis Team averaged the PSDs across all electrodes in 19 frequency bins that were 

logarithmically spaced—thus reducing the number of features from 2,475 to 19. As for the 

lost locality information, they delegated this to a focussed set of 11 features based on the hot 

zone findings reported by Siclari et al. (2014), which was accessible as a preprint manuscript 

at that point in time. These features included the whole-brain power at low and high 

frequency bands, low-frequency parieto-occipital power at various time windows, high-

frequency frontal power at various time windows, and high-frequency power at hot zones 

relating to various perceptual categories. Lastly, the Analysis Team included 20 features 

extracted from the time course of EMG and EOG, computed differently from Step 1. For 

each 30-s segment of EMG or EOG, they computed the RMS values of all consecutive 1-s 
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time windows, and took the 0th, 25th, 50th, 75th, and 100th percentiles of those as features. This 

resulted in 10 features (5 percentiles × 2 segments) for each modality. In total, this set 

consisted of 50 features (19 scalp-average PSD + 11 Siclari features + 10 EMG + 10 EOG). 

The difference between each pair was extracted by their subtraction in each feature value 

after Studentisation. Because the Analysis Team did not know which case of the pair 

belonged to which dream report condition, the polarity of the difference was arbitrarily 

assigned. As a result, they obtained 27 real-valued vectors in 50 dimensional feature space, 

whose orientation—and not direction—represented the difference between the pairs’ features. 

Pairwise sub-clustering of the cases based on this transformed representation entailed the 

following. First, the feature space was subsampled to the combination of features to be used 

by the sub-clustering. Figure 4A shows a mock example where two features were chosen, 

thus representing the difference vectors (of which there are three, for illustrative purposes) in 

two dimensions. Next, each vector was centred at their midpoints and normalized to have 

unity length (Fig. 4B). A new vector representing the average orientation among all the 

difference vectors was then found (Fig. 4C), called the mean orientation vector, which should 

maximise the mean absolute cosine similarity between each difference vector and itself. Its 

orientation estimates the true qualitative difference between dreamfulness and dreamlessness. 

A hyperplane was then drawn normal to this vector, intersecting the origin (Fig. 4D). This 

hyperplane split each difference vector in two, which finally allowed those corresponding 

cases falling on each side of the hyperplane to be sub-clustered together. 
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Figure 4. Step 2 pairwise sub-clustering schematic. Here, cases are depicted as points in a 

2-D feature space; pairs are represented as two cases joined by a line. The basic concepts of 

pairwise sub-clustering begin in A, with the pairs of cases producing each a vector 

quantifying the difference between a dreamful case and a dreamless case. These difference 

vectors are then normalised in B to have equal length and intersect with the origin at their 

midpoints. They are now more representative of the qualitative difference between paired 

cases. Next, the mean orientation among all difference vectors is estimated in C, defined as 

a vector whose orientation maximises the average absolute cosine similarity between it and 

the difference vectors. The mean orientation vector estimates the true qualitative difference 

between dreamfulness and dreamlessness. It is depicted in the figure as a bold arrow 

originating from the origin. Finally, the cases are sub-clustered in D by introducing a 

hyperplane normal to this vector (bold, dashed line), and labelling the cases falling on each 

side of the hyperplane as co-associating. Paired cases will never co-associate. 

 

For the goodness-of-clustering values, used to weight each sub-clustering within modified 

EAC, the Analysis Team took the mean absolute cosine similarity. In order to make these 
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values comparable between sub-clusterings of different dimensionalities, the mean absolute 

cosine similarity was also divided by the expected value of such if the difference vectors 

were randomly oriented. This was computed using Monte Carlo simulations, where the 

number of difference vectors and the dimensionality were matched to those of each sub-

clustering. 

Results. The Analysis Team obtained two equally sized clusters following the clustering 

procedure. The dendrogram in Figure 5A gives a visualisation of the separation between the 

clusters. Differences were found in the mean of their features most prominently in EOG 

activity (Fig. 5C); the cluster with higher EOG activity (Cluster 1) also had higher EMG 

activity (Fig. 5B) and low-frequency EEG activity (Fig. 5D). Differences in Siclari hot zone 

features were small and otherwise inconsistent (Fig. 5E). Although major differences were 

manifest in the EOG and EMG features, the Analysis Team had no rationale based on the 

literature for using them to determine which cluster corresponded to dreamfulness. Thus, 

based on EEG differences, they interpreted Cluster 1 to contain more dreamless report cases, 

and Cluster 2 to contain more dreamful report cases. The Data Team determined the accuracy 

of this classification to be 59%, which was not significantly different from chance (two-tailed 

Binomial test, N = 27, p = .44). Unlike after Step 1, the Analysis Team did not gain much 

new information from the feedback on their performance and the newly revealed participant 

identities. 
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Figure 5. Step 2 blind classification results. A: Dendrogram of clustering, in the same 

format as in Figure 3A. Cases were hierarchically clustered using UPGMA linkage, 

following evidence accumulation of their pairwise co-association similarity. B shows the 

EMG feature means and standard errors of Cluster 1 (solid blue line) and Cluster 2 (broken 

red line) for the two time segments. Their statistics were calculated from log-transformed 

data. C shows the same for EOG activity. D: The EEG power spectral density average of 

Cluster 1 and Cluster 2, and their effect sizes. For the top panel, Cluster 1 is the solid blue 

line, and Cluster 2 is the broken red line. In the bottom panel, their statistical differences are 

expressed as Cohen’s d, in lieu of error bars for the top panel. E: The difference in power 

for frontal (“F”) and parieto-occipital (“PO”) electrodes, separately for “high” (18–50 Hz) 

and “low” (1–12 Hz) frequencies, over the indicated period of time just before awakening; 

and for the whole scalp locality (“whole”) over 20 s just before awakening. For the top 

panel, Cluster 1 in dark blue bars, and Cluster 2 in bright red. Like for D, their statistical 

differences are expressed in the bottom panel as Cohen’s d. 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 27, 2019. ; https://doi.org/10.1101/643593doi: bioRxiv preprint 

https://doi.org/10.1101/643593


DREAM CATCHER 18 

 

Step 3 

Method. The Data Team removed the second level of blindness with the revelation of cases 

grouped by common participants. This resulted in nine distinct participant-groups, each 

associated with six cases, which were composed of three condition-balanced pairs of cases. 

Given this information, the Analysis Team exploited participant information by removing 

participant-specific, condition-irrelevant components from the EOG-EEG signals. To this end, 

they utilised independent component analysis (ICA), a technique for “unmixing” 

multichannel time series into their underlying, statistically independent time series 

components. They afterwards recomposed the case recordings after selecting and removing 

the condition-irrelevant components, which might have consisted of artefacts caused by eye 

and muscle movements. The full details of the methodology are described in Supplementary 

Document 6. 

From the recomposed cases of all participants, the Analysis Team extracted the same set of 

features explained in Step 2 and performed EAC on it. A different set of EAC sub-clustering 

procedures was devised to take into account participant information. Taking the method of 

Step 2’s pair difference vector sub-clustering by mean orientation, the team sub-clustered the 

cases in four ways. In two of the ways, similar to Step 2, they sub-clustered cases in a 

pairwise manner: firstly with respect to the mean orientation amongst all pairs, and secondly 

with respect to the mean orientation of their own participant. The other two ways used the 

method of Step 1’s k-means sub-clustering and sub-clustered the unpaired cases: firstly 

amongst all cases, and secondly amongst each participant-group of cases. Therefore, there 

were four ways in which they performed sub-clustering. The Supplementary Figure S6.2 

gives an overview of the scheme. They calculated the final similarity matrix as the average of 

these four different sub-clustering methods’ results; the exact details are also described in 

Supplementary Document 6. The resulting clusters produced with this method were thereafter 

classified for dreamfulness using the same rationale as in Step 1. 

Results. The Analysis Team obtained two equally sized clusters following the clustering 

procedure, using Ward’s method (Ward, 1963) as an alternate hierarchical linkage 

measurement. The UPGMA linkage method as in the previous Steps resulted in clusters of 

uneven sizes, which was undesirable. Figure 6 shows results for this step in the same format 

as Figure 5 for Step 2. The Analysis Team found differences between the clusters most 

prominently in EOG activity (Fig. 6C); the cluster with higher EOG activity (Cluster 2) also 

had higher EMG activity (Fig. 6B) and low-frequency EEG activity (Fig. 6D). In contrast, 

differences in Siclari hot zone features were small (absolute effect size Cohen’s d < 0.7) and 

otherwise inconsistent with each other in regard to their reported interpretations (Fig. 6E). 

Faced with similar results to Step 2, the Analysis Team interpreted Cluster 1 to contain more 

dreamful report cases (see Fig. 9 for exact case-wise classification). 

The Data Team determined the accuracy of this classification to be 59%, which was not 

significantly different from chance (two-tailed Binomial test, N = 27, p = .44). This feedback 

also did not give the Analysis team any further insights into their classification. 
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Figure 6. Step 3 blind classification results. The same format as in Figure 5. Cases were 

hierarchically clustered using Ward’s minimum variance linkage after evidence 

accumulation. 

 

Step 4 

Method. The third level of blindness was removed by grouping all cases with the same 

dream report condition from each participant. This effectively gave each participant two 

unlabelled condition groups of three cases each—referred to as participant-condition groups. 

The Analysis Team approached classification similarly to Step 3, first removing condition-

irrelevant components using ICA with an adjusted component removal procedure, but then 

taking the difference in features between the average of conditions for each participant as 

observation vectors. This resulted in nine 50-dimensional vectors on which sub-clustering 

was performed in a pairwise manner. See Supplementary Document 6 for full details. 

Following EAC, the team classified the clustering result for dream report conditions 

according to the rationale set out in Step 1. 
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Results. Figure 7 reports the results in the same format as in Figures 5 and 6. However, 

Figure 7A shows the dendrogram of clustering at only the participant level, unlike in Figures 

5A and 6A, as they were already grouped at this Step. Unlike Steps 2 and 3, the Analysis 

Team found a prominent difference between the clusters in EMG activity (Fig. 7B) but not 

EOG activity (Fig. 7C); the cluster with higher EMG activity (Cluster 1) also had higher low-

frequency EEG activity (Fig. 7D). Differences in Siclari hot zone features also indicated 

lower frontal high-frequency activity for this cluster (Fig. 7E), which in their study indicated 

an absence of dreaming experience. The team thus interpreted Cluster 1 to contain more 

dreamless report cases and Cluster 2 to contain more dreamful report cases (see Fig. 9 for 

exact case-wise classification). The Data Team determined the accuracy of this classification 

to be 44%, which was not significantly different from chance performance (two-tailed 

Binomial test, N = 9, p = 1). 

 
Figure 7. Step 4 blind classification results. The same format as in Figure 5 besides A, 

which shows the dendrogram on participant-condition group averages. 
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Step 5 

Method. The penultimate layer of blindness to be removed was information on the common 

dream report condition across all cases. This resulted in just two groups—one from the 

dreamful condition, the other from the dreamless condition—each consisting of 27 cases fully 

labelled by common participants. No clustering was required. To make their final blind 

classification, the Analysis Team replicated three measures based on the significant 

differences reported by Siclari et al. (2017) and Scarpelli et al. (2017), both of which had 

been recently published. Two of the features were Siclari et al.’s low and high frequency hot 

zone power, named respectively SBP low and SBP high (SBP for the initials of the first three 

authors of the Siclari paper), and one feature was the low frequency activity reported by 

Scarpelli et al., named Scarpelli (see Supplementary Document 6 for full details). The 

Analysis Team classified these condition groups for dream report condition based on the 

group-average of these features. 

Results. The difference in feature means after removing inter-participant variability is shown 

in Figure 8A. All features had low effect sizes (absolute Cohen’s d < 0.4). As they were 

consistent in their indication of dream report condition, the Analysis Team interpreted Cluster 

1 to contain more dreamless report cases, and Cluster 2 to contain more dreamful report cases 

(see Fig. 9 for exact case-wise classification). The Data Team determined this classification 

to be inaccurate. 

