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Abstract

The Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven
effort to evaluate and improve the computational annotation of protein function. Here we report on
the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous
CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a
novel and major new development, computational predictions and assessment goals drove some of the
experimental assays, resulting in new functional annotations for more than 1000 genes. Specifically, we
performed experimental whole-genome mutation screening in Candida albicans and Pseudomonas auregi-
nosa genomes, which provided us with genome-wide experimental data for genes associated with biofilm
formation and motility (P. aureginosa only). We further performed targeted assays on selected genes in
Drosophila melanogaster, which we suspected of being involved in long-term memory. We conclude that,
while predictions of the molecular function and biological process annotations have slightly improved
over time, those of the cellular component have not. Term-centric prediction of experimental annota-
tions remains equally challenging; although the performance of the top methods is significantly better
than expectations set by baseline methods in C. albicans and D. melanogaster, it leaves considerable
room and need for improvement. We finally report that the CAFA community now involves a broad
range of participants with expertise in bioinformatics, biological experimentation, biocuration, and bio-
ontologies, working together to improve functional annotation, computational function prediction, and
our ability to manage big data in the era of large experimental screens.

1 Introduction1

High-throughput nucleic acid sequencing (1) and mass-spectrometry proteomics (2) have provided us with2

a deluge of data for DNA, RNA, and proteins in diverse species. However, extracting detailed functional3

information from such data remains one of the recalcitrant challenges in the life sciences and biomedicine.4

Low-throughput biological experiments often provide highly informative empirical data related to various5

functional aspects of a gene product, but these experiments are limited by time and cost. At the same time,6

high-throughput experiments, while providing large amounts of data, often provide information that is not7

specific enough to be useful (3). For these reasons, it is important to explore computational strategies for8

transferring functional information from the group of functionally characterized macromolecules to others9

that have not been studied for particular activities (4, 5, 6, 7, 8, 9).10

To address the growing gap between high-throughput data and deep biological insight, a variety of11

computational methods that predict protein function have been developed over the years (10, 11, 12, 13, 14,12

15, 16, 17, 18, 19, 20, 21, 22, 23, 24). This explosion in the number of methods is accompanied by the need13

to understand how well they perform, and what improvements are needed to satisfy the needs of the life14

sciences community. The Critical Assessment of Functional Annotation (CAFA) is a community challenge15
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that seeks to bridge the gap between the ever-expanding pool of molecular data and the limited resources16

available to understand protein function (25, 26, 27).17

The first two CAFA challenges were carried out in 2010-2011 (25) and 2013-2014 (26). In CAFA1 we18

adopted a time-delayed evaluation method, where protein sequences that lacked experimentally verified19

annotations, or targets, were released for prediction. After the submission deadline for predictions, a subset20

of these targets accumulated experimental annotations over time, either as a consequence of new publications21

about these proteins or the biocuration work updating the annotation databases. The members of this set of22

proteins were used as benchmarks for evaluating the participating computational methods, as the function23

was revealed only after the prediction deadline.24

CAFA2 expanded the challenge founded in CAFA1. The expansion included the number of ontologies25

used for predictions, the number of target and benchmark proteins, and the introduction of new assessment26

metrics that mitigate the problems with functional similarity calculation over concept hierarchies such as27

Gene Ontology (28). Importantly, we provided evidence that the top-scoring methods in CAFA2 outper-28

formed the top scoring methods in CAFA1, highlighting that methods participating in CAFA improved over29

the three year period. Much of this improvement came as a consequence of novel methodologies with some30

effect of the expanded annotation databases (26). Both CAFA1 and CAFA2 have shown that computa-31

tional methods designed to perform function prediction outperform a conventional function transfer through32

sequence similarity (25, 26).33

In CAFA3 (2016-2017) we continued with all types of evaluations from the first two challenges and34

additionally performed experimental screens to identify genes associated with specific functions. This allowed35

us to provide unbiased evaluation of the term-centric performance based on a unique set of benchmarks36

obtained by assaying Candida albicans, Pseudomonas aeruginosa and Drosophila melanogaster. We also37

held a challenge following CAFA3, dubbed CAFA-π, to provide the participating teams another opportunity38

to develop or modify prediction models. The genome-wide screens on C. albicans identified 240 genes39

previously not known to be involved in biofilm formation, whereas the screens on P. aeruginosa identified40

532 new genes involved in biofilm formation and 403 genes involved in motility. Finally, we used CAFA41

predictions to select genes from D. melanogaster and assay them for long-term memory involvement. This42

experiment allowed us to both evaluate prediction methods and identify eleven new fly genes involved in this43
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biological process (29). Here we present the outcomes of the CAFA3 challenge, as well as the accompanying44

challenge CAFA-π, and discusses further directions for the community interested in the function of biological45

macromolecules.46

2 Results47

2.1 Top methods have slightly improved since CAFA248

One of CAFA’s major goals is to quantify the progress in function prediction over time. We therefore49

conducted comparative evaluation of top CAFA1, CAFA2, and CAFA3 methods according to their ability50

to predict Gene Ontology (28) terms on a set of common benchmark proteins. This benchmark set was51

created as an intersection of CAFA3 benchmarks (proteins that gained experimental annotation after the52

