
 

1 

 

Title: Single-cell information analysis reveals small intra- and large 

intercellular variations increase cellular information capacity  

 

 

short title 50 characters including space 5 

Cell-to-cell variability increases information capacity 

 

Authors: Takumi Wada
1
, Mitsutaka Wataya

1
, Masashi Fujii

1, 2
, Ken-ichi Hironaka

1
, Miki Eto

1
, 

Shinsuke Uda
3
, Daisuke Hoshino

1, 4
, Katsuyuki Kunida

1, 5
, Haruki Inoue

6
, Hiroyuki Kubota

3
, 

Hiroki Hamaguchi
7
, Yasuro Furuichi

7
, Yasuko Manabe

7
, Nobuharu L. Fujii

7
, Shinya Kuroda

1, 6*
. 10 

Affiliations: 

1
Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 

Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. 

2
Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, 

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. 15 

3
Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of 

Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan. 

6
Department of Computational Biology and Medical Sciences, Graduate School of Frontier 

Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan. 

7
Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo 20 

Metropolitan University, , 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan. 

 

Present address
 

4
Department of Engineering Science, Graduate School of Informatics and Engineering, University 

of Electro-Communications, Chofu, Tokyo 182-8585, Japan. 25 

5
 Laboratory of Computational Biology, Graduate School of Science and Technology and Data 

Science Center, Nara Institute of Science and Technology, Nara, Japan. 

 

*Corresponding author. E-mail: skuroda@bs.s.u-tokyo.ac.jp  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 29, 2019. ; https://doi.org/10.1101/653832doi: bioRxiv preprint 

https://doi.org/10.1101/653832


 

2 

 

Abstract: Cells transmit information about extracellular stimulation through signaling pathways 

to control cellular function. A signaling pathway can be regarded as a communication channel. In 

the analysis of channels of cell populations, intercellular variation is considered noise. However, 

intercellular variation enables individual cells to encode different information. Therefore, at the 

single-cell level, each cell can be regarded as an independent channel. Thus, we propose that 5 

responses of cells of the same type in tissues, such as the fibers in a skeletal muscle, should be 

regarded as a multiple-cell channel composed of single-cell channels, in which intercellular 

variation contains information. Here, we applied electrical pulses to individual myotubes from 

cultured C2C12 cells or dissociated skeletal muscle fibers and measured Ca
2+

 responses or 

contraction, respectively, to estimate information capacity in a biological system. For each 10 

muscle cell system, we found that a single-cell channel transmitted more information than did a 

cell-population channel, indicating that the cellular response is consistent with each cell (low 

intracellular variation) but different among individual cells (high intercellular variation). As cell 

number and thus the number of single-cell channels increased, a multiple-cell channel 

transmitted more information by incorporating the differences among individual cells. Thus, a 15 

tissue with small intracellular and large intercellular variations has the capacity to distinguish 

differences in stimulation intensity to precisely control physiological function. 

 

One Sentence Summary: Small intracellular and large intercellular variations increase 

information transmission for precise control of tissue function. 20 
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Signaling pathways transmit information about extracellular stimulation to control various 

cellular functions (1). These pathways must reliably convert stimulation intensity into signaling 

activity in the presence of noisy conditions, arising from noise within a cell (intracellular, 

intrinsic noise) and noise among cells (intercellular, extrinsic noise). An example of intracellular 

variation is the stochastic fluctuation of a biochemical reaction; examples of intercellular 5 

variation, are the differences in gene expression and protein abundance among cells (2, 3).  

The amount of information reliably transmitted through a signaling pathway can be quantified by 

mutual information (4-21) (Fig. 1, A and B). The mutual information corresponds to the 

logarithm of the average number of controllable states of cellular response that are defined by 

varied intensity of stimulation. The mutual information is determined by the balance between 10 

intensity and variation of a cellular response. The smaller the variation, the more information can 

be transmitted through a pathway with the same dynamic range. Even a response to 

high-intensity stimulation cannot be reliably transmitted if the variation is large (Fig. 1A, top). 

