
1 
 

Application of Pharmacogenomics and Bioinformatics to 1 

Exemplify the Utility of Human ex vivo Organoculture 2 

Models in the Field of Precision Medicine. 3 

Cowan K1*, Macluskie G1, Finch M1, Palmer C.N.A2, Hair J3, Bylesjo M4, Lynagh S4, Brankin P5, 4 

McNeil M6, Low C6, Mallinson D7, Gourlay EM7, Child H6, Cheyne L6 and Bunton DC1. 5 

1.  REPROCELL Europe Ltd, Thomson Pavilion, Glasgow, UK. 2. School of Medicine, University of Dundee, 6 

Ninewells Hospital and Medical School, Dundee, UK. 3. NHS Greater Glasgow & Clyde, Queen Elizabeth 7 

University Hospital, Glasgow. 4. Fios Genomics Ltd, Nine Edinburgh Bioquarter, Edinburgh, UK 5. Aridhia 8 

Informatics Ltd Teaching and Learning Building, Queen Elizabeth University Hospital, Glasgow, UK 6. Stratified 9 

Medicines Scotland Innovation Centre, Teaching and Learning Building, Queen Elizabeth University Hospital, 10 

Glasgow, UK 7. Sistemic Ltd, West of Scotland Science Park, Glasgow, UK 11 

* Corresponding author: karen.cowan@reprocell.com12 

Abstract 13 

Here we describe a collaboration between industry, the National Health Service (NHS) and 14 

academia that sought to demonstrate how early understanding of both pharmacology and 15 

genomics can improve strategies for the development of precision medicines. Diseased tissue 16 

ethically acquired from patients suffering from chronic obstructive pulmonary disease 17 

(COPD), was used to investigate inter-patient variability in drug efficacy using ex vivo 18 

organocultures of fresh lung tissue as the test system.  The reduction in inflammatory cytokines 19 

in the presence of various test drugs was used as the measure of drug efficacy and the individual 20 

patient responses were then matched against genotype and microRNA profiles in an attempt to 21 

identify unique predictors of drug responsiveness. Our findings suggest that genetic variation 22 

in CYP2E1 and SMAD3 genes may partly explain the observed variation in drug response.  23 
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Introduction 24 

It is well recognised that one size does not fit all when it comes to the treatment of many 25 

diseases. Getting the right drug to the right patient at the right dose has become the focus of 26 

precision medicine, which provides hope that patients may receive the most appropriate 27 

treatment sooner, improving their quality of life and reducing the support required from health 28 

care systems and wider society1. Health economists are recognising the potential of precision 29 

medicine and are beginning to apply the concept to their research.2 30 

The genomics revolution has underpinned much of this research. As the cost of gene 31 

sequencing has fallen, the ability to rapidly identify an individual’s genotype as part of routine 32 

health care has become possible. However, for precision medicines to be developed, genomics 33 

must be linked to pharmacology: relating the individuals genotype to the effectiveness, potency 34 

and tolerability of a drug. It is through pharmacogenomics that truly personalised therapies 35 

may emerge, yet the link between genomics and pharmacology may not be properly understood 36 

until expensive  37 

and risky clinical trials are conducted.   38 

Here we describe a collaboration between industry, the National Health Service (NHS) and 39 

academia that sought to demonstrate how early understanding of both pharmacology and 40 

genomics can improve strategies for the development of precision medicines. By using the 41 

latest pharmacology techniques in human fresh tissues from the target patient population, 42 

combined with genomics and clinical metadata associated with each individual, an improved 43 

understanding of the link between genetics and inter-individual drug responses emerges.  44 
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An early understanding of patient stratification during drug discovery is becoming increasingly 45 

important. Selection and optimisation of candidate drugs for well-defined patient subsets has 46 

the potential to help in the design of more rapid, targeted clinical trials.   47 

A key incentive to better understand pharmacogenomics during the drug discovery process is 48 

the rapid increase in drug development costs. The most recent estimates of the out-of-pocket 49 

costs (i.e. excluding capital costs) of drug development are in the region of $890m7, with 50 

approximately 70% of the costs incurred during clinical development. The most common cause 51 

of failure is poor efficacy at phase II or III3.4.5.6, which is in part attributed to trials of entire 52 

patient populations that include both “responders” and “non-responders”. Precision medicine 53 

can improve the prediction of clinical efficacy by selecting for clinical trials only those patient 54 

sub-populations likely to gain clear benefit; such predictions are dependent on the quality of 55 

the information used to stratify the patient sub-populations at an early stage of development. 56 

