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Abstract

Motivation: Co-expression of two genes across different conditions is indicative of their involvement in

the same biological process. However, using RNA-Seq datasets with many experimental conditions from

diverse sources introduces batch effects and other artefacts that might obscure the real co-expression

signal. Moreover, only a subset of experimental conditions is expected to be relevant for finding genes

related to a particular Gene Ontology (GO) term. Therefore, we hypothesize that when the purpose is to

find similar functioning genes that the co-expression of genes should not be determined on all samples

but only on those samples informative for the GO term of interest.

Results: To address both types of effects, we developed MLC (Metric Learning for Co-expression), a

fast algorithm that assigns a GO-term-specific weight to each expression sample. The goal is to obtain a

weighted co-expression measure that is more suitable than the unweighted Pearson correlation for applying

Guilt-By-Association-based function predictions. More specifically, if two genes are annotated with a given

GO term, MLC tries to maximize their weighted co-expression, and, in addition, if one of them is not

annotated with that term, the weighted co-expression is minimized. Our experiments on publicly available

Arabidopsis thaliana RNA-Seq data demonstrate that MLC outperforms standard Pearson correlation in

term-centric performance.

Availability: MLC is available as a Python package at www.github.com/stamakro/MLC

Contact: s.makrodimitris@tudelft.nl

Supplementary information: Supplementary data are available online.

1 Introduction

Knowing which biological processes and pathways are affected by each

gene would be a useful tool for plant biologists and breeders. With this

information, they can more easily identify genes that are likely to affect the

phenomenon or trait they are studying and prioritize genes for experimental

testing. The Biological Process Ontology (BPO) of the Gene Ontology

(GO) (Ashburner et al., 2000) provides us with a set of terms that describe

biological processes at different levels of granularity and can be used to

annotate genes from all species in a systematic way. However, the use

of computational methods to accurately predict BPO annotations, also

known as Automatic Function Prediction (AFP), remains challenging, as

demonstrated in the Critical Assessment of Functional Annotation (CAFA)

challenges (Jiang et al., 2016a).

Most AFP methods use the Guilt-By-Association (GBA) principle.

They define a similarity or dissimilarity measure between genes and use

it as a proxy for functional similarity. Then, they assign GO annota-

tions to genes of unknown function based on the functions of the genes

most similar to them. The choice of similarity measure is always mo-

tivated by biology. For instance, sequence similarity points towards a

conserved structure which in turn implies similar function. Alternatively,

co-expression across different conditions may hint at involvement in the

same pathways. Combining multiple similarity measures in order to better

approximate functional similarity is also possible, as done for instance in

(Lan et al., 2013; Cozzetto et al., 2013; Zhang et al., 2017).

Genes that are involved in the same biological processes are expected

to show similar expression patterns, as they respond similarly to pertur-

bations related to these processes. Discovering BPO annotations for all

unannotated genes requires data from a wide range of different experi-

mental conditions. For example, we need samples from different tissues,

different time points across development, from wild-type or mutant plants
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Figure 1. Illustrative example of the expression of two hypothetical genes (y -axis,

solid and dashed lines) involved in the same biological process over a large set of

samples (x -axis). The total Pearson correlation between the genes is 0.09. MLC

sets large weight values (wm) for the samples left of the vertical dashed line (where

the unweighted correlation is 0.92) and small or zero weights for the samples on

the right (unweighted correlation = 0.002).

etc. Thanks to world-wide sequencing efforts, more and more RNA-Seq

data are becoming available to public databases, such as ArrayExpress

(Parkinson et al., 2007) and GEO (Clough and Barrett, 2016).

The Pearson Correlation Co-efficient (PCC) is the most widely used

measure of gene co-expression similarity and has been largely successful,

especially for microarray-derived expression data. For instance, for MS-

kNN (Lan et al., 2013), one of the top-performing methods in CAFA2

(Jiang et al., 2016a), the PCC was calculated on samples from 392 human

microarray datasets to quantify co-expression similarity between genes,

outperforming sequence similarity for AFP in BPO (Lan et al., 2013).

PCC might, however, not be the optimal co-expression measure due to

the diversity of biological processes and heterogeneity of public expression

datasets. Firstly, only a subset of all available experimental conditions is

likely to be truly informative about a specific GO term. For example, let us

assume that we are looking for genes involved in plant immune response.

Using the PCC across all possible conditions, we implicitly expect that

all such genes are expressed similarly not only during immune response,

but across all conditions and tissues. However, differential co-expression

analysis has shown that several Arabidopsis thaliana immune genes, such

as FLS2, ADR1 and JAR1, change co-expressed partners before and after

infection with Pseudomonas syringae (Jiang et al., 2016b). A gene that

is co-expressed with immune genes during (only) infection is still a good

candidate gene for immune response, even if it has different expression

patterns to the immune genes in other tissues or developmental stages.

Including many unrelated expression samples, essentially adds noise to

the correlations. Secondly, batch effects and other technical biases that

are not corrected during pre-processing can introduce noise and corrupt

the co-expression signal. PCC treats all samples equally and implicitly

assumes that there are no systematic differences between them. According

to these reasonings, we should be able to improve the performance of co-

expression-based gene function prediction by calculating co-expression

only over the samples that are relevant for each term.

