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Abstract

Background: Third-generation single molecule sequencing technologies can sequence long reads, which is

advancing the frontiers of genomics research. However, their high error rates prohibit accurate and efficient

downstream analysis. This difficulty has motivated the development of many long read error correction tools,

which tackle this problem through sampling redundancy and/or leveraging accurate short reads of the same

biological samples. Existing studies to asses these tools use simulated data sets, and are not sufficiently

comprehensive in the range of software covered or diversity of evaluation measures used.

Results: In this paper, we present a categorization and review of long read error correction methods, and

provide a comprehensive evaluation of the corresponding long read error correction tools. Leveraging recent

real sequencing data, we establish benchmark data sets and set up evaluation criteria for a comparative

assessment which includes quality of error correction as well as run-time and memory usage. We study how

trimming and long read sequencing depth affect error correction in terms of length distribution and genome

coverage post-correction, and the impact of error correction performance on an important application of long

reads, genome assembly. We provide guidelines for practitioners for choosing among the available error

correction tools and identify directions for future research.

Conclusions: Despite the high error rate of long reads, the state-of-the-art correction tools can achieve high

correction quality. When short reads are available, the best hybrid methods outperform non-hybrid methods in

terms of correction quality and computing resource usage. When choosing tools for use, practitioners are

suggested to be careful with a few correction tools that discard reads, and check the effect of error correction

tools on downstream analysis. Our evaluation code is available as open-source at

https://github.com/haowenz/LRECE.
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Background

Third-generation sequencing technologies produce long

reads with average length of 10 Kbp or more that are

orders of magnitudes longer than the short reads avail-
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able through second-generation sequencing technolo-

gies (typically a few hundred bp). In fact, the longest

read length reported to date is > 1 million bp [1].

Longer lengths are attractive because they enable dis-

ambiguation of repetitive regions in a genome or a set

of genomes. The impact of this valuable long-range in-

formation has already been demonstrated for de novo

genome assembly [2, 3, 4], novel variant detection [5, 6],

RNA-seq analysis [7], metagenomics [8], and epigenet-

ics [9, 10].

The benefit of longer read lengths, however, comes

with the major challenge of handling high error rates.

Currently, there are two widely used third-generation

single molecule sequencing platforms – Pacific Bio-

sciences (PacBio) and Oxford Nanopore Technologies

(ONT). Both sequencing platforms are similar in terms

of their high error rates (ranging from 10-20%) with

most errors occurring due to insertions or deletions (in-

dels); however the error distribution varies [4, 11, 12].

Pacbio sequencing errors appear to be randomly dis-

tributed over the sequence [13]. For ONT on the other

hand, the error profile has been reported to be biased.

For example, A to T and T to A substitutions are

less frequent than other substitutions, and indels tend

to occur in homopolymer regions [12, 14]. These er-

ror characteristics pose a challenge for long read data

analyses, particularly for detecting correct read over-

laps during genome assembly and variants at single

base pair resolution, thus motivating the development

of error correction methods.

Error correction algorithms are designed to identify

and fix or remove sequencing errors, thereby benefiting

resequencing or de novo sequencing analysis. In addi-

tion, the algorithms should be computationally effi-

cient to handle increasing volumes of sequencing data,

particularly in the case of large, complex genomes. Nu-

merous error correction methodologies and software

have been developed for short reads; we refer read-

ers to [15] and [16] for a thorough review. Given the

distinct characteristics of long reads, i.e., significantly

higher error rates and lengths, specialized algorithms

are needed to correct them. Till date, several error

correction tools for long reads have been developed

including PacBioToCA [17], LSC [18], ECTools [19],

LoRDEC [20], proovread [21], NaS [22], Nanocorr [23],

Jabba [24], CoLoRMap [25], LoRMA [26], HALC [27],

FLAS [28], FMLRC [29], HG-CoLoR [30] and Hercules

[31].

In addition, error correction modules have been

developed as part of long read de novo assembly

pipelines, such as Canu [32] and HGAP [33]. In the

assembly pipeline, correction helps by increasing align-

ment identities of overlapping reads, which facilitates

overlap detection and improves assembly. Many long

read error correction tools require and make use of

highly accurate short reads to correct long reads

(accordingly referred to as hybrid methods). Oth-

ers, referred to as non-hybrid methods, perform self-

correction of long reads using overlap information

among them.

A few review studies have showcased comparisons

among rapidly evolving error correction algorithms to

assess state-of-the-art. Laehnemann et al. [34] provide

an introduction to error rates/profiles and a method-

ology overview of a few correction tools for various

short and long read sequencing platforms, although

no benchmark is included. A review and benchmark

for hybrid methods is also available [35]. However, the

study only used simulated reads and focused more on

speed rather than correction accuracy. Besides, it does

not include non-hybrid methods in the assessment.

More recently, LRCstats [36] was developed for evalu-

ation of long read error correction software; however,

it is restricted to benchmarking with simulated reads.

While benchmarking with simulated reads is useful,

it fails to convey performance in real-world scenarios.
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Besides the base-level errors (i.e., indels and substi-

tutions), real sequencing data sets also contain larger

structural errors, e.g., chimeras [37]. However, state-

of-the-art simulators (e.g., SimLoRD [38]) only gener-

ate reads with base-level errors rather than structural

errors. Furthermore, Miclotte et al. [24] consistently

observed worse performance when using real reads in-

stead of simulated reads, suggesting that simulation

may fail to match the characteristics of actual error

distribution. Therefore, benchmarking with real data

sets is important.

In this study, we establish benchmark data sets,

present an evaluation methodology suitable to long

reads, and carry out comprehensive evaluation of the

quality and computational resource requirements of

state-of-the-art long read correction software. We also

study the effect of trimming and different sequencing

depths on correction quality. To understand impact of

error correction on downstream analysis, we perform

assembly using corrected reads generated by various

tools and assess quality of the resulting assemblies.

Overview of long read error correction

methods

Hybrid methods

Hybrid methods take advantage of high accuracy of

short reads (error rates often < 1%) for correcting

errors in long reads. An obvious requirement is that

the same biological sample must be sequenced using

both short read and long read technologies. Based

on how these methods make use of short reads, we

further divide them into two categories: alignment-

based and assembly-based. The first category includes

Hercules, CoLoRMap, Nanocorr, Nas, proovread, LSC

and PacBioToCA, whereas HG-CoLoR, HALC, Jabba,

LoRDEC, and ECTools are in the latter. The ideas un-

derlying the methods are summarized below.