CAFA3 prediction submission deadline), and CAFA1 and CAFA2 target proteins. Overall, this set contained53

377 protein sequences with annotations in the Molecular Function Ontology (MFO), 717 sequences in the54

Biological Process Ontology (BPO) and 548 sequences in the Cellular Component Ontology (CCO), which55

allowed for a direct comparison of all methods that have participated in the challenges so far. The head-56

to-head comparisons in MFO, BPO, and CCO between top five CAFA3 and CAFA2 methods are shown in57

Figure 1. CAFA3 and CAFA1 comparisons are shown in Figure S1 in the Supplemental Materials.58

We first observe that, in effect, the performance of baseline methods (25, 26) has not improved since59

CAFA2. The Näıve method, which uses the term frequency in the existing annotation database as prediction60

score for every input protein, has the same Fmax performance using both annotation database in 2014 (when61

CAFA2 was held) and in 2017 (when CAFA3 was held), which suggests little change in term frequencies in the62

annotation database since 2014. On the other hand, BLAST-based annotation transfer, tells a contrasting63

tale between ontologies. In MFO, the BLAST method based on the existing annotations in 2017 is slightly64

but significantly better than the BLAST method based on 2014 training data. In BPO and CCO, however,65

the BLAST based on the later database has not outperformed its earlier counterpart, although the changes66

in effect size (absolute change in Fmax) in both ontologies are small.67

When surveying all three CAFA challenges, the performance of both baseline methods has been relatively68

stable, with some fluctuations of BLAST. Such performance of direct sequence-based function transfer is69
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surprising, given the steady growth of annotations in UniProt-GOA (30); i.e., there were 259,785 experimental70

annotations in 2011, 341,938 in 2014 and 434,973 in 2017, but there does not seem to be a definitive trend71

with the BLAST method, as they go up and down in Fmax across ontologies. We conclude from these72

observations on the baseline methods that first, the ontologies are in different annotation states and should73

not be treated as a whole. Second, methods that perform direct function transfer based on sequence similarity74

do not necessarily benefit from a larger training dataset. Although the performance observed in our work is75

also dependent on the benchmark set, it appears that the annotation databases remain sparsely populated to76

effectively exploit function transfer by sequence similarity, thus justifying the need for advanced methodology77

development for this problem.78

[Figure 1 about here.]79

Head-to-head comparisons of the top five CAFA3 methods against top five CAFA2 methods show mixed80

results. In MFO, the top CAFA3 method, GOLabeler (23) outperformed all CAFA2 methods by a consid-81

erable margin, as shown in Figure 2. The rest of the four CAFA3 top methods did not perform as well as82

the top two methods of CAFA2, although only to a limited extent, with little change in Fmax. Of the top 1283

methods ranked in MFO, seven are from CAFA3, five are from CAFA2 and none are from CAFA1. Despite84

the increase in database size, the majority of function prediction methods do not seem to have improved85

in predicting protein function in MFO since 2014, except for one method that stood out. In BPO, the top86

three methods in CAFA3 outperformed their CAFA2 counterparts, but with very small margins. Out of the87

top 12 methods in BPO, eight are from CAFA3, four are from CAFA2 and none are from CAFA1. Finally,88

in CCO, although 8 out of top 12 methods over all CAFA challenges come from CAFA3, the top method is89

from CAFA2. The differences between the top performing methods are small, as in the case of BPO.90

The performance of top methods in CAFA2 was significantly better than of those in CAFA1, and it is91

interesting to note that this trend has not continued in CAFA3. This could be due to many reasons, such as92

the quality of the benchmark sets, the overall quality of the annotation database, the quality of ontologies93

or a relatively short period of time between challenges.94

[Figure 2 about here.]95
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2.2 Protein-centric evaluation96

The protein-centric evaluation measures the accuracy of assigning GO terms to a protein. This performance97

is shown in Figures 3, 4 and 5.98

[Figure 3 about here.]99

[Figure 4 about here.]100

[Figure 5 about here.]101

We observe that all top methods outperform the baselines with the patterns of performance consistent102

with CAFA1 and CAFA2 findings. Predictions of MFO terms achieved the highest Fmax compared with103

predictions in the other two ontologies. BLAST outperforms Näıve in predictions in MFO, but not in BPO104

or CCO. This is because sequence similarity based methods such as BLAST tend to perform best when105

transferring basic biochemical annotations such as enzymatic activity. Functions in biological process, such106

as pathways, may not be as preserved by sequence similarity, hence the poor BLAST performance in BPO.107