This insight that the PCC might be suboptimal is not new. For exam-

ple, Jaskowiak et al. showed that k-means clustering of gene expression

data heavily relies on the choice of similarity measure (PCC, Spearman

correlation, Euclidean distance etc.) and that the most suitable measure

varies across different datasets (Jaskowiak et al., 2012). As another ex-

ample, Hu et al. showed that using an inappropriate distance metric can

really harm the performance of the k-Nearest Neighbors (k-NN) classifier

in biomedical datasets (Hu et al., 2016).

Adapting a distance measure is a subfield within machine learning

that is called metric learning: learning a distance function from a dataset

of examples that can most effectively be utilized to perform a task, e.g.

discriminating between two classes. It is most explored in combination

with the k-NN classifier (Bellet et al., 2013). In the context of AFP, Ray

and Misra developed a metric learning method called Genetic Algorithm

for Assigning Weights to Gene Expressions using Functional Annotations

(GAAWGEFA) that learns a weighted PCC on microarray data using a ge-

netic algorithm to find the optimal values for the weights (Ray and Misra,

2019). They showed that their weighted correlation increases the protein-

centric precision compared to PCC in a yeast dataset. Metric learning has

also been applied to AFP combined with multiple-instance learning (Xu

et al., 2017). In that work, each protein is viewed as a "bag of domains"

and metric learning is used to learn a distance function between proteins

(based on their domains) that is representative of functional similarity.

Here, we use metric learning to identify the most informative conditions

for a given GO term. Similar to GAAWGEFA, our goal is to assign a weight

to every RNA-Seq sample. GAAWGEFA learns one weighted PCC for all

GO terms (Ray and Misra, 2019). On the contrary, our approach, Metric

Learning for Co-expresssion (MLC), optimizes the weights per term. Our

philosophy (graphically shown in Figure 1) is that weights should be cho-

sen in such a way that a pair of genes annotated with the same term should

have maximally similar expression profiles, i.e. comply with our assump-

tion that these genes should be co-expressed. On the other hand, when one

gene is annotated with the term and the other not, we expect that such a

pair should not have high co-expression. In other words, we would like to

select weights that minimize the co-expression for these pairs. For pairs of

genes both not annotated with the term, we cannot say anything about the

co-expression since they might be annotated with another term, and thus be

co-expressed too (albeit for other conditions/samples). Consequently, the

co-expression of these pairs should be ignored when optimizing weights

for the GO term of consideration. A high weight for a sample will put

emphasis on that sample when calculating the co-expression over all sam-

ples, whereas a low weight for a sample will reduce the influence of that

sample. When a weight becomes zero the sample is even ignored. To en-

force selecting informative samples, we additionally apply an L1 sparsity

constraint on the weights, which will set a weight to zero when a sample

is uninformative (Tibshirani, 1996). In contrast to GAAWGEFA, where

they have used a genetic algorithm to find the weights, we are able to pose

the weight optimization in an elegant mathematical formulation that can

be minimized efficiently using standard methods. To reduce the computa-

tional burden even further, we use the weighted inner product as a similarity

function instead of the weighted PCC. We evaluate our algorithm on public

RNA-Seq data from A. thaliana.

2 Methods

2.1 Data and Preprocessing

We used the API of the European Bioinformatics Institute (EBI) (Petryszak

et al., 2017) to download all A. thaliana RNA-seq studies available at Ar-

rayExpress (Parkinson et al., 2007). All samples had been processed using

the same pipeline and expression was measured using raw read counts.

We restricted our dataset to samples that used the latest version of the A.

thaliana genome (TAIR10) and had fewer than 10% unmapped reads. After

removing duplicate experiments, we had 4,215 samples from 298 different

studies (batches) for 32,833 genes, 26,925 of which were protein-coding.

We used a preprocessing pipeline similar to the one used to construct the

ATTED-II RNA-Seq co-expression network (Obayashi et al., 2018). We
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first removed samples with fewer than 10,000,000 mapped reads. Then,

we removed lowly expressed genes (genes with maximum expression over

the remaining samples less than 100). To diminish the zero-inflation of the

dataset, we also removed all genes that were not expressed in at least half

of the samples (median expression smaller than 1). We then mapped the

TAIR gene ID’s to UniProt ID’s. BPO annotations were downloaded from

GOA (https://www.ebi.ac.uk/GOA) in September 2016 and annotations

with the IEA evidence code were removed. A total of 2,978 samples and

6,013 genes with BPO annotations remained after these filtering steps. We

applied ComBat (Johnson et al., 2007) to remove unwanted variation stem-

ming from the fact that the different samples come from different studies

(batch effects). ComBat uses a Bayesian method to standardize the mean

and the variance of each gene in each study (batch). In order to be able to

estimate within-batch variances, we removed all studies that had only one

sample, leaving us with 2,959 samples.

2.2 Notation

We use xi ∈ R
f to denote the expression of gene i across all f = 2, 959

samples. xim is the expression of gene i at sample m. xi is the mean of

gene i across all samples. Given N genes and a GO term l, we denote as

y(l) ∈ [0, 1]N the vector with the class labels of the genes, withy(l)i = 1

iff gene i is annotated with l. The sample weights are represented by a

vector with f non-negative elements w(l) ∈ [0,+∞)f .