 
Figure 8. Step 5 blind classification results. (A) The difference in feature means between 

Cluster 1 and Cluster 2. Cluster 1 in dark blue bars, and Cluster 2 in bright red. (B) The 

effect sizes of the difference in A, of Cluster 1 from Cluster 2 in Cohen’s d, after 

subtracting each participant’s means. 

 

Post Hoc Evaluation 

From Steps 1 to 5, the Analysis Team never succeeded in classifying dreamful from 

dreamless sleep beyond chance-level performance (Fig. 9C). In the following post hoc 

analyses, we used all the information about the data and tried to quantify the effects of 

dreamfulness using more conventional, unblinded analysis methods. Through these analyses, 

we hoped to understand the source of the poor performance in the blinded classifications. 
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Figure 9. Case classifications through five levels of information. In A and B, the dark green 

cells are cases that were classified dreamful. Cases are horizontally sorted by Condition in 

A and Participant Number in B. In C, the error bars are 95% confidence intervals; chance-

level accuracy (50%) is demarcated by the black, dashed line. 

 

We set out to firstly quantify how well we could replicate selected effects reported in past 

studies (i.e. Scarpelli et al., 2017; Siclari et al., 2017) using Bayesian model selection. We 

also set out to quantify any other differences between the conditions via two methods: a 

multivariate analysis of variance (MANOVA) and a decoding analysis. 

Bayesian Model Selection 

We investigated how our data compared with the then-recently reported effects of NREM 

dreaming, specifically in two 2017 articles by Siclari et al. and Scarpelli et al. We modelled 

the distribution of effect sizes expected for data of our sample size based on the reported 

effects using a Monte Carlo approach, and tested their plausibility in light of the replication 
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attempts on our data against a null model with the use of Bayesian model selection 

(Goodman, 1999). 

Method. We reused features SBP low, SBP high, and Scarpelli from Step 5 of blind 

classification for replicating the effects being considered (see Supplementary Document 6 for 

full details). 

We modelled past findings as probability density distributions of their effect sizes (Cohen’s 

d) for data of our sample size n = 9 participants, with 3 dreamful and 3 dreamless data sets 

each. For each reported effect, we deduced the effect size based on the reported sample size 

and the t- or F-statistic. Then, assuming a Gaussian generator with this effect size, we 

stochastically simulated 10,000 experiments of n = 9 and obtained their resulting Cohen’s ds. 

We modelled the probability density distribution of d using Matlab’s fitdist function to obtain 

a Gaussian-kernel-smoothed density estimation, with an automatically chosen kernel width 

optimised for Gaussian densities. 

Statistics for Siclari et al.’s (2017) posterior hot zone NREM findings for low and high 

frequencies were obtained from their Supplementary Figure 5: respectively n = 32, t = -2.98; 

and n = 32, t = 3.46. From this, their deduced Cohen’s ds were respectively -0.527 and 0.612. 

For Scarpelli et al.’s (2017) findings, we selected results from the nine electrode locations, 

reported for NREM recall vs. non-recall differences, that were statistically significant. We 

obtained the statistics from their Figure 1: n = 14, F ∈ (14.78, 15.49, 15.08, 15.94, 13.32, 

19.45, 13.26, 13.35, 15.46). The deduced Cohen’s ds were (-1.03, -1.05, -1.04, -1.07, -0.975, 

-1.18, -0.973, -0.977, -1.05), and we took their average to get a single statistic d = -1.04. 

In addition to Bayesian model selection, we also estimated traditional confidence intervals of 

the effect sizes of our data via bootstrapping of underlying features—constrained for the 

original numbers of participants and conditions—over 1,000 permutations. 

Results. The following results summarise those from Table 2. With respect to Siclari’s low 

frequency effect, our data’s effect size d = -0.39 supported this finding over the null model to 

a moderate degree (Bayes factor K = 3.3, 2 ln K = 2.4). However, in regard to Siclari’s high 

frequency effect, we found d = 0.29 for our data, meaning the null model was much more 

probable (Bayes factor K = 77-1, 2 ln K = -8.7). For Scarpelli’s low frequency effect, we 

found d = -0.56 for our data, which did not particularly support their finding but rather 

slightly favoured the null model (Bayes factor K = 2.6-1, 2 ln K = -1.9). 

Table 2. 

Relative likelihood of Dream Catcher effect size given reported effect size 

Feature d d (95% CI) 𝑃(𝑑|𝑀𝑁𝑢𝑙𝑙) 𝑃(𝑑|𝑀𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑) 

Bayes factor 

K 2 ln K 

Siclari low frequency -0.39 [-0.80, 0.19] 0.31 1.0 3.3 2.4 

Siclari high frequency 0.29 [-0.34, 0.78] 0.59 7.6 × 10-3 1 ∕ 77 -8.7 

Scarpelli low frequency -0.56 [-1.02, 0.26] 0.31 0.12 1 ∕ 2.6 -1.9 
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MANOVA 

We performed a MANOVA to parametrically discern whether there was a significant effect 

of dream report conditions amongst the features that we used during the course of blind 

classification. 

Method. We used a two-way MANOVA design that tested the effects (independent 

variables) of dream report condition, participant grouping, and their interaction. We 

combined all features used throughout our blind classifications and took these as our 

multivariate dependent variables. These were reduced from 2,628 to 18 dependent variables 

in order to make the MANOVA feasible, by limiting the degrees of freedom in the analysis. 

The number of reduced variables was chosen to minimise the Bayesian information criterion 

(Schwarz, 1978). For the reduction method, we performed singular-value decomposition on 

the features and applied a varimax rotation to the components; we took these steps to 

discourage variables from being composed of homogeneously mixed features and make the 

variables more independent of each other (Kaiser, 1958). 

Results. We tabulated the results of the MANOVA in Table 3. The sought-after main effect 

of the dream report condition on our features was not present (Lawley-Hotelling trace, T = 

251, p = .93); however, we found a significant participant effect (Lawley-Hotelling trace, T = 

2.9 × 104, p < .001). We found no significant interaction effect between dream report 

condition and participants (Lawley-Hotelling trace, T = 232, p = .89). 

Table 3. 

Two-way MANOVA of independent variables, participant grouping and dreamfulness 

grouping, on 18 SVD-reduced dependent variables of all extracted features 

Effect df (full) df (reduced) Lawley-Hotelling trace p 

Dreamfulness 36 45 251 .930 

Participant 36 52 2.86 × 104 < .001 

Interaction 36 44 232 .889 
 

 

Decodability 

To complement the parametric statistical analysis of MANOVA, we also performed a 

decoding analysis to discover the decodability of EEG power spectra using a support vector 

machine algorithm (Cortes & Vapnik, 1995). 

Method. We employed the nu-SVC model for our decoder, as implemented in LIBSVM for 

Matlab (version 3.18; Chang & Lin, 2011, 2014); its regularisation parameter was set to the 

default nu = 0.5, and the model was set to output probability estimates of classification. We 

validated this decoder as described in Supplementary Document 7. We estimated 

classification accuracy using participant-wise leave-one-out cross-validation on the data. For 

the 9 participants, each of whom acted as a fold for cross-validation, we classified each pair 

dichotomously—as we did in the blind classification experiments after Step 1—based on 

their relative probability estimate outputs. We preprocessed the PSD features by taking their 

natural logarithms, standardising them to have zero mean at each frequency bin in each 

participant and unit variance amongst all frequencies and participants, and then whitening the 
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data using the zero-phase component analysis method for clustering using the Mahalanobis 

distance (Bell & Sejnowski, 1997; Mahalanobis, 1936). 

First, we attempted to find the optimal time window length for decodability, since it was 

possible that our utilisation of the whole 60-s period in blind classification was suboptimal: in 

related studies, Siclari et al. (2017) used 20-s periods, and Nieminen et al. (2016) used 30-s 

periods; on the other hand, Esposito et al. (2004) used 3-minute periods, and Scarpelli et al. 

(2017) used 5-minute periods. We investigated this aspect by obtaining decoding accuracies 

of window lengths varying from 2 to 60 s. We used feature sets of common average 

electrode–referenced EEG PSDs for each of the 25 electrodes. PSDs were calculated using 

fast Fourier transform without zero padding, so that the number of frequency bins—and 

hence features—naturally scaled with window length. 

Second, we searched for the optimal decoding performance of the same data amongst 

frequency bands and electrodes, as a function of time until awakening with a fixed window 

length. We chose to use 19 logarithmically spaced frequency bins, as in Step 2 of blind 

classification, and a window length of 4 s. PSDs were estimated using the multitaper method 

with 3 Slepian tapers to better capture the spectra across each whole time window, as they 

were non-overlapping. The spectral power of each desired logarithmic frequency bin was 

then taken to be the average power within that band. We then decoded the dream report 

condition at each frequency bin and time amongst the 25 electrodes and also at each electrode 

and time amongst the 19 frequency bins. We then visualised the results in a time-frequency 

and time-electrode heat map (Fig. 10). 

We expected to find some combination of window length, time centre, electrode, and/or 

frequency band that would decode dreamfulness better than chance, assuming that a reliable 

difference is present in the data. We also expected decodability to increase for windows with 

time centres closer to awakening; such a result was suggested in Siclari et al.’s (2014) 

preprint manuscript. 

Results. The result of varying time window length on the decodability is shown in Figure 10. 

In general, decodability was not better than chance amongst all tested window lengths: (a) 

after adjusting for a false discovery rate α = .05 (Benjamini & Yekutieli, 2001), no average 

decoding performance within each test length was significantly better than chance (one-tailed 

Binomial tests, N = [27, 810], adjusted p ≥ 0.54); and (b) amongst all time windows 

contiguous with time of awakening, only one length of window (24-s) was significantly better 

than chance at 78% accuracy (one-tailed binomial test, N = 27, adjusted p = 0.04); 

furthermore, (c) no positive linear trend with time till awakening was apparent for any 

applicable length of window (one-tailed Pearson linear correlation, adjusted p > 1). 
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Figure 10. Dreamfulness decodability of electrode power spectral density features over 

various time window lengths and times. Accuracy of decoding is colour-coded, with 

chance-level performance corresponding to 0.5 accuracy (black). The critical thresholds for 

statistical significance at uncorrected p ≤ .01, .001 and .0001 respectively are 

accuracies .70, .78 and .85 (one-tailed Binomial test, N = 27). 

 

The time courses of decodability for 4-s windows with frequency- and electrode-wise 

partitioning are shown in Figure 11. Again, decodability was generally no better than chance: 

(a) one time window at 18 s prior to awakening had an average frequency-partitioned 

decoding performance that was significantly better than chance after adjusting for false 

discovery rate α = .05 (one-tailed Binomial test, N = 513, adjusted p = 0.04) at 57% accuracy, 

however this result was not corroborated by the variable window length results; (b) no 

frequency band had an average frequency-partitioned decoding performance that was 

significantly better than chance (one-tailed Binomial test, N = 405, adjusted p ≥ 0.94); (c) no 

positive linear trend with time was apparent for any frequency band (one-tailed Pearson 

linear correlation, adjusted p > 1); (d) no time window had an average electrode-partitioned 

decoding performance that was significantly better than chance (one-tailed Binomial test, N = 

675, adjusted p ≥ 0.11); (e) no frequency band had an average electrode-partitioned decoding 

performance that was significantly better than chance (one-tailed Binomial test, N = 405, 

adjusted p ≥ 0.40); (f) no positive linear trend with time was apparent for any electrode (one-

tailed Pearson linear correlation, adjusted p > 1). 
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Figure 11. The time course of dreamfulness decodability for power spectral density 

features. Decodability is colour-coded according to the colour bars, with chance-level 

performance (0.5 accuracy) in dark purple. Decodability is shown for electrode-frequency 

power features: within each frequency (A) and within each electrode (B). The critical 

thresholds for statistical significance at uncorrected p ≤ .01, .001 and .0001 respectively are 

decodabilities .70, .78 and .85 (one-tailed Binomial test, N = 27). 