By contrast, even a response to a low-intensity stimulation can be reliably transmitted if the 

variation is small (Fig. 1A, bottom). Previous studies applying information theory to signaling 15 

pathways have examined the cell-population level (4-20) (table S1), in which a cell population, 

but not single cells, are regarded as a single communication channel [defined hereafter as a 

cell-population channel (Fig. 1C, left)]. For a cell-population channel, the mutual information 

relating stimulation intensity and cellular response contains only 1 bit information (Fig. 1C, left, 

table S1) (4-20), indicating that the cellular response can distinguish only the two conditions of 20 

stimulation: the presence or absence of stimulation. Physiologically, cellular responses are often 

gradually controlled by the intensity of stimulation, meaning that a cellular response can encode 

more than 1 bit information. 

One of the limitations in analyzing a biological system as a cell-population channel is that 

intercellular variation is regarded as noise or uncertainty of signal intensity. However, each cell 25 

can be regarded as an independent single-cell channel, because intercellular variation enables 

individual single-cell channels to encode different information (Fig. 1C, middle). In some tissues 

and organs, such as skeletal muscle, the response represents the sum of responses of individual 

cells. Therefore, we propose that organs and tissues are better represented by a communication 

channel composed of a sum of single-cell channels, which we define as a multiple-cell channel 30 

(Fig. 1C, right). We use the average of the outputs of single-cell channels, rather than a sum of 

the single-channel outputs, to determine the output of a multiple-cell channel so that we can 

directly compare single-cell channels with multiple-cell channels (Fig. 1, C and D). In a 

multiple-cell channel, each single-cell channel can encode different information, and intercellular 

variation represents information. Therefore, the analysis of single-cell channels and the 35 

incorporation of these into a multiple-cell channel will accurately quantify how much 

information is physiologically transmitted in a tissue or organ (Fig. 1C).  

Measuring the mutual information in a single-cell channel requires acquiring data of cellular 

response (R) to repetitive stimulation (S) with various intensities for individual cells (Fig. 1C, 

middle). These data enable to calculate the probability distribution of R for a given S, p(R|S) and 40 

the mutual information in a single-cell channel, I(R;S) (Fig. 1B, C, middle). For some 

experimental paradigms, repetitive stimulation with various intensities of stimulation takes a 

long time, leading to change in the abundance of molecules and a change in an internal state of a 

cell. Thus, the cellular response varies with time, as well as stimulation intensity, complicating 

the calculation of the mutual information between stimulation and cellular response. Analysis of 45 

a single-cell channel from the Ca
2+

 response in HEK293 cells stimulated with acetylcholine 
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repetitively at various concentrations enabled the calculation of the channel capacity, which is 

the maximal amount of information that the channel can transfer, at 2 bits (21). This 2-bit 

channel capacity is higher than the 1-bit capacity calculated for cell-population channels in other 

studies (4-20). With organs, such as skeletal muscle, functioning not as a single cell, but as the 

sum of single cells, a multiple-cell channel should correspond to the physiological 5 

communication channel. Because intercellular variation enables individual single-cell channels 

to encode different information, a multiple-cell channel is likely to transmit more information by 

incorporating intercellular variation as information. However, how much information a 

multiple-cell channel can transfer has not been explored. 

In this study, we solved a technical problem of avoiding time variance in response to repetitive 10 

stimulation by measuring Ca
2+

 response induced by repetitive electrical pulse stimulation (EPS) 

in differentiated C2C12 myotubes (22) (figs. S1 and S2). We established C2C12 cell lines stably 

expressing GCaMP6f, a fluorescent Ca
2+

 probe (23), and differentiated the cells into myotubes. 