2.3 Weighted and Unweighted Measures of Co-Expression

The most widely-used measure of co-expression between two gene expres-

sion vectors xi, xj is the Pearson Correlation Coefficient (PCC), which

is defined as follows:

PCC(xi,xj) =

∑f
m=1

(xim − xi)(xjm − xj)
√

∑f
m=1

(xim − xi)2
√

∑f
m=1

(xjm − xj)2

(1)

Note that the numerator is the covariance between xi and xj and the

denominator is the product of the standard deviations of the two vectors.

A related, but simpler measure is the inner product similarity (S),

which, on the contrary, is sensitive to the mean expression of both genes.:

S(xi,xj) = x
T
i · xj =

f
∑

m=1

ximxjm (2)

If two vectors xi, xj both have zero mean and unit L2-norm, then their

PCC is equal to their inner product. This equality does not hold anymore

if we weigh each vector element (sample) differently. However, since the

two metrics are related, we chose to use the weighted inner product sim-

ilarity instead of the weighted PCC as our expression similarity function

in order to simplify the problem. We center and scale our data so that

the (unweighted) mean of every gene is zero across all conditions and its

(unweighted) L2-norm is equal to one:

x̃i =
xi − xi

‖xi − xi‖
(3)

Then, we define our similarity function as the weighted inner product

of the two scaled expression vectors (Sw):

Sw(xi,xj) = x̃
T
i ·W · x̃j =

f
∑

m=1

wmximxjm (4)

Where W = diag(w) is a diagonal matrix containing the sample

weights.

2.4 Metric Learning for Co-expression (MLC)

The rationale for learning the weights is to maximize the performance of

the k-NN classifier. For this purpose, we want the expression similarity

between two genes that are both annotated with a given GO term l to be

higher (on average) than the similarity between a gene that is annotated

with l and a gene that is not. We group each gene pair into one of the

following three categories:

1. both genes are annotated with l (we call these "positive-positive pairs"

or "p-p"),

2. exactly one of the two genes is annotated with l ("positive-negative

pairs" or "p-n") and

3. neither gene is annotated with l (("negative-negative pairs" or "n-n")).

Our goal is to find the weight values wm that maximize the separabil-

ity between "p-p" and "p-n" pairs. Let µp−p, σ2
p−p denote the mean

and variance of the weighted similarity value Sw of all "p-p" gene pairs

and, similarly, µp−n, σ2
p−n for all "p-n" gene pairs. Let also Np−p and

Np−n denote the number of gene pairs in each category. We use Welch’s

two-sample t-statistic with unequal variances to quantify the notion of

separability:

t(w) =
µp−p − µp−n

√

σ2

p−p

Np−p
+

σ2

p−n

Np−n

(5)

Note thatµ andσ2 are functions ofw, but this dependence is not shown

explicitly in equation 5 to keep the notation simple. Maximizing t(w) is

equivalent to minimizing −t(w). In order to enable sample selection, we

also added an L1 regularization term that forces the weights of uninfor-

mative samples to zero (Tibshirani, 1996). Our optimization problem then

becomes:

min
w

− αt(w) + (1− α)

f
∑

m=1

wm, s.t. wm ≥ 0∀m (6)

Parameter α controls the trade-off between the actual cost and the

regularization. The minimization of Equation 6 is done with the Broyden-

Fletcher-Goldfarb-Shanno method (Byrd et al., 1995).

2.4.1 Global MLC

To investigate the effect of creating GO-term specific predictors, we also

implemented a version of MLC that is applicable to all terms simultane-

ously. To this purpose, we redefined "p-p" gene pairs as pairs of two genes

which share at least one GO term and "p-n" pairs as pairs of two genes that

share no GO annotations. All the ensuing steps remain the same as for the

term-specific MLC. We call this method "Global MLC" (MLCG).

2.5 Experimental set-up

2.5.1 Competing methods

We compared MLC to the unweighted PCC baseline. To investigate the

effect of the use of a term-specific classifier, we created term-specific

classifiers from the PCC by tuning the classifier parameter k individu-

ally per GO term and not globally over all terms. We called this approach

PCC(k). We also compared to GAAWGEFA which, like MLC, learns a

weighted co-expression measure (Ray and Misra, 2019). GAAWGEFA is

not GO-term-specific and optimizes the mean protein-centric precision

using a genetic algorithm, so we also constructed a non-term-specific

version of MLC (MLCG) to compare against. Another way to measure

co-expression is the Mutual Rank (MR) (Obayashi et al., 2018) which is

used in the ATTED-II database. Although MR neither selects samples nor

weighs samples differently, it has been shown to outperform the PCC for

function prediction (Obayashi et al., 2018), so we included it in the com-

parison as a stronger baseline. Input to MR are typically the PCC values
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of all gene pairs, although it can be applied to any co-expression mea-

sure. More details on the definition and implementation of each of these

methods are given in Supplementary Material 1.

