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SUMMARY 

Chemoresistance is the norm in pancreatic ductal adenocarcinoma (PDAC) leading to an 

abysmal five-year survival rate of less than 10%. We performed genome-wide CRISPR 

activation (CRISPRa) and CRISPR knock out (CRISPRko) screens to identify mechanisms of 

resistance to four cytotoxic chemotherapies (gemcitabine, 5-fluorouracil, irinotecan, and 

oxaliplatin) used to treat PDAC patients in two PDAC cell lines. Mirroring patient treatment 

outcomes, we found that multi-drug resistance genes were more likely to be associated with 

patient survival. We identified activation of ABCG2, a well-described efflux pump, as the most 

consistent resistance gene in four drugs and two cell lines. Small molecule inhibitors of ABCG2 

restored sensitivity to chemotherapy. Our screen demonstrated that activation of members of the 

hemidesmisome complex and transcriptional repressor complexes conferred resistance to 

multiple drugs. Finally, we describe an approach for applying our results to predict drug 

sensitivity in PDAC tumors and cell lines based on gene expression. 
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INTRODUCTION 

The era of high-throughput genome sequencing has led to an unprecedented 

understanding of the genetic and epigenetic alterations underlying the most common cancers 

(Kandoth et al., 2013; Sanchez-Vega et al., 2018). In several cases this has led to the 

development of successful targeted therapies. Early examples such as the BCR-ABL gene fusion, 
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which can be targeted with the tyrosine kinase inhibitor imatinib (Goldman and Melo, 2003), and 

EGFR kinase domain mutations, which have been inhibited with gefitinib (Pao et al., 2004), have 

been followed by a rapidly growing number of promising targeted therapeutics (Bollag et al., 

2012; Katzel et al., 2009; Warr and Shore, 2008). Unfortunately, pancreatic ductal 

adenocarcinoma (PDAC) has remained largely refractory to the improvement seen in several 

other cancers with five-year survival rates still less than 10% (Siegel et al., 2018). With largely 

non-specific symptoms and invasive procedures required for diagnosis, only 20% of PDAC 

patients are eligible for surgical resection, leaving a majority of patients with chemotherapy and 

radiation as their sole course of treatment (Kamisawa et al., 2016). Even patients eligible for 

surgical resection tend to have recurrent disease within 2 years that is refractory to adjuvant 

chemotherapy (Stathis and Moore, 2010). In an effort to improve patient outcomes, multi-drug 

combinations such as FOLFIRINOX (fluorouracil, folinic acid, irinotecan and oxaliplatin) are 

increasingly being used despite associated toxicities and modest improvements in outcomes 

(Conroy et al., 2011). 

Large cohort sequencing efforts have established a relatively short list of commonly 

mutated genes, including KRAS, TP53, SMAD4, and CDKN2A, however these have thus far 

proven to be poor drug targets (Bailey et al., 2016; Raphael et al., 2017; Witkiewicz et al., 2015). 

Moreover, few genetic perturbations have been reproducibly associated with patient prognosis 

(Shugang et al., 2016; Witkiewicz et al., 2015). Transcriptomic sequencing has been more 

successful identifying subtypes of PDACs that may predict prognosis (Bailey et al., 2016; 

Collisson et al., 2011; Moffitt et al., 2015; Raphael et al., 2017). Of particular interest, is the 

squamous/quasi-mesenchymal subtype, which consistently exhibits significantly poorer 

prognosis than other subtypes.  Unfortunately, patient subtyping is based on the expression levels 
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of thousands of genes in primary tumor tissue, making the delineation of individual targets 

difficult.  

Complete resistance to potent multi-drug cocktails is common in PDAC patients 

(Garrido-Laguna and Hidalgo, 2015). Several extra-cellular mechanisms for drug resistance have 

been proposed including a highly immunosuppressive micro-environment (Bazhin et al., 2013), 

extensive desmoplasia (Chu et al., 2007), and hypovascularization (Koong et al., 2000). Tumor 

heterogeneity is another notable mechanism of resistance (Yachida and Iacobuzio-Donahue, 

2009). PDAC tumors often consist of several unique clonal populations each of which may 

harbor a genetic background capable of conferring drug resistance and have the potential to 

become the dominant tumor population after drug treatment. However, these clones are almost 

impossible to detect in an agnostic manner a priori without extremely deep levels of sequencing 

that are cost prohibitive in most settings (Griffith et al., 2015). An alternative approach to this 

problem is to define the landscape of cellular mechanisms of PDAC drug resistance 

experimentally, then deeply screen tumors in a targeted manner for the presence of previously 

identified resistance drivers. Previous insertional mutagenesis- and RNA interference-based 

screens have successfully identified novel genes whose inactivation leads to gemcitabine 

sensitivity in PDAC cells (Bhattacharjee et al., 2014; Smith et al., 2014; You et al., 2011). More 

recently, genome-wide CRISPR-Cas9 screening, which provides complimentary information to 

previous screening methodologies (Evers et al., 2016; Morgens et al., 2016), for essential genes 

across RNF43-mutant and wild type PDAC cell lines found mutant lines to be specifically 

dependent upon FZD5 despite non-aberrant expression of FZD5 or other FZD receptors 

(Steinhart et al., 2017). We performed CRISPR-Cas9 knock-out (CRISPRko, Wang et al., 2014) 

and endogenous activation (CRISPRa, Konermann et al., 2015) screening in two PDAC cell lines 
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(BxPC3 and Panc-1) to identify genes whose loss or gain of expression were able to modulate 

sensitivity to four of the most common cytotoxic chemotherapies used in the treatment of PDAC 

(gemcitabine, oxaliplatin, irinotecan, and 5-fluorouracil). We identified several novel genes and 

pathways that contribute to drug specific or multi-drug resistance. We validated our top hits in 

three cell lines using multiple sgRNAs. We determined that many of our hits are likely relevant 

to PDAC patients as their expression levels are correlated with overall survival. Finally, we used 

our screen results to develop a simple algorithm for predicting drug sensitivity in cell lines and 

patients.  