Short-read-alignment-based methods

As a first step, these methods align short reads to

long reads using a variety of aligners, e.g. BLAST [39],

Novoalign (http://www.novocraft.com/products/

novoalign/). As long reads are usually error-prone,

some alignments can be missed or biased. Thus, most

of the tools in this category utilize various approaches

to increase accuracy of alignments. Drawing upon the

alignments, these methods use distinct approaches to

generate corrected reads.

PacBioToCA: Consensus sequences for long reads

are generated by multiple sequence alignment of short

reads using AMOS consensus module [40].

LSC: Short reads and long reads are compressed us-

ing homopolymer compression (HC) transformation

prior to alignment. Then error correction is performed

at HC points, mismatches and indels by temporarily

decompressing the aligned short reads and then gen-

erating consensus sequences. Finally, the corrected se-

quences are decompressed.

proovread: Similar to PacBioToCA and LSC, short

reads are mapped to long reads, and the resulting

alignments are used to call consensus. But its align-

ment parameters are carefully selected and adapted

to the PacBio sequencing error profile. To further im-

prove correction, the phred quality score and Shan-

non entropy value are calculated at each nucleotide for

quality control and chimera detection, respectively. To

reduce run time, an iterative correction strategy is em-

ployed. Three pre-correction steps are performed us-

ing increasing subsamples of short reads. In each step,

the long read regions are masked to reduce alignment

search space once they are corrected and covered by

a sufficient number of short read alignments. In the

final step, all short reads are mapped to the unmasked

regions to make corrections.
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NaS: Like the other tools in this category, it first

aligns short reads with long reads. However, only the

stringently aligned short reads are found and kept as

seed-reads. Then instead of calling consensus, similar

short reads are retrieved with these seed-reads. Micro-

assemblies of these short reads are performed to gener-

ate contigs, which are regarded as corrected reads. In

other words, the long reads are only used as template

to select seed-reads.

Nanocorr: It follows the same general approach as

PacBioToCA and LSC, by aligning short reads to long

reads and then calling consensus. But before the con-

sensus step, a dynamic programming algorithm is uti-

lized to select an optimal set of short read alignments

that span each long read.

CoLoRMap: CoLoRMap does not directly call con-

sensus. Instead, for each long read region, it runs a

shortest path algorithm to construct a sequence of

overlapping short reads aligned to that region with

minimum edit distance. Subsequently, the region is

corrected by the constructed sequence. In addition, for

each uncovered region (called gap) on long reads, any

unmapped reads with corresponding mapped mates

are retrieved and assembled locally to fill the gap.

Hercules: It first aligns short reads to long reads.

Then unlike other tools, Hercules uses a machine

learning-based algorithm. It creates a profile Hidden

Markov Model (pHMM) template for each long read

and then learns posterior transition and emission prob-

abilities. Finally, the pHMM is decoded to get the cor-

rected reads.

Short-read-assembly-based methods

These methods first perform assembly with short

reads, e.g., generate contigs using an existent assem-

bler, or only build the de Bruijn graph (DBG) based

on them. Then the long reads are aligned to the as-

semblies, i.e., contigs/unitigs or a path in the DBG,

and corrected. Algorithms for different tools in this

category are summarized below.

ECTools: First, unitigs are generated from short

reads using any available assembler and aligned to long

reads. Afterwards, the alignments are filtered to select

a set of unitigs which provide the best cover for each

long read. Finally, differences in bases between each

long read and its corresponding unitigs are identified

and corrected.

LoRDEC: Unlike ECTools which generates assem-

blies, LoRDEC only builds a DBG of short reads. Sub-

sequently, it traverses paths in the DBG to correct er-

roneous regions within each long read. The regions are

replaced by the respective optimal paths which are re-

garded as the corrected sequence.

Jabba: It adopts a similar strategy as in LoRDEC,

and builds a DBG of short reads followed by aligning

long reads to the graph to correct them. The improve-

ment is that Jabba employs a seed-and-extend strat-

egy using maximal exact matches (MEMs) as seeds to

accelerate the alignment.

HALC: Similar to ECTools, short reads are used to

generate contigs as the first step. Unlike other meth-

ods which try to avoid ambiguous alignments [17, 41],

HALC aligns long reads to the contigs with a relatively

low identity requirement, thus allowing long reads to

align with their similar repeats which might not be

their true genomic origin. Then long reads and con-

tigs are split according to the alignments so that every

aligned region on read has its corresponding aligned

contig region. A contig graph is constructed with the

aligned contig regions as vertices. A weighted edge

is added between two vertices if there are adjacent

aligned long read regions supporting it. The more re-

gions support the edge, the lower is the weight as-
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signed to it. Each long read is corrected by the path

with minimum total weight in the graph. Furthermore,

the corrected long read regions are refined by running

LoRDEC, if they are aligned to similar repeats.

FMLRC: This software uses a DBG-based correc-

tion strategy similar to LoRDEC. However, the key

difference in the algorithm is that it makes two passes

of correction using DBGs with different k-mer sizes.

The first pass does the majority of correction, while the

second pass with a longer k-mer size corrects repetitive

regions in the long reads. Note that a straightforward

implementation of a DBG does not support dynamic

adjustment of k-mer size. As a result, FMLRC uses

FM-index to implicitly represent DBGs of arbitrary

length k-mers.

HG-CoLoR: Similar to FMLRC, it avoids using a

fixed k-mer size for the de Bruijn graph. Accordingly,

it relies on a variable-order de Bruijn graph structure

[42]. It also uses a seed-and-extend approach to align

long reads to the graph. However, the seeds are found

by aligning short reads to long reads rather than di-

rectly selecting them from the long reads.

Non-hybrid methods

These methods perform self-correction with long reads

alone. They all contain a step to generate consensus

sequences using overlap information. However, the re-

spective methods vary in how they find the overlaps

and generate consensus sequences. The details are as

follows.

FLAS: It takes all-to-all long read overlaps com-

puted using MECAT [43] as input, and clusters the

reads that are aligned with each other. In case of

ambiguous instances, i.e., the clusters that share the

same reads, FLAS evaluates the overlaps by comput-

ing alignments using sensitive alignment parameters

either to augment the clusters or discard the incor-

rect overlaps. The refined alignments are then used to

correct the reads. To achieve better accuracy, it also

corrects errors in the uncorrected regions of the long

reads. Accordingly, it constructs a string graph using

the corrected regions of long reads, and aligns the un-

corrected ones to the graph for further correction.