 

Summary 

In all three analyses, we found no significant difference between dreamful and dreamless 

cases for the features we extracted, which included electrode-frequency spectral power, EMG 

and EOG activity. In our Bayesian modelling comparison, we found strong evidence against 

Siclari et al.’s (2017) high-frequency posterior hot zone effect. We also failed to replicate 

both Siclari et al. (2017) and Scarpelli et al.’s (2017) low-frequency effect to statistical 

significance. 

Discussion 

The Dream Catcher test is a paradigm to test whether an understanding of the neural 

constituents of consciousness (i.e., experiences) is indeed genuine, by separating the 

measurement of brain activity from associated subjective reports. Furthermore, the test 

should be performed under the stipulation that the full contents of consciousness are 

generated by internal neural mechanisms operating spontaneously and independently of 

external stimulation. If a scientist can reliably predict the full contents of consciousness based 

only on observations of the neural activity and with no access to information on the external 

stimuli or subjective reports, then the test is passed. 

We executed a simplified version of the Dream Catcher test with data from 9 participants, 

collected by the Data Team with an early night serial awakening paradigm. The Analysis 
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Team’s task was to sort the EEG segments (i.e., 60-second polysomnograms preceding 

awakenings and interviews) into two groups: segments associated with dream reports vs 

segments associated with reports of non-dreaming. The Data Team evaluated the Analysis 

Team’s performance over five decreasing levels of blindness (Fig. 1): 1) all cases unlabelled, 

2) cases paired by complementary dreamfulness conditions from the same participant, 3) 

cases labelled by common participant, 4) cases labelled by common dreamfulness condition 

and participant, and 5) cases labelled by common dreamfulness condition. The Analysis 

Team approached the classification task by clustering together quantitatively similar cases 

into two groups and then manually classifying those groups based on findings from the recent 

literature. The similarity metrics used in clustering were based on features extracted from 

power and location of EEG spectra, and EMG and EOG activity. 

At all levels of blindness, the Analysis Team was unable to correctly classify between 

dreamfulness vs. dreamlessness with statistically significant accuracy; the best performance 

was achieved at Steps 2 and 3 with an accuracy of 59% (p = .44). Thus, the Analysis Team 

did not pass even this rudimentary form of the Dream Catcher test. Subsequently, several post 

hoc analyses were carried out to identify the source of failure. We went on to fail three more 

times at finding a difference between dreamful and dreamless cases using the fully-labelled 

data set with different paradigms: Bayesian model selection, MANOVA, and decodability. In 

particular, the model selection analysis failed to confirm key findings from the recent 

literature, while the MANOVA and decoding analyses found no effect amongst the selected 

range of features, which included EEG power spectra, and EOG and EMG activity. 

Explaining the Results 

The result of this Dream Catcher experiment suggests that the neural correlates of dreaming 

consciousness reportedly found in the power spectra of the brain are not sufficient for 

bridging the explanatory gap of consciousness. Due to the challenging nature of our 

experimental setup, our failure to pass the Dream Catcher test was not in itself a surprising 

outcome. What was surprising, however, was our subsequent failure to replicate or confirm 

the findings of the studies from which we derived our original predictions. We address 

several possible explanations. 

First, there were several methodological differences between the original studies and our 

attempted replication studies (see Table 4). On one hand, we had fewer participants than 

Chellappa et al. (N = 17), Esposito et al. (N = 11), Siclari, Baird et al. (N = 32), Scarpelli (N = 

14), and Siclari, Bernardi et al. (N = 12), which exposed us to a greater risk of false negative 

results. On the other hand, we note that Scarpelli et al., Chellappa et al., and Esposito et al. 

ground their findings based on just circa 2–3 awakenings per participant, which would have 

led to more variable data within participants, in contrast to the 6 awakenings performed in our 

study. Data of our sample size theoretically allowed us to detect an effect of size d ≥ 0.78 for 

at least .8 statistical power and α ≤ .05 false positive probability, assuming two groups of N = 

27 independent Gaussian-distributed samples each and no between-participant variability. 

More conservatively, if samples were averaged for each participant, we could detect effect 

sizes d ≥ 1.1, assuming N = 9 paired, Gaussian-distributed samples. 

On the technical level, Siclari, Baird et al.’s sleep study differed from ours. Whereas they 

used a 256-channel high-density EEG system, we were limited to a 29-channel system; and 

instead of dipole current source modelling, we used Perrin’s method of estimating scalp 

current source density by taking the Laplacian of fitted spherical splines (Perrin, Pernier, 

Bertrand, & Echallier, 1989). Our replication of Siclari et al.’s hot zone measurements was 
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therefore less precise. Nonetheless, such precision was not apparently essential to detecting 

an effect, as in Experiment 3 of their study, Siclari et al. were also able to successfully detect 

and predict the occurrence of dreaming vs. non-dreaming sleep utilising plain surface 

electrodes. Our data were more similar to Scarpelli et al.’s sleep study: they used 28 scalp 

electrodes with unipolar referencing for their analysis. 

Table 4. 

Comparison of similar studies 

Study authors NREM dream effects Study details 

Siclari, F., Bernardi, G., Cataldi, 

J., & Tononi, G. (2018) 

Decreased frequency and amplitude of 

slow waves (0.25–1 s) @ whole brain, esp. 

posterior and central areas 
Healthy participants, N = 12 

735 night awakenings 

256-channel EEG, unipolar Increased frequency of fast spindles @ 

whole brain 

Siclari, F., Baird, B., 

Perogamvros, L., Bernardi, G., 

Larocque, J. J., Riedner, B., … 

Tononi, G. (2017) 

Decreased low-frequency power (1–4 Hz) 

@ parieto-occipital areas 
(Experiment 1) 

Healthy participants, N = 32 

233 night awakenings 

256-channel EEG, source-

localised 

Increased high-frequency power (20–50 

Hz) @ parieto-occipital, lateral frontal, and 

temporal areas 

Scarpelli, S., D’Atri, A., 

Mangiaruga, A., Marzano, C., 

Gorgoni, M., Schiappa, C., … 

Gennaro, L. D. (2017) 

Decreased delta power (0.50–4.75 Hz) @ 

left fronto-temporal areas 

Healthy participants, N = 14 

28 afternoon awakenings 

28-channel EEG, unipolar 

Chellappa, S. L., Frey, S., 

Knoblauch, V., & Cajochen, C. 

(2011) 

Decreased delta power (1–3 Hz) @ 

fronto-central areas Healthy participants, N = 17 

97 all-day nap awakenings 

12-channel EEG, unipolar Decreased spindle power (12–15 Hz) @ 

centro-parietal areas 

Esposito, M. J., Nielsen, T. A., & 

Paquette, T. (2004) 

Decreased alpha power (8–12 Hz) @ 

frontal, central, and temporo-parietal areas Healthy participants, N = 11 

22 night awakenings 

19-channel EEG, unipolar Decreased delta power (0.5–4 Hz) @ 

fronto-temporal areas 

 

 

Another explanation for our results might have to do with extraneous variability in our data. 

Clustering works by grouping data according to their relative positions in feature space, but if 

these positions are influenced more by irrelevant factors or random noise than the relevant 

effect, then clustering would produce noisy or incorrect results. This was readily apparent 

from the result of Step 1, where clustering in fact grouped cases together by participant 

identity and not by dreamfulness (Figs. 3B & 9). However, even though participant identities 

were balanced from Step 2 onwards using pairing information, the classification accuracy did 

not significantly improve. This remained true even after removing independent components 

of EEG time series that clustered contrarily to pairing and participant information in Steps 3 

and 4. Furthermore, the lack of an interaction effect found in the MANOVA meant that there 

was no evidence that the effect of dreamfulness might have varied between participants either. 

If our analysis failed to find an effect due to the presence of irrelevant factors or noise, it is 

unlikely due to only inter-participant variability. Assuming that an effect does exist, we 

would require a larger sample size to measure it. 
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Lastly, we defined dreams as any experiences occurring during sleep—an extremely simple 

and broad definition in comparison to more fine-grained conceptual frameworks of sleep 

experience (see Windt et al., 2016). In fact, all NREM sleep dreams included in our study 

were static (i.e., lacking change or temporal progression), whilst other studies might treat 

only complex, dynamic and temporally progressing states as genuine instances of dreaming 

(Hobson et al., 2000; Hall, 1953; Nielsen, 2000; Revonsuo, 2006). It is possible that we failed 

to classify dreamful and dreamless NREM episodes, or find similar patterns of results as in 

previous studies, due to differences in how each study defined dreaming and its subtypes. 

Chellappa et al. (2011) asked participants “How much did you dream?” and identified a given 

report as dreamful when the answer was “greatly”, “fairly”, or “little”, likely including both 

static and dynamic dream reports in the study sample. Siclari et al. (2017) categorised both 

perceptual and non-perceptual mentation reports as cases of dreaming as long as participants 

“had been experiencing anything”. Scarpelli et al. (2017) selected dreams with narrative and 

temporal properties (Foulkes & Schmidt, 1983), and disregarded dreams without recall. On 

the other hand, dreamless sleep was identified similarly by all these studies as reports of 

having no experience. 

The Relation Between Dreamfulness and the Depth of NREM Sleep 

Even though a number of studies reported that NREM sleep dreaming is associated with a 

decrease of delta power over differing locations in the brain (Chellappa et al., 2011; Esposito 

et al., 2004; Siclari et al., 2017, 2018, 2014), we were not able to replicate this finding. While 

this could be due to an unidentified confound in our experimental design, data, or analysis, it 

is also possible that delta power decrease is not a genuine correlate of dreaming. But here, we 

propose another possible explanation: that delta power may simply reflect the depth of 

NREM sleep rather than dreaming consciousness. 

NREM Stages 2, 3 and 4 have been classically delineated by the proportion of delta waves 

within the course of a 20- or 30-s epoch (Rechtschaffen & Kales, 1968). Stage 2 sleep was 

primarily defined by the presence of sleep spindles and up to 20% prevalence of delta waves; 

Stage 3 sleep was defined for having 20–50% delta waves; and epochs with >50% delta 

waves were scored as Stage 4 sleep. By these definitions, there is a huge variance in the 

amount of delta waves not only between sleep stages but also within a given NREM stage. 

This has become even more amplified by the sleep scoring guidelines introduced by the 

American Academy of Sleep Medicine (Iber, Ancoli-Israel, Chesson, & Quan, 2007) with the 

merging of NREM Stages 3 and 4 into the N3 stage of “slow wave sleep” (delta waves 

dominating 20-100% of the time). Importantly, dream recall is already known to decrease 

from Stage 2 to Stage 3 and subsequently from Stage 3 to Stage 4 (Foulkes, 1982; Moffitt, 

1982; Noreika et al., 2009; Pivik, 1971; Pivik & Foulkes, 1968). As these stages are 

delineated by the amount of delta waves, it is plausible that the correlation between dream 

recall and delta power might be confused for the correlation between dream recall and NREM 

depth. Thus, the previously reported association between dreaming and EEG delta power may 

reflect a simple correlation between dream recall and the depth of NREM sleep (within each 

Stage) rather than intrinsic neural mechanisms of dreaming. 

As an example, Siclari et al. (2017) were able to predict dream recall in real time by 

awakening participants once delta power decreased below an individual spectral threshold (in 

addition to a gamma increase). Arguably, such awakenings yielded dream reports that took 

place during relatively shallow NREM sleep, whereas in deeper NREM sleep, we would 

expect to have more dreamless sleep reports. Such an uneven association between the 

presence of dream experience and the depth of sleep even within a given NREM sleep stage 
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is possible when all reports of dreaming and dreamless sleep are used for EEG analysis. In 

our study, the confounding factor of the sleep stage (or depth) was minimised by using only a 

small matched subsample of data (N = 27 + 27) from a larger pool of awakenings (N = 294), 

and making sure we had equal numbers of N2 and N3 sleep in dreamful and dreamless 

conditions from the same participant. This reduced a distribution bias of more dreamless 

reports at deeper stages of sleep. 