 

RESULTS 

CRISPR screening reveals drug resistance genes 

We performed genome-wide CRISPRko and CRISPRa screening in the Panc-1 and 

BxPC3 cell lines to identify both drug-specific and multi-drug mechanisms of resistance to four 

drugs commonly used to treat PDAC (gemcitabine, oxaliplatin, irinotecan, and 5-fluorouracil) 

(Figure 1A, Figure S1). Drug doses were optimized to inhibit growth to a level of 10-20% of the 

untreated cells although a broader range of selection strength was observed in some cases (Figure 

S2). We found the sgRNA log2 fold changes (treated/untreated) of drug replicates were 

significantly more correlated than samples treated with different drugs (Figure S3). However, 

there was a much higher correlation between samples treated with different drugs than expected 

by chance suggesting mechanisms of resistance were sometimes shared between drugs (Figure 

S3). The degree of replicate agreement also exhibited a strong inverse correlation with drug 

selection strength (Rho = -0.55, P=0.026, Figure S4). Clustering replicates by the most variable 

sgRNAs highlights that the strongest mechanisms of resistance are drug-specific, however the 
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two nucleoside analogs, 5-fluorouracil and gemcitabine, share a relatively large number of top 

sgRNAs (Figure 1B, Table S1). For example, over-expression of SLC29A1, a nucleoside 

transporter that is capable of both influx and efflux, confers significant resistance to gemcitabine 

and 5-FU, but little resistance to oxaliplatin or irinotecan. Other genes showing similar patterns 

include FMO5, a flavin-containing monooxygenase involved in metabolism xenobiotics that has 

been linked to prognosis in colorectal cancer (Zhang et al., 2018); several genes that function in 

cellular metabolism: SCD5, HYAC1, COQ6; and other genes involved in transport or its 

regulation, SLC22A9, SLC16A7, CCZ1, TBC1D3I. 

Drug-specific mechanisms clustered into pathways, some of which were previously 

described. For example, TGFB1-dependent activation of the SMAD regulatory complex has been 

associated with oxaliplatin resistance (Mao et al., 2017; Sun et al., 2017) and hedgehog signaling 

has been linked to irinotecan resistance (Meng et al., 2015; Tripathi et al., 2014). Biosynthesis of 

heme and several phospholipid molecules were pathways uniquely associated with resistance to 

our nucleoside analogs. Both of these metabolic pathways have been described as important 

mechanisms of gemcitabine resistance and likely play a role in oxidative stress response (Miyake 

et al., 2010; Tadros et al., 2017). Overall, we saw that there was a weak positive correlation 

between enrichment across our screens and patient survival. We determined that this correlation 

was driven primarily by associations between survival and enrichment in multi-drug resistance 

genes. We observed that genes enriched in individual drug screens tended to be depleted for 

significant associations with PDAC patient survival (Figure S5). Based on this result and the fact 

that PDAC patients are routinely treated with complex drug cocktails, we focused the remaining 

analysis on multi-drug resistance mechanisms under the assumption that they may hold greater 

clinical relevance.  
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To prioritize resistance genes, we computed the sum of the replicate minimum log2 fold 

change of the two most enriched sgRNAs targeting each gene (L2FC sum) in each cell line 

(Table S2A-B). This approach requires that prioritized genes have a large increase in 

representation for two independent sgRNAs in each replicate and produces a relatively 

conservative list of hits. Multi-drug resistance genes were identified by computing the mean 

L2FC sum across all four drugs in each cell line. This approach was particularly powerful as it 

leveraged information from 48 experiments (4 drug screens x 3 replicates x 2 cell lines x 2 

sgRNAs). We found L2FC sums to be weakly correlated across cell lines (rho=0.014, P=0.034), 

likely a reflection of strong phenotypic and genetic differences found between our two cell lines 

(Kim et al., 2014).  

ABCG2 over-expression confers drug resistance 

A subset of genes possessed high L2FC sums in both cell lines. We performed validation 

experiments on several genes nominated by our screening data in three cell lines, Panc-1, BxPC-

3, and MiaPaca-2. These experiments showed evidence for 8 genes conferring resistance with at 

least one guide in at least one cell line. Overall, 10% of CRISPRko and 22.7% of CRISPRa 

screens showed statistically significant validation as measured by increased EC50 (Table S3, 

Figure S6A). In the CRISPRa system, we observed that guides that resulted in a high degree of 

over-expression were more likely to significantly affect EC50 (Figure S6B).  

The top multi-drug resistance gene identified by our CRISPRa screen and validated using 

independent guides in multiple cell lines was the ATP-binding cassette (ABC) transporter, 

ABCG2 (Figure 2A). This gene has been associated with multi-drug resistance primarily in breast 

cancer, and to some extent in pancreatic cancer cell lines (Bhagwandin et al., 2016; Mo and 

Zhang, 2012; Sun et al., 2016). ABCG2 functions as an efflux pump with broad range substrates 
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and our screen data supported these observations with CRISPRa-mediated activation of ABCG2 

promoting resistance to all four drugs in our screen (Figure 2B). In our screen, ABCG2 activation 

led to particularly strong resistance to oxaliplatin treatment, with a six-fold enrichment observed 

for the top ABCG2 sgRNA in treated relative to control cells. This sgRNA was capable of 

increasing ABCG2 expression to approximately 25 times the baseline expression level exhibited 

in control cells expressing a scrambled sgRNA and recapitulated the effect observed in the 

pooled screen in an individual sgRNA validation experiment using a different two vector 

CRISPRa system (Figure 2C,D). RNA-sequencing data does not suggest significant off-target 

effects (Figure S7). Furthermore, treatment with KO143 and sorafenib, two inhibitors of 

ABCG2, was able to reverse the resistance to irinotecan observed in the context of ABCG2 over-

expression (2E, Allen et al., 2002; Wei et al., 2012). 

Although ABCG2 activation proves to be a robust mechanism for multi-drug resistance, 

its expression level is not strongly correlated with patient survival suggesting it may not be a 

common mechanism of drug resistance in PDAC patients (Figure S8). Nonetheless, ABCG2 is 

expressed at levels above background with expression increased in some patients for whom our 

findings may be relevant.  