In C2C12 myotubes, the Ca
2+

 response to a single EPS lasted ~1 second, and Ca
2+

 amplitude was 

consistent for 200 repetitive EPS (fig. S2). Thus, the Ca
2+

 response is a time-invariant response, 15 

enabling calculation of the mutual information. To calculate the mutual information between 

EPS and Ca
2+

 response in a single-cell channel of a C2C12 myotube, we repetitively stimulated 

each myotube 20 times at 10 different voltages and measured the amplitude of the Ca
2+

 response. 

We established that the 10 voltages were sufficient to avoid underestimation of mutual 

information (fig. S3) and that, although an overestimation bias was present, it was small enough 20 

to have little effect on the calculation of the mutual information from data acquired with 20 

repetitive stimulations of 551 individual myotubes (fig. S4).  

From the analysis of 551 C2C12 myotubes, we observed that Ca
2+

 amplitude generally 

increased as the voltage increased (Fig. 2A); however, even for the same voltage, the Ca
2+

 

amplitude varied from myotube to myotube (Fig. 2B). The variation of Ca
2+

 amplitude in each 25 

myotube was much smaller than that in the population (Total) (Fig. 2, B and C). The larger 

variation of the population derived from large intercellular variation (Fig. 2, D and E, Eqs. 2 and 

3 in Materials and Methods). On average, intercellular variation accounted for 83% of the total 

variation, indicating that intercellular variation is much larger than intracellular variation.  

To quantify how much information about voltage can be encoded in a Ca
2+

 response 30 

(amplitude) in a single-cell channel and cell-population, we calculated the probability 

distribution of Ca
2+

 amplitudes at each voltage for each myotube, calculated the mutual 

information of each single-cell channel relating voltage with Ca
2+

 amplitude, then plotted the 

frequency of the mutual information values occurred for the 551 myotubes (Fig. 2F). Calculation 

of the mutual information requires an input probability distribution, which cannot be determined 35 

for a biological system. Thus, we calculated the mutual information using optimal input 

probability distribution for the averaged response of the total myotubes (see Materials and 

Methods). We assumed that muscle function (fiber contraction) represents the sum of the 

function of the myotubes comprising it; thus, muscle function is controlled by the same optimal 

input probability distribution as that controlling the individual myotubes. To define this input, we 40 

calculated the averaged response of 551 myotubes and estimated the optimal input probability 

distribution of the averaged response for the total (fig. S5, A and B). We used this optimal input 

probability distribution to the averaged response to calculate mutual information in a single-cell 

channel for each myotube. The average mutual information in a single-cell channel was 1.21 ± 

0.50 bits (mean ± S.D.) (Fig. 2F, red solid line). Note that n-bit indicates 2
n
 states. The result 45 

indicates that among the 10 voltage conditions (3.32 bits), on average a single-cell can 
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distinguish 2.32 conditions. Using the optimal input probability distribution for the averaged 

response of the total myotubes, we calculated the mutual information in the cell-population 

channel as 0.33 bits (Fig. 2F, black solid line), indicating that on average the cell-population 

channel cannot distinguish between 2 conditions. This means that as a population, the myotubes 

cannot distinguish even the presence or absence of stimulation. Thus, the single-cell channel 5 

transmitted more information than the cell-population channel, because the cell-population 

channel includes the high intercellular variation.  

Using the optimal input probability distribution for each single-cell channel, we calculated the 

channel capacity, which is the maximum amount of information that can be transmitted, of the 

single-cell channel as 1.5 bits (Fig 2F, red dashed line). This value was similar to and within the 10 

standard deviation of the average channel capacity. Furthermore, there was a strong correlation 

(0.947) between mutual information with the optimal input probability distribution for the 

averaged response and channel capacity of single-cell channels (fig. S6). Therefore, hereafter 

unless otherwise specified, we defined the “mutual information” as the mutual information 

calculated with the optimal input probability distribution for the average response of the total 15 

cells, and we defined “channel capacity” as the mutual information calculated with the optimal 

input probability distribution for each channel. The channel capacity of the myotube 

cell-population was similar to those of previous studies of cell-population channels (~1 bit) 

(table S1) (4-20). We obtained similar results for the mutual information and channel capacities 

for single-cell channels and cell-population channels in two independent clones of C2C12 20 

myotube lines stably expressing GCaMP6f (fig. S7A and B). Additionally, these two clones also 

exhibited greater intercellular variation than intracellular variation (fig. S7C and D).  