2.5.2 Cross-Validation Experiment

We used the k-Nearest Neighbors (k-NN) classifier to compare the function

prediction performance of the different studied co-expression measures

on all A. thaliana genes with at least one BP annotation. To counter the

imbalance in the dataset, we restricted ourselves to GO terms that anno-

tate at least 1% of the genes. Also, for the weight optimization stage of

MLC, we randomly sampled an equal number of genes with and without

each term. The optimal number of nearest neighbors (k) is a parameter

of all methods. MLC has an extra regularization parameter α (equation

6). We tuned the parameters of MLC independently for each GO term,

while we selected the value of k that maximized the mean performance

over all tested GO terms for the other methods. Parameter tuning was

done in a double 3-fold cross-validation loop (Varma and Simon, 2006)

using the term-centric ROCAUC as performance criterion. The inner

loop was used to select the optimal parameter values and the outer loop to

evaluate the performance of the tuned models on previously unseen genes

(reported as "CV results"). As in this work we are dealing with the problem

of identifying which genes should be annotated with a specific GO term,

we focus on term-centric evaluation using the mean ROCAUC. How-

ever, we also compared the methods with two protein-centric measures,

the maximum F-measure (Fmax) and the minimum Semantic Distance

(Smin) (Supplemental Material 2).

2.5.3 CAFA Experiment

We also evaluated the same methods on the preliminary test set from

CAFA3, released by the organizers in June 2017. This dataset contains

6077 training and 137 test genes from A. thaliana. After ID mapping, we

restricted ourselves only to the genes for which we had both expression

data from ArrayExpress and MR values from the ATTED database and

passed the filtering step described in section 2.1. This left us with 4,889

training genes and 90 test genes, annotated with 707 GO terms. We used

the training set to tune the parameters of the tested methods using a 3-fold

cross-validation loop. We removed the 10 rarest terms, as there were not

enough training and testing genes in all folds. Then, we re-trained each

method on the whole training set, using the optimal parameter values found

with cross-validation and made predictions for the 697 remaining terms

on the 90 test genes (reported as CAFA results). To assess the variability

of the results, we performed 1,000 bootstraps, choosing at random with

replacement 90 genes at each iteration and re-evaluating the mean term-

centric performance. We used these bootstraps to construct 95% confidence

intervals.

3 Results

3.1 All methods outperform the PCC

We compared our metric learning approach (MLC), as well as Mutual

Rank (MR) and GAAWGEFA to the standard, unweighted PCC using 3-

fold cross-validation. PCC achieved a mean term-centric ROCAUC of

0.69, while the performance of both MR and MLC with the weighted in-

ner product was 0.72 (Table 1). The performance of GAAWGEFA was

0.71. MLCG, the non-term-specific version of MLC, also achieved a

mean ROCAUC of 0.72. Although all methods perform fairly similarly

according to protein-centric measures (Tables S1-2, Supplementary Ma-

terial 3), PCC performs significantly worse than the other methods on

term-centric ROCAUC (False Discovery Rate (FDR) < 0.036, Tables

S3-5, Supplementary Material 4, effect size 4%). This shows that the PCC

is indeed a suboptimal co-expression measure.

3.2 MLC is the best at predicting specific GO terms

Although MR, GAAWGEFA and MLC perform equally on average, one is

typically not interested in predicting GO terms that are "near" the ontol-

ogy root, as most of them describe too general biological processes (Clark

and Radivojac, 2013). Therefore, we compared the performances of these

methods as a function of term specificity. As measures of specificity, we

used the maximum path length to the ontology root and the Resnik In-

formation Content (IC) (Resnik, 1995). One way to take term specificity

into account is to calculate the weighted term-centric ROCAUC, where

each term is weighted by its IC when calculating the average. As shown

in Table 1, MLC achieves the highest weighted ROCAUC. The differ-

ence is statistically significant for all methods except for MR (Table S6,

Supplementary Material 4), although the effect size is small (1.5%).

Furthermore, we grouped the GO terms into quintiles (quantiles at 0,

20, 40, 60 and 80%) and plotted the distribution of the percent differences in

performance of MLC from MR for each quintile (Figure 2a). We observed

that for the first two quintiles (i.e. the 40% most frequent terms), MLC

performs worse than MR, while for the 60% most specific terms, both the

mean and the median performance of MLC is better (Figure 2a). Further

analysis showed that for the very general terms, MLC makes a lot more

type I errors (false positives) than for the more specific ones (Figure S1,

Supplementary Material 5) and that makes it underperform with respect to

MR. The Spearman correlation between percent difference and Resnik IC

was 0.26. The same pattern is evident when comparing MLC to all other

methods (PCC, GAAWGEFA and MLCG), as well as when replacing

Resnik IC with the path length to the ontology root (Tables S7-8, Figures

S2-3, Supplementary Material 6). From that we can conclude that term-

specific MLC is the preferred method for finding genes belonging to rarer

terms.