Novel pathways are associated with multi-drug resistance 

Examination of top genes in our CRISPRa and CRISPRko screens revealed enrichment 

of genes involved in a set of Reactome pathways. Many of these pathways also contain genes 

whose expression was associated with PDAC patient survival (Figure 3A-B, Table S4).  These 

pathways, which when activated induce drug resistance and when knocked out confer drug 

sensitivity, represent potentially useful therapeutic targets. One pathway meeting these criteria is 

the hemidesmosome assembly pathway (Figures 4A, S8). The hemidesmisome is a multi-protein 
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complex that adheres epithelial cells to the basement membrane (Walko et al., 2015) and has 

been strongly linked to cell adhesion-mediated drug resistance (CAM-DR, Correia and Bissell, 

2012). One of the strongest hits in this pathway, PLEC, acts as a linker protein for cytoskeletal 

scaffolding and has been previously associated with BRCA2 activity in breast cancer (Figure S9, 

Niwa et al., 2009). Several genes in the hemidesmosome pathway show enrichment in our screen 

(Figure 3C). Our validation results showed PLEC activation was most associated with oxaliplatin 

resistance in MiaPaca-2 and BxPC-3 cell lines (Figure 3D). In patients, genes of this pathway 

were highly expressed in the squamous subtype of PDAC, which was described as conferring a 

particularly poor prognosis (Figure 3E, Bailey et al., 2016). The mean expression level of genes 

in this pathway was also significantly greater in treatment naïve tumors from PDAC patients who 

succumbed to disease within 300 days (bottom quartile) relative to those who survived greater 

than 900 days (top quartile) in two independent cohorts (Figure 3F, Kirby et al., 2016; Raphael et 

al., 2017). These data nominate the hemidesmosome as potential driver of poor prognosis of the 

squamous subtype.  

Activation of several genes involved in chromatin remodeling also fostered drug 

resistance (Figure 3A,B). The role of chromatin remodeling in pancreatic cancer has been 

heavily investigated as several genes involved in histone methylation (MLL2 and MLL3) and 

members of the tumor suppressing SWI/SNF complex (SMARCA1 and ARID1A) are recurrently 

mutated in PDAC tumors (Ryan et al., 2014). Moreover, global changes in repressive histone 

marks has been associated with metastatic PDAC tumors (McDonald et al., 2017). We found that 

activation of several genes involved in the repression of chromatin via histone deacetylation 

resulted multi-drug resistance (Figure S10A). Particularly prominent were members of the 

Nucleosome Remodeling Deacetylase (NuRD) complex (MTA2/3, CHD3/4, HDAC1/2, and 
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GATAD2A), members of the Nuclear receptor CoRepressor (NCoR) complex (NCOR2, 

TBL1XR1, and TBL1X), and the repressive transcription factor REST and its interacting partner 

RCOR1, each of which have been demonstrated to regulate gene expression programs important 

for chemoresistance (Hou et al., 2017; Liang et al., 2014; Wong et al., 2014). Histone 

deacetylase inhibitors have demonstrated promise in PDAC pre-clinical studies and are currently 

being investigated in multiple clinical trials (Feng et al., 2014). In agreement with these findings, 

over-expression of HDAC2 demonstrated resistance to oxaliplatin relative to control cells 

(Figure S10B), however our validation was likely limited by the level of HDAC2 over-

expression achieved for this already highly expressed gene (Figure S6B).  

CRISPR screen data can be used globally to predict chemosensitivity 

Our screen yielded a large number of candidate genes and the validation of top hits 

suggests that our results are rich with new genes relevant to drug resistance. Since it is not 

feasible to individually validate all interesting genes, we sought to globally validate data from 

our screen. We reasoned that if our screen represents a gene’s ability to confer drug resistance, 

then expression of genes that were top hits in our screens could be used to predict drug 

sensitivity in cell lines. To test this, we summed the product of a cell line’s scaled expression 

data and the square of the L2FC sum for a given drug for each gene to generate a putative 

resistance score (Figure 4A). This method was tested on two independent previously published 

data sets characterizing PDAC cell line drug sensitivity. We found our predicted drug response 

scores significantly associated with observed irinotecan and gemcitabine sensitivity in the 18 

pancreatic cancer lines assayed by cancer cell line encyclopedia (Barretina et al., 2012) and 14 

lines from our own published work (Figure 4B-C, Kirby et al., 2017). Our drug response 

predictions were also able to respond to dynamic changes within a cell type. An increase in 
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predicted drug resistance was observed in each of seven PDAC cell lines after a weeklong 

treatment with a sub lethal dose of gemcitabine (Figure 4D). Finally, we assessed the 

performance our gemcitabine resistance predictions in patients who received adjuvant 

gemcitabine chemotherapy, but found our predictions were only meaningful for patients at the 

extreme ends of predicted sensitivity or resistance (Figure 4E). 

 
DISCUSSION 

The ability to both inhibit and endogenously activate the expression of genes in a 

modular and programmable manner has revolutionized forward genetic screening and is 

empowering discoveries that were previously impossible (Gersbach and Barrangou, 2018). We 

present the largest screen for cellular mechanisms of chemoresistance in PDAC cells to date and 

the first screen to perform both genome-wide knock out and endogenous activation in PDAC 

cells. The scale of our screen has allowed us to make a few fundamental observations of CRISPR 

screening that may be generalizable outside of PDAC. First, we found that the selection strength 

was the methodological variable most significantly correlated with our screen reproducibility. 

The implication of this finding is that the false positive rate of a screen is likely to be dose 

dependent and investigators should make every effort to perform as strong of a selection as 

possible. This can be difficult to achieve in screens incorporating cytotoxic chemotherapies such 

as ours because cells often accumulate damage throughout an extended selection period and will 

exhibit residual death after the drug is removed from the media. Thus, significant effort should 

be made to ensure appropriate selection strength, which in our hands was roughly 80% selection 

relative to control cells, while maintaining sufficient survivorship for sequencing library 

construction post-selection.  
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The second general observation was a relatively weak correlation between replicate 

reproducibility and gene significance levels across cell lines. While this observation may be 

partially explained by methodological covariates like selection strength (Figure S4), it is also 

likely that strong genetic and phenotypic differences observed between these cell lines (Kim et 

al., 2014) permit different mechanisms of chemoresistance. A gene capable of modulating 

chemosensitivity across every PDAC cell line would be an ideal target, however, our data 

suggests that this is not a realistic expectation. Previous screens for chemoresistance in PDAC 

cell lines have been limited in that they only use one cell line (Bhattacharjee et al., 2014; You et 

al., 2011) and our study is likely undersampling the natural variation in PDAC with only two cell 

lines. As sequencing and screening costs decrease, future studies examining orders of magnitude 

greater numbers of cell lines will likely add to the knowledge catalogued by our study. 