Pros and Cons of the Dream Catcher Paradigm 

We have found, through the course of our experiment, that the constraints imposed by the 

Dream Catcher paradigm force the researchers to focus their efforts on a single determination 

of the data. This mindset is considerably different to the status quo of scientific research 

nowadays, where one can pursue multiple avenues of investigation, sequentially or 

simultaneously, and then deal no further with those yielding nonsupporting results. Those 

failed avenues of investigation end up being incompletely explained and typically remain 

unpublished. By contrast, the Dream Catcher test permits investigating only a single avenue, 

and the researcher must address its results whether they support the hypothesis or not. It is 

similar in spirit to the Registered Reports format for science publishing (see Chambers, 2013 

for an exposition). In addition, blinding the data removes bias; unlike in common practice 

where the results are always known, researchers that pass the Dream Catcher test do so 

blindly and based on genuine understanding. The Dream Catcher paradigm encourages not 

only good science, but also a critical assessment of the reliability of past findings. 

This paradigm is not, however, without costs. Compared to the testing of multiple hypotheses, 

the data for a Dream Catcher test—in principle—can only be used once per hypothesis, 

which is relatively inefficient. Even if there were multiple Analysis Teams working in 

parallel, there would be no way to ensure that they each tested different hypotheses—because 

any such attempt would undermine the independence of the teams and could reintroduce bias. 

We addressed this inefficiency problem somewhat in our design by re-evaluating 

performance iteratively with a gradual removal of blindness. We hoped this would give us 

insights into the level of information required for successful classification. 

Following the completion of this experiment, we once again address the inefficiency problem 

and propose that multiple hypotheses could be validly tested within this paradigm through the 

use of unsupervised machine learning algorithms; for example, by setting up separate 

algorithms to test each hypothesis and disregard information that might otherwise produce 

experimenter bias. In our study, we started with the assessment of several families of features 

for clustering consistency, but ultimately submitted our answers based on just one of them. If 

we had allowed for the submission of multiple answers in parallel for each set of features, we 

would have been able to broaden the scope of our study. The caveat, however, is that once 

again the researcher may be tempted to neglect nonsupporting results at the next step. 

With regard to the use of predefined algorithms to achieve unbiased results, clustering, as 

used by the Analysis Team, is not the only method. The rationale for using clustering was 

motivated by the desire to discriminate cases based on several measures simultaneously in 

order to maximise performance; however, it may well be the case that one aims to test a 

single measure at a time. In that case, one could resort to very simple procedures. For 

example, for two equal-sized classes, one could use a median split; for two classes without 

assuming equal sizes, an automatic thresholding algorithm; and for multiclass classification, 

k-means clustering coupled with a classification heuristic. Researchers should determine for 

themselves the best method to represent the hypothesis they wish to test. 
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Future Avenues of Investigation 

The data analysed here constitute only a portion of the total number of awakenings (294) 

performed and recorded in our sleep study. Now that we have completed the Dream Catcher 

experiment with all its self-imposed restrictions, we can further investigate the replicability 

issue with the data we did not include. This may well reveal that those unreplicable effects do 

in fact exist, but they did not survive our precursory data selection process: the balancing of 

NREM stages and degree of dreamfulness. 

Additionally, we can check other effects reported in past studies within our expanded data set. 

Contemporary theories of consciousness suggest that connectivity or integration in the brain 

is necessary for the emergence of consciousness. The studies we have addressed here, as well 

as ours, did not consider such features; all features were measures of univariate data only 

operating on one channel at a time. To measure connectivity, we must employ features that 

operate on multivariate data. Phase coherence and cross-correlation, as we have mentioned in 

the introduction, are well-known examples. More sophisticated measures have been proposed 

for quantifying consciousness (Barrett & Seth, 2011; Oizumi, Amari, Yanagawa, Fujii, & 

Tsuchiya, 2016; Tegmark 2016; Schartner et al., 2015; Kim et al., 2018), taking inspiration 

from the integrated information theory of consciousness (Oizumi, Albantakis, & Tononi, 

2014; Tononi, 2004, 2008). These measures are all necessarily multivariate in nature. It is 

possible that the true correlates of dreaming consciousness in NREM sleep are to be found in 

multivariate features rather than univariate ones. We intend to investigate this possibility in 

future work.  
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Supplementary Document 1 

Sleep Data Collection Methods 

Early night serial awakening. The experimental data were collected during four non-

consecutive experimental nights, which took place between 10 p.m. and 6 a.m., with at least 

three nights between any two sessions. The participants were requested to avoid any 

stimulants, such as caffeine (6 hours prior to the experiment) or over-the-counter medication 

and alcohol (24 hours prior to the experiment), which was controlled for by asking 

participants to fill out a questionnaire before each session. The participants slept in a separate 

room and were observed through a video camera. The team constantly monitored their PSG 

on a computer screen and communicated with participants through a digital sound system 

device. 

During each experimental night, participants were awakened during the first 3–4 hours on 

average 8.17 times (SD = 1.24, range 6–11), yielding a total of 294 awakenings (9 

participants × 4 nights). This early night serial awakening protocol was shown to be an 

efficient paradigm for collecting large samples of dream reports while maintaining the 

stability of EEG spectral power measurements throughout the session (Noreika et al., 2009). 

The experimenters awakened the participants by playing a beep sound after confirming 

through online monitoring of PSG that they had been in Stages 2 or 3 of NREM sleep for at 

least 1 to 3 minutes. Post-hoc examination of the EEG confirmed that most of the awakenings 

took place during NREM Stages 2–3 (87%) over the 1-minute period before awakening. 

Given that serial awakenings from NREM sleep acted as selective REM sleep deprivation, 

episodes of sleep-onset REM occasionally intruded into the normal progression of sleep 

stages (13%), in which case participants were awakened as usual. Data from REM 

awakenings were omitted from this study. 

Before the experimental session, the participants were instructed in advance that, 

immediately after being awakened by the sound signal, they were to give a free oral report of 

“everything that was going through their mind before awakening”; the procedure was 

practised during the adaptation night. This instruction was not repeated again after the 

individual awakenings throughout the night, as a non-prompted free dream report was 

expected to interfere as little as possible with the very delicate process of remembering their 

experiences. If the experimenter judged that a free report from the participant contained any 

pre-awakening thoughts or perceptual experiences, the participant was further examined with 

a pre-recorded set of 21 questions played on a computer via the sound system (see 

Supplementary Document 2 for detailed instructions given to participants). The questions 

included inquiries about objects, feelings, self, and the subjective duration of the dream. 

Several questions aimed to reinforce recall. If the experimenter judged that a free report from 

the participant contained no pre-awakening thoughts or perceptual experiences, it was 

followed by three questions regarding the subjective certainty of dreamless sleep. In cases 

where these three questions prompted the participant to remember any experiences, they were 

presented with the set of 21 questions concerning the contents of their dream. If necessary, an 

unstructured interview was conducted at the end to clarify unclear or ambiguous parts of the 

report. The experimental night was ended at the wish of the participant or when the number 

of awakenings was satisfactory. All reports, questionnaire answers, and interviews were 

recorded on a computer. 
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EEG acquisition. The EEG montage included 21 electrodes placed according to the standard 

10-20 system and 4 additional electrodes (TP7, TP8, PO7, PO8) placed according to the 10-

10 system (Oostenveld & Praamstra, 2001). All these electrodes were referenced to the right 

ear mastoid, and the ground electrode was placed on the temple. In addition, two bipolar 

EOG electrodes were placed near the lateral canthus and the lower eyelid to measure eye 

movement, and a pair of bipolar electrodes was placed on the mentalis and submentalis 

muscles to record chin EMG. Recordings were carried out on a SynAmps amplifier and 

NeuroScan (4.1.1) data acquisition software at a 2,000 Hz sampling rate. EEG data were 

saved in the frequency band of 0.05–100 Hz (with a 50 Hz notch filter and a gain of 1,000), 

EOG data in the band 0.05–30 Hz (gain 1,000), and EMG data in the band 5–500 Hz (gain 

2,500). Electrodes were silver chloride and attached to the skin using Grass EC2 electrode 

cream. 

Content analysis of post-awakening reports. The post-awakening reports and interviews 

were transcribed for content analysis, consisting of the following two stages. 

First, all reports were divided by two independent raters (Master students in psychology) into 

four categories: 1) dreamless sleep, 2) white dream, 3) uncertain, and 4) dream (following 

Dement, 1955). Reports were scored as dreamless if the participant was confident they had no 

experiences right before awakening. Reports were scored as white dreams if the participant 

strongly felt they had had some experiences right before awakening, but could not recall any 

specific content. Reports were scored as uncertain if the participant was unsure whether they 

had been dreaming or had dreamless sleep right before awakening. Finally, reports were 

scored as dreams if participants reported any experiences (e.g., perceptions in any sensory 

modality, sensations, thoughts, feelings, and emotions). Inter-rater reliability for the 4-way 

categorisation of reports was 94% ( = .92). 

Second, the dream reports were further categorised by the same two independent raters using 

Orlinsky’s Modified Scale for Perceptual Complexity of Dreams (Noreika et al., 2009; 

Orlinsky, 1962). This scale consists of 7 perceptual complexity categories, ranging from 

“1=Participant remembers a specific topic but in isolation: a fragmentary percept, unrelated 

to anything else” to “7=Participant remembers a long, detailed dream in which the whole 

scene is replaced by other scenery more than once”. Categories 1–4 depict static dreams that 

lack any change or temporal progression, whereas categories 5–7 depict dynamic dreams that 

contain a change of at least one perceptual experience (Noreika et al., 2009). The inter-rater 

reliability for the 7-way categorisation of dream reports was 83.8% (weighted  = .89), with 

most errors consisting of reports assigned to adjacent complexity categories. During both 

stages of content analysis, the two raters discussed scoring disagreements until agreement 

was achieved, or—in a few cases—a third rater (author VN) was asked to judge which of the 

two suggested categories was more accurate. 

Sleep scoring. Sleep stages were manually scored by authors VN and KV, and each 1-minute 

EEG recording was scored as three 20-second epochs. Initially, the scorers agreed on 76% of 

the epochs. For the remaining 24%, the scorers discussed them until they reached a consensus. 

Scoring criteria defined by Rechtschaffen and Kales (1968) were followed, which allowed for 

a more fine-grained consideration of the amount of delta waves during slow wave sleep than 

the most recent sleep scoring guidelines (Berry et al., 2012).  
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Supplementary Document 2 

Dream Report Interview Procedure 

Preface 

The following is an English translation of the original dream report interview procedure 

instructions in Finnish, used by the Data Team to conduct the post-awakening dream report 

interviews. Some examples of the dream reports are given in Supplementary Document 3. 

Introduction 

The aim of this research project is to investigate the neural correlates of dream experiences 

during NREM sleep. You will spend five nights in the sleep laboratory: one adaptation night 

during which we will wake you up four times and you can practise dream reporting, and then 

four experimental nights during which we will wake you up several times (5–10) from early 

night sleep, both from light sleep and from deep sleep, and request you to report any dream 

experiences you might have had. Due to the awakenings, your total sleep time will be shorter 

than usual, and you may feel tired in the morning and the next day. If you wish to terminate 

the experiment, you can do so at any time. 

Wake-up procedure and reporting instructions 

When you have fallen asleep and are in a specific sleep stage, we will wake you up with a 

sound signal. When you hear the sound signal and wake up, try to stay still and calm, as this 

way your dream recall is least compromised. We will not ask any questions at this point. 

Your task is to give us a free recall report: tell us whether you remember having a dream 

experience during sleep and what the experience was like. Tell us every detail you can 

remember. By dream experience, we mean every image or thought you had in mind just 

before waking up. 

We do not expect you to recall a dream every time we wake you up. For this research project, 

it is of utmost importance that you honestly report what you remember, and also honestly 

report if you don’t remember anything. 

When you have recited everything you recall of the dream, we will ask further questions. The 

questions have been pre-recorded, and we will ask all participants the same questions. 

Therefore, some of the questions may not feel relevant in the context of your dream. 

Regardless, try to answer as well as you can, and be honest. If you cannot answer a question, 

let us know that you cannot remember or tell more about the requested detail. You also have 

the right to protect your privacy: If you do not wish to share a specific detail of your dream, 

tell us, and we will not ask further questions about this detail. 

If you do not recall any experiences, we will also ask some further questions. Again, the 

questions have been pre-recorded, and we will present the same questions to all participants. 