3.3 MLC tunes the weights to find "p-p" pairs

The goal of MLC is to choose the weights so that for test genes that have

a particular GO annotation, the learned similarities are higher to train-

ing genes that have the same annotation than to genes that do not. As an

example, Figures 2a and b show the distribution of co-expression similari-

ties between the test genes annotated with term GO:1903047 (mitotic cell

cycle process) and all training genes for the PCC and MLC similarities

respectively. It is clear that for MLC, the test genes are a lot more similar

to training genes with the same annotation. Note, however, that, for this

term, a significant portion of the similarities are negative (small blue peak

in Figure 2b). This means that some positive genes are anti-correlated to

the rest. For these cases MLC will make Type II errors (false negatives).

Figure 2d shows the distribution of the number of selected samples

for each GO term. For about 33% of all GO terms, MLC selected less

than 9% of the available samples (252 or less), setting all other weights to

zero. The median number of selected samples was 2,035 out of 2,959 or

about 69% of all samples. Moreover, for about 23% of the terms, MLC

kept all the samples and weighted them more or less equally (maximum

standard deviation of weights = 0.006), in which case MLC was almost

equivalent to the unweighted inner product. However, MLC still had sig-

nificantly better performance for those terms than baseline PCC (median

difference 0.03, p-value =0.002, Wilcoxon rank sum test). We also found

that individually tuning k per GO term for the PCC gave on average the

same term-centric ROCAUC as the baseline PCC (PCC (k), Table 1),

so the performance improvement is not caused by simply choosing the

optimal k value for each GO term. Finally, we observed a small negative

correlation between term Information Content and the number of samples

selected (Spearman ρ = −0.09, p-value = 0.057). This means that MLC

has a slight tendency to select fewer samples for more specific terms, but

this result is not statistically significant.
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Table 1. Mean term-centric ROCAUC (ROCAUCt) achieved by the methods under comparison using 3-fold cross-

validation (CV, 2nd and 3rd column) and when testing on the CAFA dataset (CAFA, 4th and 5th column). For the

cross-validation, we report the average performance over the three folds as well as the corresponding standard error.

For the CAFA results we report the performance on the test set as well as the 95% Confidence Intervals from doing

1,000 bootstrapped tests.

Method ROCAUCt (CV) Weighted ROCAUCt (CV) ROCAUCt (CAFA) Weighted ROCAUCt (CAFA)

PCC 0.69 ± 0.003 0.69 ± 0.003 0.68 [0.63, 0.72] 0.68 [0.63, 0.73]

PCC(k) 0.69 ± 0.003 0.69 ± 0.003 0.68 [0.63, 0.71] 0.68 [0.63, 0.72]

PCC + MR 0.72 ± 0.002 0.72 ± 0.002 0.69 [0.65, 0.73] 0.69 [0.65, 0.73]

GAAWGEFA 0.71 ± 0.002 0.71 ± 0.002 0.69 [0.65, 0.73] 0.70 [0.65, 0.74]

MLC (Sw) 0.72 ± 0.003 0.73 ± 0.003 0.69 [0.65, 0.73] 0.69 [0.65, 0.73]

MLCG 0.72 ± 0.003 0.72 ± 0.003 0.71 [0.67, 0.75] 0.72 [0.67, 0.76]

MLC-MR Hybrid 0.73 ± 0.005 0.73 ± 0.005 0.69 [0.65, 0.73] 0.69 [0.66, 0.73]

3.4 The weights learned by MLC help at identifying

relevant experimental conditions

The weights learned by GAAWGEFA are roughly uniformly distributed

between 0 and 1 (Kolmogorov-Smirnov test statistic = 0.011, p-value =

0.847) and are not correlated to any of the term-specific weight profiles of

MLC, which tend to have an exponential-like distribution (Figures S4-5,

Supplemental Material 7), as many samples get a weight of zero. Continu-

ing on the example from before, for term GO:1903047 (mitotic cell cycle

process) MLC gives the highest weight to a sample of a plant grown in the

absense of phosphorus, which has been shown to restrict the cell division

rate (Kavanová et al., 2006). Among the samples with highest weights are

also many samples from experiments studying seed germination, a pro-

cess closely linked to cell cycle (Vázquez-Ramos and de la Paz Sánchez,

2003). Finally, two IBM1 mutant samples were selected with very high

weights. The IBM1 gene codes for histone demethylation protein and has

GO annotations that include flower, root and pollen development. The

complete weight profile is shown in Figure S6 (Supplemental Material 8).

This example shows that MLC is able to identify RNA-Seq samples that

are relevant to the process under study and that by examining the weight

profile of MLC, one can interpret its predictions more easily.
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Figure 2. (a)Percent increase in ROCAUC of MLC (Sw ) with respect to MR as a function of Resnik Information Content. For each set of terms in each quintile of

Information Content, the corresponding box includes the two middle quartiles of the percent increase for these terms. An orange line denotes the median. The error

bars extend to 1.5 times the range of the two middle quartiles and outlier points are shown as dots. (b-c) Distributions of co-expressions for genes annotated with term

GO:1903047. In dashed blue lines, the co-expression values between a test and a training gene that both are annotated with that term. In solid red lines, the co-expression

between test genes annotated with that GO term and training genes that are not. Co-expression is measured as the PCC (b) and the Sw trained by MLC (c). The x -axis

shows the co-expression values and the y -axis the probability density estimated with Gaussian kernels. Note that the PCC and Sw have different ranges due to the weight

optimization. (d) Histogram of the number of samples that were selected for each GO term. The x-axis corresponds to the number of selected samples and the y -axis to

how many GO-term-specific similarity functions selected that many samples. The dashed line denotes the median number of non-zero weights.
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3.5 The weights learned by MLC are consistent with the

ontology structure and the existing annotations

We compared the sample weights learned by MLC between parent-child

GO term pairs in the following three cases: 1) the parent has only one

child term and both parent and child annotate exactly the same genes,

2) the parent has only one child term but annotates more genes than its

child, and 3) the parent has exactly two children, meaning that the parent

annotates the union of the genes of its children. In the first case, the weight

profiles for parent and child are identical (mean Pearson correlation of 1).