Our last general observation is that genes and pathways associated drug-specific 

resistance tended to be less associated with PDAC patient survival than multi-drug resistance 

pathways. This result mirrors the reality of current PDAC clinical management in which patients 

are routinely treated with multiple drugs as frontline therapy (Garrido-Laguna and Hidalgo, 

2015) and, at least at the cellular level, drug-specific mechanisms of resistance likely account for 

a smaller proportion of chemoresistance. As the rational design and delivery of multi-drug 

cocktails becomes more sophisticated and widely used we expect this observation to be made in 

other cancers as well (Hu et al., 2016). 

We found ABCG2 to be the most consistent gene associated with resistance across each 

drug and both cell lines. ABCG2 is a well-described gene capable of mediating multi-drug 

resistance and as a efflux pump capable of acting upon a broad range of substrates, the 

mechanism of resistance is clear and helps to confirm the validity of our findings. Our validation 
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data confirm that two independent guides confer resistance to multiple drugs in multiple cell 

lines. However, we were unable to find evidence of ABCG2 expression being correlated with 

patient survival in PDAC patients, thus the clinical relevance is unknown, however some 

evidence suggests that ABCG2 expression is localized to cancer stem cells, which represent a 

minority of the total cell population, thus ABCG2’s role may be obscured from bulk tumor 

sequencing (Bhagwandin et al., 2016). It is for that reason we sought to demonstrate that 

inhibition of ABCG2 has the potential to sensitize cells to cytotoxic chemotherapy. Our findings 

suggest that further investigation of these agents would be warranted. 

We also identified several components of the hemidesmisome complex as capable of 

mediating multi-drug resistance and possessing a strong correlation with patient survival across 

multiple cohorts. The hemidesmisome is critical for cells to adhere to the basement membrane 

and has been described as a core regulator of cell adhesion-mediated drug resistance (CAM-

DR)(Correia and Bissell, 2012). CAM-DR is increasingly recognized for its importance in 

PDAC and the evolutionary trade offs between cells committing to epithelial-to-mesenchymal 

transition (EMT) in favor of metastasis as opposed to maintaining connections to the basement 

membrane and engaging in CAM-DR is an active area of investigation(Makohon-Moore and 

Iacobuzio-Donahue, 2016). As expression of hemidesmisome genes are strongly associated with 

quasi-mesenchymal/squamous subtype, genes identified by this study represent candidate 

markers and drivers of the poor patient prognosis described with this subtype across multiple 

studies (Bailey et al., 2016; Collisson et al., 2011; Moffitt et al., 2015; Raphael et al., 2017). 

While the hemidesmisome is not readily targetable, the quasi-mesenchymal/squamous subtype 

has been previously characterized as sensitive to the EGFR inhibitor, erlotinib. Erlotinib was 

approved for PDAC despite marginal survival benefits and its widespread use has been limited 
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by lack of a reliable biomarker capable of identifying responsive patients (Garrido-Laguna and 

Hidalgo, 2015). Performing tumor RNA-sequencing to cluster tumors into corresponding 

subtypes, which often have fluid definitions across studies, may be difficult clinically, however 

measuring a few components of the hemidesmisome complex identified by our study, such as 

PLEC, may be clinically tractable. 

We also identified several transcriptional repressors including REST, the NCoR complex, 

and the NuRD complex as important regulators of chemosensitivity. Previous complementary 

studies have found recurrent inactivating mutations in several transcriptional activators including 

the SWI/SNF complex and the histone methyltransferases MLL2 and MLL3 in PDAC patients 

(Ryan et al., 2014). The transcriptional repressors identified by our study, such as HDAC2, are 

responsible for broad epigenetic reprogramming, thus future investigations will involve 

narrowing down the key epigenetic changes linked to resistance.  

Lastly, we used our CRISPRa data to generate an algorithm for predicting sensitivity to 

drugs assayed in our study. We provided evidence of our algorithm’s performance for 

gemcitabine and irinotecan in two independent studies that cataloged drug sensitivity and 

transcription of several PDAC cell lines. Our algorithm performed less well in predicting the 

survival PDAC patients treated with gemcitabine, only holding predictive power at the extreme 

ends of sensitivity prediction. This is likely explained by multiple non-cellular factors 

contributing to patient survival, such as comorbidities, patient drug metabolism, immune 

response, and stage at diagnosis. Thus cellular mechanisms of resistance may only dictate patient 

response in outlier cases. Furthermore, the expression data used to predict patient response was 

obtained from treatment naïve tumors and tumor sensitivity profiles may change at disease 

recurrence. We hope this effort inspires further attempts to integrate screening data with 
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transcriptional profiling to predict drug response and facilitate rational combination 

chemotherapy. 
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Figure 1. CRISPR screen reveals drug resistance genes. (A) Schematic describing our screening 

protocol. (B) A heatmap of the sgRNA count per million, z-scored by row for the most variable 

500 sgRNAs across all of our CRISPRa screen replicates in the PANC-1 cell line. (C) A density 

plot shows enrichment across all resistance screens for each gene, measured by the mean log2 

fold change over background and the gene’s association with survival, -log10(p-value).   

Figure 2. (A) A scatterplot shows the mean L2FC sum for all four drugs assayed in each of two 

cell lines. Inset displays a zoomed out view of the entire plot. (B) Boxplots indicate the sgRNA 

fold change in counts per million comparing treated cells to control cells for each replicate and 

each cell line for the top ABCG2 sgRNA. (C) Barplots indicating the mean ABCG2 expression 

post sgRNA treatment as assayed by RNA-sequencing for two guides targeting ABCG2 

(ABCG2_A and ABCG2_B) compared to two non-targeting controls (NTC1, NTC2). (D) 

Survival curves displaying the fraction of cells surviving a series of oxaliplatin doses for cells 

stable expressing an ABCG2-targeting sgRNA (blue) or non-targeting control sgRNAs (red and 

black). E) In ABCG2 over-expressing cells, we measured cell survival compared to cells with a 

non-targeting control guide under the indicated drug treatments. Plot indicates fold-change in 

survival compared to NTC2 with no inhibitor (blue), 3 uM sorafenib (green), and KO143 

(maroon). 

