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Abstract

While inter-subject correlation (ISC) analysis is a powerful tool for naturalistic scanning data, drawing appropriate
statistical inferences is difficult due to the daunting task of accounting for the intricate relatedness in data structure as
well as the intricacy of handling the multiple testing issue. In our previous work we proposed nonparametric approaches
to performing group ISC analysis through bootstrapping for one group of subjects and permutation testing for two groups
(Chen et al., 2016). A more flexible methodology is to parametrically build a linear mixed-effects (LME) model that
captures the relatedness embedded in the data (Chen et al., 2017); in addition, the LME approach also has the capability of
incorporating explanatory variables such as subject-grouping factors and quantitative covariates. However, the whole-brain
LME modeling methodology still faces some challenges. When an LME model becomes sophisticated, it becomes difficult or
even impossible to assign accurate degrees of freedom for each testing statistic. In addition, the typical correction methods
for multiple testing through spatial extent tend to be over-penalizing, and dichotomous decisions through thresholding
under null hypothesis significance testing (NHST) are controversial in general and equally problematic in neuroimaging as
well. For instance, the popular practice of only reporting “statistically significant” results in neuroimaging not only wastes
data information, but also distorts the full results as well as perpetuates the reproducibility crisis because of the fact that
the difference between a “significant” result and a “non-significant” one is not necessarily significant.

Here we propose a Bayesian multilevel (BML) framework for ISC data analysis that integrates all the spatial elements
(i.e., regions of interest) into one model. By loosely constraining the regions through a weakly informative prior, BML con-
servatively pools the effect of each region toward the center, and improves collective fitting and overall model performance.
The BML paradigm leverages the commonality or similarity among brain regions and the information across multiple levels
embedded in the hierarchical data structure instead of leveraging the spatial extent adopted in the conventional correc-
tion method for multiple testing. In addition to potentially achieving a higher inference efficiency than the conventional
LME approach, BML improves spatial specificity and easily allows the investigator to adopt a philosophy of full results
reporting (instead of dichotomizing into “significant” and “non-significant” results), thus minimizing loss of information
while enhancing reproducibility. A dataset of naturalistic scanning is utilized to illustrate the modeling approach with 268
parcels and to showcase the modeling capability, flexibility and advantages in reports reporting. The associated program
will be available as part of the AFNI suite for general use.

Introduction

Naturalistic scanning as an fMRI paradigm provides a window into shared brain responses at the population level under
scenarios such as watching movies or listening to speech (Hasson et al., 2004, 2008). With minimal manipulation and
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dynamically evolving context, the naturalistic paradigm is closer to real life experiences, compared to typical task-related
experiments while it is more engaging and less vulnerable to confounding effects such as head motions and physiological
effects than resting-state scanning. It has been argued that, under a context closer to natural environment, neural responses
are more reproducible and reliable than traditional simple repetitive stimuli (Hasson et al., 2010) due to the involvement
of extensive cognitive processing (such as working memory, judgment, reasoning, social cognition, etc.). Its adoption has
been steadily growing in investigating various aspects of brain functions such as music imagery (Zhang et al., 2017), early
childhood development (Moraczewski et al., 2018), personality traits (Finn et al., 2018) and cognitive differences between
schizophrenics and controls. For typical task-related designs, the focus is usually on identifying regions activated by an
explicit task or condition. In contrast, the interest for naturalistic scanning data usually hinges on the synchronization
or similarity between any pair of subjects. Specifically, one calculates the inter-subject correlation (ISC), which is the
Pearson correlation between the EPI time series at the same voxel or region of the two subjects who underwent the same
naturalistic-task scanning. In the end, an ISC value is obtained at each voxel or region for each subject pair, but the main
issue is to summarize the results at the population level because of the complex relatedness among the subject pairs.

The current modeling approaches at the population level still face some challenges. Over the years, various methods
including both parametric and nonparametric approaches have been developed to handle the complex relatedness (Bartels
and Zeki, 2004; Hasson et al., 2008a; Wilson et al., 2008; Abrams et al., 2013; Kauppi et al., 2014; Schmälzle et al., 2013;
Cantolon and Li, 2013; Schmälzle et al., 2015). For example, a popular but problematic approach is to first calculate
the ISC value between a voxel’s BOLD time course of a subject and the average of that voxel’s BOLD time course
among all other subjects (Kauppi et al., 2010; Honey et al., 2012; Schmälzle et al., 2013; Schmälzle et al., 2015), and
then perform the typical group analysis (e.g., Student’s t-test) under the false assumption that all the ISC values are
independent across subjects. Recently, we examined the validity of those methods, and proposed more rigorous approaches
(Chen et al., 2016; Chen et al., 2017), among which the most flexible one in terms of analytical capability is linear
mixed-effects (LME) modeling with a crossed random-effects structure (Chen et al., 2017). Nevertheless, there are a few
limitations with the LME approach. (1) Input data redundancy. The ISC of each subject pair is used twice as input
so that a balanced random-effects structure can be maintained in the LME model. (2) Difficulty of handling multiple
testing. There are no similar counterparts of family-wise error (FWE) controllability available that are typically adopted
in task-related experiments (e.g., cluster- or permutation-based methods). (3) Thorny issue of degrees of freedom. When
an LME model is complicatedly structured, it becomes difficult or even impossible to assign accurate degrees of freedom
for each testing statistic under the conventional null hypothesis significance testing (NHST). (4) Spatial specificity issue.
The typical correction methods for multiple testing through spatial extent tend to dichotomize the statistical evidence and
result in spatial clusters that are not necessarily aligned with anatomical structures in the brain, leading to interpretation
ambiguities. (5) Model inefficiency. The methods of correction for multiplicity tend to be over-penalizing (Chen et al.,
2019a), and dichotomous decisions under NHST through thresholding are controversial in general (McShane et al., 2017;
Amrhein and Greenland, 2017) and equally problematic in neuroimaging as well (Chen et al., 2019a). For instance, the
popular practice of only reporting “statistically significant” results in neuroimaging not only wastes data information, but
also distorts the full results as well as perpetuates the reproducibility crisis because of the fact that the difference between
a “significant” result and a “non-significant” one is not necessarily significant (Cox et al., 1977).

To address those limitations, here we propose a Bayesian multilevel (BML) framework that integrates all the spatial
elements (i.e., regions of interest) into one model. Such a framework has been applied to typical task-related FMRI
experiments (Chen et al., 2019a; Xiao et al., 2019) as well as matrix-based data analysis (Chen et al., 2019b; Yin et
al., 2019). A dataset of naturalist scanning is utilized to illustrate the modeling approach and to showcase the modeling
capability, flexibility and advantages in reporting results. This paper is a sequel (i.e., Part III) to our previous work of
Part I (Chen et al., 2016) and Part II (Chen et al., 2017).

Preamble

We summarize briefly the background, notations, framework, and structure of the ISC group analysis that were in-
troduced in our previous work (Chen et al., 2016, Chen et al., 2017), since some shared concepts apply to the model
formulation introduced here. Throughout this article, italic letters in lower case (e.g., α) stand for scalars; lowercase,
boldfaced italic letters (a) and upper (X) cases for column vectors and matrices, respectively. With one group of n > 2

subjects S1, S2, ...., Sn and m spatial units (voxels or regions), the total number of unique ISC values per spatial unit is
N = 1

2n(n − 1). For the kth spatial unit (k = 1, 2, ...,m), the ISC values {rijk} correspond to n subject pairs (SPs), and
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they form a symmetric (rijk = rjik, i, j = 1, 2, ..., n) n× n positive semi-definite matrix R(n)
k with diagonals riik = 1 (Fig.

1, left). Their Fisher transformed version Z(n)
k (Fig. 1, right) through z = arctanh(r) is usually adopted during analysis so

that methods assuming Gaussian distribution may be utilized, as Fisher z-values are more likely to be Gaussian-distributed
than raw Pearson correlation coefficients. The research of interest herein is focused on the population average effect of
each region pair (i, j). Because R(n)

k and Z(n)
k are both symmetric in (i, j), inferences at the population level can be made

through the N elements in the lower triangular part (i > j, shaded gray in Fig. 1).

R
(n)
k =

S1 S2 S3 · · · Sn


S1 1 r12k r13k · · · r1nk
S2 r21k 1 r23k · · · r2nk
S3 r31k r32k 1 · · · r3nk
...

...
...

...
. . .

...
Sn rn1k rn2k rn3k · · · 1

Z
(n)
k =

S1 S2 S3 · · · Sn


S1 − z12k z13k · · · z1nk
S2 z21k − z23k · · · z2nk
S3 z31k z32k − ... z3nk
...

...
...

...
. . .

...
Sn zn1k zn2k zn3k · · · −

Figure 1: Inter-subject correlation (ISC) matrix R
(n)
k among the n subjects for the kth spatial unit and its Fisher-transformed

counterpart Z
(n)
k . Due to the symmetry, only half of the off-diagonal elements (shaded in gray) are usually considered during ISC

analysis.