LoRMA: By gradually increasing the k-mer size,

LoRMA iteratively constructs DBGs using k-mers

from long reads exceeding a specified frequency thresh-

old, and runs LoRDEC to correct errors based on the

respective DBGs. After that, a set of reads similar to

each read termed friends are selected using the final

DBG, which should be more accurate due to several

rounds of corrections. Then, each read is corrected by

the consensus sequence generated by its friends.

Canu error correction module: As a first step

during the correction process, Canu computes all-

versus-all overlap information among the reads using

a modified version of MHAP [44]. It uses a filtering

mechanism during the correction to favor true over-

laps over the false ones that occur due to repetitive

segments in genomes. The filtering heuristic ensures

that each read contributes to correction of no more

than D other reads, where D is the expected sequenc-

ing depth. Finally, a consensus sequence is generated

for each read using its best set of overlaps by leveraging

“falcon sense” consensus module [3].

Methods

We selected data sets from recent publicly accessible

genome sequencing experiments. For benchmarking

the different programs, our experiments used genome

sequences from multiple species and different sequenc-

ing platforms with recent chemistry, e.g., R9 for ONT

or P6-C4/P5-C3 for PacBio. We describe our evalua-

tion criteria and use it for a comprehensive assessment

of the correction methods/software.
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Benchmark data sets

Our benchmark includes resequencing data from three

reference genomes – Escherichia coli K-12 MG1655

(E. coli), Saccharomyces cerevisiae S288C (yeast), and

Drosophila melanogaster ISO1 (fruit fly). The biggest

hurdle when benchmarking with real data is the ab-

sence of ground truth (i.e., perfectly corrected reads).

However, the availability of reference genomes of these

strains enables us to evaluate the output of correc-

tion software in a reliable manner using the refer-

ence. Essentially, differences in a corrected read with

respect to the reference imply uncorrected errors. A

summary of the selected read data sets is listed in Ta-

ble 1. We leveraged publicly available high coverage

read data sets of the selected genomes available from

all three platforms – Illumina (for short reads), Pacbio,

and ONT. In addition, some of these samples were

sequenced using multiple protocols, yielding reads of

varying quality. This enabled us to do a thorough com-

parison among error correction software across various

error rates and error profiles.

To conduct performance evaluation under differ-

ent sequencing depths, yeast sequencing reads (D2-

P and D2-O) were subsampled randomly using Seqtk

(https://github.com/lh3/seqtk). Subsamples with

average depth of 10x, 20x and 30x were generated for

ONT reads. In addition, 10x, 20x, 30x, 60x and 90x

PacBio read subsamples were generated from D2-P.

Details of these subsamples are available in Additional

file 1 Table S1.

Evaluation methodology

Our evaluation method takes corrected reads and a

reference genome as input. The corrected reads were

filtered using a user defined length (default 500).

Reads which were too short to include in downstream

analysis were dropped during the filtration. Filtered

reads were aligned to the reference genome using Min-

imap2 [45] (using “-ax map-pb” and “-ax map-ont”

parameters for PacBio and ONT reads respectively).

The primary alignment for each read was used in the

evaluation.

In an ideal scenario, an error correction software

should take each erroneous long read and produce the

error-free version of it, preserving each read and its full

length. To assess how close to the ideal one can get,

measures such as error rate post-correction or percent-

age of errors removed (termed gain; see [15]) can be

utilized. However, long read error correction programs

do not operate in this fashion. They may completely

discard some reads or choose to split an input read

into multiple reads when the high error rate cannot be

reckoned with. In addition, short read assembly based

error correction programs use long read alignments to

de Bruijn graphs, and produce sequences correspond-

ing to the aligned de Bruijn graph paths as output

reads instead. Though original reads may not be fully

preserved, all that matters for effective use of error

correction software is that its output consists of suf-

ficient number of high quality long reads that reflect

adequate read lengths, sequencing depth, and coverage

of the genome. Accordingly, our evaluation methodol-

ogy reflects such assessment.

We measure the number of reads and total bases out-

put by each error correction software, along with the

number of aligned reads and total number of aligned

bases extracted from alignment statistics, because they

together reveal the effectiveness of correction. Besides,

statistics which convey read length distribution such

as maximum length and N50 were calculated to as-

sess effect of the correction process on read lengths.

Fraction of the genome covered by output reads is also

reported to assess if there are regions of the genome

that lost coverage or suffered significant deterioration

in coverage depth post-correction. Any significant drop

on these metrics can be a potential sign of information

loss during the correction. Finally, alignment identity
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Table 1 Details of the benchmark data sets

Data

set

Sequencing

specification

Sequencing

NCBI

accession

Sequencing

deptha

Read

length

(bp)b

Number of

reads

Reference

genome

Genome

length

(Mbp)

Reference

NCBI

accession

D1-I Illumina Miseq -c 373x 2×151 2×5 729 470
E. coli

K-12 MG1655
NC 000913.3D1-P Pacbio P6C4 -d 161x 13 982 87 217 4.6

D1-O MinION R9 1D -e 319x 14 891 164 472

D2-I Illumina Miseq ERR1938683 81x 2×150 2×3 318 467
S. cerevisiae

S288c
GCF 000146045.2D2-P Pacbio P6C4 PRJEB7245 120x 8656 239 408 12.2

D2-O MinION R9 2D ERP016443 59x 7001 119 955

D3-I Illumina Nextseq SRX3676782 44x 2×151 2×20 619 401
D. melanogaster

ISO1
GCF 000001215.4D3-P Pacbio P5C3 SRX499318 204x 15 132 6 864 972 143.7

D3-O MinION R9.5 1D SRX3676783 32x 11 934 663 784

aSequencing depth is estimated using the sequencing data and reference genome size
bN50 is reported for PacBio or ONT reads, since their lengths vary
cDownloaded from Illumina at ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_

MG1655_110721_PF_R1.fastq.gz and ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_

Ecoli_MG1655_110721_PF_R2.fastq.gz

dDownloaded from PacBio at https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly

eDownloaded from Loman Labs at https://s3.climb.ac.uk/nanopore/E_coli_K12_1D_R9.2_SpotON_2.pass.fasta

is calculated by the number of total matched bases

divided by the total alignment length. Tools which

achieve maximum alignment identity with minimum

loss of information are desirable.