In the second case, the profiles are similar but not identical (mean Pearson

correlation of profiles 0.47). The difference in mean similarity between

the two groups is statistically significant (permutation p-value < 10−5).

Furthermore, the larger the difference in number of extra genes of the

parent term, the smaller the profile correlation (Spearman ρ = −0.53,

CI95% = [−0.65,−0.40]). The profile similarities are even smaller

in the third case (mean of 0.36) and significantly smaller than those of

case 2 (permutation p-value =0.0002). This is expected as in this case the

parent contains two distinct sets of genes that correspond to two different

biological processes. Again, we found a negative correlation between the

number of different genes and the profile similarity of pairs (Spearman

ρ = −0.47, CI95% = [−0.61,−0.31]).

To generalize this finding, we hierarchically clustered the GO terms

(complete linkage, Jaccard distance between the gene sets associated with

each GO term cutoff of 0.6). The resulting clusters are shown in Figure 3

along with the pairwise distances of the GO terms. 64 out of 176 clusters

contained at least three terms. For each of these 64 clusters, we randomly

sampled 10,000 equal-sized sets of GO terms and calculated the mean pair-

wise similarity in those sets to calculate a permutation p-value. For 62 out

of these 64 clusters we found that the pairwise weight-profile similarities

of their members (Figure S2, SM2) are significantly higher than random

with a False Discovery Rate of 0.05. Also, pairwise profile similarities are

positively correlated with the pairwise Resnik semantic similarity of GO

terms (Spearman ρ = 0.16, CI95% = [0.15, 0.17]). Based on these ob-

servations, we conclude that sample weights reflect the gene annotations

of each term.

3.6 Using all samples obscures co-expression

Next, we investigated the terms for which MLC performed sample selec-

tion, i.e. assigning a non-zero weight to at most 9% of the samples. We

looked at the PCC values for "p-p" and "p-n" gene pairs. Figure 4a shows

an example of the distributions of the PCC values for "p-p" and "p-n" pairs

for term "GO:1903047" (mitotic cell cycle process). Next, we calculated

GO terms
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 te

rm
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Figure 3. Pairwise Jaccard similarities (below the anti-diagonal) and weight profile similarities (Pearson correlations, above the anti-diagonal) of the tested GO terms. Both

the x and y axes show the GO terms ordered so that terms in the same cluster are adjacent. The grey-scale indicates the similarity, with dark being low and bright being

high similarity. The profile correlations have been scaled so that they are in the range [0, 1]. The squares highlight the clusters containing at least 3 terms, (cutting the

dendrogram at a Jaccard distance threshold of 0.6 when using complete linkage). Light blue boxes indicate the clusters that are not significantly enriched with terms with

similar weights and orange-colored clusters are significantly enriched after FDR correction.
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the PCC for all "p-p" and "p-n" pairs, but only considering the samples

that were selected by MLC (i.e. had a non-zero weight assigned), as well

as only considering the samples that were not selected by MLC (i.e. were

assigned a weight of zero), shown in figures 4b-c respectively. One can

notice that the two distributions ("p-p" and "p-n" PCC values) differ more

when taking the MLC selected samples in consideration (compare Figure

4a with Figure 4b). When only considering the samples that were not se-

lected, the two distributions differ in a similar way to when all samples are

being considered (compare Figure 4a with Figure 4c).

For every GO term for which MLC performs sample selection, we

calculated the mean PCC of all "p-p" and "p-n" pairs under the three sample

sets (all samples, not selected samples and selected samples). Figure 4d

shows the average of these values of all GO terms. We also performed 1,000

bootstraps, sampling GO terms with replacement to obtain 95% confidence

intervals for these averages. We observed that the difference in mean co-

expression between "p-p" and "p-n" in the samples not selected by MLC

is similar to the difference in all the samples. Although these differences

are statistically significant, they are also significantly smaller than the

difference in the MLC-selected samples (bootstrap p-value <0.001) (Figure

4d). This means that although the whole dataset does contain a few samples

that are informative for these GO terms, calculating the co-expression

over a larger set of samples can corrupt the "real" co-expression signal,

increasing the difficulty of discovering new genes that play a role in these

processes.