In the cell-population channel, intercellular variation is regarded as uncertainty of signal 

intensity and represents noise. Therefore, the mutual information in the cell-population channel 

is lower than that in the single-cell channel. In contrast, intercellular variation enables individual 25 

single-cell channels to encode different information, such as different signal intensities, 

suggesting that a multiple-cell channel composed of a sum of single-cell channels can encode 

more information than a single-cell channel. To examine this possibility, we calculated the 

mutual information of a 2-cell channel for every pair of myotubes (Fig. 3). The 2-cell channel is 

a sum of two different single-cell channels (Eq. 10 in Materials and Methods). We averaged the 30 

responses of two paired cells to calculate the probability distribution of the averaged response, 

which we used as the response of a 2-cell channel to calculate the mutual information of a 2-cell 

channel. The average mutual information of the 2-cell channel was 1.55 ± 0.43 bits (mean ± 

S.D.) (Fig. 3A). This result indicates that on average 2.94 conditions can be distinguished by a 

2-cell channel and that a 2-cell channel can transmit more information and distinguish more 35 

conditions than a single-cell channel, which only distinguished 2.32 conditions on average. 

Moreover, increasing the number of cells in a multiple-cell channel increased the mutual 

information (Fig. 3B, blue). In the myotube experiments with 10 stimulation intensities, the 

mutual information plateaued with the inclusion of ~2
7
 myotubes at 3.13 bits, because the mutual 

information approached the amount of information of input (3.32 bit), suggesting that the mutual 40 

information for a multiple cell channel with greater than 2
7
 cells is underestimated.  

 To examine the contributions of intracellular and intercellular variations to the increase in the 

mutual information, we virtually created a multiple-cell channel composed of the same myotube 

by resampling responses repetitively from the same cell, where intercellular variation is not 

involved. The mutual information of a multiple-cell channel composed of the same myotube was 45 

calculated for 551 myotubes (Fig. 3B, red). Hereafter, we define the mutual information of a 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 29, 2019. ; https://doi.org/10.1101/653832doi: bioRxiv preprint 

https://doi.org/10.1101/653832


 

6 

 

multiple-cell channel composed of different myotubes as         and that of the same myotube 

as        . For a 2-cell channel, about half of         were larger than the average of         

(compare number of red lines with blue value at 2
1
 on x-axis in Fig. 3B). However, as the 

number of myotubes in a multiple-cell channel increased, the average of         (Fig. 3B, 

blue) gradually became exceeded most of         (Fig. 3B, red). Because         includes 5 

intercellular variation, this result suggested that intercellular variation is a key component for 

information encoding of a multiple-cell channel. Then, we investigated why the mutual 

information of a multiple-cell channel was larger than that of a single-cell channel. Mutual 

information can be expressed as 

                     
     is the amount of information of the response;       is illustrated as the average 10 

logarithm of the number of distinguishable states of responses.        is the amount of 

information of the response for a given stimulation intensity;        is illustrated as the 

average logarithm of the number of response for a given stimulation intensity. The mutual 

information becomes larger as      becomes larger or        becomes smaller. For a pair of 

identical cells,      does not increase, indicating that any increase in      depends on 15 

intercellular variation (fig. S8). For example, for a pair of cells with different responses to a set 

of stimulation intensities,      can increase because of an increase in the distinguishable 

number of responses determined by averaging the responses of both cells (fig. S8A). At the same 

time, averaging the responses decreases        because the variance of averaged response 

decreases as the number of cells increases. In contrast, for a pair of cells with identical responses 20 

to a set of stimulation intensities, averaging the responses decreases        without any 

change in      (fig. S8B), because there is no intercellular variation. In this case, intercellular 

variation does not contribute to the increase in the mutual information.  