The reasons behind the difference among the three ontologies include the structure and complexity of the108

ontology as well as the state of the annotation database, as discussed previously (26, 31). It is less clear why109

the performance in CCO is weak, although it might be hypothesized that such performance is related to the110

structure of the ontology itself (31).111

The top performing method in MFO did not have as high an advantage over others when evaluated112

using the Smin metric. The Smin metric weights GO terms by conditional information content, since the113

prediction of more informative terms are more desirable than less informative, more general, terms. This114

could potentially explain the smaller gap between the top predictor and the rest of the pack in Smin. The115

weighted Fmax and normalized Smin evaluations can be found in Figures S4 and S5.116

2.3 Species-specific categories117

The benchmarks in each species were evaluated individually as long as there were at least 15 proteins per118

species. Here we present results on both eukaryotic and prokaryotic species (Figure 6). We observed that119

different methods could perform differently on different species. As shown in Figure 14, bacterial proteins120
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make up a small portion of all benchmark sequences, so their effects on the performances of the methods121

are often masked. Species-specific analyses are thus meaningful to researchers studying certain organisms.122

Evaluation results on individual species including human (Figure S6), Arabidopsis thaliana (Figure S7) and123

Escherichia coli (Figure S10) can be found in Supplemental Materials (Figures S6-S14).124

[Figure 6 about here.]125

2.4 Diversity of methods126

It was suggested in the analysis of CAFA2 that ensemble methods that integrate data from different sources127

have the potential of improving prediction accuracy (32). Multiple data sources, including sequence, struc-128

ture, expression profile and so on are all potentially predictive of the function of the protein. Therefore,129

methods that take advantage of these rich sources as well as existing techniques from other research groups130

might see improved performance. Indeed, the one method that stood out from the rest in CAFA3 and per-131

formed significantly better than all methods across three challenges, is a machine learning based ensemble132

method (23). Therefore, it is important to analyze what information sources and prediction algorithms are133

better at predicting function. Moreover, the similarity of the methods might explain the limited improvement134

in the rest of the methods in CAFA3.135

[Figure 7 about here.]136

The top CAFA2 and CAFA3 methods are very similar in performance, but that could be a result of ag-137

gregating predictions of different proteins to one metric. When computing the similarity of each pair of138

methods as the reciprocal of the Euclidean distance of prediction scores (Figure 7), we are not interested139

whether these predictions are correct according to the benchmarks, but simply whether they are similar to140

one another. Top CAFA2 and CAFA3 methods are more similar than with CAFA1 models. It is clear that141

some top methods are heavily based on the Näıve and BLAST baseline methods. It is interesting to note142

that the top two best methods in BPO are not similar to any other top methods. The same pattern was143

observed for CAFA2 methods.144

[Figure 8 about here.]145
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Participating teams also provided keywords that describe their approach to function prediction with their146

submissions. A list of keywords was given to the participants, listed in Page 24 of Supplementary Materials.147

Figure 8 shows the frequency of each keyword. In addition, we have weighted the frequency of the keywords148

with the prediction accuracy of the specific method. Machine learning and sequence alignment remain149

the most-used approach by scientists predicting in all three ontologies. By raw count, machine learning is150

more popular than sequence alignment, but once adjusted by performance, they are almost identical. This151

indicates that methods that use sequence alignments are more helpful in predicting the correct function than152

the popularity of their use suggests.153

2.5 Evaluation via molecular screening154

Databases with proteins annotated by biocuration, such as UniProt knowledge base, have been the primary155

source of benchmarks in the CAFA challenges. New to CAFA3, we also evaluated the extent to which methods156

participating in CAFA could predict the results of genetic screens in model organisms done specifically for this157

project. Predicting GO terms for a protein (protein-centric) and predicting which proteins are associated158

with a given function (term-centric) are related but different computational problems: the former is a159

multi-label classification problem with a structured output, while the latter is a binary classification task.160

Predicting the results of a genome-wide screen for a single or a small number of functions fits the term-centric161

formulation. To see how well all participating CAFA methods perform term-centric predictions, we mapped162

results from the protein-centric CAFA3 methods onto these terms. In addition we held a separate CAFA163

challenge, CAFA-π whose purpose was to attract additional submissions from algorithms that specialize in164

term-centric tasks.165

We performed screens for three functions in three species, which we then used to assess protein function166

prediction. In the bacterium Pseudomonas aeruginosa and the fungus Candida albicans we performed167

genome-wide screens capable of uncovering genes with two functions, biofilm formation (GO:0042710) and168

motility (for P. aeruginosa only) (GO:0001539), as described in Methods. In Drosophila melanogaster we169

performed targeted assays, guided by previous CAFA submissions, of a selected set of genes and assessed170

whether or not they affected long-term memory (GO:0007616).171

We discuss the prediction results for each function below in detail. The performance, as assessed by the172
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genome-wide screens, was generally lower than in the protein-centric evaluations that were curation driven.173