As part of this study, we provide an evaluation tool

to automatically generate the evaluation statistics of

corrected reads mentioned above (https://github.

com/haowenz/LRECE). We include a wrapper script

which can run state-of-the-art error correction soft-

ware on a grid engine given any input data from user.

Using the script, two types of evaluations can be con-

ducted; users can either evaluate the performance on a

list of tools with their own data to find a suitable tool

for their studies, or they can run any correction tool

with the benchmark data and compare it with other

state-of-the-art tools.

Results and discussion

Experimental setup

All tests were run on the Swarm cluster located at

Georgia Institute of Technology. Each compute node

in the cluster has dual Intel Xeon CPU E5-2680 v4

(2.40 GHz) processors equipped with a total of 28 cores

and 256GB main memory.

Evaluated software

We evaluated 14 long read error correction programs

in this study: Hercules, HG-CoLoR, FMLRC, HALC,

CoLoRMap, Jabba, Nanocorr, proovread, LoRDEC,

ECTools, LSC, FLAS, LoRMA and the error correc-

tion module in Canu. NaS was not included in the eval-

uation because it requires Newbler assembler which is

no longer available from 454. PacBioToCA was also ex-

cluded since it is deprecated and no longer being main-

tained. The command line parameters were chosen

based on user documentations of each software (Ad-

ditional file 1 section “Versions and configurations”).

The tools were configured to run exclusively on a sin-

gle compute node and allowed to leverage all the 28

cores if multi-threading is supported. A cutoff on wall

time was set to three days.
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Performance on benchmark data sets

We evaluated the quality and computational resource

requirements of each software on our benchmark data

sets. Results for the different data sets are shown in

Tables 2, 3, 4, 5, 6 and 7. Because multiple factors are

at play when considering accuracy, it is important to

consider their collective influence in assessing quality

of error correction. In what follows, we present a de-

tailed and comparative discussion on correction accu-

racy, runtime and memory-usage. In addition, to guide

error correction software users and future developers,

we provide further insights into the strengths and lim-

itations of various approaches that underpin the soft-

ware. This includes evaluating their resilience to han-

dle various sequencing depths, studying the effect of

discarding or trimming input reads to gain higher ac-

curacy, and impact on genome assembly.

Correction quality

We measure quality using the number of reads and to-

tal bases output in comparison with the input, the re-

sulting alignment identity, fraction of the genome cov-

ered and read length distribution including maximum

size and N50 length. From Tables 2, 3, 4, 5, 6 and 7, we

gather that the best performing hybrid methods (e.g.,

FMLRC) are capable of correcting reads to achieve

base-level accuracy in the high 90’s. For the E. coli

and yeast data sets, many of these programs achieve

alignment identity > 99%. A crucial aspect to consider

here is whether the high accuracy is achieved while

preserving input read depth and N50. Few tools (e.g.

Jabba) seem to attain high alignment identity at the

cost of producing shorter reads and reduced depths be-

cause they choose to either discard uncorrected reads

or trim the uncorrected regions. This may have a neg-

ative impact on downstream analyses. This trade-off

is further discussed later in “Effect of discarding reads

during correction” section.

Among the hybrid methods, a key observation is

that short-read-assembly-based methods tend to show

better performance than short-read-alignment-based

methods. We provide the following explanation. Given

that long reads are error-prone, short read alignment

to long reads is more likely to be wrong (or ambiguous)

than long read alignment to graph structures built us-

ing short reads. Errors in long reads can cause false

positives in identifying the true positions where the

respective short reads should align, which causes false

correction later. For example, during the correction of

D3-P, the alignment identity of corrected reads gener-

ated by CoLoRMap in fact decreased when compared

to the uncorrected reads. The reason is that CoL-

oRMap uses BWA-mem [46] to map short reads, which

is designed to report best mapping. However, due to

the high error rates, the best mapping is not neces-

sarily the true mapping. Large volume of erroneous

long reads in D3-P can lead to many false alignments,

which affected the correction process. On the other

hand, long read lengths make it possible to have higher

confidence when aligning them to paths in the graph.

Therefore, in most of the experiments, assembly-based

methods were able to produce reasonable correction.

Non-hybrid correction is more challenging as it re-

lies solely on overlaps between erroneous long reads,

yet the tools in this category yield competitive accu-

racy in many cases. However, non-hybrid methods may

achieve lower alignment identity when the long reads

are more erroneous. For example, the alignment iden-

tity of corrected reads generated by FLAS, LoRMA

and Canu is lower than almost all hybrid methods for

D1-O where the average alignment identity of uncor-

rected reads is only 81.36%.

Runtime and memory usage

Scalability of the correction tools is an important as-

pect to consider in their evaluation. Slow speed or

high memory usage makes it difficult to apply them
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Table 2 Experimental results for E. coli PacBio data set D1-P

Method # Reads
# Bases

(Mbp)

# Aligned

reads

# Aligned

bases

(Mbp)

Maximum

length

(bp)

N50

(bp)

Genome

fraction

(%)

Alignment

identity

(%)

CPU time

(hh:mm:ss)

Wall time

(hh:mm:ss)

Memory

usage

(GB)

Original 85 460 748.0 82 886 688.0 44 113 13 990 100.000 86.8763 - - -

Non-hybrid methods

FLAS 69 327 632.3 68 786 621.2 40 117 13 212 100.000 99.5959 09:47:50 00:56:45 4.9

LoRMA 330 811 623.3 330 715 623.0 22 499 2441 100.000 99.6814 45:24:49 02:10:36 67.2

Canu 9283 168.1 9193 166.7 39 693 20 391 100.000 99.6970 07:47:33 00:27:14 6.0

Short-read-assembly-based methods

HG-CoLoR - - - - - - - - - - -

FMLRC 85 260 706.5 83 320 669.9 44 084 13 364 100.000 99.6983 03:05:06 00:30:07 9.8

HALC 85 256 711.1 84 030 661.7 44 117 13 399 100.000 99.4374 60:41:59 16:02:32 30.2

Jabba 77 508 620.2 77 508 619.7 41 342 12 557 99.258 99.9624 02:05:09 00:12:01 37.0

LoRDEC 85 324 716.9 83 507 665.9 44 311 13 491 100.000 98.4149 15:03:42 00:40:05 2.0

ECTools 55 687 577.4 55 687 575.7 39 772 13 583 100.000 99.8592 11:25:22 00:29:49 8.2

Short-read-alignment-based methods

Hercules - - - - - - - - - >72:00:00 -

CoLoRMap 85 674 730.7 83 765 678.6 44 113 13 641 100.000 95.2930 31:35:16 02:53:33 34.9

Nanocorr 73 368 504.9 73 316 493.1 41 079 10 796 100.000 98.3257 1862:59:19 70:57:19 15.1

proovread 85 367 720.2 83 142 665.7 44 113 13 524 100.000 96.7250 71:17:14 12:21:53 53.9

LSC - - - - - - - - - >72:00:00 -

Note: HG-CoLoR reported an error when correcting this dataset.