Early data on the effectiveness of drugs in different patients is essential to the development of 57 

precision medicines. Pre-clinical tests of drug effects must therefore closely reflect the patient 58 

population.  59 

The most desired traits in pre-clinical models are “physiological relevance” and the ability to 60 

translate findings to likely clinical responses3,7,6,8, including a desire to model the likely 61 

variation in effectiveness of a new drug within the patient population. Human fresh tissues and 62 

complex 3D tissue models that reflect the biology of disease are therefore increasingly being 63 

used by Pharma to improve the prediction of efficacy in clinical trials7,9,10. Although the data 64 

between different patients can be variable, this is now viewed as an opportunity for an early 65 

understanding of the extent and causes of inter-patient variation in drug response.  66 

Chronic Obstructive Pulmonary Disease (COPD) is a major health problem and is an example 67 

of a complex condition, with many clinical phenotypes. Many patients receive minimal clinical 68 
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benefit from common medications, most likely due to the combination of variations in disease 69 

subtype and genotype. The clinical variation in drug response is apparent in ex vivo 70 

pharmacology experiments using fresh lung tissues29.  71 

In this project, diseased tissue ethically acquired from patients suffering from COPD, was used 72 

to investigate inter-patient variability in drug efficacy using ex vivo organocultures of fresh 73 

lung tissue as the test system.  In order to assess patient variation and responsiveness to both 74 

‘standard of care’ and potential novel therapies, the reduction in inflammatory cytokines in the 75 

presence of various test drugs was used as the measure of drug efficacy.  The individual patient 76 

responses were then matched against genotype and microRNA profiles in an attempt to identify 77 

unique predictors of drug responsiveness and demonstrate the combined power of 78 

pharmacology and genomics during pre-clinical development.79 

80 

Figure 1. Diagram describing the precision medicine ecosystem in Scotland81 

Materials and methods 82 

Organoculture - REPROCELL 83 

Materials 84 

RPMI 1640 glutamax culture medium, gentamicin (50 mg/ml) and amphotericin B (250 µg/ml) 85 

were purchased from Thermo Fisher Scientific. Retinyl acetate, nystatin, bovine insulin, foetal 86 

bovine serum (FBS), fluticasone, roflumilast, RNAlater and DMSO were purchased from 87 

Sigma. Formoterol was purchased from R&D Systems and lipopolysaccharide endotoxin 88 

(LPS) was purchased from Invivogen. Complete mini protease inhibitor was purchased from 89 

Roche. 90 
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Method 91 

COPD lung parenchyma tissue was ethically obtained from 25 patients undergoing therapeutic 92 

resection for cancer or COPD. Residual tissue, not required for diagnosis, was acquired from 93 

NHS Research Scotland Bio-repository Network and also through the REPROCELL tissue 94 

network. Patients provided written consent, complying with the declaration of Helsinki. 95 

Lung parenchyma was dissected free from pleura, visible airways and blood vessels to produce 96 

5 mm3 biopsies. Two biopsies were immediately placed in RNAlater and stored at 2 to 8C 97 

overnight, prior to storage at –80C. Remaining biopsies were subjected to the following 98 

culture protocol. 99 

RPMI 1640 culture medium was prepared by adding the following constituents: gentamicin 100 

(100 µg/ml), amphotericin B (0.625 µg/ml), FBS (0.5%), retinyl acetate (0.1 µg/ml), bovine 101 

insulin (1 µg/ml) and nystatin (1 µg/ml). Final concentration of each constituent is displayed. 102 

Biopsies were submerged in culture media (two biopsies per well) and incubated for 16 to 24h 103 

at 37 C, in the presence of 5% CO2. 104 

Following the incubation period, media was refreshed and each well containing two biopsies 105 

was exposed to LPS (100 ng/ml), in an attempt to boost and normalise inter-biopsy 106 

inflammatory cytokine release. Each well was assigned one of the following experimental 107 

conditions: DMSO vehicle; roflumilast (100 nM); fluticasone (1 µM); formoterol (10 nM); or 108 

a combination of roflumilast (100 nM) plus fluticasone (1 µM) or formoterol (10 nM). Biopsies 109 

were then subjected to a further incubation period of 24 h at 37 C in the presence of 5% CO2. 110 