We hypothesize that it may simply be more difficult to perform term-centric prediction for broad activities174

such as biofilm formation and motility. For P. aeruginosa, an existing compendium of gene expression175

data was already available (33). We used the Pearson correlation over this collection of data to provide176

a complementary baseline to the standard BLAST approach used throughout CAFA. We found that an177

expression-based method outperformed the CAFA participants, suggesting that success on certain term-178

centric challenges will require the use of different types of data. On the other hand, the performance of the179

methods in predicting long-term memory in the Drosophila genome was relatively accurate.180

2.5.1 Biofilm formation181

In March 2018, there were 3019 annotations to biofilm formation (GO:0042710) and its descendent terms182

across all species, of which 325 used experimental evidence codes. These experimentally annotated proteins183

included 131 from the Candida Genome Database (34) for C. albicans and 29 for P. aeruginosa, the two184

organisms that we screened.185

Of the 2746 genes we screened in the Candida albicans colony biofilm assay, 245 were required for the186

formation of wrinkled colony biofilm formation (Table 1). Of these, only five were already annotated in187

UniProt: MOB, EED1 (DEF1 ), and YAK1, which encode proteins involved in hyphal growth, an important188

trait for biofilm formation (35, 36, 37, 38). Also, NUP85, a nuclear pore protein involved in early phase189

arrest of biofilm formation (39) and VPS1, which contributes to protease secretion, filamentation, and biofilm190

formation (40). Of the 2063 proteins that we did not find to be associated with biofilm formation, 29 were191

annotated to the term in the GOA database. Some of the proteins in this category highlight the need for192

additional information to GO term annotation. For example, Wor1 and the pheromone receptor are key193

for biofilm formation in strains under conditions in which the mating pheromone is produced (41), but not194

required in the monocultures of the commonly studied a/α mating type strain used here.195

No method in CAFA-π or CAFA3 (not shown) exceeded an AUC of 0.60 on this term-centric challenge196

(Figure 9) for either species. Performance for the best methods slightly exceeded a BLAST-based baselines.197

In the past, we have found that predicting BPO terms, such as biofilm formation, resulted in poorer method198

performance than predicting MFO terms. Many CAFA methods use sequence alignment as their primary199
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GOA annotations

C. albicans
Total: 2308 Unannotated Annotated

CAFA experiments
False 2034 29
True 240 5

P. aeruginosa
Total: 4056 Unannotated Annotated

CAFA experiments
False 3491 25
True 532 9

Table 1: Number of proteins in Candida albicans and Pseudomonas aeruginosa associated with function
Biofilm formation (GO:0042710) in the GOA databases versus experimental results.

source of information (Section 2.4). For Pseudomonas aeruginosa a pre-built expression compendium was200

available from prior work (33). Where the compendium was available, simple gene-expression based baselines201

were the best performing approaches. This suggests that successful term-centric prediction of biological202

processes may need to rely more heavily on information that is not sequence-based, and, as previously203

reported, may require methods that use broad collections of gene expression data (42, 43).204

[Figure 9 about here.]205

2.5.2 Motility206

In March 2018 there were 302,121 annotations for proteins with the GO term: cilium or flagellum-dependent207

cell motility (GO:0001539) and its descendent terms, which included cell motility in all eukaryotic (GO:0060285),208

bacterial (GO:0071973) and archael (GO:0097590) organisms. Of these, 187 had experimental evidence codes209

and the most common organism to have annotations was P. aeruginosa, on which our screen was performed210

(Table S2).211

As expected, mutants defective in the flagellum or its motor were defective in motility (fliC and other212

fli and flg genes). For some of the genes that were expected, but not detected, the annotation was based213

on experiments performed in a medium different from what was used in these assays. For example, PhoB214

regulates motility but only when phosphate concentration is low (44). Among the genes that were scored215

as defective in motility, some are known to have decreased motility due to over production of carbohydrate216

matrix material (bifA) (45), or the absence of directional swimming due to absence of chemotaxis functions217

(e.g., cheW, cheA) and others likely showed this phenotype because of a medium specific requirement such218

as biotin (bioA, bioC, and bioD) (46). Table 2 shows the contingency table for number of proteins that are219
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GOA annotations
Total: 3630 Unannotated Annotated

CAFA experiments
False 3195 12
True 403 21

Table 2: Number of proteins in Pseudomonas aeruginosa associated with function Motility (GO:0001539)
in the GOA databases versus experimental results.