We examined the contribution of the change in       from the effect of intercellular 

variation and the change in          to the increase in the mutual information of a 25 

multiple-cell channel (Fig. 3, C and D, Eqs. 13, 14, 16, 17 in Materials and Methods). Both 

      and          contributed to          (Fig. 3C). The rate of the increase in 

        against the increase in myotube numbers was larger than that of the increase in         

from 2
2
 to 2

6
 myotubes, because of increase in      . By contrast, only          

contributed to          (Fig. 3D). The decrease       that occurred for multiple-cell 30 

channels composed of more than 2
5
 cells is an artifact caused by underestimation of       as a 

result of using discrete input probability distribution (fig. S9). If the input probability distribution 

is continuous,       increases monotonically as the number of cells increases (fig. S9). Thus, 

with a continuous input probability distribution,       would contribute to the increase in the 

mutual information for the entire range. Because the increase in       is due to the 35 

intercellular variation, these results indicate that intercellular variation increases the information 

capacity of a multiple-cell channel. Cheong et al (12) showed an increase in the information 

capacity of a multiple channel composed of cell-population channels. Thus, increase the number 

of channels incorporated into a multiple channel based on either cell-population channels or 

single-cell channels increased information capacity.  40 

The Ca
2+

 response triggers skeletal muscle contraction, representing a final biological output. 

However, in C2C12 myotube, contraction is so weak that it is difficult to acquire the quantitative 

contraction data. Therefore, we isolated single fibers from flexor digitorum brevis (FDB) muscle 

of mice and used EPS-induced contraction of single fibers as a physiological output (28). We 

measured contraction in response to 10 repetitive stimulations at 32 different voltages and 45 
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calculated the mutual information between EPS and contraction (Fig. 4, fig. S10) (Materials and 

Methods). Even for the same voltage, contraction varied from fiber to fiber (fig. S10). The 

variation of contraction in each fiber was much smaller than that across the population (fig. 

S10B). The larger variation of the fiber population derived from a large intercellular variation 

(Fig. 4A, Eqs. 2 and 3 in Materials and Methods). Similar to the C2C12 myotubes, on average, 5 

intercellular variation accounted for 86% of the total variation.  

As we did for the C2C12 myotubes, we calculated the averaged response of all of the fibers (a 

total of 50) and calculated the optimal input probability distribution of the averaged response of 

the total cells, which gives a channel capacity (fig. S5, C and D). We used this optimal input 

probability distribution to the averaged response of the total cells to calculate the mutual 10 

information between EPS and contraction in a single-cell channel for each cell (Fig. 4B), which 

yielded a value of 0.74 ± 0.29 bits (mean ± S.D.) (Fig. 4B, red solid line). The mutual 

information of contraction is smaller than that of the Ca
2+ 

amplitude in C2C12 myotubes (1.21 

bits). Because of the experimental conditions and outputs are different, the mutual information of 

contraction of single-fiber cells and that of Ca
2+ 

amplitude in C2C12 myotubes are not directly 15 

comparable, thus we cannot conclude that Ca
2+ 

amplitude encodes more information than 

contraction. Using the optimal input probability distribution for the averaged response of the 

total fibers, we calculated the mutual information in the cell-population channel and found that 

the mutual information of the cell-population channel was 0.25 bits (Fig. 4B, black solid line), 

which is smaller than that in a single-cell channel. Similar to the mutual information between 20 

voltage and C2C12 myotube Ca
2+

 response, the mutual information between voltage and fiber 

contraction is greater when evaluated as a single-cell channel than as a cell-population.  