Culture supernatants were sampled from each well, protease inhibitor added to prevent 111 

degradation of inflammatory cytokines and stored at -80C prior to analysis. 112 

Each experimental condition was performed in duplicate culture wells. 113 
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Luminex MAGPIX Analysis 114 

Levels of TNFα (pg/ml) were measured in culture supernatants using a magnetic bead-based 115 

assay for the Luminex MAGPIX platform. Fluorescence levels correlating with TNFα level 116 

were corrected against the blank control level and a standard curve was generated using a 5-117 

parameter logistic equation.  118 

Each culture supernatant sample was analysed in duplicate and reported by Bio plex Manager 119 

6.1 software as mean TNFα concentration (pg/ml), along with standard deviation of the mean 120 

and the percentage coefficient of variation. 121 

Graph Pad Prism 4 software was used to display the data for all 25 donors as a median or mean 122 

TNFα concentration (pg/ml) + Standard Error of Mean (SEM.).  123 

Median and mean TNFα concentration was also displayed in Graph Pad Prism 4 as a percentage 124 

of DMSO vehicle control. 125 

RNA, DNA extraction and miRNA analysis – Sistemic 126 

Two baseline lung biopsies were prepared from 25 donors, as described above, and transported 127 

to Sistemic for DNA and RNA extraction. 128 

DNA was extracted from approximately 10 mg tissue using the PureLink Genomic DNA Mini 129 

Kit (Life Technologies). DNA quality control was performed using the Agilent 2200 130 

TapeStation and the Genomic DNA ScreenTape kit to determine the DNA integrity number 131 

(DIN). 132 

RNA was extracted from approximately 10 mg tissue. Tissue was homogenised in lysis buffer 133 

using a Precellys 24 homogeniser (Bertin Technologies) and total RNA was then extracted 134 

using the miRCURY RNA Isolation Kit – Cell & Plant (Exiqon). Absorbance ratios at 260/280 135 

nM and 260/230 nM were determined as indicators of sample yield and purity.  136 
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Further RNA quality control was performed using the Agilent 2200 TapeStation and the 137 

ScreenTape R6K kit to determine the RNA integrity number (RIN). 138 

MicroRNA (miRNA) expression levels were measured using the Agilent miRNA platform, 139 

specifically; Agilent’s SurePrint G3 Human v16 microRNA 8x60K microarray slides, 140 

miRBase version 16.0. Each slide contained 8 individual arrays and each array represents 1,349 141 

microRNA’s; 1205 human miRNAs (mapped to 1194 miRNAs in miRBase 20) and 144 viral 142 

miRNAs. 143 

Data was normalised using the AgiMicroRNA package in Bioconductor11. Array quality 144 

control was performed using outlier testing based on the following: average signal per array; 145 

average background per array; percentage of miRNAs where expression is detected on each 146 

array and the data distribution of each sample. 147 

A sample to sample correlation analysis was performed on normalised data using Pearson’s 148 

correlation. Outliers were assessed using Grubbs’ outlier test with a significance threshold of 149 

p <0.0512. 150 

miRNA expression data was visualised by Principal Component Analysis13, Pearson 151 

correlation and by agglomerative clustering heat-map in Bioconductor14. 152 

Isolated DNA was transported from Sistemic to the Stratified Medicine Scotland Innovation 153 

Centre (SMS-IC). 154 

Exome Sequencing – SMS-IC 155 

Targeted next generation sequencing libraries were prepared using the Ion AmpliseqTM Exome 156 

RDY Kit and DNA isolated from baseline lung biopsies.  60,496,505 bases were targeted by 157 

293,903 amplicons, representing the coding sequence of 18,835 genes. Multiplexed PCR was 158 

performed to produce barcoded libraries, using 100ng of input DNA per sample and 10 159 

amplification cycles. The Ion AmpliSeqTM Library Kit Plus and IonXpressTM Barcode Adapters 160 
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were used in library preparation, according to the manufacturer’s instructions. Final library 161 

concentrations were determined by quantitative real time PCR using the Ion Library TaqManTM 162 

Quantitation Kit. Libraries were diluted to 100pM, and 2 libraries were subsequently pooled in 163 

equal amounts for templating on the Ion OneTouchTM 2 System, using the Ion PITM Hi-QTM 164 