3.7 Combining Mutual Rank and MLC

The performances of MLC and MR are positively correlated (Spearman

ρ = 0.13, p-value =0.003). We also applied MR on the co-expression

similarities obtained with MLC, as MR is in principle not restricted to using

only the PCC. We found a small improvement compared to standalone

MLC, with a mean ROC AUC of 0.73. Also, the performances of MLC

and MLC + MR were highly correlated (Spearman ρ = 0.97, p-value ≪

10−20). We tried another approach to combine MLC and MR depending

on the performance of the methods. If the trainingROCAUCt of MR was

larger than 0.8 for a GO term, we used the predictions of MR for that term,

otherwise we used the predictions of MLC. This combined classifier had

an incrementally larger term-centric ROCAUC (0.73, Table 1 - Hybrid),

though statistically significant (p-value = 0.008, two-sample t-test). The

threshold of 0.8 training ROCAUC was chosen arbitrarily and was not

tuned to maximize performance. This naïve hybrid classifier shows that

there is potential to improve performance by combining MLC and MR in

more sophisticated ways.

3.8 CAFA Results

Lastly, we benchmarked MLC on 90 temporary A. thaliana targets from

the CAFA3 competition. The results are similar, but the small size of

the dataset does not allow us to draw any meaningful conclusions (Table

1). Both MR and MLC outperform PCC on average, but the confidence

intervals are much wider.

4 Discussion

4.1 MLC

We introduced MLC, a metric learning method for building automatic func-

tion predictors from a large collection of expression data. MLC calculates

gene co-expression by assigning GO-term-specific weights to each sam-

ple. The weights aim at maximizing the co-expression similarity between

genes that are annotated with that GO term. In general, training GO-term

specific classifiers has the disadvantage that individual classifiers fail to

see the "bigger picture" and cannot exploit the correlations between terms

imposed by the ontological structure. However, we showed that the weight

profiles learned by MLC do correlate with real biological knowledge such

as semantic similarity in the ontology graph and gene annotation similarity.

Due to the use of the L1 regularization, MLC can also select informative

samples by setting the weights of non-informative samples to zero, but

even for the terms where no selection is performed, MLC can weigh the

samples differently leading to an improvement in performance compared

to PCC. Moreover, we showed that the samples that are selected come

from biological conditions relevant to the GO term in question.

Our method is designed to work well with a Guilt-By-Association

approach like the k-NN classifier. This classifier assigns a GO term to a

test gene if a large enough fraction of its top co-expressed training genes

are annotated with that term. To achieve this, MLC tries to maximize

the difference between the average co-expression between gene pairs that

are both annotated with the GO term of interest ("p-p" pairs) and the

average co-expression between gene pairs only one of which is annotated

with the term ("p-n" pairs). During the training phase, our model ignores

gene pairs where neither gene has the term of interest ("n-n" pairs). Such

pairs could either include two genes that have common GO annotations,

but different from the GO term of interest or two genes with completely

different annotations. For the first case, one might be tempted to think

that the co-expression of such pairs should be high. However, if their

common function is different from the term of interest, it is likely that they

are correlated for another set of samples than the one related to the GO

term of interest, and, consequently, are thus uninformative for that GO

term. For the second type of "n-n" pairs, the ones that share no annotations

whatsoever, it might make sense to want their co-expression to be 0, as they

are expected to be dissimilar over any set of samples. However, we decided

to ignore these pairs as they do not add any term-specific information, so

it is not clear how they will affect the identification of samples specifically

relevant for a specific term. This might be problematic as for a negative test

gene (i.e. a gene that should not be annotated with the GO term of interest)

we cannot exclude that it can be as highly co-expressed to positive as to

negative genes, because we did not tune the co-expression values for "n-n"

pairs. For very frequent terms with a lot of positive training genes this

leads to a lot of false positive predictions, which might explain the poor

performance of MLC for frequent terms.

The similarity function that we used as a basis for MLC is the weighted

inner product (Sw). We chose this measure because its unweighted version

is identical to the unweighted PCC for centered and scaled data, but it

has a simpler form which eases the computational burden. The weighted

versions of the inner product and PCC are no longer identical, as the data

are no longer scaled after weighing the samples. This has as side-effect

that the similarity functions that MLC learns are not necessarily in the

range [−1, 1], like the PCC. In most cases, their range is much narrower

as can be seen in Figure 2b for GO:1903047. Also, because of the range

differences, it is not trivial to compare the similarity of two genes across

different GO terms. For the purpose of classification with the k-Nearest

Neighbors classifier, however, the range of the metric is insignificant (only

the relevant rankings are important to find the proper neighborhood).

Our model is more general and not restricted to only the inner product,

though. The main idea is to maximize the difference between the similarity

of p-p and p-n pairs. This is done by maximizing the t-statistic between the

two distributions of similarities. This means that MLC can also be applied

to any measure of similarity such as the weighted PCC, weighted Spearman

correlation, Euclidean distance etc.. Regardless of the chosen metric, the

two classes ("p-p" and "p-n") do not meet the assumptions for applying

Student’s t-test, as the similarity values are neither normally distributed

nor independent. This is not an issue, though, because we do not use the

t-statistic to compute a p-value (exploit that the t-statistic is distributed

according the Student’s t-distribution under these assumptions), but only

to quantify the class separability (Theodoridis and Koutroumbas, 2008).
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Equivalently, we could have used any other measure of class separability,

for instance the Fisher Discriminant Ratio (Fisher, 1936) or the Davies-

Bouldin index (Davies and Bouldin, 1979).