Using the optimal input probability distribution for the averaged response of the total fibers, 

we calculated the mutual information of 2-cell channels for each pair of fibers. The average 

mutual information of the 2-cell channel was 1.01 ± 0.32 bits (mean ± S.D.) (Fig. 4C, black, Eq. 25 

10 in Materials and Methods). This result indicates that on average 2.02 conditions can be 

distinguished by a pair of fibers and that a 2-cell channel can transmit more information than a 

single-cell channel for which only 1.67 conditions can be distinguished on average. As the 

number of the fibers composing the multiple-cell channel increased, the mutual information of 

the multiple-cell channel increased (Fig. 4D, blue), consistent with the increased information 30 

capacity that we observed by increasing the number of the cells in the multiple-cell channel for 

the C2C12 myotubes. Using the same method that we used for the C2C12 myotube data (Fig. 

3B), we generated         for 50 fibers (Fig. 4D, red). For a 2-cell channel, about 40% of 

        was larger than the average of        . However, unlike the C2C12 myotube 

multiple-cell channel, when the number of cells in a multiple-cell channel increased, the percent 35 

of         (Fig. 4D, red) that exceeded the average         (Fig. 4D, blue) did not become 

smaller. However, the sample size of the single fibers (50) is not as large as that of C2C12 

myotubes (551), thus we cannot conclude that         does not become larger than         

with a larger number of cells. Therefore, we extrapolated the standard deviation of an n-cell 

averaged response to the larger number of cells and calculated an         using this n-cell 40 

response (Fig. 4D, green, Eq. 11 in Materials and Methods). This n-cell calculation showed the 

expected reduction in the percent of         (Fig. 4D, red) that exceeded the average of the 

extrapolated         (Fig. 4D, green). Thus, the muscle fiber system also transmitted more 

information as the number of cells of the multiple-cell channel increased as a result of the 

incorporation of intercellular variation.  45 
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We examined the contribution of       and          to the increase in mutual 

information of a multiple-cell channel (Fig. 4, E and F, Eqs 13, 14, 16 and 17 in Materials and 

Methods). The results were the same as for the C2C12 myotube system: Both       and 

         contributed to the extrapolated          (Fig. 4E), whereas only          

contributed to          (Fig. 4F). Thus, for both fiber contraction and the Ca
2+

 response in 5 

C2C12 myotubes, intercellular variation increases information capacity of a multiple-cell 

channel.  

Intriguingly, there are ~750 cells in flexor digitorum brevis muscle (FDB) of CD-1 mice (24). 

Although we used single fibers from FDB of C57/BL6 mice, we expect that the number of cells 

in FDB is likely similar in both strains of mice. At 2
9 

(512) cells, the extrapolated         was 10 

2.56 bits, which was larger than the average of        , which was 2.50 bits, suggesting that 

intercellular variation contributes to accurate contraction of a skeletal muscle.  

In this study, we show that a single-cell channel can transmit more information than 

cell-population channel both for EPS-mediated stimulation of Ca
2+

 signaling in C2C12 myotubes 

and EPS-mediated contraction of individual skeletal muscle fibers (Fig. 5). Incorporating 15 

single-cell channels into a multiple-cell channel has the greatest information transmission 

capacity. Intracellular variation was smaller than intercellular variation for both biological 

systems. Intracellular variation is thought to arise from the stochastic fluctuation of biochemical 

reactions, and intercellular variation is thought to mainly depend on the differences in gene 

expression and protein abundance among individual cells (2). Therefore, smaller intracellular 20 

variation means that the fluctuations of biochemical reactions are relatively smaller than the 

differences produced by gene expression and protein abundance. The larger intercellular 

variation enables a multiple-cell channel to encode more information than a cell-population or 

single-cell channel. Taken together, a cellular response is accurate in each cell but different 

among individual cells, and this difference encodes information in a biological system. Thus, our 25 

findings show that “small” intracellular and “large” intercellular variations would enable tissues 

to precisely respond to a range of stimuli to control physiological function. 