OT2 200 kit. The Ion ProtonTM NGS platform was used for sequencing of multiplexed 165 

templated libraries, using the Ion PITM Hi-QTM Sequencing 200 Kit and the Ion PITM Chip Kit 166 

v3, according to the manufacturer’s instructions.   167 

Raw Data Storage and Analysis – Aridhia & Fios Genomics 168 

Raw data (organoculture TNFα response levels, miRNA expression profiles and exome 169 

sequencing data) was uploaded to a secure workspace (AnalytiXagility) in Aridhia’s digital 170 

research platform. 171 

Anonymised, patient demographic data, obtained from NHS Research Scotland Bio-repository 172 

Network or the REPROCELL tissue network was also uploaded to the collaboration’s 173 

AnalytiXagility workspace. Data could then be accessed and analysed in a secure manner by 174 

authorised users.  175 

Fios Genomics accessed data held in the AnalytiXagility research workspace to provide 176 

bioinformatic analyses. Each dataset was analysed individually and combined to determine any 177 

significant correlations between patient demographic data, genetic polymorphisms and/or 178 

miRNA profiles and the observed organoculture assay response.  179 

Organoculture bioinformatic analysis 180 

TNFα levels determined for each patient sample in the organoculture assay, were subjected to 181 

quality control metrics from the ArrayQualityMetrics package in Bioconductor15. Assays were 182 

scored on the basis of the following parameters: maplot; boxplot and heatmap. An individual 183 

patient sample was classified as an outlier if two or more of the parameters were not met. 184 
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TNFα levels (pg/ml) for each experimental condition were normalised using log2 ratios against 185 

DMSO vehicle control. Relative levels of TNFα were then visualised using bar charts, density 186 

plots and correlation plots within R software. The aim was to identify subgroups of patients 187 

that displayed a good reduction of TNFα levels in response to one or more of the organoculture 188 

experimental conditions and subgroups of patients that displayed a poor reduction.  189 

Patients were then categorised as being a high responder or a low responder for use in 190 

subsequent bioinformatics analyses. 191 

Defined patient demographic parameters and organoculture assay response were assessed using 192 

pair-wise univariate associations between all combinations of defined parameters. Associations 193 

between categorical parameters were assessed using a chi-squared test; associations between 194 

one categorical and one continuous parameter were assessed using analysis of variance 195 

(ANOVA); associations between two continuous parameters were assessed using a Spearman 196 

correlation test.  197 

Exome sequence bioinformatic analysis 198 

Torrent Mapping Alignment Program was used to provide IonTorrent AmpliSeq exome 199 

sequencing data for each patient.   Data was provided as a BAM file aligned to genome 200 

reference GRCh37. Genotypes called with Torrent Variant Caller were provided as per sample 201 

VCF files.  202 

Single nucleotide polymorphisms (SNPs) from the VCF files were merged into a multi-sample 203 

VCF and BAM files were used to set missing genotypes to homozygous reference if the read-204 

depth of the SNP in a particular sample was less than 30. VCF files were then filtered to remove 205 

low quality SNPs. 206 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 27, 2019. ; https://doi.org/10.1101/649376doi: bioRxiv preprint 

https://doi.org/10.1101/649376
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

Exploratory analysis was first performed by producing principal component analysis plots, 207 

using the SNPRrelate R software package. Hierarchical clustering of the data measured 208 

dissimilarity between patient exome data16. 209 

The genotype for all SNPs identified from the VCF file was tested for association with the 210 

organoculture assay response, this was performed using fisher-exact tests of association within 211 

the Plink analysis toolkit31. Identified SNPs included those that were known to be related to 212 

genes of interest and also novel, undescribed SNPs. 213 

Genes of interest were identified due to a literature association with the pathology of COPD 214 

and/or as being associated with lung metabolism and/or genes that may be associated with 215 

clinical response to standard of care treatments. 216 

Identified SNPs were also cross-referenced with SNPs listed in the Genome Wide Association 217 

Studies (GWAS) Catalog to determine if any SNP had been previously reported in a human 218 