Figure 3. (A) For each pathway, an individual box represents an enrichment p-value for each of 

three guides targeting genes in the indicated pathway. (B) Scatter plot showing pathways 

enriched for multi-drug resistance in our CRISPRa and CRISPRko screens and their association 

with patient survival in the TCGA cohort. Patient survival is represented by the size and color of 

the circle. (C) Barplot indicating the percentile rank of the most enriched sgRNA targeting each 
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member of the hemidesmisome assembly pathway (Reactome). (D) Survival curves displaying 

the fraction of Panc-1 cells surviving a series of oxaliplatin doses for cells stable expressing a 

PLEC-targeting sgRNA (blue) or non-targeting control sgRNAs (red/black). (E) Boxplots 

displaying the mean expression level of members of the hemidesmisome assembly pathway in 

each of the subtypes described by Bailey et. al. (F) Boxplots indicating the mean expression level 

of hemidesmisome assembly pathway members in Kirby et. al patients surviving <300 days or 

>900 days and ICGC patients surviving <300 days or >900 days.  

Figure 4. (A) Schematic describing the algorithm for predicting drug response from 

transcriptome data. A matrix of Z-scored gene expression for all genes across all samples, 

weighted by a vector corresponding to each gene’s measured association with resistance to the 

drug in the screen. (B) Scatterplot showing observed irinotecan IC50 values compared to 

predicted sensitivity for 18 PDAC cells assayed by the Cancer Cell Line Encyclopedia. 

Rho=0.44, p-0.06. (C) Predicted gemcitabine sensitivity plotted compared to observed IC50 

group for 15 PDAC cell lines assayed by Kirby et al. Wilcoxon Rank sum p=0.09. (D) Kaplan-

Meier plot showing the change in predicted sensitivity before and after treatment with a sub-

lethal dose of gemcitabine in several PDAC cell lines. Chi-squared p=0.01 (E) Boxplots 

indicating the survival time of PDAC patients treated with gemcitabine stratified by their 

predicted gemcitabine sensitivity of treatment naïve, resected tumor.  
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STAR METHODS 

Contact for Reagent and Resource Sharing 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Sara Cooper (sjcooper@hudsonalpha.org). 

Experimental Model and Subject Details 

Cell culture 

 Panc-1 (CRL-1469), BxPC3 (CRL-1687), and MiaPaca-2 (CRL-1420) cell lines were 

obtained from ATCC. All cell lines were maintained in DMEM (ThermoFisher #11965) 

supplemented with 10% FBS (VWR #16777), 0.5% Penicillin-Streptomycin (ThermoFisher 

#15140122), and 0.5% GlutaMAX (ThermoFisher #A12860). All cell lines were maintained at 

37oC and 5% CO2.  

Method Details 

Plasmids 

LentiCas9-Blast (Addgene #52962) was used to generate cell lines stably expressing 

CAS9 for knock out screening. Lenti-dCAS9-VP46-Blast (Addgene #61425) and lenti-MS2-p65-

HSF1-Hygro (Addgene #61426) were used to generate cells for gene activation. The GeCKO A 

pooled sgRNA library (Addgene #1000000049) was used for gene knock out screening and the 

SAM pooled sgRNA library (Addgene #1000000057) was used for gene activation screening. 

LentiCrispr-v2 (Addgene #52961) was used for single gene knock out validation and 

lentiSAMv2 (Addgene #75112) was used for single gene activation validation. Guides were 

cloned as described previously (Joung et al., 2017). pMD2.G (Addgene #12259) and psPAX2 

(Addgene # 12260) were used to facilitate viral packaging of sgRNA pools and single vector 

plasmids. 
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Library amplification 

The GeCKO A and SAM library were amplified as described previously (Joung et al., 

2017). Briefly, for each pooled library 8 electroporations were performed using 1uL of library 

and 25uL of Lucigen Endura Electrocompetent cells (Lucigen #60242). Electroporations were 

recovered in 1.975mLs of recovery media and rotated at 250 rpm for 1hr at 37oC. All 

electroporations were pooled after incubation and 2mLs of transformation were plated on 8-

25cm2 bioassay plates with LB agar containing ampicillin. Plates were grown for 14hrs at 35oC. 

Transformation efficiency was greater than 1x108 for both libraries. Bacterial colonies were 

scraped off of bioassay plates in 20mL of LB broth, pelleted and stored at -20oC for less than 1 

week. Plasmid DNA was extracted from greater than 3g of pellet using the Qiagen EndoFree 

Plasmid Maxi Kit (Qiagen #12362). 

Viral packaging 

HEK 293FT cells (ThermoFisher #70007) were cultured in DMEM (ThermoFisher 

#11965) supplemented with 10% FBS (VWR #16777), 0.5% Penicillin-Streptomycin 

(ThermoFisher #15140122), 0.5% Non-essential amino acids (ThermoFisher #11140), and 0.5% 

sodium pyruvate (ThermoFisher #11360070). Viral packaging of pooled sgRNA libraries was 

performed in three 225cm2 flasks. One hour prior to transfections, after cells had reached ~60% 

confluency, DMEM was removed and replaced with 13mL of pre-warmed OptiMEM 

(ThermoFisher #31985). For each 225cm2 flask, 15.3ug of pMD2.G, 23.4ug psPAX2, and 30.6ug 

of pooled library were combined with 200uL of Lipofectamine PLUS reagent (ThermoFisher 

#15338) in 4mL of OptiMEM and vortexed to mix.  Separately, 100uL of Lipofectamine LTX 

(ThermoFisher #15338) was diluted in 4mL of OptiMEM, vortexed, and incubated at room 

temperature for 5 minutes. The lipofectamine and plasmid solutions were then combined, 
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vortexed, and incubated for 5 additional minutes at room temperature. The 8mLs of combined 

solution were added to each flask. After incubating for 6 hours, PptiMEM was replaced with the 

original DMEM culture media supplemented with 1% bovine serum albumin (ThermoFisher 

#A9647). After 60 hours, the media was harvested, centrifuged at 3000rpm for 10 minutes at 

4oC, filtered through a 0.45um filter (VWR #28145), and stored at 4oC overnight in Lenti-X 

concentrator (Clontech #631231) at a 3:1 virus to Lenti-X concentrator volume ratio. The 

following day the virus was centrifuged at 1,500g for 45 minutes at 4oC and the supernatant was 

poured off. The viral pellet was resuspended in DMEM culture media at one-tenth the original 

volume and stored at -80oC. Packaging of other vectors was performed identically to the pooled 

library, with reagents scaled down proportionally according to the surface area of the appropriate 

flask. 