If we wish to know more about your dream than the recorded questions reveal, we may also 

ask you some specific, unique questions after the recorded questions. 

We will record all your answers to be able to later assess them. 
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The dream interview and how to answer the questions 

If you do not recall a dream: 

If, after the sound signal, you report that you do not remember any dream experiences, we 

will ask you the following questions (N1–N3): 

N1) How certain, on a scale from 1 to 5, you are that you did not have any dream 

experiences? 

1 = very uncertain 

2 = quite uncertain 

3 = cannot say 

4 = quite certain 

5 = very certain 

N2) Do you have the impression that you had a dream experience but cannot recall any 

specific content? 

If you have the impression that you were dreaming, but cannot recall any content at all, 

answer yes. If you are certain that you did not have any dream experiences, answer no. 

N3) What is the last thing you recall? 

Tell us the last thing you remember. You don’t need to know whether this was from before 

falling asleep or whether it occurred while asleep. 

If you recall a dream: 

After you have heard the sound signal and you have reported your dream in as much detail as 

you can remember, we will ask the following questions (P1–P17): 

P1) Did you have the experience just before waking up? 

Your task is to estimate when the dream took place. Did the sound signal wake you up in the 

middle of the experience? Answer yes if you feel that this was the case. If you feel that the 

dream took place earlier and you had no experiences at the time you woke up, answer no. 

P2) How certain, on a scale from 1 to 5, are you that the dream experience took place just 

before you woke up? 

1 = very uncertain 

2 = quite uncertain 

3 = cannot say 

4 = quite certain 

5 = very certain 

P3) Describe the setting where the dream took place. 

Your task is to describe the environment in which the dream events occurred. What was the 

setting like? 
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P4) List all the objects in your dream. 

Your task is to list all the objects you recall appearing in the dream. No object is too 

irrelevant to be named. 

P5) List all the sounds you heard in your dream. 

Your task is to list all the sounds you recall hearing in the dream, such as speech, traffic, or 

music. 

P6) List all the characters in your dream, including also those other than human. 

Your task is to list all the human and other animate characters you recall appearing in the 

dream (animals, fantasy figures, etc.). 

P7) Describe all the emotions and feelings and moods you experienced in the dream. 

Your task is to describe all the emotions, moods, and feelings you recall having in the dream 

(e.g., happiness, joy, love, affection, sadness, hate, anger, fear, anxiety, disgust, surprise). 

If you did not have any emotional experiences in the dream, report that no emotions were 

present. Then we will move on with the questions. If you recall having experienced at least 

one emotion in the dream, we will ask you two additional questions (P7a–P7b): 

P7a. What dream event were the emotions related to? 

Describe the event, thought, action or character the emotion was related to or in 

response to. If you had several emotional experiences, list each, and describe the 

element each emotion was related to. 

P7b. Estimate the intensity of the emotion on a scale from 1 to 5. 

Your task is to estimate the intensity of the emotion. If you experienced several 

separate emotions, please state the name of the emotion first and then estimate its 

intensity. 

1 = very low 

2 = quite low 

3 = moderate 

4 = quite intense 

5 = very intense 

P8) List all the changes that took place in your dream. 

If an object changed into another, if something changed in the setting in which the dream 

took place, or if a new thought or emotional state appeared, list those. 

P9) Were you present or embodied in the dream? 

Your task is to tell us whether you were present in the dream and participating in the dream 

events. If you had a body in the dream, answer yes. If you experienced the dream as a 
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bodiless spectator or an outside observer, like watching a movie, answer no. If you answer 

yes, we will ask you two additional questions (P9a–P9b): 

P9a. Describe your dream body. 

Describe what kind of a body you had in the dream. Was your dream body identical 

or similar to your physical body? If it was different to your physical body, how was it 

different? Aim to describe your dream body in as much detail as possible. 

P9b. Were you an active participant in the dream or just an observer? 

Describe whether you participated actively in the dream events from an embodied 

perspective (e.g., talking, thinking, moving, looking around) or whether you were 

merely a passive spectator or observer. 

P10) How clear was the perceptual quality in your dream, on a scale from 1 to 5, compared to 

how you perceive the world when you are awake? 

Your task is to estimate how well the perceptual quality of your dream experience matched 

the perceptual quality of normal waking experiences. Evaluate how clear the visual, auditory, 

olfactory, gustatory, tactile and kinaesthetic perceptions and sensations were compared to 

comparable experiences during wakefulness: 

The quality of the perceptions and sensations was 

1 = very vague and obscure 

2 = quite vague and obscure 

3 = almost as clear and defined as during wakefulness 

4 = equally clear and defined as during wakefulness 

5 = extremely clear and defined, more so than during wakefulness 

P11) Estimate the duration of your dream experience. 

Estimate how many minutes or seconds your dream experience lasted. If you cannot make an 

estimation, guess. 

1 = about few seconds 

2 = about half a minute 

3 = about one minute 

4 = longer than three minutes 

5 = longer than ten minutes 

6 = longer than half an hour 

P12) How certain are you of your answer to the previous question (P11)? 

1 = very uncertain 

2 = quite uncertain 

3 = cannot say 

4 = quite certain 

5 = very certain 

P13) How quick was the passage of time in your dream? 
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Your task is to evaluate the subjective experience of passage of time in your dream. How 

quickly did time seem to be passing compared to how time passes during wakefulness? How 

fast did the objects or characters move or change in your dream compared to wakefulness? 

Time passed: 

1 = much slower 

2 = a bit slower 

3 = comparably to waking experiences 

4 = a bit faster 

5 = a lot faster 

P14) How certain are you of your answer to the previous question (P13)? 

1 = very uncertain 

2 = quite uncertain 

3 = cannot say 

4 = quite certain 

5 = very certain 

P15) What were the factors that allowed you to estimate the passage of time in your dream? 

P16) Estimate how long you slept. 

Estimate how many minutes or hours you had slept (since the last awakening) before we 

woke you up. 

P17) Do you remember anything else? 

If you recall anything else that you have not reported yet, please report what these 

experiences were. 

Postface 

The following are summary statistics to some answered questions that the reader might find 

relevant, counted over the 27 dreamful reports used in the Dream Catcher experiment. 

P2) How certain, on a scale from 1 to 5, are you that the dream experience took place just 

before you woke up? 

85% very certain or certain 

7% cannot say 

7% quite uncertain 

P10) How clear was the perceptual quality in your dream, on a scale from 1 to 5, compared to 

how you perceive the world when you are awake? 

15% very vague and obscure 

30% quite vague and obscure 

33% almost as clear and defined as during wakefulness 

19% equally clear and defined as during wakefulness 

4% extremely clear and defined, more so than during wakefulness 
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P11) Estimate the duration of your dream experience. 

22% about few seconds 

33% about half a minute 

26% about one minute 

11% longer than three minutes 

7% longer than ten minutes 

0% longer than half an hour  
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Supplementary Document 3 

Examples of Dream Reports 

The following are examples of subjects’ dream reports after being awakened, translated from 

the original Finnish reports. All reports were scored as static in Orlinsky’s scale (score 1–4). 

Most were composed of several interconnected perceptions (score 3–4), and most also 

included a unified background scene (score 4). 

Subject 4, 3rd experimental night, awakening 8 

“There was a dry open field, and a dog on an agility track. On the track, there was a tube and 

hurdles. I was uncertain what I was supposed to do there.” 

Orlinsky score = 3 

Subject 5, 1st experimental night, awakening 2 

“I dreamt about a green car parked on a street. I saw the car from the side; it was bright green, 

and I heard the engine running.” 

Orlinsky score = 3 

Subject 8, 4th experimental night, awakening 3 

“I saw a cafeteria patio on a street.” 

Orlinsky score = 1 

Subject 11, 3rd experimental night, awakening 3 

“I was in a harbour, and I think I had loaded something in some boat. It looked like a Greek 

harbour, with several boats tied to poles. The sun was shining; on the other side was the sea; 

and on the other, a forest or something. I think my boyfriend and friends were there with me.” 

Orlinsky score = 4 

Subject 15, experimental night 1, awakening 3 

“I dreamt I was in this lab, in this room, and about the electrodes in my head. This bed was 

there, and someone was putting on the electrodes. In the background, there was a sound of 

someone talking.” 

Orlinsky score = 4 

Subject 16, experimental night 2, awakening 5 

“I was at a party—I think it was my graduation party. We were outdoors in a yard; there was 

grass, and tables with white table cloths; some dishes and a cake on the table. There were a 

few people there; I heard them talking.” 

Orlinsky score = 4  
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Supplementary Document 4 

Analysis Team Briefing Document 

Preface 

The following is the briefing document provided by the Data Team to the Analysis Team 

prior to the commencing the Dream Catcher experiment. 

Dream Catcher Experiment: Gradual removal of blindness 

CRG, Turku 

17-03-2008 

Data and general procedure 

Our data set comes from 9 subjects with 3 dream and 3 dreamless sleep reports from each: in 

total, there are 54 EEG recordings. 

The data will be provided to you in 5 steps from the most complex to the easiest one; a 

following step will always take place only when a previous one has been completed and its 

success rate has been evaluated. With this kind of procedure, we will get several different 

decisions where the chance level of successful rating can be evaluated. Consequently, we will 

be able to see whether the EEG contain information about dreaming, and at what level that 

information is embedded (e.g. at the level of individual pairs of data cases, at the level of 

single subjects, or at the level of conditions). 

Actual EEG data will be provided only for the Step 1 analysis. During Steps 2-5, only new 

file names will be given, which, in addition to new information, will always retain the 

previous ID codes of cases, pairs, subjects, etc. 

Glossary 

Case: a single 1 min pre-awakening EEG recording of either dream or dreamless sleep 

(provided in Step 1). 

Pair: two 1 min pre-awakening EEG recordings of the same subject; one of them is dream 

and another one dreamless sleep recording (provided in Step 2). 

Subject: information about each subject providing 3 pairs of EEG cases (provided in Step 3). 

Group: within each subject, two groups of 3 EEG cases are formed; one group consists of 3 

dream cases and another group consists of 3 dreamless sleep cases (provided in Step 4). 

Condition: the whole data set is divided into two condition with 27 cases in each; one 

condition has only dreamless sleep cases and another – only dream cases (provided in Step 5).  
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Step 1: 54 cases are provided 

DATA: 

Data is provided as 54 coded EEG cases: 27 dream and 27 dreamless sleep recordings (see 

Fig. 1). You remain blind to which EEG case originates from dreaming and which from 

dreamless sleep. Each subject will provide 6 cases – 3 dreams and 3 dreamless, but 

information on which cases belong to the same subject won’t be given at this stage. 

 

Figure 1. Example of 54 coded files names for the Step 1 analysis. 

TASK: 

Your task is to decide which EEG case is “dreaming” and which is “dreamless sleep”, and to 

classify the cases better than at the chance level. Decisions must be based on the analysis of 

individual cases! 

RESULTS: 

At least 38 cases out of 54 should be correctly identified in order to succeed above chance 

level. Also, each research group is expected to provide methodological rationale on what 

basis the decision was made, that is, which features in the EEG predict dreaming or non-

dreaming. 

Feedback will be given about overall success rate only, not about correct classification of 

individual cases.  
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Step 2. Single pairs of dream and dreamless sleep are provided 

DATA: 

Data is provided in 27 coded EEG pairs, with 1 dream and 1 dreamless case in each pair (see 

Fig. 2). You remain blind to which EEG case originates from dreaming and which from 

dreamless sleep. Both cases of a single pair come from the same subject. Each subject will 

provide 3 pairs, but information on which 3 pairs belong to the same subject won’t be given. 

 

Figure 2. Example of 54 coded files names for the Step 2 analysis. 

TASK: 

Your task is to decide which case in each EEG pair is “dreaming” and which is “dreamless 

sleep”, and to classify the cases better than at the chance level. Decisions must be based on 

the analysis of individual pairs, i.e. independent from other pairs! 

RESULTS: 

At least 18 pairs out of 27 should be correctly identified in order to succeed above chance 

level. Also, each research group is expected to provide methodological rationale on what 

basis the decision was made, that is, which features in the EEG predict dreaming or non-

dreaming. 