GWAS study and, if so, it was determined if the reported association was relevant to this study.  219 

miRNA bioinformatic analysis 220 

Quality control was assessed using the quality control metrics from the ArrayQualityMetrics 221 

package in Bioconductor15 as for the organoculture assay data above. 222 

Confounding associations between defined patient demographic parameters and miRNA 223 

expression array data were assessed using pair-wise univariate associations between all 224 

combinations of defined parameters. Associations between categorical parameters were 225 

assessed using a chi-squared test; associations between one categorical and one continuous 226 

parameter were assessed using analysis of variance (ANOVA); associations between two 227 

continuous parameters were assessed using a Spearman correlation test. 228 
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Data was normalised using quantile normalisation which produces expression measures in a 229 

log base 2 format.  Array batch effects due to processing of microarray data in two separate 230 

batches were corrected using the ComBat method30.  231 

Statistical comparisons were performed to determine if specific miRNAs were associated with 232 

organoculture assay response: the null hypothesis being that no specific differences in miRNA 233 

expression could be detected in patients that responded well in the organoculture assay 234 

compared with patients that did not respond. Linear modelling, empirical Bayesian analysis 235 

and p-value adjustment for multiple testing (Benjamini-Hochberg) was performed using the 236 

Bioconductor Limma software package14. 237 

miRNAs were annotated based on their experimentally verified target genes from 238 

miRTarBase32. miRNAs that displayed significant differential expression (uncorrected p 239 

<0.05), were analysed for enrichment of target gene KEGG (Kyoto Encyclopaedia of Genes 240 

and Genomes) pathway membership using a hypergeometric test. Upregulation and 241 

downregulation of genes were analysed separately.  242 

In the same way, miRNA target genes were analysed for enrichment of gene ontology terms. 243 

 244 

Integration of patient demographic, TNFα organoculture response, exome sequence and 245 

miRNA expression data 246 

Congruence analysis was performed by evaluating the level of overlap between all data sets. 247 

Calculations of significant overlaps were based on a hypergeometric test. 248 

All bioinformatic analysis was reviewed by Professor Colin Palmer, University of Dundee.  249 

Results 250 

Organoculture Luminex  251 
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The majority of COPD patient lung samples responded to treatment with fluticasone, 252 

roflumilast or combination therapy.  This was observed as a reduction in the level of TNFα 253 

released from the biopsies into the culture media (Fig 2). Different levels of response were 254 

however observed between patients and ranged from modest to a marked reduction in TNFα in 255 

the supernatant.256 

 257 

Figure 2: Graphs showing the effects of test articles on TNFα release from stimulated 258 

human lung parenchyma biopsies.  N= 25 donors, all diagnosed with COPD.  For each donor, 259 

two culture well replicates, each containing two biopsies were included in each treatment 260 

group. Data is displayed as a percentage of the corresponding DMSO control group in both 261 

graphs. A: Bar graph depicting mean + SEM TNFα release.  B: Scatter graph depicting 262 

individual patient (dots) and median (thick black line) TNFα release.263 

Fluticasone alone or in combination with rofluminast generated the greatest inhibition of TNFα 264 

release. When the effects of monotherapy and combined therapy were compared, there was no 265 

difference in the mean reduction in TNFα levels; however, combined therapy may have 266 

resulted in a bimodal drug response across the patient sample group. Patient samples were 267 

ranked according to the level of treatment response observed in the functional organoculture 268 

assay and a bimodal pattern of response was noted in biopsies treated with roflumilast plus 269 

fluticasone (Fig 4). 12 patient samples were categorised as being high responders and 13 as 270 

low responders to the roflumilast plus fluticasone treatment. 271 

Organoculture Bioinformatics 272 

All patient samples passed quality control analysis as described above. 273 

Principal component analysis was conducted to explore the relationship between the many 274 

variables.  275 
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Association analysis of patient demographic parameters and response to roflumilast plus 276 

fluticasone showed that the response was not influenced by any of the patient demographic 277 

factors such as gender or age. Treatment response was noted to be significantly associated with 278 

the first principal component, this indicates that response to roflumilast plus fluticasone is the 279 

primary trend in the data. 280 

A strong association was observed between ethnicity and supplier region, this is however 281 

believed to be the result of one sample that was acquired from a geographical region distinct 282 

from all other regions. The ethnicity of this patient was also not replicated in any other sample. 283 