Viral packaging of single sgRNAs used for validation was performed in 6-well tissue 

culture treated plates. The day prior to transfection, 750,000 HEK293T cells were seeded into a 6 

well plate; minimum one well per sgRNA. One hour prior to transfections, after cells had 

reached ~90% confluency, DMEM was removed and replaced with 3mL of pre-warmed 

OptiMEM (ThermoFisher #31985). For each well to be transfected, 1ug of pMD2.G and 1.5ug 

psPAX2 were combined with 12.5uL of Lipofectamine 2000 reagent (ThermoFisher #11668019) 

in 200uL of OptiMEM and vortexed to mix.  Separately, 10uL of Lipofectamine PLUS reagent 

(ThermoFisher #15338) was diluted in 200 uL of OptiMEM and vortexed to mix. Both master 

mixes are combined and added to a tube containing 2.5ug of sgRNA plasmid, vortexed, and 

incubated at room temperature for 5 minutes. The 400uL of combined solution were added to 

each corresponding well in the 6-well late. After incubating for 48 hours, the media was 
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harvested, centrifuged at 3000rpm for 10 minutes at 4oC, filtered through a 0.45um filter (VWR 

#28145).  Virus was either immediately stored at -80oC or used for transfection. 

Drug resistance screening 

Panc-1 and BxPC3 cell lines were transduced with LentiCas9-Blast or co-transduced with 

Lenti-dCAS9-VP46-Blast and lenti-MS2-p65-HSF1-Hygro for knock out and activation 

screening respectively. 500,000 cells were seeded into each well of a six-well flask with 

0.8ug/mL polybrene (Sigma #TR-1003-G). Previously packaged plasmid added at volumes that 

ranged from 0 to 500uL of virus.  Cells were then centrifuged at 2000rpm for 2 hours at 37oC. 

After centrifugation the cells were incubated overnight and media was changed the following 

morning.  The following day cells were treated with appropriate antibiotic. Panc-1 cells were 

treated 10ug/mL Blasticidin and 1500ug/mL Hygromycin and BxPC3 cells were treated with 

2.5ug/mL Blasticidin and 1250ug/mL Hygromycin. Cells were kept under antibiotic selection for 

one week post-transduction until no-virus control cells were dead. The lowest viral titer that had 

a sufficient number of cells to carry forward were grown up such that pooled libraries could be 

transduced at 500x representation at a multiplicity of infection (MOI) of 0.4: 

Min. cells needed = 70,000 sgRNAs x 500 cells/sgRNA x (1/0.4) = 87.5x106 cells 

Pooled library transduction was performed in at least 30 wells of a 12 well flask at 3x106 

cells per well with 0.8ug/mL polybrene and sufficient volume of concentrated virus to reach an 

MOI of 0.4 (approximately 30% of cells surviving after antibiotic selection). Cells were 

transduced as described above.  The following day cells were split out into larger 225cm2 flasks 

and either puromycin (Panc-1 10ug/mL, BxPC3 2.5ug/uL) or zeocin (Panc-1 2mg/mL, BxPC3 

3mg/mL) was added to select for presence of knock out and activation plasmids, respectively. 

Library-transduced cells were under selection for one week post-transduction and expanded to 
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7x107 cells per treatment replicate or 1000x representation for each of the 4 drug and control 

conditions per replicate. A minimum 500x representation was maintained at all times in control 

cells. Drug treatments included gemcitabine (Tocris #G6423, Panc-1 25nM, BxPC3 25nM), 

oxaliplatin (Sigma #O9512, Panc-1 2.5uM, BxPC3 2.5uM), irinotecan (Sigma #I1406, Panc-1 

500nM, BxPC3 250nM), and 5-fluorouracil (Sigma #F6627, Panc1 7.5uM, BxPC3 5uM). All 

doses were optimized to yield ~20% the number of viable cells in drug treated cells relative to 

untreated control cells after 14 days of culture. After 14 days of drug treatment, cells were 

counted, pelleted, and stored at -80oC. The first replicate of the knock out screen for each cell 

line was performed separately from the second two in order to optimize all drug doses and 

library preparation methods. All three replicates of the activation screen were performed in 

parallel for each cell line.  

DNA extraction and library preparation 

Genomic DNA was extracted from cell pellets adapting a previously published protocol 

(Chen et al., 2015). The protocol described below assumes 5x107 input cells, but can be scaled 

proportionally to accommodate different cell ranges. Briefly, cells were resuspended in 6mLs of 

a NK lysis buffer (50mM Tris (ThermoFisher #BP1757)), 50mM EDTA (Fluka #03690), 1% 

SDS (Invitrogen #15525), and 30uL of 20mg/mL Proteinase K (Zymogen #D3001)) and 

incubated at 55oC overnight. The following morning, 30uL of 10mg/mL RNAse A (Qiagen 

19101) was added to the lysate, inverted several times, and incubated at 37oC for 30 minutes. 

Next, 2mL of chilled 7.5M ammonium acetate (ThermoFisher #631-61-8) was added to the 

lysate, vortexed for 20 seconds, and centrifuged at 4100xg for 10 minutes at room temperature. 

The supernatant was carefully decanted to a fresh conical tube and 6mLs of 100% isoproponal 

(Sigma #I9516) was added to the tube inverted 50 times and centrifuged at 4100xg for 10 
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minutes.  The supernatant was then discarded, 6mLs of 70% ethanol (Sigma #E7023) was added 

to the DNA pellet, and centrifuged at 4100xg for 1 minute after inverted 10 times. The 

supernatant was pipetted off carefully and the DNA pellet was dried at room temperature for 1 

hour.  500uL of TE buffer (Sigma #T9285) was added to the dried pellet and the tube was 

incubated at 65oC 1-2 hours.  Next the conical tubes were briefly spun at 1000xg to pull down 

any evaporated TE buffer and incubated for 2-3 days at room temperature vortexing periodically. 

