On the impact of biomass composition in constraint-based flux analysis

Meiyappan Lakshmanan¹, Sichang Long¹, Kok Siong Ang¹, Nathan Lewis²,³, Dong-Yup Lee¹,⁴,*

¹Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros 138668, Singapore
²Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
³Novo Nordisk Foundation Center for Biosustainability at the University of California San Diego, La Jolla, CA 92093, USA
⁴School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea

Correspondence to: D.-Y. Lee (e-mail: dongyuplee@skku.edu)
The biomass equation is a critical component in genome-scale metabolic models (GEMs): It is one of most widely used objective functions within constraint-based flux analysis formulation, describing cellular driving force under the growth condition. The equation accounts for the quantities of all known biomass precursors that are required for cell growth. Most often than not, published GEMs have adopted relevant information from other species to derive the biomass equation when any of the macromolecular composition is unavailable. Thus, its validity is still questionable. Here, we investigated the qualitative and quantitative aspects of biomass equations from GEMs of eight different yeast species. Expectedly, most yeast GEMs borrowed macromolecular compositions from the model yeast, *Saccharomyces cerevisiae*. We further confirmed that the biomass compositions could be markedly different even between phylogenetically closer species and none of the high throughput omics data such as genome, transcriptome and proteome provided a good estimate of relative amino acid abundances. Upon varying the stoichiometric coefficients of biomass components, subsequent flux simulations demonstrated how predicted *in silico* growth rates change with the carbon substrates used. Furthermore, the internal fluxes through individual reactions are highly sensitive to all components in the biomass equation. Overall, the current analysis clearly highlight that biomass equation need to be carefully drafted from relevant experiments, and the *in silico* simulation results should be appropriately interpreted to avoid any inaccuracies.
1 Introduction

Constraint-based modelling methods, such as flux balance analysis (FBA), are popular approaches for analyzing cellular metabolic behaviors in silico (Bordbar et al., 2014). Unlike the kinetic modelling, it does not involve complex kinetic parameters and just requires information on metabolic reaction stoichiometry and mass balances around the metabolites under pseudo-steady state assumption (Lewis et al., 2012). Such simplicity of FBA enabled the development and use of hundreds of genome-scale in silico models for several species across all three domains of life for the study of microbial evolution, metabolic engineering, drug discovery, context-specific analysis of high throughput omics data and for the investigation of cell-cell interactions (Bordbar et al., 2014).

FBA is an optimization-based approach where a particular objective function is maximized or minimized given a series of constraints such as mass balance, thermodynamic, and enzyme capacity for determining the underlying steady-state fluxes. Among objective functions that have been used to interrogate the metabolic states and cellular behaviors, the maximization of biomass production has been most commonly used in FBA simulations with a principal hypothesis that microbial cells typically strive to grow as fast as possible under exponential growth conditions (Feist and Palsson, 2011; Schuetz et al., 2007). Therefore, almost all reconstructed GEMs include an artificial reaction that accounts for the stoichiometric proportions of various metabolites that make up the macromolecular biomass components, e.g. protein, DNA, RNA and lipid, of the cell. Generally, this biomass equation is derived based on their compositional measurements for the target organism whose GEM being reconstructed. However, since it is not easy to obtain such measurements, researchers often borrowed relevant data from the closest organism or made appropriate estimations from high-throughput data while drafting the biomass equation. However, the formulation of a biomass reaction needs utmost care, since ignoring/missing some of the required metabolites and/or using a wrong
stoichiometric coefficient for certain metabolites may have significant impacts on the model predictions.

Indeed, the accuracy of the biomass equation substantially influences most FBA results as reported in the previous studies; they have examined the global applicability of the biomass equation at various growth rates and substrates (Pramanik and Keasling, 1998), sensitivity of various components in growth predictions (Dikicioglu et al., 2015; Feist et al., 2007; Koduru et al., 2017), variations in gene essentiality predictions (Xavier et al., 2017) and the accuracy of biomass compositions in terms of elemental balances (Chan et al., 2017). Nevertheless, several questions surrounding the biomass equation still remain unclear. For example, do phylogenetically closer organisms have similar macromolecular compositions? How reliable is the estimation of biomass composition from omics datasets? Which particular components influence FBA results the most? Do the effects of biomass coefficients vary across environmental conditions? To answer these questions, here, we first examined the source of biomass compositions used in genome-scale models of eight different yeast species and the variations among them. Then, we analysed the quantitative variations between the macromolecular compositions obtained from omics datasets and the experimentally measured ones. We also investigated the impact of variations in the stoichiometric coefficients of the biomass equation on various flux analysis results such as predicted in silico growth rates, essential reactions and flux spans of all the reactions in the GEM across various environmental conditions, thereby identifying key biomass components that have the greatest impact on the FBA results.
2 Results