The general interest of ISC analysis at the population level is the statistical inference about the population effect for
each spatial unit. However, a complex issue to manage is that each ISC matrix element is correlated with some of others
(Chen et al., 2017). Suppose that zi1j1k and zi2j2k are two z-values that are associated with the ISC values of the kth spatial
unit, ri1j1k and ri2j2k, of two SPs. When any pair of two elements in the ISC matrix, zi1j1k and zi2j2k, involve four separate
subjects (i.e., i1 6= i2 and j1 6= j2), we assume that the two elements are unrelated; that is, their correlation is 0. We denote
the correlation between any two elements, zi1j1k and zi2j2k, that pivot around a common subject (e.g., i1 = i2 or j1 = j2)
as ρ, with the assumption that the relatedness ρ remains the same across all subjects. In other words, ρ characterizes
the interrelatedness of zi1j1k and zi1j2k among the three subjects among which the two SPs share a common subject. To
consider the group-wide set of ISCs, we further define zk = vec({zijk, i > j}) to be the vector of length N whose elements
are the column-stacking of the lower triangular part of the matrix Z(n) in Fig. 1. That is, z is the half-vectorization of
Z

(n)
k excluding the main (or principal) diagonal: zk = vech(Z

(n)
k ) \ diag(Z(n)

k ). The variance-covariance matrix of zk can
be expressed as the N ×N matrix,

Σ(n) = µ2P (n), (1)

where µ2 is the variance of zijk, i > j, and P (n) is the correlation matrix that is composed of 1 (diagonals), ρ and 0.
An example of P (5) is shown in Fig. 2. It has been analytically shown (Chen et al., 2016) that −1/[2(m − 2)] ≤ ρ ≤
0.5 (when m > 3), and because of the presence of correlations among some elements of Z(n)

k , it becomes crucial to capture
this correlation structure P (n) in any modeling framework.

The situation with two groups can be similarly formulated (Chen et al., 2016; Chen et al., 2017). Previously both
nonparametric and parametric methods have been proposed to handle ISC analysis at the population level. Here we briefly
summarize those methods, and lay out the background and motivations for our current work.

ISC analysis with conventional approaches

In the early days, the pioneering work with naturalistic stimuli were conducted either within each subject when the
natural stimulus was repeated several times (Hasson et al., 2008b) or through ISC for each SP separately without summa-
rization at the group level (Hasson et al., 2004), in which case the ISC results were typically verified through seed-based
correlation analysis (Hasson et al., 2004; Hasson et al., 2008b; Schmälzle et al., 2013). Later on, some investigators simply
ran one-sample (Bartels and Zeki, 2004; Hasson et al., 2008a; Wilson et al., 2008; Abrams et al., 2013; Kauppi et al., 2014),
two-sample (Schmälzle et al., 2013; Cantolon and Li, 2013) or paired (Abrams et al., 2013; Schmälzle et al., 2015) t-tests
on Fisher-tranformed z-values {zijk, i > j} of correlation coefficients, while it was generally acknowledged that the N
elements {zijk, i > j} were not independent, as illustrated in the correlation structure of P (n) in (1), thereby violating the
independence assumption in the Student’s t-test and leading to the inflated degrees of freedom for the t-distribution as well
as the underestimated standard error for the ISC estimate. The approach was mainly justified based on the observation
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S1

S2

S3 S4

S5

z21

z 3
1

z
4
1

z
51

z
3
2

z
42

z52

z43

z53 z 5
4

P (5) =

z21 z31 z41 z51 z32 z42 z52 z43 z53 z54



z21 1 ρ ρ ρ ρ ρ ρ 0 0 0
z31 ρ 1 ρ ρ ρ 0 0 ρ ρ 0
z41 ρ ρ 1 ρ 0 ρ 0 ρ 0 ρ
z51 ρ ρ ρ 1 0 0 ρ 0 ρ ρ
z32 ρ ρ 0 0 1 ρ ρ ρ ρ 0
z42 ρ 0 ρ 0 ρ 1 ρ ρ 0 ρ
z52 ρ 0 0 ρ ρ ρ 1 0 ρ ρ
z43 0 ρ ρ 0 ρ ρ 0 1 ρ ρ
z53 0 ρ 0 ρ ρ 0 ρ ρ 1 ρ
z54 0 0 ρ ρ 0 ρ ρ ρ ρ 1

Figure 2: ISC with m = 5 subjects. Left: pictorial representation of 5 × 5 subject pairs (SPs). Right: The complex relatedness
among the off-diagonal elements in Z

(n)
k is illustrated with the correlation matrix P (5) for n = 5 subjects, in which ρ represents the

correlation when two elements (e.g., z32 and z53, colored in red) are associated with a common subject (e.g., S3). Without loss of
generality, the third index k in zijk for brain location is dropped here for clarity.

that the null results generated by shifting each pair of time series by random steps roughly fitted to a t(N −1)-distribution
curve (Wilson et al., 2008).

Nonparametric methods have also been proposed in the previous ISC literature. For example, one popular approach
with one group of subjects was to construct a null distribution for the whole brain by randomizing the time series across
voxels and time points (e.g., circularly shifting each subject’s time series by a random lag so that they were no longer
aligned in time across the subjects), as implemented into an analytical package ISC toolbox in Matlab (Kauppi et al., 2014;
https://www.nitrc.org/projects/isc-toolbox/). One variation of this ISC approach is called leave-one-out: first calculate
the ISC value of a subject between a voxel’s BOLD time course in the subject and the average of that voxel’s BOLD time
course in the remaining subjects (Kauppi et al., 2010; Honey et al., 2012; Schmälzle et al., 2013; Schmälzle et al., 2015);
then, perform Student’s t-test at the group level. However, a recent study has shown that all these methods led to largely
inflated false positive rate (FPR) (Chen et al., 2016).

A new set of nonparametric approaches, based on subject-wise resampling at the population level, has been proposed
recently (Chen et al., 2016). In addition to satisfying exchangeability and independence assumptions and accounting for
the correlation structure in P (n), it was shown that proper FPR controllability under the conventional null hypothesis
significance testing (NHST) can be achieved with subject-wise bootstrapping for ISC analysis with one group and with
subject-wise permutation testing for the ISC comparison between two groups.

However, nonparametric methods are limited in terms of modeling flexibility. For instance, they have difficulty in incor-
porating explanatory variables; in addition, they are deficient, unwieldy and unconducive to data structure characterization
and model comparisons. To counter these limitations, a linear mixed-effects (LME) modeling approach has been adopted
(Chen et al., 2017) with the benefit that the LME platform offers wider adaptability, more powerful interpretations, and
quality control checking capability than nonparametric methods. Specifically, the LME model with crossed random effects
is applied with a data-doubling step that further conveniently tracks the subject index in easy implementations.

ISC analysis with univariate linear mixed-effects modeling

Our previous work (Chen et al., 2017) adopts a linear-effects or multilevel model by decomposing an ISC effect zijk
into components associated subjects i and j at the kth voxel or region (k = 1, 2, ...,m),

zijk = b̃0k + ξ̃ik + ξ̃jk + ε̃ijk, i, j = 1, 2, .., n (i > j), (2)

where b̃0k is the fixed effect (an unknown constant) under LME, representing the population ISC effect at the kth voxel
or region; ξ̃ik and ξ̃jk are additive and independent random effects attributable to subjects i and j, respectively, that are
deviations from (or adjustments to) the population ISC effect b̃0k; and ε̃ijk is the residual or error term for each SP (i, j).
Due to the symmetric nature of the data structure in Z(n)

k , only half of the matrix elements excluding the diagonals (either
the lower or upper triangular part of the matrix) are utilized in the model (2), and thus the index inequality of i > j

is placed for the input data. As a special LME model, the formulation (2) can actually be conceptualized as a two-way
random-effects ANOVA with the two subject-specific terms serving as random-effects factors. The two random effects ξ̃ik
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and ξ̃jk form a stratified structure, therefor the model (2) is sometimes referred to as a crossed (or cross-classified) structure
with a factorial (or combinatorial) layout among the levels (or indices) i and j of the two subject-specific factors.