Classes of chronic medication appear to be strongly related to each other, this is not surprising 284 

as the standard of care treatment for COPD includes combinations of the classes of drugs 285 

identified. Chronic medication appeared not to influence patient response to roflumilast plus 286 

fluticasone in the organoculture assay and is therefore not thought to be responsible for the 287 

variation in response between patients288 

Figure 3 Heat map showing the results of patient demographic correlation analysis. Each 289 

parameter is assessed in relation to each other, the principal components (PC) driving variation 290 

in the data and to the organoculture assay response. Each area within the heatmap denote a p-291 

value of association between pairs of variables from statistical tests. The statistical tests utilised 292 

depends on the property of the factors: for an association between two categorical factors, a 293 

chi-squared test was used. For an association between a categorical and a continuous factor, 294 

ANOVA was used. For an association between two continuous factors, a Spearman correlation 295 

test was used. In all cases, the resulting p-value was transformed as -log10(p) before being 296 

visualised in the confounding factors heatmap. 297 

298 
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Figure 4. Visualisation of patient-to-patient changes in the relative levels of TNF after 299 

combination treatment of roflumilast (100 nM) and fluticasone (1 M). The plot shows 300 

histogram bin counts (number of times a value falls within a given bin) as white bars as well 301 

as a smooth density in pink of the log2 ratios of TNFα release from biopsies treated with 302 

roflumilast plus fluticasone, relative to those treated with DMSO (which also includes LPS and 303 

the vehicle control), across all 25 patients. The average level in the treated biopsies is denoted 304 

by a blue dashed vertical line and the red dashed line denotes zero as this is the average level 305 

in control biopsies.306 

Exome sequence analysis 307 

Preliminary analysis showed that all samples were of good quality, with between 38 and 57 308 

million reads; this resulted in 36,702 to 38,065 SNPs being identified per patient sample. 309 

Merging and filtering of VCF files for high quality SNPs resulted in 101,557 SNPs being 310 

retained for the exome wide association analysis. 311 

Hierarchical clustering and principal component analysis identified two patient samples as 312 

outliers. One of the outlying samples is described above and is thought to have resulted in a 313 

slight association with ethnicity and supplier region. There is no explanation for the second 314 

outlying sample, however as the two samples did not show any quality-related discrepancies 315 

both samples were included in downstream analysis. 316 

Fisher’s exact test, performed in the Plink toolkit, showed that no genotypes corresponding 317 

with the identified SNPs were significantly associated with the organoculture response. 318 

However, to allow a very tentative interpretation of the results, and taking into account the low 319 

number of patients studied, an uncorrected p-value of <0.001 was chosen. With this approach 320 

a total of 30 SNPs, corresponding to 23 genes, were found to correlate with the level of TNFα 321 

release upon treatment with roflumilast plus fluticasone. A number of these genes have 322 
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reported associations with COPD or other pulmonary diseases and include; HEY117, 323 

SMAD318, BARD119 and FOXP120 324 

CYP2E1 is an inducible drug metabolising enzyme expressed in human lung tissue and has 325 

been implicated in pathological oxidative stress21,22. Expression of other CYP2E1 SNPs 326 

including rs3737034 and rs2249695 were also shown to correlate with patient organoculture 327 

response. The significance level was however borderline as determined in the bioinformatic 328 

analysis (p 0.008/0.01).  329 

Our findings suggest that genetic variation in the cytochrome p450 enzyme (CYP2E1) gene, 330 

namely SNP (rs2249695), may partly explain the observed variation in drug response. Biopsies 331 

from patients who had at least one copy of the reference allele for this SNP generally responded 332 

better to roflumilast and fluticasone co-treatment. As shown in Figure 5, mean TNFα release 333 

was inhibited by 77.6 % (homozygous reference genotype (TT)) and by 50.74 % (homozygous 334 

alternative genotype (CC)). Levels of inhibition between these two genotypes were found to 335 

be significantly different with a p value of 0.02 (unpaired, two-tailed t-test). The homozygous 336 

reference haplotype has been associated with low CYP2E1 expression33. 337 

Genetic variation in Mothers against decapentaplegic homolog 3 (SMAD3) gene was also 338 

found to relate to patient organoculture response. As shown in Figure 6, mean TNFα release 339 

was inhibited by 66% (homozygous alternative genotype (GG)) and by 39% (heterozygous 340 

genotype). Levels of inhibition between these two genotypes were found to be significantly 341 

different with a p value of 0.0054 (unpaired, two-tailed t-test).  Only two patient samples were 342 

found to have the homozygous reference haplotype (AA) and mean TNFα release was inhibited 343 

by 54 % in this group of patient samples.  This level of inhibition was not significantly different 344 

to the homozygous alternative genotype or the heterozygous genotype.   345 
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The GWAS catalogue contains 624 SNPs identified in the exome sequence analysis, 4 of 346 

these SNPs are annotated in the catalogue as being associated with COPD; 6 have been 347 

associated with asthma and 4 are related to other pulmonary conditions. It was however 348 

found that no SNPs annotated in the catalogue correlated to roflumilast plus fluticasone 349 

response in this study350 

Figure 5 Graphs showing the relationship between CYP2E1 SNP rs2249695 genotype and 351 