In a skeletal muscle, fibers are innervated by a single motor neuron, and a group of fibers and 

its innervating same motor neuron is called a motor unit (25). This means that fibers in the same 

motor unit receive the same input, whereas fibers in different motor units receive different inputs. 30 

Motor neurons vary according to several properties, such as activation threshold and firing rate, 

resulting in a skeletal muscle contraction by summing contraction of each motor unit, known as 

recruitment (26). As more motor units are recruited, the muscle contraction becomes stronger. In 

addition to control of contraction by recruitment of motor units, our data indicated that, even 

fibers with the same input, similar to a motor unit innervated by the same motor neuron, enables 35 

precise control of contraction through small intracellular and large intercellular variations. Taken 

together, our results suggested that control of a motor unit through distinct small intracellular and 

large intercellular variations in the fibers stimulated by the motor neuron may enable precise 

control of skeletal muscle contraction. 

 40 
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Fig. 1. Information transmission in a cell-population, a single-cell, and a multiple-cell 

channel. (A) The relationship between stimulation (S) and response (R) and dependence of the 

ability to discriminate between high and low intensity stimulation on response variation. (B) 

Mutual information between stimulation and response. S, R, C, and N represent the set of 

stimulations, responses, cells, and the number of repetitions of stimulation, respectively.      5 

and           are probability distributions of stimulation intensity and response intensity, 

respectively, and             is a conditional probability distribution of the response for a 

given stimulation. (C) Mutual information of a cell-population, a single-cell, and a multiple-cell 

channel. For a cell-population channel, response probability distribution is calculated from a 

single stimulation for each cell and includes both intracellular and intercellular variations as 10 

noise. For a single-cell channel, response probability distribution is calculated from repetitive 

stimulation for each cell and includes intracellular variation as information. A multiple-cell 

channel, composed of a combination of single-cell channels, includes both intercellular and 

intracellular variation as information. Mutual information in the different channels differs in the 

definition of response R,         ,       , 
 

    
           for a cell-population, 15 

single-cell channel and multiple-cell channel respectively, where      is the number of 

repetitions of stimulation, and     is the cell. 
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Fig. 2. Information transmission of a single-cell channel for electrical pulse stimulation into 

increases in Ca
2+

 amplitude in C2C12 myotubes. (A) Ca
2+

 response in individual 

differentiated C2C12 myotubes by repetitive stimulation (20 times) with 10 different intensities 

of electrical pulse stimulation (EPS). “Cell 1” to “Cell 3” are representative single-cell responses. 

“Total” indicates the responses in 551 myotubes. Each blue line indicates the Ca
2+

 response 5 

induced by single stimulation for each cell. Red lines indicate the averaged response time course 

of the total cells. (B) Ca
2+

 amplitude versus voltage from the 3 cells shown in (A). A dot 

indicates Ca
2+

 amplitude to each single stimulation. Ca
2+

 amplitude is defined as the maximum 

response subtracted by basal Ca
2+

 before stimulation (fig. S2). (C) Average Ca
2+

 amplitudes 

induced by 75V EPS in individual C2C12 myotubes and in the total population. The error bars 10 

indicate standard deviations. (D) The percentages of intercellular (white) and intracellular (black) 

variation in the total variation for the indicated voltage of EPS (Eqs. 2 and 3 in Materials and 

Methods). (E) The total variation (red) divided into intercellular (blue) and intracellular (green) 

variations. (F) Histogram of the mutual information between intensity of EPS and Ca
2+

 

amplitude in single-cell channels. Red dashed line, the average of channel capacity of a 15 

single-cell channel (1.45 bits); red solid line, the average mutual information of a single-cell 

channel (1.21 bits); black dashed line, channel capacity of the cell–population channel (0.76 

bits); black solid line, the mutual information of the cell–population channel (0.33 bits). We used 

the optimal input probability distribution for the averaged response of the total cells to calculate 

the mutual information, and the optimal input probability distribution for each channel to 20 

calculate channel capacity. 
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Fig. 3. Information transmission of a multiple-cell channel composed of single-cell channels. 