detected by our experiment versus GOA annotations.220

The results from this evaluation were consistent with what we observed for biofilm formation. Many221

of the genes annotated as being involved in biofilm formation were identified in the screen. Others that222

were annotated as being involved in biofilm formation did not show up in the screen because the strain223

background used here, strain PA14, uses the exoploysaccharide matrix carbohydrate Pel (47) in contrast to224

the Psl carbohydrate used by another well characterized strain, strain PAO1 (48, 49). The psl genes were225

known to be dispensable for biofilm formation in the strain PA14 background and this nuance highlights the226

need for more information to be taken into account when making predictions.227

The CAFA-π methods outperformed our BLAST-based baselines but failed to outperform expression-228

based baselines. Transferred methods from CAFA3 also did not outperform these baselines. It is important to229

note this consistency across terms, reinforcing the finding that term-centric prediction of biological processes230

is likely to require non-sequence information to be included.231

[Figure 10 about here.]232

2.5.3 Long-term memory in D. melanogaster233

Prior to our experiments, there were 1901 annotations made in long-term memory, including 283 experimental234

annotations. Drosophila melanogaster had the most annotated proteins of long-term memory with 217, while235

human has 7, as shown in Table S3.236

We performed RNAi experiments in Drosophila melanogaster to assess whether 29 target genes were237

associated with long-term memory (GO:0007616); for details on target selection, see (29). None of the238

29 genes had an existing annotation in the GOA database. Because no genome-wide screen results were239

available, we did not release this as part of CAFA-π and instead relied only on the transfer of methods that240

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 29, 2019. ; https://doi.org/10.1101/653105doi: bioRxiv preprint 

https://doi.org/10.1101/653105
http://creativecommons.org/licenses/by/4.0/


predicted “long-term memory” at least once in D. melanogaster from CAFA3. Results from this assessment241

were more promising than our findings from the genome-wide screens in microbes (Figure 11). Certain242

methods performed well, substantially exceeding the baselines.243

[Figure 11 about here.]244

2.6 Participation Growth245

The CAFA challenge has seen growth in participation, as shown in Figure 12. To cope with the increasingly246

large data size, CAFA3 utilized the Synapse (50) online platform for submission. Synapse allowed for easier247

access for participants, as well as easier data collection for the organizers. The results were also released to248

the individual teams via this online platform. During the submission process, the online platform also allows249

for customized format checkers to ensure the quality of the submission.250

[Figure 12 about here.]251

3 Methods252

3.1 Benchmark collection253

In CAFA3, we adopted the same benchmark generation methods as CAFA1 and CAFA2, with a similar time-254

line (Figure 13). The crux of a time-delayed challenge is the annotation growth period between time t0 and255

t1. All target proteins that have gained experimental annotation during this period are taken as benchmarks256

in all three ontologies. “No-knowledge” (NK, no prior experimental annotations) and “Limited-knowledge”257

(LK, partial prior experimental annotations) benchmarks were also distinguished based on whether the258

newly-gained experimental annotation is in an ontology that already have experimental annotations or not.259

Evaluation results in Figures 3, 4, and 5 are made using the No-knowledge benchmarks. Evaluation results260

on the Limited-knowledge benchmarks are shown in Figure S3 in the Supplemental Materials. For more261

information regarding NK and LK designations, please refer to the Supplemental Materials and the CAFA2262

paper (26).263

[Figure 13 about here.]264
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After collecting these benchmarks, we performed two major deletions from the benchmark data. Upon265

inspecting the taxonomic distribution of the benchmarks, we noticed a large number of new experimental266

annotations from Candida albicans. After consulting with UniProt-GOA, we determined these annotations267

have already existed in the Candida Genome Database long before 2018, but were only recently migrated to268

GOA. Since these annotations were already in the public domain before the CAFA3 submission deadline, we269

have deleted any annotation from Candida albicans with an assigned date prior to our CAFA3 submission270

deadline. Another major change is the deletion of any proteins with only a protein-binding (GO:0005515)271

annotation. Protein-binding is a highly generalized function description, does not provide more specific272

information about the actual function of a protein, and in many cases may indicate a non-functional, non-273

specific binding. If it is the only annotation that a protein has gained, then it is hardly an advance in our274

understanding of that protein, therefore we deleted these annotations from our benchmark set. Annotations275

with a depth of 3 make up almost half of all annotations in MFO before the removal (Figure S15b). After276

the removal, the most frequent annotations became of depth 5 (Figure S15a). In BPO, the most frequent277

annotations are of depth 5 or more, indicating a healthy increase of specific GO terms being added to our278

annotation database. In CCO, however, most new annotations in our benchmark set are of depth 3, 4 and279

5 (Figure S15). This difference could partially explain why the same computational methods perform very280

differently in different ontologies, and benchmark sets. We have also calculated total information content281

per protein for the benchmark sets shown in Figure S16. Taxonomic distributions of the proteins in our final282

benchmark set are shown in Figure 14.283

[Figure 14 about here.]284

Additional analyses were performed to assess the characteristics of the benchmark set, including the overall285

information content of the terms being annotated.286

3.2 Protein-centric evaluation287

Two main evaluation metrics were used in CAFA3, the Fmax and the Smin. The Fmax based on the precision-288

recall curve, while the Smin is based the RU-MI curve. Mathematical definitions of these metrics are shown289

in pages 22 and 23 of Supplemental Materials. The RU-MI curve (51) takes into account the information290
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content of each GO term in addition to counting the number of true positives, false positives, etc. See291