4.2 Comparison to related methods

Our work validates the observation that PCC is not the optimal co-

expression measure for AFP. The Mutual Rank (MR) attempts to obtain

more robust and noise-free co-expression values by converting the PCC

values into ranks and averaging the reciprocal rankings of two genes

(Obayashi et al., 2018). MLC takes a fundamentally different approach,

operating on the sample level rather than the correlation level. First and

foremost, as we mentioned above, it removes samples that do not help at

discriminating between genes that do or do not perform a certain function.

With that MLC gives insight into which samples are important for a given

GO term, which subsequently can be used to investigate the expression

patterns of the GO term related genes across these samples. Weighing

samples differently can also be viewed as a way of denoising. For example

it can compensate for the issue that an expression change of 1 unit has a

different meaning in different samples due to technical variations, such as

for example differences in sequencing depth or sample preparations. Our

results have shown that MLC is more beneficial than the MR approach for

the more specific - and arguably more useful - GO terms.

A similar method to MLC is GAAWGEFA, which learns a weight for

each sample in a dataset adnd then applies a weighted Pearson correlation.

There are two fundamental differences between the two methods. Firstly,

GAAWGEFA aims at good protein-centric performance, i.e. it tries to do

well on average for all genes and therefore learns only one set of sample

weights. On the other hand, MLC aims at maximizing the performance

for each GO term individually. Secondly, GAAWGEFA learns the weights

using a genetic algorithm. For MLC, we used the inner product, which

allowed us to have a simple optimization problem that can be solved very

efficiently. Even though MLC has to be run for each term separately, it

is still 67% faster than GAAWGEFA and, unlike GAAWGEFA, runs for

different GO terms can be carried out in parallel to achieve even greater

speed-up. Next to those differences, MLC makes more accurate predic-

tions for rarer terms and provides interpretability of the predictions by

examining the term-specific sample weight distributions. Furthermore, in

the context of selecting expression samples a related technique is biclus-

tering. Biclustering is an umbrella term for a diverse set of algorithms that

simultaneously select subsets of genes and samples, so that the genes in

the same subset (bicluster) have similar expression to each other within

the samples of that bicluster. It is typically expected that each bicluster

reflects a biological process and that makes the rationale of MLC appear

similar to a biclustering approach. Although both approaches make use of

sample selection and aim at discovering genes involved in the same bio-

logical processes, they are fundamentally different in the sense that MLC

is supervised and biclustering unsupervised. Biclustering does not make

use of GO annotations, but only of the expression matrix. Often, observing

enrichment of certain GO terms or KEGG pathways in the genes of biclus-

ters is one of the ways to validate a biclustering result (Santamaría et al.,

2007). On the other hand, MLC starts with a set of genes whose GO anno-

tations are known (or at least partly known) and tries to use the expression

matrix in order to identify which of the remaining genes participate in a

particular biological process by defining a co-expression measure specific

to that process.

4.3 Possible Extensions

MLC learns the sample weights automatically from the available data and

does not rely on information about the samples’ biological condition or

tissue. As curation efforts increase and the amount of well-annotated data

in public databases grows larger with time, in the future it might be useful

to extend MLC to incorporate such knowledge. A possible way to do that
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Figure 4. (a-c): Distributions of Pearson correlations for pairs of training genes that are both annotated with term GO:1903047 ("p-p", blue dashed), and for pairs of training

genes of which only one is annotated with that term ("p-n", red solid). The correlations are calculated using all samples (a), the samples that were selected by MLC (b)

and the samples that were not selected (c). (d): The means of the distributions of (a-c), over all GO terms where less than 10% of the samples where used to calculate

the co-expression (more than 90% zero weights). Values for "p-p" pairs are colored blue and for "p-n" pairs red. The error bars show the 95% confidence intervals for the

means, calculated with 1,000 bootstraps. Above the bars the bootstrap p-values are shown for the pairwise comparisons.

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted May 27, 2019. ; https://doi.org/10.1101/651042doi: bioRxiv preprint 

https://doi.org/10.1101/651042


“output” — 2019/5/26 — page 9 — #9

MLC 9

would be a group LASSO approach (Yuan and Lin, 2006). Group LASSO

uses predefined groups of samples and forces the weights of all samples in

a group to be equal. Each such group could contain technical and biological

replicates, samples from the same tissue or samples from similar knockout

experiments and perturbations.

MLC does not account for the possibility that genes that show exactly

opposite expression patterns (i.e. genes with large negative correlation)

might also be involved in the same biological process. Future work should

show whether this is useful for AFP. Finally, in this work, we applied MLC

on finding candidate genes for GO terms from the BPO. However, it can be

useful for any gene annotation problem that can be solved with expression

data, such as finding members of KEGG pathways or genes that are likely

to influence a given phenotypic trait. As MLC is computationally efficient

it can easily be applied to a large number of different terms/phenotypes,

offering state-of-the-art performance with the added benefit of allowing

users to understand which parts of the dataset influence the predictions.
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