2.1 Biomass composition can neither be approximated using macromolecular composition from other species nor from the “-omics” data of same species

We first compared the biomass equations from genome-scale models of eight phylogenetically different yeast species: *Candida glabrata* (Xu et al., 2013), *Candida tropicalis* (Mishra et al., 2016), *Kluyveromyces lactis* (Dias et al., 2014), *Pichia pastoris* (Chung et al., 2010), *Saccharomyces cerevisiae* (Mo et al., 2009), *Schizosaccharomyces pombe* (Sohn et al., 2012), *Scheffersomyces stipitis* (Balagurunathan et al., 2012) and *Yarrowia lipolytica* (Kavšcek et al., 2015) (see Supplementary Methods; Figure 1A). Each biomass equation contains metabolites that can be classified into any of the six major categories: carbohydrate, protein, RNA, DNA, lipid and cofactors. A total of 68 metabolites excluding cofactors are involved, and 42% of them are present in all biomass equations (Supplementary Table 1). These compounds include the 20 amino acids and 8 nucleotide compounds, representing the protein and nucleotides, respectively. On the other hand, phospholipid and carbohydrate compounds varied the most across GEMs. We also examined the source of biomass composition used in each GEM to assess their quality. Several components were borrowed from one model to another with *S. cerevisiae* being the common ancestor (Figure 1B). Inevitably, such heavy cross-referencing of macromolecular components led to overall biomass composition with a very similar level of resolution (Figure 1C). Noticeably, except the *S. stipitis*, all other GEMs derive at least a part of their composition from *S. cerevisiae* due to data scarcity. Note that it is a common practice to derive biomass compositions from phylogenetically closer organisms when relevant data is not available. Thus, we compared the variations among the various biomass components, especially amino acids and fatty acids, across yeast species and checked whether this assumption is valid. Surprisingly, we found significant variation in the concentrations of both amino acids (% w/w) and fatty acids (% mol/mol) even between the
phylogenetically closer species (Figure 1D and 1E). For example, concentrations of lysine, methionine, glycine and arginine (as measured by % w/w) were markedly different between C. tropicalis and S. stipitis, despite clustering together in the phylogenetic tree. Such observations clearly raise the question over the adaptation of amino acid concentrations from one species to another as it is done in Y. lipolytica, where the values were taken from S. cerevisiae.

Apart from experimentally determining the individual monomer composition in proteins, it was also suggested that this information could also be estimated from genome sequence based on the codon usage as it is calculated in the K. lactis GEM. We also checked whether this assumption is acceptable by comparing the experimentally measured amino acid compositions of S. cerevisiae (Bruinenberg et al., 1983) and P. pastoris (Carnicer et al., 2009) with that of the compositions estimated from their genome (Cherry et al., 2014; De Schutter et al., 2009), transcriptome (Adhikari and Cullen, 2014; Wang et al., 2013) and proteome (Ghaemmaghami et al., 2003; Renuse et al., 2014). Not unexpectedly, none of the high-throughput data provided a good estimate. Instead, comparable values can be obtained when the highly expressed transcripts and proteins are used as input to calculate the amino acid relative abundances (Figure 2A and 2B).

2.2 Internal fluxes are highly sensitive to biomass composition compared to growth rate and reaction essentiality predictions

Next, we examined the sensitivity of predicted in silico growth rates upon variations in the stoichiometric coefficients of the biomass equation across various environments, thereby identifying key biomass components with the greatest influence on the FBA results (see Supplementary Methods). While the growth rate predictions are most sensitive to the carbohydrate and amino acid compositions due to their large stoichiometric coefficients in biomass equation, typically, the deviation is slightly magnified in reduced substrates such as acetate and glycerol than that of glucose, and also higher under aerobic condition than
anaerobic (Figure 3). Collectively, these results indicate that the effect of any error in biomass
equation could be more significant across different environmental conditions. We also tested
the importance of individual component in biomass equation by analyzing the change in
essential reactions across diverse environments. These analyses results showed that while there
is a notable change in number of essential reactions when a biomass component is omitted as
reported earlier (Xavier et al., 2017), the number remained almost same across all
environments, thus emphasizing that more or less same number of essential reactions are
required to synthesize a particular component (Supplementary Figure S1).