One important aspect of the LME framework in which nonparametric methods lack is that the interrelationships among
the ISC values, as characterized in the correlation matrix P (n), can be quantitatively captured. With the assumption of
independent Gaussian distributions, ξ̃ik, ξ̃jk

iid∼ N (0, λ̃2) and ε̃ijk
iid∼ N (0, σ̃2), the model (2) can be solved under a two-way

random-effects ANOVA or LME. A big advantage of the LME model (2) over the nonparametric methods is the capability
of characterizing as well as maintaining the integrity of the data structure. For example, the extent of correlation ρ, as
captured in P (n) of (1), between any two ISC effects that pivot around a common subject is related to the concept of
intraclass correlation (ICC), and can be expressed as,

0 ≤ ρ =
λ̃2

2λ̃2 + σ̃2
≤ 0.5. (3)

The LME model (2) can be easily extended to scenarios where the investigator would like to incorporate one or more
subject-specific explanatory variables, either categorical (e.g., sex) or quantitative (e.g., age). For example, a model with
one explanatory variable x can be formulated as,

zijk = b̃0k + b̃1kxi + b̃2kxj + ξ̃ik + ξ̃jk + ε̃ijk, i > j, (4)

where the variable xi and xj are the values of the explanatory variable x for subjects i and j, respectively. Their corre-
sponding effects b̃1k and b̃2k are presumably equal, but in the same vein as the practical implementation of subject-specific
effects through two separate random-effects components as previously elaborated, the two fixed-effects components of b̃1k
and b̃2k that are associated with the explanatory variable x would also have to be estimated separately through data
duplication. The situation with more than one explanatory variable would be similar except for an expanded form, and
this modeling strategy has been applied at the whole-brain voxel level to a few studies in the literature (e.g., Moraczewski
et al., 2018; Finn et al., 2018).

Nevertheless, the LME framework faces two challenges. One challenge is input data redundancy. Even though the
random-effects components, ξ̃ik and ξ̃jk, that are associated with the two subjects i and j, are assumed to follow the same
Gaussian distribution N (0, λ̃2) (that is why they are noted by the same symbol ξ̃), they would have to be treated as
two separate random-effect components in practice when one solves the system through numerical implementations (e.g,
function lmer in the R package lme4 ). Furthermore, due to the fact that only half of the off-diagonal elements in the
matrix Z(n)

k are utilized as input, the two random-effects components ξ̃ik and ξ̃jk are generally not evenly arranged among
all the SPs, leading to unequal estimation of the two random-effects components. On one hand, the two random-effects
components ξ̃ik and ξ̃jk are basically cycled through those random effects from the n subjects, ξ̃1k, ξ̃2k, ..., ξ̃nk, and the
order of the two components, ξ̃ik and ξ̃jk, can be rearranged without any impact on the model formulation. On the other
hand, balance cannot be achieved under all scenarios. For example, when n is odd, a balanced distribution between the
two random-effects factors can be achieved through the following rearrangement: if the difference between the indices i
and j is odd, switch their order (i.e., zij effectively changes to zji); otherwise, no change is made. However, when n is
even, balance cannot be reached but can be approximated in the sense that the first index is alternatively one more (or
less) than the second one1. Nevertheless, even if a balanced arrangement can be established between the two sets of indices
(i.e., n is odd), simulations indicate unsatisfying FPR controllability for the population effect. Because of this limitation,
a data doubling strategy (i.e., i 6= j) was used with both the lower (i > j) and upper (i < j) triangular parts of the ISC
matrix Z(n)

k as input to achieve a balanced distribution between the two sets and proper FPR control (Chen et al., 2017).
That is, with two random-effects components in the LME models, (2) and (4), two copies of the variance λ̃2 are estimated
in the output. Also because of this data duplication, inferences have to be properly adjusted, compensating the inflated
standard error (Chen et al., 2017).

The second challenge under the LME framework is multiplicity. It is worth noting that the LME model, (2) or (4),
is analyzed through a massively univariate approach in which the same model is applied as many times as the number of
voxels or regions. As in typical FMRI data analysis, the ISC analysis through LME at the whole brain or region level faces
the issue of multiple testing. As the same LME model is applied to each voxel or region of interest (ROI) separately with the
presumption that all the voxels or regions are isolated and unrelated. Such a modeling strategy would have to be followed

1The phenomenon is due to the following fact: with N = 1
2
n(n− 1) pairs of indices, there are totally 2N = n(n− 1) indices. When n is odd,

each index repeats n− 1 times, thus they can be evenly distributed between the two sets after rearrangement because n− 1 is even; in contrast,
when n is even, balance cannot be established because n− 1 is odd.
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by an extra step: paying the price of multiplicity for the false assumption, and one possible approach for the whole brain
analysis is to control the overall FPR at the cluster level by leveraging the spatial extent among the neighboring voxels.
First of all, permutation-based correction approaches would be impractical due to the prohibitively high computation cost.
Even for cluster-based correction methods that are purely based on leveraging spatial extent (Monte Carlo simulations,
random field theory), it remains challenging to estimate the spatial correlation due to the difficulty in separating the pure
noise from the signal. Lastly, specific correction methods aside, the penalty is usually so severe that smaller brain regions
may fail to survive the correction, in addition to other disadvantages of the massively univariate approach (Chen et al.,
2019). If the LME approach is applied to a list of regions, Bonferroni correction would have to be employed because no
spatial leveraging is obviously available, leading to even more severe penalty.

Structure of the work

In light of the aforementioned backdrop, we believe that the univariate LME modeling approach at the whole brain
level is inefficient because the common information shared across brain regions are fully ignored. Instead, we propose a
more integrative and efficient approach, termed as Bayesian multilevel (BML) modeling, that could be used to confirm,
complement or replace the LME method. As a first step, we adopt a group analysis strategy with LME by incorporating
ROIs as a crossed random-effects component relative to each SP. Then we translate the LME model to the Bayesian
framework through multilevel modeling on an ensemble of ROIs, and use this to resolve two issues that have been briefly
mentioned: input data doubling and multiple testing. Those ROIs can be either determined independently from the current
data at hand, or selected through various methods such as previous studies, an anatomical/functional atlas or parcellation.
The proposed BML approach dissolves multiple testing through a multilevel model that more accurately accounts for data
structure as well as shared information, and it consequentially improves inference efficiency.

The paper is structured as follows. In the next section, we first extend the region-wise LME model (2) to another LME
by pivoting the ROIs as the levels of a random-effects factor, and then convert the extended LME model to a full BML. The
BML framework does not make statistical inferences for each measuring entity (ROI in our context) in isolation. Instead,
the BML weights and borrows the information based on the precision information across the full set of entities, striking a
balance between data and prior knowledge; in a nutshell, the crucial feature here is that the ROIs, instead of being treated
as isolated and unrelated with the univariate approaches, are associated with each other through a Gaussian-distribution
assumption under BML. As a practical exemplar, we apply the modeling approach to an experimental ISC dataset with
68 subjects at 268 ROIs. In the Discussion section, we elaborate the advantages and limitations of BML modeling for ISC
data analysis.

Theory: ISC analysis through Bayesian multilevel modeling

Herein Roman and Greek letters are used, respectively, to differentiate fixed and random effects in the conventional
statistics context such as ANOVA and LME on the righthand side of a model equation. Although the terms of “fixed”
and “random” effects are genuinely non-Bayesian, we still use them here as we expect most readers to be familiar with
the conventional terminology. For instance, a conventional fixed-effects parameter under ANOVA and LME is treated as
constant that is shared by all entities (e.g, subjects, ROIs), and a random-effect parameter as variable because it differs
from one entity (e.g., subject, ROI) to another. The conventional distinction of fixed- vs. random-effects is replaced by
one that separates the modeling decision (a parameter as varying or non-varying) under the Bayesian framework from the
inference decision (e.g., prior choices or partial pooling) (Gelman, 2005).

Bayesian modeling based on three-way random-effects ANOVA

We start with with the simple LME model (2), without the complication of explanatory variables, for ISC analysis at
m ROIs in the brain instead of whole brain voxel-wise modeling. With the Gaussian-distribution assumptions for ξ̃ik, ξ̃jk,
and ε̃ijk, the m univariate LME models in (2) can be solved independently, but for the sake of model comparisons, the m
separate LMEs can be merged into one LME by pooling the residual variances across the m ROIs with the ROI index k
incorporated into the conventional LME formulation (2),

zijk = bk + ξ̃ik + ξ̃jk + ε̃ijk, i, j = 1, 2, ..., n (i 6= j), k = 1, 2, ...,m. (5)
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The two approaches, (2) and (5), usually render similar inferences unless the sampling variances are dramatically
different across the m ROIs. To compare different models through information criteria (Vehtari et al., 2017), we can solve
the LME (5) in a Bayesian fashion,

zijk|bk, ξ̃ik, ξ̃jk ∼ N (bk + ξ̃ik + ξ̃jk, σ̃
2), ξ̃ik, ξ̃jk ∼ N (0, λ̃2), ε̃ijk ∼ N (0, σ̃2), i, j = 1, 2, ..., n, k = 1, 2, ...,m, (6)

where the effects bk are assigned with a noninformative prior (i.e., uniform distribution) so that no information is shared
among the ROIs, leading to virtually identical inferences as the LME (5). In fact, all the three LME models, (2), (5), or
(6), share the same feature: they do not involve any information pooling among the ROIs in the sense that the information
at one ROI is assumed to reveal nothing about any other ROIs. Therefore, these three LME models all face the same issue
of multiplicity and may potentially lead to overfitting.