Supplemental Materials for their mathematical definitions. The information theory based evaluation metrics292

counters the high-throughput low-information annotations such as protein binding, but down-weighing these293

terms according to their information content, as the ability to predict such non-specific functions are not as294

desirable and useful and the ability to predict more specific functions.295

The two assessment modes from CAFA2 were also used in CAFA3. In the partial mode, predictions were296

evaluated only on those benchmarks for which a model made at least one prediction. The full evaluation297

mode evaluates all benchmark proteins and methods were penalized for not making predictions. Evaluation298

results in Figures 3, 4, and 5 are made using the full evaluation mode. Evaluation results using the partial299

mode are shown in Figure S2 in the Supplemental Materials.300

Two baseline models were also computed for these evaluations. The Näıve method assigns the term301

frequency as the prediction score for any protein, regardless of any protein-specific properties. BLAST302

was based on results using the Basic Local Alignment Search Tool (BLAST) software against the training303

database (52). A term will be predicted as the highest local alignment sequence identity among all BLAST304

hits annotated from the training database. Both of these methods were trained on the experimentally305

annotated proteins and their sequences in Swiss-Prot (53) at time t0.306

3.3 Microbe screens307

To assess matrix production, we used mutants from the PA14 NR collection (54). Mutants were transferred308

from the -80°C freezer stock using a sterile 48-pin multiprong device into 200µl LB in a 96-well plate. The309

cultures were incubated overnight at 37°C, and their OD600 was measured to assess growth. Mutants were310

then transferred to tryptone agar with 15g of tryptone and 15g of agar in 1L amended with Congo red311

(Aldrich, 860956) and Coomassie brilliant blue (J.T. Baker Chemical Co., F789-3). Plates were incubated312

at 37°C overnight followed by four day incubation at room temperature on allow the wrinkly phenotype to313

develop. Colonies were imaged and scored on Day 5. To assess motility, mutants were revived from freezer314

stocks as described above. After overnight growth, a sterile 48-pin multiprong transfer device with a pin315

diameter of 1.58 mm was used to stamp the mutants from the overnight plates into the center of swim316

agar made with M63 medium with 0.2% glucose and casamino acids and 0.3% agar). Care was taken to317
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avoid touching the bottom of the plate. Swim plates were incubated at room temperature (19-22°C) for318

approximately 17 hours before imaging and scoring. Experimental procedures in P. aeruginosa to determine319

proteins that are associated with the two functions in CAFA-π are shown in Figure 15.320

[Figure 15 about here.]321

Biofilm formation in Candida albicans was assessed in single gene mutants from the Noble (55) and322

GRACE (56) collections. In the Noble Collection, mutants of C. albicans have had both copies of the323

candidate gene deleted. Most of the mutants were created in biological duplicate. From this collection,324

1274 strains corresponding to 653 unique genes were screened. The GRACE collection provided mutants325

with one copy of each gene deleted and the other copy placed under the control of a doxycycline-repressible326

promoter. To assay these strains, we used medium supplemented with 100µg/ml doxycycline strains, when327

rendered them functional null mutants. We screened 2348 mutants from the GRACE collection, 255 of328

which overlapped with mutants in the Noble collection, for 2746 total unique mutants screened in total. To329

assess defects in biofilm formation or biofilm-related traits, we performed two assays: (1) colony morphology330

on agar medium and (2) biofilm formation on a plastic surface (Figure 16). For both of these assays we331

used Spider medium, which was designed to induce hyphal growth in C. albicans (57), and which promotes332

biofilm formation (39). Strains were first replicated from frozen 96 well plates to YPD agar plates. Strains333

were then replicated from YPD agar to YPD broth, and grown overnight at 30°C. From YPD broth, strains334

were introduced onto Spider agar plates and into 96 well plates of Spider broth. When strains from the335

GRACE collection were assayed, 100µg/ml doxycycline was included in the agar and broth, and aluminium336

foil was used to protect the media from light. Spider agar plates inoculated with C. albicans mutants337

were incubated at 37°C for two days before colony morphologies were scored. Strains in Spider Broth were338

shaken at 225 rpm at 37°C for three days, and then assayed for biofilm formation at the air-liquid interface339

as follows. First, broth was removed by slowly tilting plates and pulling liquid away by running a gloved340

hand over the surface. Biofilms were stained by adding 100µl of 0.1 percent crystal violet dye in water to341

each well of the plate. After 15 minutes, plates were gently washed in three baths of water to remove dye342

without disturbing biofilms. To score biofilm formation for agar plates, colonies were scored by eye as either343

smooth,intermediate, or wrinkled. A wild-type colony would score wrinkled, and mutants with intermediate344
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or smooth appearance were considered defective in colony biofilm formation. For biofilm formation on a345

plastic surface, the presence of a ring of cell material in the well indicated normal biofilm formation, while346

low or no ring formation mutants were considered defective. Genes whose mutations resulted defects in both347

or either assay were considered True for biofilm function. A complete list of the mutants identified in the348

screens is available in Table S1.349

[Figure 16 about here.]350

A protein is considered True in the biofilm function, if its mutant phenotype is smooth or intermediate under351