We then explored the effect of macromolecular compositions on internal flux
distribution by examining the flux spans of all the reactions upon variations in the
stoichiometric coefficients of biomass equation. Unlike the variations in growth rates which
was mostly influenced by protein and carbohydrate, the flux spans were significantly changed
by all the components of biomass equation in S. cerevisiae (Figure 4). Similar observations
were made in all other organisms investigated as well (Supplementary Figures S2-S7). Such
variations in the allowable fluxes across all reactions clearly indicate that the biomass
composition is most critical for predicting accurate internal flux distributions when we apply
parsimonious FBA (Lewis et al., 2010), flux variability analysis (Mahadevan and Schilling,
2003) and Monte Carlo flux sampling (Schellenberger and Palsson, 2009).

Finally, to examine whether the changes in biomass components are dominant over the
variation in metabolic network content in FBA, we performed all the above mentioned analyses
in two different versions of S. cerevisiae GEMs, iMM904 (Mo et al., 2009) and iND705
(Duarte et al., 2004), with same biomass composition. The resultant variations in the metabolic
network content have much more effect than the changes in biomass compositions (see
Supplementary Figure S8). Most importantly, differences in network contents also affected
the identification of essential reactions under various environments. Such observations are
possibly due to the incomplete nature of previous versions of the models, which could be further refined and updated in subsequent ones. Hence, accurate biomass composition can serve as a good template for better model-refinement during the reconstruction process.

3 Conclusions

Overall, this study highlighted that changes in biomass composition have a greater influence on internal flux distributions than on in silico growth rate and reaction essentiality predictions. Although the predicted growth rates are most sensitive to amino acid and carbohydrate components owing to their large stoichiometric coefficients, the internal flux distributions are significantly influenced by all the components including small molecule cofactors. Moreover, the biomass equation is arguably the best cellular objective describing the phenomenon of natural selection. For example, microbes may gain or lose metabolic reactions across diverse environments to improve their fitness (Nam et al., 2011). Therefore, it is highly recommended for new and existing GEMs to carefully draft and revise the biomass equation, respectively, through relevant experiments and standardized computational platforms (Lachance et al., 2018) in an unbiased manner as the macromolecular compositions could be markedly different even between phylogenetically closer organisms and the relative abundances obtained from high-throughput omics data are generally poor.

Acknowledgements

This work was supported by the Biomedical Research Council of A*STAR (Agency for Science, Technology and Research), Singapore, the Next-Generation BioGreen 21 Program (SSAC, No. PJ01334605), Rural Development Administra-tion, Republic of Korea, and NIGMS (R35 GM119850).
Conflict of interest

The authors declare that there are no conflicts of interest.

References

Koduru L, Kim Y, Bang J, Lakshmanan M, Han NS, Lee D-Y. 2017. Genome-scale modeling and transcriptome analysis of *Leuconostoc mesenteroides* unravel the redox

FIGURES

Figure 1. Global assessment of biomass equations from various yeast GEMs. (A) Phylogenetic tree of the yeasts whose GEMs are examined in this study, (B) Borrowing of biomass composition between yeast GEMs, (C) overall biomass composition accounted in GEMs, (D) and (E) relative amino acid and fatty acid compositions of yeast GEMs, respectively.
Figure 2. Comparison of amino acid composition from experiments and omics data. Relative differences in amino acid compositions obtained from experiments and estimated from various high-throughput data in (A) *S. cerevisiae* and (B) *P. pastoris*, respectively.
Figure 3. Impact of varying individual biomass components stoichiometric coefficients in predicted *in silico* growth rates in various yeast GEMs. The fractional change in predicted *in silico* growth rates is shown upon varying the stoichiometric coefficient in the range of 25% to 175% in steps of 25%. For visualization purposes, each biomass component is grouped into any of the following six categories: carbohydrate, protein, RNA, DNA, lipid and cofactors. Note that none of the yeast species grow under anaerobic conditions with acetate as carbon source. Similarly, *S. stipitis* and *Y. lipolytica* does not grow in anaerobic conditions. *S. pombe* cannot grow in glycerol and acetate.
Figure 4. Effect of varying individual biomass components stoichiometric coefficients in internal flux distributions. Flux spans of all reactions in the GEM were first computed by FVA using *S. cerevisiae* iMM904 GEM in 5 environmental conditions: (A) glucose – aerobic, (B) glucose – anaerobic, (C) glycerol – aerobic, (D) glycerol – anaerobic and (E) acetate - aerobic. For visualization purposes, principal component analysis was performed with resulting flux spans. Each biomass component is grouped into any of the following six categories: carbohydrate, protein, RNA, DNA, lipid and cofactors. The flux span of wild type (WT) without any change in biomass composition in the plot is shown with an arrow. Note that *S. cerevisiae* cannot grow under anaerobic conditions with acetate as carbon source.