To improve model fitting and achieve higher efficiency, we first adopt a three-way random-effects ANOVA or LME
model by adding ROIs as random effects, and formulate the following platform with data from n subjects,

LME0: zijk = a0 + ξi + ξj + π0k + εijk, i, j = 1, 2, ..., n (i 6= j), k = 1, 2, ...,m, (7)

where a0 represents the population ISC effect across all ROIs and all subjects; ξi and ξj code the deviation or random
effect of the ith and jth subject from the overall mean b0, respectively, and both share the same presumed iid Gaussian
distribution N (0, λ2); π0k embodies the random effect (or the deviation relative to the population effect a0) at the kth
ROI, and is assumed to be iid with N (0, τ2); and εij is the residual term that is assumed to follow N (0, σ2). Put in a
different way, under the LME model (7), each data point zijk is disentangled as the superimposition of three random-effects
components, two (ξi and ξj) for each SP and one (π0k) for each region. The tilde notation above the parameters in the
previous four LME models, (2), (4), (5) and (6), is removed hereafter due to the inclusion of ROIs as random effects in the
expanded models such as (7) as well as the removal of subscript for the ROI index k among some parameters (e.g., ξi and
ξj in the model (7)).

Under the extended LME model (7), the correlation between two SPs, (i1, j) and (i2, j) (i1 6= i2), that share a common
subject Sj can be derived as,

LME0: ρs = corr(zi1jk, zi2jk) =
cov(a0 + ξi1 + ξj + π0k + εi1jk, a0 + ξi2 + ξj + π0k + εi2jk)√
var(b+ ξi1 + ξj + π0k + εijk) var(b+ ξi2 + ξj + π0k + εijk)

=
λ2 + τ2

2λ2 + τ2 + σ2
, i1, i2 = 1, 2, .., n (i1 6= i2, i1 6= j, i2 6= j), k = 1, 2...,m.

(8)

Similarly, the correlation between two ROIs, k1 and k2, due to the fact that they are measured from the same SPs, can be
derived as,

LME0: ρr = corr(zijk1
, zijk2

) =
cov(a0 + ξi + ξj + πk1

+ εijk1
, a0 + ξi + ξj + πk2

+ εijk2
)√

var(b+ ξi + ξj + ξk1
+ εijk1

) var(b+ ξi + ξj + ξk2
+ εijk2

)

=
2λ2

2λ2 + τ2 + σ2
, j1, j2 = 1, 2, .., n (i 6= j), k1, k2 = 1, 2, ...,m (k1 6= k2).

(9)

Due to the incorporation of ROI effects into the extended LME model (7), a slightly different formulation (8) at the group
level for the correlation between two SPs that share a common subject exists from the interrelationship (3) at the individual
subject level. Because of this difference, the upper bound of 0.5 in (3) does not hold for ρs in (8) and is replaced by 1.

In addition to the challenge of input data redundancy discussed in the Introduction, now we have a different hurdle in
place of multiplicity. Under this new LME framework (7), we need to refocus on the effects of interest. The overall ISC
effect a0 across all ROIs is usually not our focus; instead, it is the ISC effect each ROI,

b0k = a0 + π0k, k = 1, 2, ..,m, (10)

that is typically of research interest. However, the LME formulation or three-way random-effects ANOVA (7) cannot offer a
solution in making inferences regarding the ROI effects b0k: to estimate b0k, the LME (7) would become over-parameterized
or overfitting.

To proceed, a paradigm shift is needed here. We adopt a Bayesian approach similar to, but extended the LME model
(2) from, our previous work for ROI-based group analysis for neuroimaging data (Chen et al., 2019a) as well as the BML
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approach for matrix-based analysis (Chen et al., 2019b),

BML0: zijk|ξi,ξj , π0k ∼ N (a0 + ξi + ξj + π0k, σ
2), ξi, ξj ∼ N (0, λ2), π0k ∼ N (0, τ2),

εijk ∼ N (0, σ2), i, j = 1, 2, ..., n (i > j), k = 1, 2, ...,m.
(11)

In fact, the effect decomposition of zijk under the BML framework (11) is basically the same as its LME counterpart (7).
The different model expression here is formulated to accentuate the paradigm shift and to emphasize the fact that the
responses zijk under BML are conditional on the parameters and priors.

Both of the aforementioned challenges under the LME model (2) can be resolved now under the BML framework
(11). First, only half of the off-diagonal elements (e.g., the lower triangular part) in Z(n) are required as input under
BML through a numerical implementation of multi-membership modeling scheme (Bürkner, 2018). Second, with a prior
(e.g., noninformative uniform distribution) for a0, the posterior distribution for each ROI can be obtained through the
formulation (10). In addition, the ISC effect that is attributable to each subject can be similarly derived through the
corresponding posterior distribution with

si =
1

2
a0 + ξi, i = 1, 2, ..., n. (12)

The factor of 1
2 in the subject-specific effect formula for si in (12) reflects the fact that the effect of each SP is evenly shared

between the two associated subjects. The subject-specific effects si can be utilized to assess the contribution or importance
of a subject relative to all other subjects, which might provide some auxiliary information for further association with, for
example, subject-level effects such as sex, disease, age or behavioral data.

Recently we applied the BML modeling approach to matrix-based analyses (Chen et al., 2019b) when the input data
are either functional (e.g. inter-region correlation) or structural (e.g., white matter properties among gray matter regions)
attribute matrix from each subject. In that case, the intricacy lies in the interrelationships among the brain region pairs
while the summarization or generalization hinges upon the subjects, and three basic entity-level components are specified
in the corresponding BML model: subject and the two regions that are associated with each region pair. In contrast,
ISC analyses deal with the interrelationships among SPs while at the same time the summarization or generalization is
made across subjects; the regions under BML are pooled together among each other through the shrinkage effect of the
Gaussian distribution (Chen et al., 2019a). In fact, the theoretical aspects of BML application for ISC analyses can largely
be borrowed from our previous work for MBA (Chen et al., 2018b) by swapping the entities between subject and region.

Further extensions of BML for ISC analyses

The LME0 model in (7) can be expanded or generalized by including two types of random-effects interaction compo-
nents: one component is the SP-specific term (i.e., the interaction between two subjects), and the other component is
the interaction between a region and a subject. The expansions lead to three more LME models, corresponding to three
different combinations of the two extra effects, as shown below,

LME1: zijk = a0 + ξi + ξj + ηij + π0k + εijk, i, j = 1, 2, ..., n (i 6= j), k = 1, 2, ...,m,

ξi, ξj
iid∼ N (0, λ2), ηij ∼ N (0, µ2), πk

iid∼ N (0, τ2), εijk ∼ N (0, σ2),
(13)

LME2: zijk = a0 + ξi + ξj + ζik + ζjk + π0k + εijk, i, j = 1, 2, ..., n (i 6= j), k = 1, 2, ...,m,

ξi, ξj
iid∼ N (0, λ2), ζik, ζjk ∼ N (0, ν2), πk

iid∼ N (0, τ2), εijk ∼ N (0, σ2),
(14)

LME3: zijk = a0 + ξi + ξj + ηij + ζik + ζjk + π0k + εijk, i, j = 1, 2, ..., n (i 6= j), k = 1, 2, ...,m,

ξi, ξj
iid∼ N (0, λ2), ηij ∼ N (0, µ2), ζik, ζjk ∼ N (0, ν2), πk

iid∼ N (0, τ2), εijk ∼ N (0, σ2),
(15)

where ηij is the effect of the SP that is associated with subjects i and j (i.e., the interaction effect between two subjects
i and j) relative to the overall effect a0 and the two subject effects, ξi and ξj , while ζik and ζjk are the interaction effects
between subject i and region k as well as the interaction between subject j and region k, respectively. We note that the
SP-specific effect ηij captures the unique effect of each SP in addition to the overall effect a0 and the common effects from
the two involved subjects, ξi and ξj ; the same subtlety applies to the subject-region interactions ζik and ζjk.
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The two ICC measures in (8) and (9) can be correspondingly updated to the following for the three LME models,

LME1: ρs =
λ2 + τ2

2λ2 + µ2 + τ2 + σ2
, ρr =

2λ2 + µ2

2λ2 + µ2 + τ2 + σ2
, (16)

LME2: ρs =
λ2 + ν2 + τ2

2λ2 + 2ν2 + τ2 + σ2
, ρr =

2λ2

2λ2 + 2ν2 + τ2 + σ2
, (17)

LME3: ρs =
λ2 + ν2 + τ2

2λ2 + µ2 + 2ν2 + τ2 + σ2
, ρr =

2λ2 + µ2

2λ2 + µ2 + 2ν2 + τ2 + σ2
. (18)

Among the four LMEmodels, LME0 is the simplest and LME3 is the most complex and inclusive, while LME1 and LME2
are intermediate. Traditionally, these LME models can be compared based on the tradeoff between model performance and
complexity (e.g., number of parameters), with likelihood ratio testing and information criteria such as Akaike information
criterion (AIC) and the so-called Bayesian information criterion (BIC) (Bates et al., 2015). As the number of components
in a model increases, so does the number of parameters to be estimated. For example, with n(n− 1)m data points zijk as
input, the total number of parameters involved at the right-hand side of the model LME3 in (15) is n(n−1)+2mn+2n+1.
For the model LME3 to be identifiable, it is a prerequisite that the following relationship be met,

n(n− 1)m > n(n− 1) + 2mn+ 2n+ 1. (19)

When there are two or more ROIs (m > 1), the prerequisite (19) means that, to prevent LME3 from being over-
parameterized, a condition for the number of subjects, derived from a quadratic form of n, is n > 3m+

√
13m2+6m−3
2(m−1) .