Feedback will be given about overall success rate only, not about correct classification of 

individual pairs.  
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Step 3: Subject information for pairs is provided 

DATA: 

Data is provided in 27 EEG pairs with 1 dream and 1 dreamless case in each, but it is not 

indicated which is a dreamless and which is a dream case (see Fig. 3). This time, however, 3 

pairs of each subject are identified, so that comparison of pairs from the same subject is 

possible. 

 

Figure 3. Example of 54 coded files names for the Step 3 analysis. 

TASK: 

Your task is to decide which case in each pair is “dreaming” and which “dreamless sleep”, 

and to classify the pairs higher than at chance level. Still, decision should be done pairwise 

only, as no averaging between pairs is possible at this stage (averaging based on correct 

pooling of the type of cases is made possible at the next stage). At this stage, it is possible to 

compare EEGs of different individuals, and different pairs within the same individual, which 

should reduce variability in the data analysis. 

RESULTS: 

At least 18 pairs out of 27 should be correctly identified in order to succeed above chance 

level. Also, each research group is expected to provide methodological rationale, on what 

EEG basis the decision was made, that is, which features in the EEG predict dreaming or 

non-dreaming. 

Feedback will be given about overall success rate only, not about correct classification of 

individual pairs.  
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Step 4: Groups of cases within each subject are provided 

DATA: 

Within each subject, two groups of different experimental conditions are provided (see Fig. 

4). One group contains 3 EEGs prior to awakenings leading to dream report, and another 

group has 3 EEG cases from dreamless sleep of the same subject. However, it won’t be 

revealed, which is which. You will get 18 such groups coming from 9 subjects, yet, no 

identification across all subjects and their groups will be provided. 

 

Figure 4. Example of 54 coded files names for the Step 4 analysis. 

TASK: 

Your task is to compare within-subject EEG groups, and to decide, for each subject 

separately, which group is “dreaming”, and which is “dreamless sleep”. At this stage, 3 vs. 3 

EEGs can be grouped together and within-subject averaging can be made. Yet, between-

subject comparisons are still impossible. 

RESULTS: 

At least 14 EEG pairs of samples out of 9 should be correctly identified in order to succeed 

above chance level. Also, each research group is expected to provide methodological 

rationale, on what EEG basis the decision was made, that is, which features in the EEG 

predict dreaming or non-dreaming. 

Feedback will be given about overall success rate only, not about correct classification of 

individual groups.  
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Step 5: Conditions of data set are provided 

DATA: 

Finally, all data will be classified between-subjects into 2 conditions with 27 EEG cases per 

each (see Fig. 5). 

 

Figure 5. Example of 54 coded files names for the Step 5 analysis. 

TASK: 

Your task will be to decide, which one of the two conditions is “dreaming” and which is 

“dreamless sleep”. All possible analysis can be made at this stage, as both within- and 

between-subjects averaging is possible. 

RESULTS: 

Each research group will report findings of comparison between these two groups. 

Unfortunately, correct identification of the groups won’t be accepted as success above chance 

level anymore at this stage (because there is 50% chance to get it right by guessing).  
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Supplementary Document 5 

Themed Feature Set Candidates for Step 1 Blind Classification 

The Analysis Team constructed eight sets of features, which were themed around various 

analyses of time series data. The sets were called: Power, PowerFine, ACC, PermEn, ApEn, 

Siclari, EogRms and EmgRms. Their constructions are explained below. As described in the 

main text, the team eventually chose the PowerFine features for Step 1 of blind classification 

due to its high temporal consistency. See Table S5.1 for a summary. 

Table S5.1. 

Candidate feature sets of Step 1 

Set name Measure Channels Time Parameters Total features 

Power PSD Fp1, Fpz, Fp2, F7, F3, Fz, 

F4, F8, T3, C3, Cz, C4, T4, 

TP7, TP8, T5, P3, Pz, P4, 

T6, PO7, PO8, O1, Oz, O2 

(25) 

0–60 s 

(1) 

{0.5–4, 4–8, 8–14, 

14–40, 40–50} Hz 

(5) 125 

PowerFine PSD As above 

(25) 

As above 

(1) 

0–49.5 Hz in 0.5 Hz 

steps 

(99) 

2,475 

ACC RMS P3-Fp1, P4-Fp2 

(2) 

0–60 s in 2-s 

steps in 2-s 

windows 

(30) 

(1) 

660 

Autocorrelation 

coefficient 

As above 

(2) 

As above 

(30) 

First 10 coefficients 

(10) 

PermEn Permutation 

entropy with 

autoregressive 

modelling 

As in Power 

(25) 

0–60 s 

(1) 

m = {2, 3, 4} 

t = {1, 2, 4} 

p = {0, 1, 2} 

(33 = 27) 

675 

ApEn Approximate 

entropy with 

autoregressive 

modelling 

As in Power 

(25) 

 

As above 

(1) 

m = {2, 3} 

r = {0.15, 0.2, 0.25} 

t = {1, 2, 4} 

p = {0, 1, 2} 

(2 × 33 = 54) 

1,350 

Siclari PSD average of 

electrodes 

Fp1, Fpz, Fp2, F7, F3, Fz, 

F4, F8, T3, C3, Cz, C4, T4, 

TP7, TP8, T5, P3, Pz, P4, 

T6, PO7, PO8, O1, Oz, O2 

(25 → 1) 

40–60 s 

(1) 

18–50 Hz 

(1) 

11 

As above As above 

(1) 

As above 

(1) 

1–12 Hz 

(1) 

As above P3, Pz, O1 

(3 → 1) 

{40–60, 50–

60, 56–60} s 

(3) 

As above 

(1) 

As above Fz, F4, F8, Cz, C4, T4 

(6 → 1) 

As above 

(3) 

18–50 Hz 

(1) 

As above Cz, C4, T4, Pz, P4 

(5 → 1) 

58–60 s 

(1) 

25–50 Hz 

(1) 
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As above T6 

(1) 

As above 

(1) 

As above 

(1) 

As above T5 

(1) 

As above 

(1) 

As above 

(1) 

EogRms RMS E2-E1 

(1) 

{0–20, 20–

40, 40–60} s 

(3) 

(1) 

3 

EmgRms RMS SM-M2 

(1) 

As above 

(3) 

(1) 
3 

Note. The number of elements in entries of columns Channel, Time, and Parameters are given in parentheses. 

Their products on each row, summed for each feature set, should result in the number of total features of that 

feature set. 

 

Power 

The Analysis Team constructed the Power feature set to provide information about both brain 

activity levels and locations. The set consisted of PSD estimates for each EEG electrode. 

They evaluated PSDs over the whole 60-s duration in five frequency bands corresponding to 

delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–14 Hz), beta (14–40 Hz) and gamma (40–50 Hz) 

wave activity (Noachtar et al., 1999). The electrodes used were a subset of the 10-20 and 10-

10 system electrodes (Chatrian, Lettich, & Nelson, 1985; Klem, Luders, Jasper, & Elger, 

1999) totalling 25 in number: Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, TP7, 

TP8, T5, P3, Pz, P4, T6, PO7, PO8, O1, Oz and O2. The feature set in total had 125 features 

(5 frequency bands × 25 channels) for each case. 

The Analysis Team preprocessed the EEG time series data offline using the EEGLAB Matlab 

toolbox (version 13.5.4b; Delorme & Makeig, 2004). From the raw EEG recordings, they 

detrended the signals and downsampled them from 2000 Hz sampling rate to 100 Hz. They 

then applied a finite impulse response high-pass filter, windowed using a Hann window of 31 

s, at the cutoff frequency of 0.1 Hz. Finally, they re-referenced the channels to the average 

common electrode. This preprocessed data is also reused in the methods for other feature sets. 

PSDs for each electrode were estimated using a modified Welch’s method (Welch, 1967) 

with time segments of 6.2 s overlapping by 80%, windowed by Hann windows. The Analysis 

Team performed fast Fourier transform on each window. The power of a frequency band was 

taken as the mean power (not log-transformed) across frequency bins, from and including the 

lower limit of the band, up to and exclusive of the upper limit. The Analysis Team modified 

Welch’s method by trimming off time segments with values in both the upper and lower 5% 

range prior to taking the mean power of the remaining time segments for each band. 

PowerFine 

The PowerFine feature set was identical the Power feature set, except that the PSDs were 

calculated for much finer-resolution, more uniformly-spaced frequency bins. This was chosen 

to offer more complete frequency information. The frequency edges of the bins were from 0 

to 49.5 Hz in 0.5 Hz steps. PSDs for each electrode were estimated using the modified 

Welch’s method with time segments of 9.3 s overlapping by 80%, windowed by Hann 

windows. The feature set in total had 2,475 features (25 channels × 99 frequencies) extracted 

for each observation. 
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ACC 

This feature set’s name was abbreviated from “autocorrelation coefficients”, and consisted of 

features replicated from a study to assess anaesthetic depth following machine learning 

through cluster analysis (Thomsen et al., 1991). The performance of their method appeared 

superior to other single parametric measures of spectral distribution (i.e., median and spectral 

edge frequencies) suggested for assessing anaesthetic depth at the time. Their features were 

based on autoregressive modelling of EEG signals in 2-s time windows, taking the form of 10 

normalised autocorrelation coefficients and 1 root-mean-square measure (RMS). 

To replicate this feature set, the Analysis Team utilised the preprocessed (high passed and re-

referenced) EEG data performed for the Power feature set. From the preprocessed EEG, two 

bipolar–re-referenced channels were extracted to summarise the activity of the two 

hemispheres of the brain: electrodes P3-Fp1 and P4-Fp2. They then further filtered those 

channels, in following with Thomsen’s method, with a pre-emphasising first order high-pass 

filter at 4.2 Hz, and a fourth order low-pass filter at 25 Hz using Matlab’s Butterworth filter 

design tools. For each channel, the Analysis Team segmented the signal into 30 × 2-s time 

segments, and calculated the RMS and first 10 normalised sample autocorrelation coefficient 

lags of each segment. The feature set in total had 660 features (2 bipolar channels × 30 time 

segments × 11 coefficients) extracted for each observation. 

PermEn and ApEn 

The Analysis Team explored information theory measures of time series data in the form of 

entropy: specifically through permutation entropy (Bandt & Pompe, 2002) in the PermEn 

feature set, and approximate entropy (Pincus, Gladstone, & Ehrenkranz, 1991) in the ApEn 

feature set. Entropy in signals is a measure of the complexity of a system from which the 

signals were taken. In the context of consciousness research, entropy has been proposed as a 

way to monitor loss of consciousness via anaesthetic depth (Bein, 2006; Liang et al., 2015). 

For the PermEn feature set, the Analysis Team used a Matlab implementation by Ouyang 

(2012) to compute measures of permutation entropy. Specifically, for each channel of EEG 

recording (after re-referencing followed by high-pass filtering, as in Power feature set), they 

extracted permutation entropy for all 27 combinations of three parameters of the analysis: the 

embedding dimension m (2, 3 or 4), the downsampling time delay t (1, 2 or 4), and 

autoregressive order p (0, 1 or 2). Parameters m and t were direct inputs for the permutation 

entropy function. The Analysis Team varied m no higher than 4 so as to conserve 

computation time. Before computing permutation entropies, they performed autoregressive 

modelling of order p on single EEG signals, and then subtracted the modelled time course 

from the EEG signals. This was done to reveal the evolution of a time series that may not be 

linearly dependent on its immediate past states, which may closer reflect signals related to 

consciousness. The Analysis Team carried out autoregression in Matlab with the function 

provided by the System Identification Toolbox, using the default forward-backward approach 

to the least-squares autoregressive fitting algorithm. The feature set in total had 675 features 

(25 electrodes × 3 embedding dimensions × 3 downsampling delays × 3 autoregressive 

orders) extracted for each case. 