Doxycycline.352

3.4 Term-centric evaluation353

The evaluations of the CAFA-π methods were based on the experimental results in Section 3.3. We adopted354

both Fmax based on precision-recall curves and area under ROC curves. There are a total of six baseline355

methods, as described in Table 3.356

Model Number Training data Score assignment

expression
1 Gene expression compendium for

P. aeruginosa PAO1
Highest correlation score out of all pair-
wise correlations

2 Top 10 average correlation score

blast
1 All experimental annotation in

UniProt-GOA. Sequences from Swiss-
Prot

Highest sequence identity out of all
pairwise BLASTp hits

2 All experimental annotation in
UniProt-GOA. Sequences from Swiss-
Prot and TrEMBL

blastcomp
1 All experimental and computational

annotations in UniProt-GOA. Se-
quences from Swiss-Prot

2 All experimental and computational
annotations in UniProt-GOA. Se-
quences from Swiss-Prot and TrEMBL

Table 3: Baseline methods in term-centric evaluation of protein function prediction.
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4 Discussion357

Since 2010, the CAFA community has been a home to a growing group of scientists across the globe sharing358

the goal of improving computational function prediction. CAFA has been advancing this goal in three ways.359

First, through independent evaluation of computational methods against the set of benchmark proteins, thus360

providing a direct comparison of the methods’ reliability and performance at a given time point. Second, the361

challenge assesses the quality of the current state of the annotations, whether they are made computationally362

or not, and is set up to reliably track it over time. Finally, as described in this work, CAFA has started363

to drive the creation of new experimental annotations by facilitating synergies between different groups of364

researchers interested in function of biological macromolecules. These annotations not only represent new365

biological discoveries, but simultaneously serve to provide benchmark data for rigorous method evaluation.366

CAFA3 and CAFA-π feature the latest advances in the CAFA series to create advanced and accurate367

methods for protein function prediction. We use the repeated nature of the CAFA project to identify certain368

trends via historical assessments. The analysis revealed that the performance of CAFA methods improved369

dramatically between CAFA1 and CAFA2. However, the protein-centric results for CAFA3 are mixed when370

compared to historical methods. Though the best performing CAFA3 method outperformed the top CAFA2371

methods (Figure 1), this was not consistently true for other rankings. Among all three CAFA challenges,372

CAFA2 and CAFA3 methods inhabit the top 12 places in MFO and BPO. Between CAFA2 and CAFA3373

the performance increase is more subtle. Based on the annotations of methods (Supplementary Materials),374

many of the top-ranking methods are improved versions of methods that have been evaluated in CAFA2.375

Interestingly, the top performing CAFA3 method, which consistently outperformed methods from all past376

CAFAs in the major categories, was a novel contribution (Zhu lab).377

For this iteration of CAFA we performed genome-wide screens of phenotypes in P. aeruginosa and378

C. albicans as well as a targeted screen in D. melanogaster. This not only allowed us to assess the accuracy379

with which methods predict genes associated with select biological processes, but also to use CAFA as380

an additional driver for new biological discovery. In short, our experimental work identified more than a381

thousand of new functional annotations in three highly divergent species. Though all screens have certain382

limitations, the genome-wide screens also bypass questions of biases in curation. This evaluation provides383
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key insights: CAFA3 methods did not generalize well to selected terms. Because of that, we ran a second384

effort, CAFA-π, in which participants focused solely on predicting the results of these targeted assays. This385

targeted effort led to improved performance, suggesting that when the goal is to identify genes associated386

with a specific phenotype, tuning methods may be required.387

For CAFA evaluations, we have included both Näıve and sequence-based (BLAST) baseline methods.388

For the evaluation of P. aeruginosa screen results, we were also able to include a gene expression baseline389

from a previously published compendium (33). Intriguingly, the expression-based predictions outperformed390

existing methods for this task. In future CAFA efforts, we will include this type of baseline expression-based391

method across evaluations to continue to assess the extent to which this data modality informs gene function392

prediction. The results from the CAFA3 effort suggest that gene expression may be particularly important393

for successfully predicting term-centric biological process annotations.394

The primary takeaways from CAFA3 are: (1) Genome-wide screens complement annotation-based efforts395

to provide a richer picture of protein function prediction; (2) The best performing method was a new method,396

instead of a light retooling of an existing approach; (3) Gene expression, and more broadly, systems data397

may provide key information to unlocking biological process predictions, and (4) Performance of the best398

methods has continued to improve. The results of the screens released as part of CAFA3 can lead to a399