Such a lower bound for n is a decreasing function of m as shown in a few instances: when m = 2, 5, 10, 100, and 1000,
n > 7, 4, 3, 3, and 3, respectively. For the special case of one region (m = 1), all the three models, LME1, LME2, and
LME3, reduce to LME0 in which the SP-specific effects ηij and the interaction effects between subjects and regions, ζik
and ζjk, cannot be differentiated from the residuals εijk and region-specific effects π0k, respectively.

We further consider two types of BML extension based on the primary model BML0 in (11). The first type involves
potential interaction effects, in parallel with the three LME expansions from LME0. Specifically, by incorporating the
interaction effect between the two regions of each RP as well as the interaction effect between each region and each subject,
we have three more BML models (corresponding to the LME models of the same index):

BML1: zijk|a0, ξi, ξj , ηij , π0k ∼ N (a0 + ξi + ξj + ηij + π0k, σ
2),

ξi, ξj
iid∼ N (0, λ2), ηij

iid∼ N (0, µ2), πk
iid∼ N (0, τ2), i, j = 1, 2, ..., n (i > j), k = 1, 2, ...,m,

(20)

BML2: zijk|a0, ξi, ξj , ζik, ζjk, π0k ∼ N (a0 + ξi + ξj + ζik + ζjk + π0k, σ
2),

ξi, ξj
iid∼ N (0, λ2), ζik, ζjk

iid∼ N (0, ν2), πk
iid∼ N (0, τ2), i, j = 1, 2, ..., n (i > j), k = 1, 2, ...,m,

(21)

BML3: zijk|a0, ξi, ξj , ηij , ζik, ζjk, π0k ∼ N (a0 + ξi + ξj + ηij + ζik + ζjk + π0k, σ
2),

ξi, ξj
iid∼ N (0, λ2), ηij

iid∼ N (0, µ2), ζik, ζjk
iid∼ N (0, ν2), πk

iid∼ N (0, τ2),

i, j = 1, 2, ..., n (i > j), k = 1, 2, ...,m,

(22)

where ηij is the SP-specific effect or the interaction between subjects i and j, while ζik is the interaction effect between
subject i and region k and ζjk, between subject j and region k. The two interaction effects, ζik and ζjk, are considered as
two members, i and j, of a multi-membership cluster. Because of the sheer number of parameters, their LME counterparts
are not always identifiable (e.g., because the prerequisite (19) is violated), but these BML models can be analyzed under the
Bayesian scheme because of the constraints and regularization applied through priors. Similar to the LME case, complexity
increases from BML0 to BML3. Under these three extended BML models, the region- and subject-specific effects can be
similarly reassembled through (10) and (12), respectively.

Inclusion of explanatory variables under BML for ISC analyses

Another type of model extension is to investigate the effect associated with a subject-level (e.g., sex, disease, genotype,
age, behavioral measure) explanatory variable. For example, with one explanatory variable, BML0 (11) and BML1 (20)
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can be directly expanded by adding a covariate x,

BML0* : zijk|a0, a1, xi, xj , ξi, ξj , π0k, π1k ∼ N (a0 + a1(xi + xj) + ξi + ξj + π0k + π1k(xi + xj), σ
2),

ξi, ξj
iid∼ N (0, λ2), (π0k, π1k)

T iid∼ N (0, τ ), i, j = 1, 2, ..., n (i > j), k = 1, 2, ...,m,
(23)

BML1* : zijk|a0, a1, xi, xj , ξi, ξj , ηij , π0k, π1k ∼ N (a0 + a1(xi + xj) + ξi + ξj + ηij + π0k + π1k(xi + xj), σ
2),

ξi, ξj
iid∼ N (0, λ2), ηij

iid∼ N (0, µ2), (π0k, π1k)
T iid∼ N (0, τ ), i, j = 1, 2, ..., n (i > j), k = 1, 2, ...,m,

(24)

where τ is a 2× 2 variance-covariance matrices.
Five aspects are noteworthy about the two extended models, BML0* and BML1*. First, multi-membership modeling

allows us to utilize only half of the off-diagonals in the ISC matrix from each subject as input, as indicated by the index
relationship i > j. Second, the effect associated with the covariate x at the population level, a1, and at the region level,
π1k, is shared by all subjects (including SPs), thus a simplified notation for a derived covariate x∗ij = xi + xj for each SP
can be adopted for easier numerical implementation. This is in contrast to the LME counterpart in which two separate
effects would have to be included in the model. Third, the inclusion of any subject-level explanatory variable in the model
is intended to account for cross-subject variation in the data, thereby precluding the justification for incorporating the
subject-region interaction effects, ζij and ζjk, as shown in BML2 (21) and BML3 (22). It light of this consideration, we
do not consider any extended models, in the presence of any subject-specific covariate, that correspond to BML2 (21)
and BML3 (22). Four, cases with more than one explanatory variable can be similarly formulated as in the BML0* and
BML1*. Lastly, under BML0* or BML1*, the region- and subject-specific effects can be similarly reassembled through
(10) and (12), respectively; in addition, the region-specific effect for the covariate x can be derived through,

b1k = a1 + π1k, k = 1, 2, ..,m. (25)

To recapitulate our modeling strategy here about ISC analyses, we first untangle each SP-specific effect into the additive
effects of the two involved subjects through a multi-membership structure. The partition of ISC effect allows us to maintain
the relatedness structure as embodied in the correlation matrix P (n). Because of this untangling step, we can obtain the
relative contribution, si in (12), from each subject even though the input data (ISC values) are the jointed contributions
from SPs, not individual subjects. In addition, the cross-region effects (and sometimes subject-region interaction effects)
are included in the BML model to account for cross-region variability. The main difference between univariate LME (Chen
et al., 2017) and BML lies in the assumption about the brain regions: the effects (e.g., π0k and π1k in (24)) are assigned
with a Gaussian prior under BML while they are assumed to have a noninformative flat prior under the corresponding
LME model. In other words, the effect at each region is estimated independently from other regions under univariate
LME, thus there is no information shared across regions. In contrast, the effects across regions are shared, regularized
and partially pooled through the Gaussian assumption under BML for the effects across regions; the Gaussian assumption
about cross-region variability shares the same rationale as the cross-subject Gaussian distribution. On one hand, it is this
pooling effect that drags the region effects from both ends toward the center, resulting in conservative inferences relative
to univariate LME before taking into consideration any correction for multiple testing. On the other hand, it is partial
pooling that allows us to have an integrative model that sidesteps the multiplicity issue.

Implementations of BML for ISC analyses

With the layout of three or more crossed random-effects components under the LME models such as LME0 (7), LME1
(13), LME2 (14), and LME3 (15), we would have to duplicate the input data and utilize both the lower (i > j) and upper
(i < j) triangular parts of the ISC matrix Z(n)

k as input so that a balanced data structure (i 6= j) can be maintained for
the practical reason of typical numerical implementations, as adopted in our previous work for whole-brain voxel-wise ISC
analyses (Chen et al., 2017) using the function lmer in R package lme4 (Bates et al., 2015). Similarly, each explanatory
variable (e.g., sex, behavioral measure) has to be incorporated inot the LME model with two copies, one for each subject
within each SP. In doing so, the uncertainty estimates (e.g., standard deviations) for the obtained effect estimates need
to be adjusted for artificially doubling the data. In addition, each of the effect pairs such as ξi and ξj in the four LME
models above as well as ζik and ζjk in LME2 and LME3, are treated as two separate random-effects components in real
implementations even though they are the same effect within each component.

For the BML systems such as BML0 to BML3 and their counterparts with covariates, we borrow the terminology
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and implementation strategy from multi-membership modeling. Specifically, we consider both subject-specific effects of
ξi and ξj as two members (samples or substantiations) from the same set of parameters (or the same list of subjects in
the neuroimaging context) with equal weights of 1, reducing the number of associated parameters from 2n in the LME
counterpart to n and maintaining the original index constraint i > j in the BML models here. Substantial runtime can be
saved through the avoidance of input data redundancy.