If necessary, additional TE buffer was added until the DNA pellet was completely dissolved. The 

gDNA concentration was measured using Qubit fluorometric quantitation (ThermoFisher 

#Q32850). 

Two-step PCR reactions were used to amplify and append sequencing tails to both the 

activation and knock out libraries. Primer sequences are available in Table S5. To maintain 500x 

representation in control samples we performed 86 50uL PCR1 reactions (or as many reactions 

as possible for drug selected samples) per replicate each containing 2.5ug gDNA, 2.5 uL of 

appropriate forward and reverse primer (25uM), 25uL NEBNext High-Fidelity 2X PCR master 

mix (NEB #M0541), and the remaining volume required to reach 50uL in nuclease-free water. 

For the knock out library, we performed an initial denaturation of 98oC for 60 seconds, 18 cycles 

of 98oC denaturation for 15 seconds, 62oC annealing for 30 seconds, 72oC extension for 30 

seconds, a final extension of 72oC for 5 minutes, and a 4oC hold. The activation screen PCR1 

was carried out under identical conditions except the annealing temperature was adjusted to 60oC 

and only 16 cycles of PCR were performed. PCR1 reactions for each replicate of each treatment 

condition were pooled and the second PCR reaction (PCR2) was used to append Illumina 

sequencing tails.  
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We performed 12 PCR2 reactions for each replicate of each condition consisting of 2.5uL 

of pooled PCR1, 2.5uL of appropriate forward and reverse primer (10uM), 25uL NEBNext 

High-Fidelity 2X PCR master mix, and 20uL of nuclease-free water. The PCR conditions were 

carried out similarly to PCR1 except it was reduced to 10 cycles for each reaction with an 

annealing temperature of 65oC for the knock library amplification and 69oC for the activation 

library amplification.  All PCR2 reactions for each replicate of each condition were pooled and 

50uL was run on a 2% gel at 125V for 2 hours. A 240bp or 280bp band for the knock out or 

activation library respectively was excised and gel extracted (Qiagen #28704).  All controls and 

drug treated samples for each replicate were prepped in the same batch in order to avoid batch 

affects. 

Single gene validation 

The top sgRNAs for genes of interest were cloned into either LentiCrispr-v2 or 

LentiSAMv2 for knock out or activation screen validation as described previously (Konermann 

et al., 2015). (Sequences are available in Table S6). Plasmids putatively containing sgRNAs of 

interest were transformed into One Shot Stbl3 competent E. coli (ThermoFisher #C737303). 

Colonies that survived ampicillin selection were cultured overnight in 10mL of LB broth 

containing ampicillin. Plasmids were harvested with an E.Z.N.A Endo Free plasmid mini kit 

(Omega #D6950) and confirmed to contain the appropriate sgRNA with Sanger sequencing. To 

generate stable cell lines expressing each sgRNA, single sgRNA plasmids underwent viral 

packaging and were transduced as described previously, followed by transduction. For 

transduction 106 cells were seeded per well of a 6-well plate for a total volume of 2mL of cells 

and media. To that we added, 1.6ul of polybrene (Millipore Sigma #TR-1003-G), and 1mL of 
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packaged virus. Then, we used spinfection for 30 minutes at 2000RPM at 37C. All lines were 

established using antibiotic selection as described above.  

Non-targeting and targeting sgRNAs were plated in 96-well plates at 750 cells/well and 

treated with a range of gemcitabine, oxaliplatin, or irinotecan concentrations. Plated cells were 

grown for 6 and 8 days, for the knockout and activation screen, respectively, with the media 

changed and drug applied every 2 days. The number of viable cells surviving drug treatment was 

assayed with Cell Titer-Glo cell (Promega #G7571). ABCG2 inhibition was done under these 

conditions as well, with the only change being the addition of 3uM Sorafenib or 3uM KO143 

where indicated. Two NTCs were tested and the complete data sets is available in Figure S11. 

RNA-sequencing 

RNA was extracted from cell pellets containing 3 x 105 cells. Cells were suspended in 400 ul of 

RL Buffer from the Norgen total RNA extraction kit (cat. # 37500, 25720) plus 1% BME. 

Samples were homogenized by vortex. We then continued extraction of RNA with the Norgen 

Total RNA extraction kit including the Norgen DNase kit (cat. # 37500, 25720). RNA integrity 

numbers (RIN) were measured using the BioAnalyzer (Agilent) and all measured at a RIN of 10 

indicating high quality RNA. RNA was quantified using Qubit 2.0 Fluorometer (Thermofisher). 

We used 1000 ng of total RNA as input to the NEBNext Poly(A) mRNA Magnetic Isolation 

Module (NEB cat# E7490S) followed by the NEBNext Ultra RNA Library Prep Kit for Illumina 

(cat# E7530S). Libraries were barcoded using the Genomic Services Lab at HudsonAlpha’s 

custom dual index barcode plate. We pooled all samples onto a lane of a S4 NovaSeq flow cell, 

and sequenced an average of 95.8 million 150bp paired-end reads per sample with an average 

Q30 score of 95%. Samples were processed using our published primary analysis tool, 

aRNApipe (Alonso et al., 2017).  
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Quantification and Statistical Analysis 

Sequencing and data processing 

Three sets of replicates (control and 4 drug treated samples) for each cell line were 

sequenced on one lane of Illumina NextSeq resulting in an average of 40 million reads per 

sample. 5’ and 3’ adapters were observed in >99% of reads and were trimmed using cutadapt 

(Martin, 2011). Adapter trimmed fastq files were then aligned to the gRNA libraries and raw 

count tables generated using MAGeCK (Li et al., 2014). We had a perfect alignment rate of 

72%-74% of raw reads for each sample. Sequencing the control samples revealed sufficient 

representation of guides with an average of 99.8% and 99.3% of sgRNAs detected and 98.4% 

and 94.2% of sgRNAs detected at greater than 1 read per million in our knock out and activation 

control samples, respectively. A log2 fold change was computed for each sgRNA in each drug 

treated sample relative to the untreated control sample for each replicate. sgRNAs with less than 