For the ApEn feature set, the Analysis Team used a Matlab function implemented by Lee 

(2012) to calculate approximate entropy. Similarly to ApEn, for each preprocessed channel of 

EEG recording, they extracted approximate entropy for all 54 combinations of four 

parameters: the embedding dimension m (2 or 3), the filter tolerance r (0.15, 0.2 or 0.25; 
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relative to each signal’s sample standard deviation), the downsampling time delay t (1, 2 or 4), 

and autoregressive order p (0, 1 or 2). The values for m were typical choices by Pincus et al 

(1991). Like in PermEn the Analysis Team subtracted the pth-order autoregressed time course 

before computing approximate entropy. The feature set in total had 1,350 features (25 

channels × 2 embedding dimensions × 3 filter tolerances × 3 downsampling delays × 3 

autoregressive orders) extracted for each observation. 

Siclari 

The extraction of the Siclari feature set was designed to approximate the features described 

by Siclari, LaRocque, Bernardi, Postle, & Tononi (2014) in their preprint manuscript of a 

study later published in Nature Neuroscience (Siclari et al., 2017). They found a number of 

significant differences in low- and high-frequency activity of specific brain regions, as 

recorded with high-density EEG (256 channels), correlating with conscious experience 

during sleep. Due to the technical differences between our protocols, the Siclari feature set 

here does not constitute a direct replication. We note the following differences in our 

protocols. (a) We had considerably fewer channels recorded (25 vs. 256). Owing to this, (b) 

the Analysis Team deferred from performing source localization, as its reliability is lowered 

by decreasing the number of channels. For the same reason, (c) they did not perform 

independent component analysis for the removal of ocular, muscular and cardiac artefacts; 

however, cases were already chosen to have a minimum of such artefacts. 

The Siclari feature set consisted of 11 of these differences: the average power across all 

electrodes at low- (1–12 Hz) and high-frequencies (18–50 Hz); low-frequency power in 

parieto-occipital channels over the 20, 10 and 4 s till awakening; high-frequency power in 

frontal channels over the final 20, 10 and 4 s till awakening; and high-frequency (25–50 Hz) 

power over the final 2 s preceding awakening at regions correlated with conscious experience 

of either spatial setting, movement, or speech. 

The Analysis Team utilised the preprocessed EEG data performed for the Power feature set 

and performed further operations in order to derive a scalp current source density estimate 

(CSD) of the EEG signal. They calculated the CSD using Perrin’s method of taking the 

Laplacian of spherical splines (Perrin et al., 1989; Perrin, Pernier, Bertrand, & Echallier, 

1990), as implemented for Matlab in CSD Toolbox (Kayser, 2010; Kayser & Tenke, 2006a, 

2006b). The parameters for this method were based on those recommended by Kayser & 

Tenke (2015): a spline flexibility of 4, and smoothing constant of 10-5. The Analysis Team 

assumed a head radius of 8.9 cm, and thus produced CSDs for each of the 25 original 

electrode locations for each case. 

PSDs for each electrode were estimated following Siclari et al.’s procedure: using Welch’s 

method with time segments of 2 s overlapping by 50%, windowed by Hamming windows. 

They performed fast Fourier transform on each window. The power of a frequency band was 

taken as the mean (not log-transformed) power across frequency bins, inclusive of the band’s 

specified edges. 

The 11 features were extracted as follows. Two features of power for low and high 

frequencies respectively were taken as means across all electrode locations in the bands 1–12 

Hz and 18–50 Hz over the final 20 s preceding awakening. Three features of low-frequency, 

average parieto-occipital power were taken across electrodes P3, Pz and O1 in the band 1–12 

Hz over the final 20, 10 and 4 s till awakening. Three features of high-frequency, average 

frontal power were taken across electrodes Fz, F4, F8, Cz, C4 and T4 in the band 18–50 Hz 
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over the final 20, 10 and 4 s till awakening. Three features for dream contents were taken: 

spatial setting content power as the average power over electrodes Cz, C4, T4, Pz and P4 in 

the band 25–50 Hz for the final 2 s till awakening; movement content power as that of 

electrode T6; and speech content power as that of electrode T5. 

EogRms and EmgRms 

The EogRms and EmgRms feature sets contained information about eye movement and 

muscle tone, measured as RMS, over three time segments. 

For EogRms, the Analysis Team used electrooculograms, taken as the bipolar re-referenced 

channel E2-E1, resampled to a rate of 60 Hz from 2000 Hz. They applied a first-order 

Butterworth high-pass filter with a cutoff frequency of 0.5 Hz, to remove particularly slow 

voltage changes and not saturate the RMS calculation. Three RMS features were calculated 

for equally divided time segments: 0–20, 20–40 and 40–60 s from awakening. 

For EmgRms, the Analysis Team used electromyograms, taken as the bipolar re-referenced 

channel SM-M2, retaining its 2000 Hz sampling rate and online 5–500 Hz bandpass. Three 

RMS features were calculated for equally divided time segments as in EogRms.  
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Supplementary Document 6 

Feature Sets and Sub-Clustering Used in Steps 2–5 of Blind Classification 

The Analysis Team tailored and carried out unique procedures for each step of blind 

classification. A summary of their extracted features for each step is given in Table S6.1, and 

details are described thereafter. 

Table S6.1. 

Summary of feature sets and sub-clustering used in the blind classification experiment 

Step no. Features 

Total 

features Sub-clustering 

1 PSD 99 frequency bins (0–49.5 Hz), 

25 electrodes 

2,475 k-means 

2 PSD 19 logarithmic frequency bins (0–50 Hz), 

averaged over all 25 electrodes, 

0–60 s 

50 Pairwise orientation 

Siclari 11 features (refer to Supp. Table 1) 

EOG 2 time segments, 

5 quantiles, 

bandpass RMS (1–30 Hz), 

bipolar electrode E2-E1 

EMG 2 time segments, 

5 quantiles, 

bandpass RMS (5–500 Hz), 

bipolar electrode SM-M2 

3 (ICA) PSD 19 logarithmic frequency bins (0–50 Hz), 

0–60 s 

19 k-means 

3 

(Same as Step 2) 

50 1) Pooled pairwise orientation 

2) Participant pairwise orientation 

3) Pooled k-means 

4) Participant k-means 

4 

(Same as Step 2) 

50 1) Pooled pairwise orientation 

2) Participant pairwise orientation 

3) Pooled k-means 

4) Participant k-means 

5 SBP low 1 PSD (1–4 Hz), 

averaged over 24 CSD locations (C5, C3, 

C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, 

CP6, P3, P1, Pz, P2, P4, PO7, PO3, POz, 

PO4, PO8, O1, Oz, O2), 

40–60 s 

3 None 

 SBP high 1 PSD (20–50 Hz), 

averaged over 23 CSD locations (F3, F1, 

Fz, F2, F4, FC5, FC3, FC1, FCz, FC2, 

FC4, FC6, T7, C1, Cz, C2, T8, TP7, TP8, 

P7, P5, P6, P8), 

40–60 s 
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 Scarpelli 1 PSD (0.5–4.75 Hz) 

averaged over 8 electrodes (C3, CP5, F3, 

FC1, FC5, Fp1, P7, T7), 

0–60 s 

Note. PSD: power spectral density; ICA: independent component analysis; CSD: current source density. 

 

Step 2 

The PowerFine feature set used in Step 1 of blind classification consisted of 2,475 features 

(25 EEG channels × 99 frequencies) that measured only EEG PSDs. The resulting 

classification accuracy was near chance level. By Step 2, the Analysis team suspected that the 

poor performance might have resulted partly from the large number of features that they used, 

causing overfitting of data (Domingos, 2012). They also suspected that their clustering 

algorithm might have performed better with a more encompassing feature set than one that 

looked only at EEG. The Analysis Team therefore decided to change the feature set for Step 

2 to be more concise and to include information from EMG and EOG (different to that from 

Step 1). Summarily, they reduced the number of EEG features from Step 1 by taking the 

average PSD over all 25 electrodes and reducing the number of frequency bins to 19; to avoid 

losing all spatially specific EEG information, they added PSD estimates for localised brain 

areas based on the Siclari et al. (2014) report (identical to the Siclari feature set in 

Supplementary Document 5). In total, the Analysis Team used 50 features for Step 2 (19 

from average EEG, 10 from EMG, 10 from EOG, and 11 from Siclari EEG)—more than a 

100-fold reduction from Step 1. 

For 19 features of average EEG power, the Analysis Team evaluated PSDs for each electrode 

in 18 frequency bins with edges logarithmically spaced between 1.3-3 and 1.315 Hz 

(approximately 0.46–51 Hz), and a lowermost bin with edges at 0 and 1.3-3 Hz. These were 

evaluated in a way similar to the Power feature set in Step 1 (see Supplementary Document 

5), with one difference being that the time segments used for Welch’s method have lengths of 

9.3 s instead of 6.2 s. 

Eleven more features were taken directly from the Siclari feature set from Supplementary 

Document 5. Lastly, they extracted 10 features each for EOG and EMG modalities. The data 

was preprocessed similarly to EogRms and EmgRms as described in Supplementary 

Document 5, but for 2 time segments each instead of 10. Thus, for each of these 30-s 

segments of EMG or EOG, they computed the RMS values of all consecutive 1-s time 

windows, and took the 0th, 25th, 50th, 75th, and 100th percentiles of those as features. 

Step 3 

The analysis in Step 3 followed two stages. In the first stage, to take advantage of the 

revealed participant grouping, the Analysis Team used independent component analysis 

(ICA) to remove specific components that were likely to affect incorrect clustering results. 

They considered a component to cluster incorrectly if any pair of cases were to be clustered 

together rather than apart. The first stage involved extracting the independent components, 

testing them for incorrect clustering, removing components that were significantly incorrect, 

and then recomposing the remaining components back into cases for feature extraction. The 

second stage consisted of combination clustering using a more elaborate sub-clustering 

procedure than previous Steps. Both stages will now be described. 
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ICA 

The ICA cleaning stage was performed on each participant-group of cases. See Fig. S6.1 for a 

schematic overview.  

 
Figure S6.1. Flowchart overview of ICA cleaning. The procedure is performed for each 

participant-group of cases. 

 

Using the software package FastICA for Matlab 7.x and 6.x (version 2.5; Gävert, Hurri, 

Särelä, & Hyvärinen, 2005), the Analysis Team applied ICA to the combined EEG and EOG 

time series, concatenating in time across all six cases for a given participant. Independent 

components were computed using the FastICA “symmetric” approach with a “tanh” 

nonlinearity function (Rogasch et al., 2014). 
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At this step of blind classification, case pairing information (that each pair came from the 

same participant and had different dream report conditions) was already known. Therefore, 

each of the 26 independent components could be used to cluster the cases of a single 

participant, and components that reliably clustered contrary to pairing information (i.e., 

components that represented dissimilar cases as similar) could be identified and removed 

from the original case recording. The Analysis Team identified these problem components by 

observing whether they reliably clustered cases of the same pair together rather than apart. To 

do this, they used a feature set consisting of spectral power in 19 frequency bins, calculated in 

identical fashion to that in Step 2. Ensemble clustering with modifications was carried out on 

this feature set extracted for each independent component. Due to the small sample size 

(three cases) of each participant-group, the Analysis Team tried to avoid overfitting by sub-

clustering in up to three dimensions with k = 3, and not weighting sub-cluster results by their 

quality of clustering. They also replaced the agglomerative clustering step of combination 

clustering with one that used an exhaustive cluster configuration search on the co-association 

similarity matrix, made feasible due to the small sample size per participant-group. 

The search objective operationalised by finding the clustering outcome that maximised 

overall cluster quality as measured by the mean silhouette value (Rousseeuw, 1987). 

Silhouette values quantify the cohesion of individual members of a cluster and their 

separation from other clusters, as expressed in the following equation: 

𝑠(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

𝑚𝑎𝑥{𝑎(𝑖),𝑏(𝑖)}
, (1) 

where a(i) is the average dissimilarity (i.e., distance) of member i to all other members of its 

cluster, and b(i) is the average dissimilarity of member i to all members of the next nearest 

cluster. 

For the exhaustive search, the Analysis Team restricted the set of possible clusterings to 

search within by considering only configurations consisting of four clusters: one cluster to 

represent three cases from one dream report condition group, and the remaining other three 

clusters to each represent one case from the other dream report condition group. This 

restriction was imposed to accommodate the possibility of one dream report condition having 

higher variance cases than the other. There were 20 such configurations (6 choose 3). 