As no analytical solution is available for BML models in general, we draw samples from the posterior distributions via
Markov chain Monte Carlo (MCMC) simulations with the algorithms implemented in Stan, a publicly available probabilistic
programming language and a math library in C++ on which the language depends (Stan Development Team, 2019). In
Stan, the main engine for Bayesian inferences is adaptive Hamiltonian Monte Carlo (HMC) under the category of gradient-
based MCMC algorithms (Betancourt, 2018). The present implementations are executed with the R package brms that is
is based on Stan, and multi-membership modeling is directly available in brms (Bürkner, 2017; Bürkner, 2018).

For typical BML models, examples of each of the priors (e.g., hierarchical Gaussian distributions) for cross-region
and cross-subject effects as well as their interactions have been laid out in the previous section. For example, we adopt
an improper flat (noninformative uniform) distribution over the real domain or a weakly informative distribution such
as Cauchy or Gaussian for population parameters (e.g., a0 and a1 in BML0* (23) and BML1* (24)), depending on the
minimal requirement to cope with the amount of data present; in other words, one may adopt a noninformative prior if
a large amount of information is available in the data at the population level. As for assigning hyperpriors, we follow the
general recommendations in Stan (Stan Development Team, 2019). Specifically, for the scaling parameters at the region
and subject level, the standard deviations for the cross-region and cross-subject effects, ξi, ξj , and πk as well as their
interactions, we adopt a weakly informative prior such as a Student’s half-t(3, 0, 1)2 or half-Gaussian N+(0, 1) (restricting
to the positive values of the respective distribution). For covariance structure (e.g., τ in BML0* (23) and BML1* (24)),
the LKJ correlation prior3 is used with the shape parameter taking the value of 1 (i.e., jointly uniform over all correlation
matrices of the respective dimension) (Gelman et al., 2017). Lastly, the standard deviation σ for the residuals is assigned
using a half Cauchy prior with a scale parameter depending on the standard deviation of zijk. To summarize, besides the
Bayesian framework under which hyperpriors provide a computational convenience through numerical regularization, the
major difference between BML and its univariate GLM counterpart is the application of the Gaussian prior in the BML
models that play the pivotal role of pooling and sharing the information among the brain regions. It is this partial pooling
that effectively takes advantage of the effect similarities among the ROIs and achieves higher modeling efficiency.

Bayesian inferences are usually expressed in terms of the whole posterior distribution of each effect of interest. For
practical considerations in results reporting, point estimates from these distributions such as mean and median are typically
used to show the effect centrality, while quantile-based (e.g., 90%, 95%) intervals or highest posterior density intervals also
provide a condensed and practically useful summary of the posterior distribution. A typical workflow to obtain the posterior
distribution for an effect of interest is the following. Multiple (e.g., 4) Markov chains are usually run in parallel with each
of them going through a predetermined number (e.g., 2000) of iterations, half of which are thrown away as warm-up (or
“burn-in”) iterations while the rest are used as random draws from which posterior distributions are derived. To gauge the
consistency of an ensemble of Markov chains, the split R̂ statistic (Gelman et al., 2014) is provided as a potential scale
reduction factor on split chains and as a diagnostic parameter to assist the analyst in assessing the quality of the chains.
Ideally, fully converged chains correspond to R̂ = 1.0, but in practice R̂ < 1.1 is considered acceptable. Another useful
statistic, effective sample size (ESS), measures the number of independent draws from the posterior distribution that would
be expected to produce the same amount of information of the posterior distribution as is calculated from the dependent
draws obtained by the MCMC algorithm. As the sampling draws are not always independent of each other, especially when
MCMC chains mix slowly, one should make sure that the ESS is large enough (e.g., 200) so that a reasonable accuracy can
be achieved to derive the quantile intervals for the posterior distribution. With the number of cores equal to or large than
the number of MCMC chains, the typical BML analysis can be effectively conducted on any system with at least 4 CPUs.

BML applied to ISC data

To demonstrate the modeling capability and performances of BML, we used a dataset from the Child Mind Institute
Healthy Brain Network (CMI-HBN), a publicly available naturalistic scanning dataset (Alexander et al. 2017). Briefly,

2See https://en.wikipedia.org/wiki/Folded-t_and_half-t_distributions for the density p(ν, µ, σ2) of folded non-standardized t-distribution,
where the parameters ν, µ, and σ2 are the degrees of freedom, mean, and variance.

3The LKJ prior (Lewandowski, Kurowicka, and Joe, 2009) is a distribution over symmetric positive-definite matrices with the diagonals of
1s.
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the dataset consisted of a community-based sample of generally healthy children and adolescents who were scanned while
resting as well as watching two different videos. Rich phenotypic data are also available for each individual. We focus here
on data acquired during “The Present,” an animated short about a boy who receives a puppy as a gift. The video has a
social theme and is emotionally evocative, which led us to hypothesize that it would evince individual differences along a
phenotypic spectrum related to social functioning. Data used here come from the CMI-HBN data releases 1 and 2, which
represented all of the available data in January 2018 when we began the project.

Functional MR images were acquired with the following EPI scan parameters: B0 = 3 T, flip angle = 31°, TR =
800 msec, TE = 30 msec, 60 slices, voxel size = 2.4 mm isotropic, multiband factor = 6, 250 volumes with a total
scanning time of 3:20 min:sec. Other details, including parameters for anatomical scans as well as full protocols for
MRI and phenotypic data, can be found in the data descriptor (Alexander et al. 2017) and at the following URL:
http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/

Data were preprocessed as follows. First, we used Freesurfer (Fischl, 2012) to extract subject-specific ventricle and
white-matter masks using each subject’s anatomical image. Next, we used the afni_proc.py program in AFNI (Cox,
1996) to perform the following preprocessing steps on the functional images: despiking, head motion correction, affine
alignment with anatomy, nonlinear alignment to a standard template, and smoothing with an isotropic FWHM of 5 mm.
Confounding effects during preprocessing included: the first three principal components of the ventricles, local white matter
regressors generated from fast ANATICOR (Jo et al, 2010), each subject’s 6 motion time series, their derivatives and linear
polynomials for slow drifts. Censoring of time points was performed whenever the per-time-point motion (Euclidean norm
of the motion derivatives) was 0.3 mm or more or when more than 10% of the brain voxels were outliers. Censored
time points were set to zero rather than removed altogether (this is the conventional way to do censoring, but especially
important for inter-subject correlation analyses, to preserve the temporal structure across participants). Because this is
a pediatric sample, we used a recently developed pediatric template brain as the standard template (“Haskins template”;
Molfese et al., in prep).

Our primary phenotypic measure of interest was the Social Responsiveness Scale-2, abbreviated here as SRS (Con-
stantino and Gruber, 2012). This parent-report scale measures the presence and severity of social impairment using items
such as “seems much more fidgety in social situations than when alone”, “takes things too literally and doesn’t get the real
meaning of a conversation”, and “avoids eye contact or has unusual eye contact”. There are 65 total items and each is rated
on a Likert scale from 0-3; higher scores indicate poorer social functioning.

We selected a subset of subjects for analysis based on the following criteria: (1) a usable T1-weighed anatomical image
(for registration purposes), (2) the functional movie-watching run of interest (“The Present”), with at least 85% (213/250)
volumes remaining after censoring of head motion and outliers, (3) valid demographic information including age and sex;
and (4) a valid SRS score. There were 68 subjects that met these criteria (age range = 6-17 years, mean ± standard
deviation = 10.8 ± 3.1 years; 30 females). SRS scores followed a right-skewed distribution with range = 3-140, median
(mean) = 43.5 (53.3), and median absolute deviation (standard deviation) = 17 (33.6). In this subset, there was negligible
correlation between age and SRS (r = 0.046) or between head motion (as measured by mean frame-wise displacement)
and SRS (r = −0.064). There was a moderate negative correlation between age and head motion (r = −0.25). Males
and females did not differ much in age (males 10.35 ± 2.95 years, females 11.3 ± 3.19 years). However, SRS scores were
moderately higher among males than females (males 58.26± 35.26, females 47.07± 30.88).

Owing to the computational intractability of conducting BML at the voxel-wise level, we defined ROIs using a preexisting
functional brain parcellation (Shen et al., 2013), which contains 268 regions covering the whole brain (cortex, subcortex
and cerebellum). It was originally defined in MNI space and nonlinearly warped to Haskins template space for purposes
of this study. Region-wise time courses for each subject were calculated by averaging the signal of all the voxels in each
region at each time point. Thus, the final dataset that entered into the ISC calculation consisted of 268 regions × 250
time-points × 68 subjects. To demonstrate that the method is robust to the choice of ROIs and spatial resolution of the
parcellation, we also conducted the same analysis using a coarser, anatomically defined parcellation containing 107 nodes
that is included as part of the Haskins template space (Molfese et al., in prep).