TNFα release from stimulated human lung parenchyma biopsies following roflumilast 352 

and fluticasone co-treatment.  Data is displayed as a percentage of the corresponding DMSO 353 

control group.  Asterisks indicate significant differences (P < 0.05, for one, P < 0.01 for two 354 

and P < 0.001 for three). A: Box and whiskers graph depicting TNFα release.  The 25th and 355 

75th percentiles of each group are represented by the box with the minimum and maximum 356 

values represented by bars, the line within each box denotes the median value.  357 

B: Bar graph depicting mean + SEM TNFα release. 358 

Figure 6 Graphs showing the relationship between SMAD3 SNP rs1065080 genotype and 359 

TNFα release from stimulated human lung parenchyma biopsies following roflumilast and 360 

fluticasone co-treatment.  Data is displayed as a percentage of the corresponding DMSO 361 

control group.  Asterisks indicate significant differences (P < 0.05, for one, P < 0.01 for two 362 

and P < 0.001 for three). A: Box and whiskers graph depicting TNFα release.  The 25th and 363 

75th percentiles of each group are represented by the box with the minimum and maximum 364 

values represented by bars, the line within each box denotes the median value.  365 

B: Bar graph depicting mean + SEM TNFα release.366 

miRNA analysis 367 

RNA quality control analysis showed that isolated RNA was of high purity, 260/280 ratios 368 

ranged from 1.8 to 2.0 and RNA integrity scores ranged from 5.8 to 7.8.  369 
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All patient samples, except one, passed Agilent miRNA array quality control analysis with a 370 

rating of good to excellent. The remaining sample was flagged for evaluation and removed 371 

from subsequent bioinformatic analysis. 372 

Statistical analysis showed that there were no specific differences in miRNA expression 373 

detected in patients that responded well in the organoculture assay compared with patients that 374 

did not respond. This analysis was performed using a p-value that had been adjusted for 375 

multiple statistical testing. For the purposes of this exemplar study, a relaxed p-value 376 

(uncorrected p <0.05) was subsequently applied. At this threshold, 181 miRNAs, mapping to 377 

636 genes, were found to be differentially expressed in COPD patient samples that were high 378 

responders to roflumilast plus fluticasone treatment compared with samples that showed a poor 379 

response. 86 miRNAs were found to be upregulated, correlating with 47 KEGG pathways that 380 

reached statistical significance. This Enrichment analysis highlighted KEGG pathways 381 

associated with TGF-β signalling, synaptic function and fatty acid metabolism.  382 

95 miRNAs were found to be down regulated correlating with 4 KEGG pathways that reached 383 

statistical significance. This Enrichment analysis highlighted KEGG pathways associated with 384 

long-term depression and serotonergic and GABAergic synaptic function. 385 

1,610 GO terms were significantly associated with up-regulated miRNAs and found to be 386 

significantly enriched for pathways associated with cell ageing, specifically telomerase 387 

activity.  Pathways involved in synaptic activity and T cell differentiation were also found to 388 

be upregulated. 389 

310 GO terms were significantly associated with down-regulated miRNAs and found to be 390 

significantly enriched for pathways associated with B cell receptor activity and TGF-β 391 

production. 392 
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As discussed, bioinformatic analysis identified 30 SNPs corresponding to 23 genes (p <0.001) 393 

and 181 miRNAs (mapping to 636 genes, p <0.05) as being related to organoculture response. 394 

With further relaxation of the exome analysis p value to 0.01congruence analysis found that a 395 

total of 10 genes overlapped between the exome sequence and miRNA expression data and this 396 

overlap is higher than would be expected by chance. Overlapping genes are NTN4, IGF1R, 397 