Table 3 Experimental results for E. coli ONT data set D1-O

Method # Reads
# Bases

(Mbp)

# Aligned

reads

# Aligned

bases

(Mbp)

Maximum

length

(bp)

N50

(bp)

Genome

fraction

(%)

Alignment

identity

(%)

CPU time

(hh:mm:ss)

Wall time

(hh:mm:ss)

Memory

usage

(GB)

Original 163 747 1481.5 163 386 1454.4 131 969 14 895 100.000 81.3559 - - -

Non-hybrid methods

FLAS 138 472 1401.3 138 458 1392.9 130 497 14 748 99.997 93.0176 20:27:50 01:56:52 8.0

LoRMA 595 072 1433.5 595 051 1432.5 31 743 3333 99.924 96.6525 182:14:17 07:30:30 77.8

Canu 19 335 226.2 19 326 225.0 133 168 38 034 99.953 94.5969 17:14:11 00:50:04 6.7

Short-read-assembly-based methods

HG-CoLoR 159 856 1540.7 159 854 1518.1 138 002 15 744 100.000 98.1308 231:20:30 44:41:19 13.8

FMLRC 163 749 1555.4 163 593 1546.3 137 960 15 687 100.000 99.6423 05:50:54 00:32:27 3.3

HALC - - - - - - - - - >72:00:00 -

Jabba 162 970 1287.0 162 970 1286.1 93 923 12 795 99.515 99.9557 02:51:05 00:10:33 37.1

LoRDEC 163 838 1555.5 163 722 1530.1 137 887 15 664 100.000 98.9920 32:35:27 01:12:37 2.2

ECTools 116 868 1431.7 116 868 1428.2 137 863 16 354 100.000 99.8116 19:44:40 00:46:51 8.1

Short-read-alignment-based methods

Hercules - - - - - - - - - >72:00:00 -

CoLoRMap 164 072 1518.3 163 782 1495.7 134 302 15 180 100.000 89.2049 32:55:26 04:01:18 35.5

Nanocorr - - - - - - - - - >72:00:00 -

proovread 163 815 1514.0 163 481 1489.1 135 798 15 222 100.000 89.2071 104:33:09 18:35:46 47.8

LSC - - - - - - - - - >72:00:00 -
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Table 4 Experimental results for yeast PacBio data set D2-P

Method # Reads
# Bases

(Mbp)

# Aligned

reads

# Aligned

bases

(Mbp)

Maximum

length

(bp)

N50

(bp)

Genome

fraction

(%)

Alignment

identity

(%)

CPU time

(hh:mm:ss)

Wall time

(hh:mm:ss)

Memory

usage

(GB)

Original 239 408 1462.7 235 620 1332.6 35 196 8656 99.976 87.2637 - - -

Non-hybrid methods

FLAS 173 187 1093.2 173 046 1078.8 30 046 8132 99.976 99.5777 11:46:31 01:15:40 7.9

LoRMA 650 467 1142.0 650 333 1141.4 18 127 2323 99.951 99.7583 172:24:38 07:03:03 72.9

Canu 38 228 453.2 38 172 446.7 28 748 12 021 99.975 99.5864 15:18:34 00:50:12 6.5

Short-read-assembly-based methods

HG-CoLoR - - - - - - - - - - -

FMLRC 238 706 1380.8 236 883 1311.0 33 658 8185 99.977 99.3889 07:52:17 00:28:55 5.5

HALC 238 787 1395.4 238 097 1287.6 34 785 8270 99.976 99.0796 52:12:11 09:45:10 29.0

Jabba 202 980 1087.2 202 879 1086.6 30 141 7847 95.627 99.9832 00:38:30 00:04:57 21.4

LoRDEC 238 847 1405.0 237 278 1297.1 34 896 8326 99.978 97.9568 01:10:03 00:57:17 1.9

ECTools 130 863 946.9 130 832 943.1 28 749 8412 99.810 99.7712 938:25:28 58:25:00 4.3

Short-read-alignment-based methods

Hercules 239 389 1460.3 235 630 1330.4 35 196 8644 99.976 87.6711 87:53:55 03:18:41 247.8

CoLoRMap 239 309 1429.6 237 135 1321.3 34 850 8409 99.976 96.3912 18:44:48 03:07:34 37.3

Nanocorr - - - - - - - - - >72:00:00 -

proovread 238 992 1412.4 236 519 1298.0 35 122 8369 99.978 97.9568 184:02:07 23:45:37 47.9

LSC - - - - - - - - - >72:00:00 -

Note: HG-CoLoR reported an error when correcting this dataset.

Table 5 Experimental results for yeast ONT data set D2-O

Method # Reads
# Bases

(Mbp)

# Aligned

reads

# Aligned

bases

(Mbp)

Maximum

length

(bp)

N50

(bp)

Genome

fraction

(%)

Alignment

identity

(%)

CPU time

(hh:mm:ss)

Wall time

(hh:mm:ss)

Memory

usage

(GB)

Original 118 723 715.7 108 463 638.1 55 374 7003 99.976 86.1986 - - -

Non-hybrid methods

FLAS 95 606 585.6 95 290 581.5 26 592 6893 99.940 97.1699 07:42:10 07:42:10 4.4

LoRMA 398 863 497.0 398 350 495.2 16 027 1439 99.485 98.4024 68:02:36 02:55:05 68.8

Canu 64 829 475.1 64 649 475.1 26 895 7518 99.914 97.7710 12:31:04 00:37:53 9.0

Short-read-assembly-based methods

HG-CoLoR - - - - - - - - - - -

FMLRC 118 701 713.7 111 869 666.4 55 374 6990 99.975 99.2529 03:35:44 00:17:21 2.2

HALC 118 707 718.2 114 071 647.9 55 379 7025 99.976 98.8884 50:11:58 04:03:18 3.6

Jabba 99 044 536.9 98 631 535.9 28 194 6730 95.400 99.9809 00:55:32 00:04:20 21.5