The ISC data of Fisher-transformed z-values from the n = 68 subjects at m = 268 ROIs were analyzed with three
models: BML0* (23) and BML1* (24), and the region-wise LME model that corresponds to BML1*. Three explanatory
variables (SRS, Age, and Sex), plus their two- and three-way interactions, leading to a total of eight effects of interest at
each ROI: overall ISC (intercept), main effects (SRS, Age, Sex), two-way interactions (SRS:Age, SRS:Sex, Age:Sex), and
three-way interaction (SRS:Age:Sex). The ROI dataset was analyzed with the three models using the R package brms.
Runtime for BML was three weeks on a Linux system of Fedora 25 with AMD Opteron 6376 at 1.4 GHz; in contrast, the
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Term BML1* LME1*
Estimate SD 95% QI ESS R̂ Estimate SD

population-level effects
a0: Intercept 0.057 0.064 [0.045, 0.069] 104 1.04 0.057 0.063
a1: SRS -1.27e-4 8.35e-5 [-2.86e-4, 3.99e-5] 492 1.00 -1.31e-4 5.54e-5
a2: Age -1.12e-3 8.78e-4 [-2.78e-3, 5.80e-4] 377 1.00 -1.14e-3 6.06e-4
a3: Sex -3.54e-3 5.38e-3 [-1.39e-2, 7.37e-3] 349 1.01 -3.70e-3 3.76e-3
a4: Age:Sex 7.85e-4 3.23e-4 [ 1.51e-4, 1.42e-3] 317 1.01 7.54e-4 2.44e-4
a5: SRS:Sex 9.22e-6 3.07e-5 [-5.12e-5, 7.04e-5] 244 1.01 9.45e-6 2.21e-5
a6: Age:SRS 5.53e-6 5.35e-6 [-4.56e-6, 1.64e-5] 295 1.00 5.68e-6 3.81e-6
a7: Sex:Age:SRS 1.54e-6 6.30e-6 [-1.06e-5, 1.42e-5] 257 1.01 1.75e-6 4.56e-6
cross-subjects effects (levels: 68)
λ: standard deviation for ξi, ξj 0.079 0.060 [ 0.076, 0.084] 561 1.01 0.079 -
cross-subject-pairs effects (levels: 2278)
µ: SD for ηij 0.091 0.058 [ 0.090, 0.092] 395 1.01 0.091 -
cross-ROIs effects (levels: 268)
τ0: SD for Intercept π0k 0.106 0.060 [ 0.102, 0.111] 66 1.06 0.106 -
τ1: SD for SRS π1k 1.19e-4 6.14e-6 [ 1.08e-4, 1.31e-4] 563 1.01 1.23e-4 -
τ2: SD for Age π2k 1.40e-3 7.0e-5 [ 1.27e-3, 1.54e-3] 705 1.01 1.44e-3 -
τ3: SD for Sex π3k 8.0e-3 4.0e-4 [ 7.22e-3, 8.80e-3] 948 1.00 8.22e-3 -
τ4: SD for Age:Sex π4k 1.27e-3 7.54e-5 [ 1.13e-3, 1.43e-3] 1442 1.00 1.36e-3 -
τ5: SD for SRS:Sex π5k 1.05e-4 6.50e-6 [ 9.29e-5, 1.18e-4] 1468 1.00 1.14e-4 -
τ6: SD for Age:SRS π6k 2.03e-5 1.20e-6 [ 1.79e-5, 2.27e-5] 1130 1.00 2.22e-5 -
τ7: SD for Sex:Age:SRS π7k 1.48e-5 1.62e-6 [ 1.16e-5, 1.79e-5] 1274 1.00 1.96e-5 -
residuals
σ: SD for residuals 0.160 0.058 [ 0.160, 0.160] 3097 1.00 0.160 -

Table 1: Summary results from the ISC dataset fitted with an extended version of BML1* in (24) and its LME counterpart. The
column headers Estimate, SD, QI, and ESS are short for effect estimate, standard deviation, quantile interval, effective sample size,
respectively. LME1* shares the same effect components as BML1*, and shows virtually the same effect estimate for the population
mean b0 and the standard deviations for those effect components despite: (1) the two modeling frameworks were solved through two
different numerical schemes (REML for LME and MCMC for BML); and 2) in practice the input data for LME3 had to be duplicated
to maintain the balance between the two crossed random-effects components associated with each subject pair. In addition, the nearly
identical parameter estimates between the two models indicate that the use of priors under BML had a negligible effect. However,
the LME framework cannot provide uncertainty measures for those variances, as indicated by the dashes in the table. R̂ is the split
statistic of a convergence indicator for the Markov chains. All R̂ values under BML1* were less than 1.1, indicating that all the
four MCMC chains converged well. The effective sample sizes (ESSs) for the population- and region-level effects were large enough
to warrant quantile accuracy in summarizing the posterior distributions for region-specific effects. The correlations among the eight
cross-region effects π·k under BML are not shown in the table because their inferences are not available under LME.

runtime of the same model with the coarser parcellation of 107 ROIs was five days.
To compare the two BML models, we assessed their point-wise out-of-sample prediction accuracy through the leave-

one-out information criterion (LOOIC). As the LOOIC for the BML1* model (with subject pair specific effects) relative
to BML0* (without subject pair specific effects) is −56406.34± 474.65, the higher predictive accuracy of BML1* is shown
by its substantially lower LOOIC than BML0*. We thereafter focus our results discussion on BML1*.

The summary of the BML1* parameter estimates is shown in Table 1. One noteworthy aspect is that the interaction
effect ηij of subject pairs was substantial with a standard deviation λ = 0.091 (with a 95% quantile interval of [0.090, 0.092],
Table 1), and such an interaction was stronger than the additive effects of individual subjects ξi or ξj with a standard
deviation µ = 0.079 (with a 95% quantile interval of [0.076, 0.084], Table 1). In other words, cross-subject-pairs effects
ηij account for a little more ISC variability than cross-subjects effects ξi and ξj . These results justify our adoption of the
extended BML1* model (24) that contains the cross-subject-pairs effects ηij instead of BML0* (23) without the effect ηij .
This result is also interesting from a scientific perspective, as it suggests that the interaction between a given subject pair
is more important for determining ISC levels than either of the two subjects on their own. In other words, it is generally
not the case that an individual subject tends to have high (or low) ISC values across the board (i.e., with all potential
pairs); rather, it is the specific subject pair that explains more variability in observed ISC effects.

The eight effects of interest can be shown with their respective posterior distributions. However, with 268 ROIs, it is
more practical to summarize the results with the mean, standard error and 90% and 95% quantile intervals at each ROI.
To demonstrate the results, here we illustrate the four main effects at the 268 parcels in the brain (Fig. 3): overall ISC,
SRS, Sex, and Age. These effects can be interpreted in light of what is known from previous naturalistic scanning studies
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and the demographic and behavioral covariates of interest.
First, much of the brain shows a substantial overall ISC effect (Fig. 3A). While this effect is particularly strong in

primary visual and auditory cortex, there is evidence for synchrony in higher-order regions of association cortex as well.
This is consistent with a large body of literature using naturalistic scanning to show that by exposing subjects to the same
time-locked, complex, engaging stimulus, much of the brain becomes synchronized across subjects (Hasson et al., 2010).

Atop this general synchrony, our method revealed that subject-level covariates of interest affect the strength of ISC. In
the case of Social Responsiveness Scale (SRS), most of these effects are negative (Fig. 3B), meaning that ISC is relatively
stronger among children with low SRS scores than those with higher SRS scores. This is the expected direction given
that lower SRS scores reflect better social function; in other words, children with good social skills are more synchronized
while viewing a socially and emotionally evocative film as compared to children with more autistic traits and tendencies,
corroborating previous reports (Hasson et al., 2009; Salmi et al., 2013; Byrge et al., 2015). There was substantial evidence
for an effect in this direction in anterior and posterior regions along the midline as well as in temporal cortex, many of
which are known to be involved in processing social information.

In the case of Sex (Fig. 3C), we observed higher ISC among males as compared to females in many posterior and
central midline regions, as well as some visual association areas. In contrast, we observed higher ISC among females in the
temporo-parietal junction and an inferior temporal region partially encompassing the fusiform gyrus.

In the case of Age (Fig. 3D), we observed that ISC generally declines with age, such that many regions (especially those
in posterior midline and visual association regions) are more synchronized in younger children relative to older ones. One
possible explanation for this is that idiosyncratic (i.e., subject-specific) responses emerge with age, leading to an increase
in variance (and decrease in cross-subject synchrony) as children get older. Another potential explanation of these effects
might be the choice of stimulus itself: the animated film may have been more engaging for younger subjects than older
ones, who require more sophisticated content to fully capture their attention; future studies should explore the effect of
stimulus on ISC values through development. The exception was a handful of regions along the superior temporal lobe,
in which ISC increased with age. This may in part reflect language processes that are developed and refined as children
mature, leading to more consistent responses among older subjects in these areas.