An independent component was considered to cluster incorrectly when, after clustering on its 

extracted feature set, the larger cluster did not consist of exactly one case from each pair. The 

statistical significance of this effect was measured by bootstrapping the sub-clustering results 

on which the evidence accumulation clustering was performed. The Analysis Team 

bootstrapped 1,000 similarity matrices by randomly sampling from the pool of all sub-

clustering results with replacement. Formally, they tested the hypothesis that the independent 

component being considered clustered incorrectly with respect to dream report condition by 

assuming the null hypothesis that they clustered relevantly to condition. The Analysis Team 

would reject this null hypothesis if the proportion of bootstrapped clusterings, in which the 

larger cluster consisted of exactly one case from each pair, was lower than 5%. Significantly 

incorrect independent components by this criterion were subsequently removed. They then 

recomposed the EEG and EOG traces from the remaining independent components. On 

average, 14 components were retained, with a range of 5 to 23. 

Sub-clustering. A new set of sub-clustering procedures was devised to take into account the 

newly revealed participant labels. The Analysis Team could remove unwanted participant 
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effects by sub-clustering cases within each participant; however, this would prevent the 

analysis from finding similarities amongst cases between participants. The team also 

suspected that the method of sub-clustering in Step 2—dividing case pairs along the mean 

orientation of the difference of pairs—may have been discarding other useful information 

about in the cases’ actual positions in feature space, as was possible with k-means clustering. 

Therefore, they intended to devise a sub-clustering procedure that additionally retained 

clustering information from unconstrained case features and from the whole pool of 

participants. 

In fact, the Analysis Team sub-clustered the cases in four different ways and combined the 

results. In two of the ways, similar to Step 2, they sub-clustered cases in a pairwise manner: 

firstly with respect to the mean orientation amongst all pairs, and secondly with respect to the 

mean orientation of each pair’s own participant. In the other two ways, they took the method 

of Step 1’s k-means sub-clustering and sub-clustered the unpaired cases: firstly amongst all 

cases, and secondly amongst each participant-group of cases. Therefore, there were four ways 

which they performed sub-clustering by. The scheme is illustrated in Figure S6.2. After 

correcting for their average pairwise similarity distance, the Analysis Team averaged those 

results, thereby performing evidence accumulation, to obtain the final co-association 

similarity matrix. For per-participant sub-clusterings, they limited the maximum number of 

features in a combination to 2 due to the effective reduction in data size.  
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Figure S6.2. Four Step 3 sub-clustering schemes. Each circle corresponds to a case in 

feature space; each dashed line corresponds to a case pair or difference vector. Colours 

indicate different sub-clusters that cases belong to. Non-pairwise sub-clustering was 

implemented as k-means clustering. 

 

What follows are the details for each of the four ways of sub-clustering. 

Pooled pairwise sub-clustering. For sub-clustering cases in the pooled pairwise manner, the 

Analysis Team dichotomously grouped each case of every pair with respect to the average 

pair difference vector orientation across all participants, as done in Step 2. For each sub-

cluster’s resulting co-association similarity matrix, prior to evidence accumulation, they 

weighted the matrix such that they took on a mean co-association distance equal to their 

goodness of clustering value—being 1 minus the mean cosine similarity of the difference 

vectors. 

Pooled non-pairwise sub-clustering. For sub-clustering cases in the pooled non-pairwise 

manner, the Analysis Team performed k-means clustering over all cases with k = 18 (the 
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number of participant-condition groups in our data), after subtracting the means of each 

participant. For each sub-cluster’s resulting co-association similarity matrix, prior to evidence 

accumulation, they forced any incorrectly co-associated pairs of cases to be recorded as not 

associated, and then weighted the matrix to take on a mean co-association distance equal to 

their mean silhouette value. 

Per-participant pairwise sub-clustering. For sub-clustering cases in the per-participant 

pairwise manner, the Analysis Team dichotomously grouped each case of every pair per 

participant with respect to the participant’s average pair difference vector orientation. They 

weighted each sub-cluster’s co-association similarity matrix prior to evidence accumulation 

just like for pooled pairwise sub-clustering. They then combined the results from all 

individual participants into the co-association similarity matrix for all cases, where the 

uncalculated pairwise similarity distances between different participants were simply set to 

the average of the calculated similarity distances. 

Per-participant non-pairwise sub-clustering. For sub-clustering cases in the per-participant 

non-pairwise manner, the Analysis Team performed k-means clustering on all cases per 

participant with k = 4 (which accommodates for one low-variance and one high-variance 

dream report condition group for each participant, where the high-variance group consisted of 

three single-membered clusters). For each sub-cluster’s resulting co-association similarity 

matrix, prior to evidence accumulation, they forced any incorrectly co-associated pairs of 

cases to be recorded as not associated, then weighted the matrix prior to evidence 

accumulation just like for per-participant non-pairwise sub-clustering. They then combined 

the results of all individual participants into the co-association similarity matrix for all cases, 

just like for per-participant pairwise sub-clustering. 

Step 4 

Like in Step 3, ICA was performed with the intention to remove specific independent 

components that were likely to affect incorrect clustering results. Specifically, the Analysis 

Team tested components for clustering contrary to the revealed participant-condition 

grouping information in addition to pairing information. 

They slightly altered the statistical procedure for testing the significance of bad independent 

components. Instead of rejecting the null hypothesis if the proportion of valid bootstrapped 

clusterings was lower than 5%, they calculated a different threshold for each component 

tested using the Benjamini–Hochberg–Yekutieli procedure (Benjamini & Yekutieli, 2001) to 

control the false discovery rate to α = .05. On average, four components were retained, with a 

range of one to six. 

For the proper combination clustering stage on the recomposed case–averaged participant-

condition groups, the Analysis Team sub-clustered these groups as nine pair difference 

vectors in combinations of up to eight features. They used the same sub-clustering procedure 

as that of Step 2 on these difference vectors. 

Step 5 

In Step 5, the Analysis team extracted features based on significant differences reported by 

Siclari et al. (2017) and Scarpelli et al. (2017). Two features were the low frequency and high 

frequency power, which was named respectively SBP low and SBP high (SBP for the initials 
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of the first three authors of the Siclari paper), and one feature was of the low frequency 

activity reported by Scarpelli et al., which was named Scarpelli. 

To replicate the SBP features, they started by downsampling the raw 2000 Hz EEG case 

recordings to 500 Hz sampling rate and applying a band-pass filter for frequencies 1–50 Hz. 

The EEG montage was then re-referenced to the common average electrode. They next 

calculated the CSD using Perrin’s method, as described in Supplementary Document 5 for the 

Siclari feature set. Electrodes for SBP low were C5, C3, C4, C6, CP5, CP3, CP1, CPz, CP2, 

CP4, CP6, P3, P1, Pz, P2, P4, PO7, PO3, POz, PO4, PO8, O1, Oz and O2; for SBP high were 

electrodes F3, F1, Fz, F2, F4, FC5, FC3, FC1, FCz, FC2, FC4, FC6, T7, C1, Cz, C2, T8, TP7, 

TP8, P7, P5, P6 and P8. Electrodes were interpolated where missing using spherical splines. 

The Analysis Team next estimated the PSDs of each electrode for the 20-s duration until 

awakening using Welch’s method with 2-s Hamming windows and 50% overlap. Finally, for 

SBP low, they took the average power across all its electrodes between 1 and 4 Hz; and for 

SBP high, they took the average power across all its electrodes between 20 and 50 Hz. 

To replicate Scarpelli’s feature, the Analysis Team started by resampling the raw EEG case 

recordings down to 250 Hz and applying a band filter for frequencies 0.5–30 Hz. They then 

retained or interpolated electrodes C3, CP5, F3, FC1, FC5, Fp1, P7 and T7 using the 

spherical spline method. They next estimated PSDs of each electrode, using Welch’s method 

with 4-s rectangular windows and no overlap, for frequencies 0.5 to 4.75 Hz in 0.25 Hz steps. 

Finally, they calculated the average power across the above-mentioned 8 electrodes and 

frequencies, and took its natural logarithm as the feature.  
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Supplementary Document 7 

Test Decoding of Electrocorticograms 

The Analysis Team tested the decoder, used in the Dream Catcher post hoc analysis, on a 

different set of electrophysiological recordings with known representation of visual stimulus–

evoked information. They demonstrated its utility in decoding this embedded information 

with a high success rate. 

Method 

Data 

The experimental setup and collection of data used here have been described in previously 

published studies; please refer to Baroni et al. (2017) and Haun et al. (2017). The Analysis 

Team used data consisting of electrocorticogram evoked potentials from epilepsy patient 153, 

taken during the period of epilepsy monitoring after electrode implantation. Out of a grid 

electrode array installed over the right temporal lobe, they used recordings from two bipolar 

re-referenced channels, found over the ventral fusiform area, that were sensitive to faces. No 

recordings were performed within 48 hours of a major seizure. Visual stimuli—consisting of 

upright faces, upside-down faces, houses, line drawings of tools, and Mondrian patterns—

were presented in a continuous cycle while the participant fixated on a cross at the centre of 

the display. 

The Analysis Team arranged the data recordings into a set of two groups for four separate 

decoding experiments—each group was composed of a set of 27 evoked potentials to either 

face or non-face stimuli, and from either one or two electrodes, as shown in Table S7.1. 

Table S7.1. 

Data sets 

Data set Stimuli Electrodes Timing (ms) 

A Face vs. non-face 2 intermixed 100–300 

B Face vs. non-face 2 intermixed 400–600 

C Face vs. Mondrian Single 100–300 

D Face vs. Mondrian 2 intermixed 400–600 

Note. Face stimuli consisted of both upright and inverted 

faces. Non-face stimuli consisted of houses, tools, and 

Mondrian images. Timing is relative to stimulus onset. 

 

For each evoked potential, they extracted a set of 19 power spectral density (PSD) features in 

19 logarithmically spaced frequency bins between 0 Hz and the Nyquist frequency, based on 

the 19 EEG PSD features used in Step 2 of the Dream Catcher blind classification 

experiments (see Supplementary Document 6). They calculated PSDs using the multitaper 

method (Thomson, 1982) with five Slepian tapers before binning. The Analysis Team 

evaluated their decoder by decoding for stimulus category in each data set. 
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Decoder 

The Analysis Team used a support vector machine (SVM; Cortes & Vapnik, 1995) for 

decoding. Specifically, they employed the LIBSVM implementation for Matlab (version 

3.18; Chang & Lin, 2011, 2014). They used the nu-SVC model, with a Gaussian kernel type, 

the regularisation parameter set to the default nu = 0.5, and the model set to output 

probability estimates. They estimated decoding accuracy using leave-one-out cross-validation 

on the data as partitioned into pairs of face-non-face evoked potentials. For each fold of 

cross-validation, the Analysis Team classified the pairs dichotomously based on their relative 

probability estimate outputs. They preprocessed the power features by taking their natural 

logarithm, and standardising them across all features by Studentisation. 

Results 

The supervised SVM decoder generally performed well for all data sets (Table S7.2). The 

average accuracy across all sets was 89%, with the lowest being 74% for Set B. Their 95% 

confidence intervals, estimated using the Clopper-Pearson method (Clopper & Pearson, 1934), 

were all greater than 50%, indicating statistically significant performance in all sets. 

Table S7.2. 

Decoding results 

Data set 

Cross-validation accuracy 

n correct 

(out of 27) 

% 

Average 95% CI 

A 25 93 [76, 99] 

B 20 74 [54, 89] 

C 27 100 [87, 100] 

D 24 89 [71, 98] 

Note. CI: confidence interval. All values were 

statistically significant. 

 

The Analysis Team achieved the highest accuracy in data set C, in which the evoked 

potentials were not of mixed electrodes (one-tailed Fisher’s exact test against all other sets 

collapsed, p = .025). This suggested that the inclusion of a second, unrelated factor negatively 

impacted the decoding performance, but the decoder was resilient enough to preserve 

significant discriminability. 
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