LoRDEC 118 727 720.8 110 606 647.8 55 375 7049 99.976 96.9369 11:22:09 00:26:13 2.1

ECTools 81 105 531.9 80 843 529.3 26 810 7071 99.314 99.7697 09:31:32 20:17:33 5.6

Short-read-alignment-based methods

Hercules 118 721 716.3 108 467 638.9 55 374 7008 99.976 87.2912 125:22:19 04:37:01 246.6

CoLoRMap 118 774 722.0 108 969 649.4 55 374 7049 99.976 95.5851 11:01:38 01:34:52 27.8

Nanocorr - - - - - - - - - >72:00:00 -

proovread 118 729 716.7 109 057 643.4 55 374 7007 99.976 96.3689 66:14:09 07:20:18 28.1

LSC - - - - - - - - - >72:00:00 -

Note: HG-CoLoR reported an error when correcting this dataset.
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Table 6 Experimental results for fruit fly PacBio data set D3-P

Method # Reads
# Bases

(Mbp)

# Aligned

reads

# Aligned

bases

(Mbp)

Maximum

length

(bp)

N50

(bp)

Genome

fraction

(%)

Alignment

identity

(%)

CPU time

(hh:mm:ss)

Wall time

(hh:mm:ss)

Memory

usage

(GB)

Original 5 366 088 28 797.8 1 839 681 16 543.5 74 735 15 374 99.191 85.2734 - - -

Non-hybrid methods

FLAS 1 435 682 14 585.2 1 428 018 13 574.1 43 556 13 550 98.915 98.8363 271:44:27 36:30:42 53.1

LoRMA - - - - - - - - - - -

Canu - - - - - - - - - >72:00:00 -

Short-read-assembly-based methods

HG-CoLoR - - - - - - - - - - -

FMLRC 5 246 485 27 354.6 2 477 890 16 543.5 74 735 14 554 99.191 96.5284 327:37:22 13:49:04 31.2

HALC 4 451 474 21 997.5 3 434 779 12 793.3 74 735 14 349 99.178 96.8863 770:35:46 55:58:24 73.0

Jabba 35 549 239.8 35 505 239.1 37 729 10 461 65.616 99.9615 656:05:15 24:33:41 175.8

LoRDEC 5 363 998 28 354.1 2 056 812 15 636.9 74 719 15 078 99.200 92.2954 1011:52:27 36:19:18 5.9

ECTools - - - - - - - - - >72:00:00 -

Short-read-alignment-based methods

Hercules - - - - - - - - - - -

CoLoRMap 5 366 107 28 891.6 1 841 822 14 976.8 74 735 15 442 99.189 83.2580 495:11:17 64:52:25 189.4

Nanocorr - - - - - - - - - >72:00:00 -

proovread - - - - - - - - - >72:00:00 -

LSC - - - - - - - - - >72:00:00 -

Note: LoRMA, HG-CoLoR and Hercules reported errors when correcting this dataset.

Table 7 Experimental results for fruit fly ONT data set D3-O

Method # Reads
# Bases

(Mbp)

# Aligned

reads

# Aligned

bases

(Mbp)

Maximum

length

(bp)

N50

(bp)

Genome

fraction

(%)

Alignment

identity

(%)

CPU time

(hh:mm:ss)

Wall time

(hh:mm:ss)

Memory

usage

(GB)

Original 642 255 4609.5 554 083 3857.9 446 050 11 956 98.719 83.5921 - - -

Non-hybrid methods

FLAS 423 097 3507.6 422 206 3402.6 64 365 11 517 97.588 95.3301 23:04:50 03:12:50 10.8

LoRMA 703 097 615.5 682 288 592.3 32 644 865 30.338 98.1230 666:37:35 25:52:14 92.8

Canu 430 082 3415.6 421 475 3220.2 254 967 12 090 97.592 96.3739 88:51:10 04:36:20 20.2

Short-read-assembly-based methods

HG-CoLoR - - - - - - - - - - -

FMLRC 641 945 4647.2 578 290 3978.2 444 605 12 088 98.592 97.6010 47:45:17 03:06:05 31.2

HALC 643 002 4668.5 611 191 3955.7 451 284 12 115 98.616 97.6634 126:30:01 05:43:37 42.4

Jabba 494 546 2878.2 494 430 2876.3 72 501 9305 83.166 99.9745 175:19:34 06:56:29 136.8

LoRDEC 642 882 4655.9 567 878 3921.1 447 726 12 079 98.691 94.0382 152:05:32 05:38:05 5.7

ECTools - - - - - - - - - >72:00:00 -

Short-read-alignment-based methods

Hercules 642 287 4612.8 554 630 3859.4 449 799 11 966 98.713 83.9340 398:10:17 17:32:36 247.7

CoLoRMap 649 041 4692.1 565 881 3963.8 442 948 12 050 98.715 94.3361 160:00:22 16:07:18 57.3

Nanocorr - - - - - - - - - >72:00:00 -

proovread - - - - - - - - - >72:00:00 -

LSC - - - - - - - - - >72:00:00 -

Note: HG-CoLoR reported an error when correcting this dataset.
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to correct large data sets. Our results show that hy-

brid methods, in particular assembly-based methods,

are much faster than the rest. For instance, Hercules

and LSC failed to generate corrected reads in three

days for D1-P, while most of the assembly-based tools

finished the same job in less than one hour. Hercules,

Nanocorr and LSC were unable to finish the correction

of D2-O in three days, which was finished by FMLRC

or LoRDEC in hours. Although proovread can com-

plete the corrections of D2-P and D2-O, the run-time

was 49.3 and 34.4 times longer, respectively, than run-

time needed by FMLRC. Moreover, assembly-based

methods, e.g., LoRDEC and FMLRC, used less mem-

ory in most of the experiments. Therefore, in terms of

computational performance, users should give priority

to short-read assembly-based methods over short-read

alignment-based methods.

Among the non-hybrid methods, LoRMA’s memory

usage was generally the highest among all the tools,

and was slower than assembly-based methods. How-

ever, Canu showed superior scalability. Owing to a

fast long read overlap detection algorithm using Min-

Hash [44], Canu was able to compute long read over-

laps and used them to correct the reads in reasonable

time, which is comparable to most of the hybrid meth-

ods. The memory footprint of Canu was also lower

than many hybrid-methods. However, Canu did not

finish the correction of D3-P in three days probably

because this data set is too large to compute pair-

wise overlaps. FLAS showed performance comparable

to Canu as FLAS also leverages the fast overlap com-

putation method in MECAT [43].