re-examination of approaches which we hope will lead to improved performance in CAFA4.400
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Figure 1: A comparison in Fmax between the top-five CAFA2 models against the top-five CAFA3 models.
Colored boxes encode the results such that (1) the colors indicate margins of a CAFA3 method over a CAFA2
method in Fmax and (2) the numbers in the box indicate the percentage of wins. A: CAFA2 top-five models
(rows, from top to bottom) against CAFA3 top-five models (columns, from left to right). B: Comparison of
performance (Fmax) of Näıve baselines trained respectively on SwissProt2014 and SwissProt2017. C: Com-
parison of performance (Fmax) of BLAST baselines trained on SwissProt2014 and SwissProt2017. Statistical
significance was assessed using 10,000 bootstrap samples of benchmark proteins.
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Figure 2: Performance evaluation based on Fmax for top CAFA1, CAFA2 and CAFA3 methods. The top 12
methods are shown in this barplot ranked in descending order fro left to right. The baseline methods are
appended to the right, they were trained on training data from 2017, 2014 and 2011 respectively. Coverage
of the methods were shown as text inside the bars. Coverage is defined as percentage of proteins in the
benchmark that are predicted by the methods. Color scheme: CAFA2: ivory; CAFA3: green; Näıve: red;
BLAST: blue. Note that in MFO and BPO, CAFA1 methods were ranked but not displayed. CAFA1
challenge did not collect predictions for CCO.
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Figure 3: Performance evaluation based on Fmax for the top-performing methods in three ontologies. The
95% confidence interval was estimated using 10, 000× bootstrap on the benchmark set. Coverage of the
methods were shown as text inside the bars. Coverage is defined as percentage of proteins in the benchmark
that are predicted by the methods.
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Figure 4: Precision Recall curves for the top-performing methods
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Figure 5: Evaluation based on the Smin for the top-performing methods
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(a) Eukarya (b) Prokarya

Figure 6: Evaluation based on the Fmax for the top-performing methods in eukaryotic and prokaryotic species
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(a) MFO (b) BPO

(c) CCO

Figure 7: Similarity networks of top 10 methods from CAFA1, CAFA2 and CAFA3. The team names are
displayed together with which CAFA challenge they come from in parenthesis. Similarity is calculated as the
reciprocal of the Euclidean distance of the prediction scores from each pair of methods. A 0.07 cutoff was
applied to the Euclidean distances, i.e. an edge exists if the Euclidean distance is lower than the cutoff. Edge
width is directly proportional to similarity, except at the three edges between the three Näıve methods, where
the similarity is much larger than the rest. Vertex size is directly proportional to number of edges, or degree
of a vertex. Singletons, or vertices without any edges are framed with black circles. The nodes are ranked
counter-clockwise, starting after ’BLAST1’, by Fmax performance in the intersection set of benchmarks in
Section 2.1. Color scheme: CAFA1: orange; CAFA2: ivory; CAFA3: green; Näıve: red; BLAST: blue.

39

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 29, 2019. ; https://doi.org/10.1101/653105doi: bioRxiv preprint 

https://doi.org/10.1101/653105
http://creativecommons.org/licenses/by/4.0/


(a) Molecular Function (b) Biological Process

(c) Cellular Component

Figure 8: Keyword analysis of all CAFA3 participating methods. Both relative frequency of the keywords
and weighted frequency are provided. The weighted frequencies accounts for the performance of the the
particular model using the given keyword. If that model performs well (with high Fmax) then it gives more
weight to the calculation of the total weighted average of that keyword.
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(a) (b)

Figure 9: AUROC of top 5 teams in CAFA-π. The best performing model from each team is picked for the
top five teams, regardless of whether that model is submitted as model 1. Four baseline models all based on
BLAST were computed for Candida, while six baseline models were computed for Pseudomonas, including
two based on Expression profiles.
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Figure 10: AUROC of top 5 teams in CAFA-π. The best performing model from each team is picked for the
top five teams, regardless of whether that model is submitted as model 1.
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Figure 11: AUROC of top five teams in CAFA3. The best performing model from each team is picked for
the top five teams, regardless of whether that model is submitted as model 1.
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Figure 12: CAFA participation has been growing. Each Principle Investigator is allowed to head multiple teams, but each
member can only belong to one team. Each team can submit up to three models.
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Figure 13: CAFA3 timeline

45

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 29, 2019. ; https://doi.org/10.1101/653105doi: bioRxiv preprint 

https://doi.org/10.1101/653105
http://creativecommons.org/licenses/by/4.0/


Figure 14: Number of proteins in each benchmark species and ontology.
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(a) Biofilm screen

(b) Motility screen

Figure 15: Experimental procedure of determining genes associated with the functions biofilm formation and
motility in P. aeruginosa
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(a) wrinkle phenotype

(b) adherence phenotype

Figure 16: Experimental procedure of determining genes associated with the functions biofilm formation in
C. albicans
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