10 counts in the untreated control samples and less than 50 counts in a treated control sample 

were excluded from further analysis (<1% of sgRNAs)(Table S1A-B). At this step we 

recognized the first replicate of our knock out screen correlated relatively poorly with the second 

two replicates and was excluded from downstream analysis. We ranked each of the sgRNAs 

targeting each gene by the minimum log2 fold change across each replicate. Top genes were 

subsequently prioritized for follow up by their “L2FC sum” in each cell line, which is the sum of 

the replicate minimum log2 fold changes of the top two sgRNAs targeting each gene. Multi-drug 

hits were prioritized by computing the mean “L2FC sum” across each of the four drug 

treatments. Pathways enriched for genes conferring drug resistance were identified by comparing 

the distribution of log2 fold changes for the top, second, and third sgRNA targeting each gene 

within a Reactome pathway to that of all other genes by Wilcox ranked sum test. Reactome 
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(Fabregat et al., 2018) pathways with fewer than 10 genes targeted in our libraries were 

excluded. A consolidated knock out and activation score was computed for each pathway by 

summing the –log10 P-values for the top, second, and third sgRNAs of each pathway (Table S4). 

Curve fitting single gene validation  

Where EC50 values were calculated, we use cell count data as measured by Cell Titer 

Glo, as input, and fit those data to a rectangular hyperbola which led to the use of we used 

Michaelis-Menten equation to curve fit the data and derive the estimated drug concentration at 

which the drug is half its maximum effectiveness and confidence intervals for each cell line, 

drug, and guide combination. We used those data to determine the change in EC50 and p-value 

associated with those changes for each guide compared to each of the two non-targeting controls 

(NTCs) . These calculations were done using Prism GraphPad 7. 

Predicting drug response using genome-wide screening results 

Sensitivity to each of the four drugs was computed using a cell line’s treatment naïve 

gene expression levels and the minimum L2FC Sum for each gene across both cell lines. Raw 

expression data for each cell line, obtained from sources described below, was processed into 

raw count tables using the aRNApipe RNA-seq processing pipeline (Alonso et al., 2017). Cell 

line gene expression data was normalized using the R package DESeq2’s variance stabilizing 

transformation (Love et al., 2014) and each gene’s expression level was z-scored across each cell 

line. Next, a scalar by which to weight each gene’s expression level was computed using the 

L2FC Sum described above. The replicate minimum L2FC sum from the relevant drug’s 

CRISPRa screen was used for all genes who’s L2FC Sum was greater than 0. The replicate 

maximum L2FC sum was used for all genes whose L2FC Sum was less than 0. All other genes 

were assigned a scalar value of zero. The L2FC Sum scalar was squared to ensure a positive 
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value and place more weight on genes with high absolute fold change. Next, the product of each 

gene’s z-scored expression data and L2FC Sum scalar was computed to generate a weighted 

expression value for each gene. Finally, the cumulative sum of the weighted expression value for 

each gene with a negative L2FC Sum in each cell line was subtracted from the cumulative sum 

of the weighted expression value for each gene with a positive L2FC Sum to generate a single 

value representing a cell line’s expected level of resistance to the given drug. Irinotecan 

sensitivity and gene expression data were obtained for 18 PDAC cell lines with permission from 

the Cancer Cell Line Encyclopedia (Barretina et al., 2012) 

(https://portals.broadinstitute.org/ccle). Gemcitabine sensitivity (cell lines were classified as 

sensitive, intermediate, or resistant) and gene expression data for 14 PDAC cell lines was 

obtained from previously published work (Kirby et al., 2016). A panel of five PDAC cell lines 

was screened for oxaliplatin sensitivity by treating with serial dilutions of the drug as described 

previously (Kirby et al., 2016). Cell counts at each dose were compared to a vehicle control to 

construct a six-point dose response curve. The area under the dose-response curve was used to 

compare sensitivity. Patient expression data and treatment info was obtained from a previous 

study at the GEO accession GSE79670.  

Data and Software Availability 

Data generated by this study have been made available through public databases. Screening data 

are available at SRA by referencing the BioProject number PRJNA542321. RNA-sequencing 

data are available at GEO using the accession GSE131596. 
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Key Resources Table 

Reagent	or	Resource	 Source	 Identifier	
Bacterial	and	Virus	Strains	
Lucigen	Endura	
Electocompetent	Cells	 Lucigen	 #60242	
		 		 		
Chemicals	

Sorafenib	
Cayman	
Chemicals	 #10009644	

KO143	 Cruz	Chem	 sc-204030A	
		 		 		
Deposited	Data	
RNA-sequencing	 This	paper	 GSE131596 
CRISPR	Screening	
sgRNA	amplicon	
sequencing	 This	paper	 PRJNA542321 
RNA-sequencing	of	
pancreatic	cancer	cell	
lines	 Kirby	et	al	2016	 GSE79670 
		 		   
Experimental	Models:	Cell	Lines	
HEK	293	FT	 ThermoFisher	 #70007	
Panc-1	 ATCC	 CRL-1469	
BxPC3	 ATCC	 CRL-1687	
MiaPaca-2	 ATCC	 CRL1420	
		 		 		
Oligonucleotides	
See	Supplemental	
Tables	

Integrated	DNA	
Technologies	 NA	

		 		 		
Recombinant	DNA	
LentiCas9-Blast	 AddGene	 #52962	
Lenti-dCas9-VP46-Blast	 AddGene	 #61425	
Lenti-MS2-p65-HSF1-
Hygro	 AddGene	 #61426	
GeckoA	pooled	sgRNA	
library	 AddGene	 #1000000049	
SAM	pooled	sgRNA	
library	 AddGene	 #1000000057 
LentiSAMv2	 AddGene	 #75112 
pMD2.G	 AddGene	 #12259 
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psPAX2	 AddGene	 #12260 
		 		   
Software	and	Algorithms	

aRNA-pipe	 Alonso	et	al	2017	 https://github.com/HudsonAlpha/aRNAPipe	

MaGeCK	 Li	et	al	2014	 http://liulab.dfci.harvard.edu/Mageck/	
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