Effect of long read sequencing depth on error

correction

Requiring high sequencing coverage for effective er-

ror correction can impact both cost and time con-

sumed during sequencing and analysis. The relative

cost per base pair using third-generation sequencing

is still several folds higher when compared to the lat-

est Illumina sequencers [1]. Accordingly, we study how

varying long read sequencing depth affects correction

quality, while keeping the short read data set fixed. We

conducted this experiment using data sets D2-P and

D2-O with various depth levels obtained using ran-

dom sub-sampling. The details of the subsamples are

summarized in Additional file 1 Table S1. The output

behavior of the correction tools is shown in Additional

file 1 Tables S2-S9.

For corrected reads generated by hybrid methods,

no significant change on the metrics was observed ex-

cept those generated by CoLoRMap. The alignment

identity of its corrected reads increased with decreased

sequencing depth. This observation is consistent with

the experimental results reported by its authors. Sim-

ilarly, CoLoRMap did not perform well on large data

sets such as D3-P as large data sets increase the risk

of false positive alignments.

On the other hand, the performance of non-hybrid

methods deteriorated significantly when sequencing

depth was decreased. As non-hybrid methods leverage

overlap information to correct errors, they require suf-

ficient long read coverage to make true correction. The

genome fraction covered by corrected reads produced

by LoRMA with subsamples of D2-P decreased from

99.59% to 82.97% when sequencing depth dropped

from 90x to 60x, and further decreased to 9.61%, 5.39%

and 3.78% for 30x, 20x and 10x respectively, implying

loss of many long reads after correction. The alignment

identities were still greater than 99% using all sub-

samples because LoRMA trimmed the uncorrected re-

gions. For corrected reads generate by Canu, no signif-

icant change on genome fraction was observed. But the

alignment identity dropped from above 99% to 97.03%

and 95.63% for 20x and 10x sequencing depths, respec-

tively. FLAS showed similar performance but genome

fraction for 10x sequencing depth was only 90.20%
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lower than the 99.92% achieved by Canu, which indi-

cates FLAS drops some reads when sequencing depth

is low.

Effect of discarding reads during correction

Many correction tools opt for discarding input reads or

regions within reads that they fail to correct. As a re-

sult, the reported alignment identity is high (> 99%),

but much fewer number of bases survive after correc-

tion. This effect is more pronounced in corrected reads

generated by Jabba, ECTools, and LoRMA. They ei-

ther trim uncorrected regions at sequence ends, or even

in the middle, to avoid errors in the final output which

eventually yields high alignment identity. However, ag-

gressive trimming also makes the correction lossy and

may influence downstream analysis because long range

information is lost if the reads are shortened or broken

into smaller pieces. Therefore, users should be conser-

vative in trimming and turn it off when necessary. One

good practice is to keep the uncorrected regions and let

downstream analysis tools perform the trimming, e.g.

overlap-based trimming after read correction in Canu.

A direct implication of discarding or trimming reads

is the change of read length distribution. Figure 1

shows the original and corrected read length distri-

butions. Among all the tools, HG-CoLoR, FMLRC,

HALC, CoLoRMAP, LoRDEC and proovread can

maintain a similar read length distribution after cor-

rection whereas Nanocorr, Jabba and ECTools lost

many long reads after correction due to their trim-

ming step. Nanocorr drops a long read when there is

no short read aligning to it. This procedure can remove

many error-prone long reads, which leads to a higher

alignment identity after correction. However, the frac-

tion of discarded reads in many cases is found to be

significant. For example, a mere 376.3 million bp cu-

mulative length of sequences survived out of 1462.7

million bp data set, after correction of D2-P. ECTools

also generated only 946.9 million corrected bases using

this data set. Canu changed the read length distribu-

tion significantly after correction although due to a

different reason. Canu estimates the read length af-

ter correction and tries to keep the longest 40x reads

for subsequent assembly. FLAS kept most of the reads

with short length while losing many reads with long

length.

Effect of error correction on genome assembly

Error correction of long reads remains a useful pre-

processing stage for reliable construction of overlap

graphs during genome assembly. We examined how

well the accuracy of error correction correlates with

the quality of genome assembly performed using cor-

rected reads. To do so, we conducted an experiment to

compute genome assembly using corrected PacBio and

ONT reads of E. coli, i.e., corrected reads for D1-P and

D1-O. Assembly was computed using Canu with its er-

ror correction module turned off, and assembly quality

was assessed using QUAST [47]; the results are shown

in Tables 8 and 9.

Considering the assemblies generated using corrected

PacBio reads (Table 8), NGA50 of about 3 Mbp

was obtained when using reads generated by FLAS,

Canu, FMLRC, HALC, Nanocorr, LoRDEC or EC-

Tools. When using corrected ONT reads (Table 9), as-

semblies generated using reads corrected by Canu, HG-

CoLoR, FMLRC, LoRDEC and ECTools have NGA50

near 3 Mbp. In contrast, assemblies generated using

reads corrected by Jabba and LoRMA showed lower

NGA50 in both cases. Their trimming procedure pos-

sibly led to the loss of some long range information,

thereby causing lower continuity in assembly. Post er-

ror correction, alignment identity of corrected reads

needs to be sufficiently high to identify true overlaps

during assembly. We observe that NGA50 of assem-

blies generated using reads corrected by CoLoRMap

and proovread is low, as the corrected reads generated
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Table 8 Results of genome assembly computed using corrected reads of D1-P

Method # contigs
NGA50

(bp)

Largest

contigs (bp)

Total

length (bp)

Genome

fraction (%)

#

misassemblies

#

mismatches

# indels

(<=5bp)

# indels

(>5bp)

Indel

length (bp)