(A) Histogram of the mutual information of a multiple-cell channel comprised of 2-cell channels 

(Eq. 10 in Materials and Methods). Black line, the average mutual information of 2-cell channels 

(1.55 bits); red line, the average mutual information of single-cell channels (1.21 bits). (B) 

Mutual information of a multiple-cell channel according to the number of cells included as 5 

single-cell channels. Blue line, the average mutual information of a multiple-cell channel 

composed of single-cell channels from the 551 different myotubes, defined as        . Red 

lines, mutual information of a multiple-cell channel composed of the same myotube by 

resampling responses repetitively from the same myotube, defined as        . Black line, the 

average of        . Bars indicate standard deviation for both black and blue lines. (C) The 10 

contribution of the difference in the average     ,      , and the difference in the average 

       ,           to differences in the average        ,            in a multiple-cell 

channel composed of different single-cell channels. The differences were defined by those 

between     ,        ,         of each number of cells and those whose size is 1 (Eqs. 15, 

16, and 17 in Materials and Methods). (D) The contribution of       and          to 15 

          in a multiple-cell channel composed of the same single-cell channel. We used the 

optimal input probability distribution for the averaged response of the total cells to calculate the 

mutual information. 

 

 20 
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Fig. 4. Information transmission of a single-cell channel and a multiple-cell channel for 

electrical pulse stimulation into contraction of single skeletal muscle fibers. (A) The 

percentages of intercellular (white) and intracellular (black) variation in the total variation for the 

indicated voltage of EPS in single fibers (Eqs. 2 and 3 in Materials and Methods). The average 

intracellular variation was 86% of the total variation across all voltages. (B) Distribution of the 5 

mutual information between intensity of EPS and contraction in single-cell channels. Red dashed 

line, the average channel capacity of a single-cell channel (1.38 bits); red solid line, the average 

mutual information of a single-cell channel (0.74 bits); black dashed line, channel capacity of a 

cell-population channel (0.36 bits); black solid line, mutual information of a cell-population 

channel (0.25 bits). (C) Histogram of the mutual information of multiple-cell channel comprise 10 

of 2-cell channels (Eq. 10 in Materials and Methods). Black line, the average mutual information 

of a 2-cell channel (1.01 bits); red line, the average mutual information of a single-cell channel 

(0.74 bits). (D) Mutual information of a multiple-cell channel according to the number of cells 

included as single-cell channels. Blue line, the average mutual information of a multiple-cell 

channel composed of different cells,        . Bar indicates standard deviation. Red lines, the 15 

mutual information of a multiple-cell channel composed of 50 copies of the same cell by 

resampling responses repetitively from the same cell,        . Black line, the average        . 

Bar indicates standard deviation. Green line, mutual information of an extrapolated multiple-cell 

channel comprised of different cells generated by extrapolating the standard deviation to the 

number of cells (Eq. 11 in Materials and Methods). (E) The contribution of       and 20 

         to           in a multiple-cell channel composed of different single-cell channels. 

(Eqs. 15, 16 and 17 in Materials and Methods). (F) The contribution of       and          

to           in a multiple-cell channel composed of copies of the same single-cell channel. We 

used the optimal input probability distribution for the averaged response of the total cells to 

calculate the mutual information and the optimal input probability distribution for each channel 25 

to calculate channel capacity (dashed lines in B). 
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Fig. 5. Summary of information capacity in this study 

Mutual information of a cell-population channel, the average of mutual information of a 

single-cell channel and a multiple-cell channel in this study are shown._ 
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