SMAD3, EGFR, MCL1, FBN1, FGA, APP, MYO10 and IRAK3.  Six overlapping genes were 398 

subject to upregulation (SMAD3, EGFR, MCL1, FBN1, FGA & APP) however the remaining 399 

4 overlapping genes did not agree with respect to overlap direction.  Absolute minor allele 400 

frequencies from the exome sequence analysis was used as a surrogate for fold changes in the 401 

SNP data. No strong correlations were found between absolute minor allele frequencies and 402 

miRNA log fold-changes.  KEGG and GO enrichment analysis of the overlapping genes did 403 

not identify any common pathways or processes.404 

Figure 7 Venn diagram illustrating the overlap between genes that map to SNPs and 405 

miRNAs that are associated with patient COPD biopsy response to roflumilast plus 406 

fluticasone. Patients displayed a good response to treatment, observed by low levels of TNFα 407 

release, or a poor response as observed by high levels of TNFα release in the organoculture 408 

assay described. 409 

Discussion 410 

 This study aimed to demonstrate the potential of research that combines pre-clinical functional 411 

characterisation of drug efficacy and inter-patient variation in drug responses, with state-of-412 

the-art genomics and bioinformatics, as a new way to model precision medicine strategies at 413 

the early stages of drug development. 414 

COPD is a highly complex condition with many clinical phenotypes. As an exemplar project, 415 

the number of patients was relatively low and findings are therefore tentative, however, this 416 
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study was also designed to explore the potential for such projects during non-clinical drug 417 

development, where budgets are limited and projects exploring hundreds of patients may be 418 

too costly.  419 

Nonetheless, clear variations in drug effectiveness were observed between patients and our 420 

preliminary experimental findings suggest that genetic polymorphisms in COPD patients 421 

may be linked to variation in response to the combination anti-inflammatory treatment, 422 

roflumilast plus fluticasone.  A haplotype associated with low CYP2E1 expression was 423 

detected within the cohort of samples that responded well to treatment. It is possible that 424 

CYP2E1 expression influences response to treatment.  425 

CYP2E1 induces production of reactive oxygen species21, 23 that may in turn inhibit reductions 426 

of TNFα release by various treatments. All 3 patients in the homozygous reference haplotype 427 

group were high responders to roflumilast plus fluticasone, 5 of 8 patients in the heterozygous 428 

reference haplotype group were high responders whereas 10 of 14 patients in the homozygous 429 

alternative haplotype group were low responders (Fig 5).  430 

TGF-β and the SMAD signalling pathway have been implicated in the pathology of 431 

COPD24,25,26 and lung adenocarcinoma27,28. Our results show that genetic variation in the 432 

SMAD gene (rs1065080) may influence response to fluticasone plus roflumilast.  Patients that 433 

were deemed to be high responders to roflumilast plus fluticasone exclusively displayed the 434 

homozygous alternative genotype (GG), whereas only 5 of 13 patients in the poor response 435 

group displayed this genotype. 436 

Roflumilast has been reported to inhibit TGF-β driven increases in reactive oxygen species and 437 

phosphorylation of SMAD3 by inhibiting TGF-β release24. If the genetic variation in SMAD3 438 

and miRNA expression profile reported in this study alters the functioning of the pathway then 439 
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this may help to explain variation in the observed organoculture response. It was however noted 440 

that no common KEGG or GO pathways were found in the bioinformatic congruence analysis. 441 

The AnalytiXagility platform used by partners to share and interrogate the data could become 442 

a powerful resource to both academic researchers and the pharmaceutical industry. 443 

Aridhia’s digital research platform has the potential to link the data generated in this study with 444 

available tissue, DNA and RNA for further research. A platform of this design also offers the 445 

capacity to add patients, analyses and clinical information in real time, thereby tracking patient 446 

outcome and allowing continual remodelling of the data in a secure, version controlled manner. 447 

With ethical approval, it could be possible for researchers in the pharmaceutical industry to 448 

mine for genetic signatures or other parameters within a target disease area, for the purposes of 449 

patient selection and clinical trial support or for identifying the most appropriate pre-clinical 450 

model.  451 

The authors acknowledge that while a very high volume of functional and genomics data was 452 

generated, the total number of patients was low for a genomics study; therefore, the scientific 453 

conclusions remain tentative but serve to demonstrate well the potential to explore patient 454 

stratification strategies at a much earlier stage by combining fresh tissue pharmacology, clinical 455 

metadata and genomics.  456 
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