Non-hybrid methods

FLAS 2 3 996 362 4 681 650 4 689 583 99.998 4 4 162 0 167

LoRMA 14 696 878 2 501 146 4 663 900 99.938 4 75 4181 6 4295

Canu 1 3 976 437 4 670 120 4 670 120 99.998 4 7 92 0 95

Short-read-assembly-based methods

FMLRC 9 3 821 409 4 657 352 4 831 908 99.998 8 1 4 0 5

HALC 25 2 947 777 4 682 714 5 388 722 99.983 8 541 35 8 257

Jabba 58 138 874 398 327 4 623 296 97.273 1 172 32 3 167

LoRDEC 2 3 996 441 4 681 757 4 703 690 99.998 4 66 18 2 55

ECTools 19 3 548 731 4 657 296 5 154 324 99.974 4 592 80 2 188

Short-read-alignment-based methods

CoLoRMap 86 1 217 587 1 448 649 5 700 143 99.998 4 42 3 7 478

Nanocorr 18 3 095 077 4 646 253 4 931 697 99.998 5 65 34 2 157

proovread 2 1 686 030 4 626 702 4 666 724 99.656 4 76 97 1 176

Table 9 Results of genome assembly computed using corrected reads of D1-O

Method # contigs
NGA50

(bp)

Largest

contigs (bp)

Total

length (bp)

Genome

fraction (%)

#

misassemblies

#

mismatches

# indels

(<=5bp)

# indels

(>5bp)

Indel

length (bp)

Non-hybrid methods

FLAS 1 1 283 465 4 561 925 4 561 925 99.834 4 4785 70 062 1310 122 264

LoRMA 14 726 649 1 239 048 4 583 602 99.650 3 23 275 57 650 37 73 578

Canu 1 3 335 496 4 601 279 4 601 279 99.914 2 14 810 56 511 283 78 931

Short-read-assembly-based methods

HG-CoLoR 32 3 924 167 4 634 988 5 555 776 99.845 28 393 82 8 246

FMLRC 9 4 325 756 4 718 452 4 974 808 99.874 6 6 7 4 242

Jabba 57 105 474 311 624 4 460 218 95.838 0 117 22 5 179

LoRDEC 57 3 492 326 4 044 623 5 389 657 99.800 10 402 162 18 448

ECTools 2 2 891 718 4 733 248 4 797 686 99.885 3 632 267 16 682

Short-read-alignment-based methods

CoLoRMap 55 206 971 501 963 6 007 440 94.790 4 11 074 14 392 206 24 183

proovread 99 75 162 225 568 4 613 429 98.737 14 276 41 1 75
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by these two tools have low alignment identity (e.g.,

< 90% for D1-O, Table 3).

We also examined the frequency of mismatches and

indels in the assemblies. For data set D1-P, corrected

reads generated by HALC and ECTools produced as-

semblies with > 500 mismatches, significantly higher

than the other tools. However, alignment identity of

their corrected reads was either competitive with, or

superior to, what is produced by other tools. Notably,

both HALC and ECTools use assembled contigs from

short reads to do error correction. Mis-assemblies of

short reads, especially in repetitive and low-complexity

regions, may cause false corrections, which leads to er-

rors during assembly [29]. Corrected reads produced

by FMLRC achieved the least number of errors in

assembly. Meanwhile, its alignment identity was also

the highest among the methods which avoid trimming.

Therefore, higher alignment identity of corrected reads

is an important but not a sufficient criteria to minimize

errors in genome assemblies.

Non-hybrid methods such as LoRMA, Canu and

FLAS produced more indels than mismatches in their

assemblies while most of the hybrid methods showed

the opposite behavior. These observations suggest that

existing self-correction methods are not good at han-

dling indels when compared to hybrid methods. Con-

sequently, de novo long read assemblers that use self-

correction methods typically rely on post-processing

‘polishing’ stages, using signal-level data from long

read instruments [2, 33] or alternate sequencing tech-

nologies [48].

Conclusions and future directions

In this work, we established benchmark data sets and

evaluation methods for comprehensive assessment of

long read error correction software. Our results sug-

gest that hybrid methods aided by short accurate reads

can achieve better correction quality, especially when

handling low coverage-depth long reads, compared

with non-hybrid methods. Within the hybrid methods,

assembly-based methods are superior to alignment-

based methods in terms of scalability to large data

sets. Besides, better performance on correction such as

preserving higher proportion of input bases and high

alignment identity often leads to better performance

in downstream applications such as genome assembly.

But the tools with superior correction performance

should be further tested in the context of applications

of interest.

Users can also select tools according to our exper-

imental results for their specific expectations. When

speed is a concern, assembly-based hybrid methods are

preferred whenever short reads are available. Besides,

hybrid methods are more immune to low long read se-

quencing depth than non-hybrid methods. Thus, users

are recommended to choose hybrid methods when long

read sequencing depth is relatively low. In cases where

indel errors may cause a serious negative impact on

downstream analyses, hybrid methods should be pre-

ferred over non-hybrid ones if short reads are available.

FMLRC outperformed other hybrid methods in al-

most all the experiments. For non-hybrid methods,

Canu and FLAS showed better performance over

LoRMA. Hence, these three are recommended as de-

fault when users want to avoid laborious tests on all

the error correction tools.

For future work, better self-correction algorithms are

expected to avoid hybrid sequencing, thus reducing ex-

perimental labor on short read sequencing preparation.

In addition, most of the correction algorithms run for

days to correct errors in the sequencing of even mod-

erately large and complex genomes like the fruit fly.

These algorithms will spend much more time on cor-

recting larger sequencing data sets of human, and be-

come a bottleneck in sequencing data analysis. There-

fore, more efficient or parallel correction algorithms

should be developed to ease the computational bur-

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 29, 2019. ; https://doi.org/10.1101/519330doi: bioRxiv preprint 

https://doi.org/10.1101/519330
http://creativecommons.org/licenses/by/4.0/


Zhang et al. Page 16 of 18

den. Furthermore, none of the hybrid tools makes use

of paired-end information in their correction, except

CoLoRMap. But the use of paired-end reads in CoL-

oRMap did not improve correction performance signif-

icantly according to previous studies. Paired-end reads

have already been used to resolve repeats and remove

entanglements in de Bruijn graphs [49]. Since many

error correction tools build de Bruijn graphs to cor-

rect long reads, the paired-end information may also

be able to improve error correction.

Most of the published error correction tools focus on

correction of long DNA reads sequenced from a single

genome, which also served as the motivation for our

review. Long read sequencing is increasingly gaining

traction in transcriptomics and metagenomics appli-

cations. It is not clear whether the existing tools can

be leveraged or extended to work effectively in such

scenarios, and is an active area of research [50].
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a b

Figure 1 E. coli corrected read length distribution Corrected read length distribution is shown in violinplots for E. coli PacBio and

ONT sequencing data in a and b respectively. Note that ECTools only corrects reads longer than 1000 bp and drops the reads

shorter than that.
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