Beyond main effects, the BML framework also allows us to examine interaction effects among the covariates. We include
one of these interactions, the Sex:Age interaction (Fig. 4), plus separate maps for the Age effect in each sex to facilitate
interpretation (Fig. 4B, C). For example, a region in the inferior temporal lobe encompassing the fusiform gyrus seems to
increase its ISC with age among females (Fig. 4C), while among males there is almost no evidence for such an age effect
(Fig. 4B). Additionally, in some of the regions along the superior temporal lobe and insula, the increase in ISC with Age
seems to be driven largely by females, which may reflect differing developmental trajectories in language and affect between
the sexes.

One aspect in which ROI-based BML excels is the completeness and transparency in results reporting: if the number
of ROIs is not overwhelming (e.g., less than 100), the summarized results for every ROI can be completely presented in
a tabular form or in full distributions of posterior density (Chen et al., 2019). It is worth emphasizing that Bayesian
inferences focus less on the point estimate of an effect and its associated quantile interval, but more on the whole posterior
density that offers more detailed information about the effect uncertainty. Unlike the whole brain analysis in which the
results are typically reported as the tips of icebergs above the water, posterior density reveals the extent of uncertainty
regardless of strength of statistical evidence. In addition, one does not have to stick to a single harsh thresholding when
deciding a criterion on the ROIs for discussion; for instance, even if an ROI lies outside of, but close to, the 95% quantile
interval, it can still be reported and discussed as long as all the details are revealed. Such flexibility and transparency, as
illustrated in Figures 3 and 4, are difficult to navigate or maneuver through the conventional cluster-based thresholding at
the whole brain level.

Discussion

Here, we introduce an extension to the LME platform, namely Bayesian multilevel modeling (BML), for jointly es-
timating inter-subject correlation during naturalistic scanning in a series of predefined regions. The advantages of this
BML approach over previous approaches include: dissolution of multiplicity, ability to incorporate covariates, modeling
efficiency, spatial specificity in outcome interpretation, results reporting and visualization.

We previously showed that the LME platform is relatively flexible for ISC data analysis at the whole brain voxel-wise
level (Chen et al., 2017), compared to various nonparametric methods. Due to the complicated correlation structure among
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(A) Overall ISC (unit: Pearson correlation)

0.242

-0.242

(B) SRS effect (unit: ISC per unit of Social Responsiveness Scale; standard deviation of SRS: 33.6)

5× 10−5

−5× 10−5

(C) Sex effect (unit: ISC; females minus males)

0.011

-0.011

(D) Age effect (unit: ISC per year; standard deviation of age: 3.04)

0.0018

-0.0018

Figure 3: Four effects (overall ISC, SRS, Sex, and Age) derived from BML are shown here for the 268 parcels in sagittal view with
slice numbers indicating the relative left-right location. Warm (or cold) colors show positive (or negative) effects, with the colorbar
range set to the 95% quantile of the respective effect; effect opacity is determined by the posterior density: opaque regions are beyond
90% quantile tail (strong evidence), with transparency increasing toward the median (weak evidence). Note that the sex effect is
shown as females minus males, meaning that in panel (C), blue regions show higher ISC in males while red regions show higher ISC
in females.
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(A) Sex by age interaction with females minus males (unit: ISC per year; standard deviation of age: 3.04)

0.0033

-0.0033

(B) Age effect of males (unit: ISC per year; standard deviation of age: 2.95)

0.0017

-0.0017

(C) Age effect of females (unit: ISC per year; standard deviation of age: 3.19)

0.0017

-0.0017

Figure 4: Interaction effects between sex and age derived from BML are shown here for the 268 parcels in sagittal view with slice
numbers indicating the relative left-right location. Warm (or cold) colors show positive (or negative) effects, with the colorbar range
set to the 95% quantile of the respective effect; effect opacity is determined by the posterior density: opaque regions are beyond 90%
quantile tail (strong evidence), with transparency increasing toward the median (weak evidence). Note that the sex effect is shown
as females minus males, meaning that in panel (1), blue regions show higher age effect in males while red regions show higher age
effect in females.
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ISC values as illustrated in Fig. 1, ISC data analysis has been typically performed through a permutation approach of
randomizing the temporal structure of EPI time series at the individual subject level as a null distribution for group
analysis. Such an approach has been shown incapable of properly controlling for FPR. To improve the FPR controllability,
subject-wise (SW) resampling has been developed (Chen et al., 2016) so that exchangeability and independence assumptions
are satisfied, and the patterned correlation structure among the ISC values can be more accurately captured. Specifically,
subject-wise bootstrapping (SWB) is a reasonable choice when inferring ISC for one group, while subject-wise permutation
(SWP) testing is suitable for handling the comparison between two groups. Furthermore, to overcome the incapability of
nonparametric approaches in incorporating explanatory variables, LME modeling with a crossed random-effects structure
has been successfully employed (Chen et al., 2017) with each ISC value decomposed into fixed effects, two random intercepts
that are associated with the two involved subjects, and residuals. Through a data duplication step that includes both the
lower and upper triangular components of the ISC matrix as input, the LME approach achieves proper FPR controllability.
In addition to the flexibility of incorporating subject-level explanatory variables, the LME framework allows for strong
interpretation power, relatively low computational cost, and model quality control.

ROI-based ISC analysis through BML as an extension of LME

The advantage of multilevel modeling lies in its capability of stratifying the data in a hierarchical or multilevel layout
so that complex dependency or correlation structures can be properly accounted for coherently within a single modeling
platform. Specifically applicable in the ISC context is a crossed or factorial layout across three crisscross layers, two sets
of subject pairs and the list of ROIs. Even though the LME approach can quantitatively characterize the ISC effect of
each subject pair as the combined effect of the respective subjects, the decomposition remains coarse. For instance, an
LME model can accommodate neither the uniqueness of each subject pair nor that of each subject-ROI interaction, due
to the LME system being potentially underdetermined from the overwhelming number of parameters. These limitations
evince one motivation for our current work with BML as an extension to our previous work of LME modeling for ISC
data analysis. That is, the idiosyncratic effect of each subject pair as well as that of each subject-ROI interaction can be
modeled under BML since non-identifiability would be dissolved under BML because a Bayesian model can be identified
as long as the posterior distribution is proper.

Applying the general BML modeling strategy (Chen et al., 2018) to the ISC context, we formulate the BML data
generation mechanism for each dataset on a set of ROIs by extending an LME framework. Our adoption of BML, as
illustrated with the demonstrative data analysis, indicates that BML holds some promise for ROI-based ISC data analysis
and offers the additional advantages over traditional voxel-wise approaches:

1) Two multiplicity issues with the voxel-wise whole brain ISC analysis form another background for our work here.
As for typical neuroimaging whole brain analysis, ISC analysis through LME would still have to face the multiplicity issue
in the sense that the same model is applied as many times as the number of voxels. Therefore, correction for FWE would
still have to be executed as part of the model or as an extra step. The popular approach of leveraging between cluster
size and statistical strength has been widely adopted to control the overall FPR, but the penalty is usually too severe
as the information shared across brain regions is not effectively considered in modeling (Chen et al., 2019 a). Another
difficulty with the whole brain analysis is the sidedness issue in statistical testing. For a symmetric statistical distribution,
one-sided testing for one direction (e.g., positive) would be justified if prior information is available regarding the sign
of the test for a particular brain region. When no prior information is available for all regions in the brain, one cannot
simply perform two separate one-sided tests in place of one two-sided test, and such a double-sidedness practice, although
popularly practiced in the neuroimaging, warrants a Bonferroni correction because the two directions are independent with
respect to each other (and each one-sided test is more liberal than a two-sided test at the same statistical evidence level).
However, simultaneously testing both tails in tandem for whole brain analysis without correction for sidedness is widely
used without clear justification, and this forms a source of multiplicity issue that needs proper accounting.

Instead of separately correcting for multiple testing, BML incorporates multiple testing as part of the model by assigning
a prior Gaussian distribution among the ROIs. In doing so, multiple testing is handled under the scaffold of the multilevel
data structure by conservatively shrinking the original effect toward the center with the reasonable assumption that
the effects among brain regions are usually similar and largely center within a finite range. In other words, instead of
leveraging cluster size or statistical strength, BML leverages the commonality among ROIs through effective regularization,
simultaneously achieving meaningful spatial specificity and detection efficiency. Even though the conventional correction
for FWE in neuroimaging data analysis is considered desirable in controlling overblown false positives, it is not necessarily
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efficient nor practically meaningful to fight the strawman of absolutely zero effect anywhere in the brain. More importantly,
arbitrary thresholding, regardless of the extent of rigor, artificially dichotomize the data, resulting in an undesirable
situation: reporting only the results that pass thresholding unavoidably ignores the ones that may not differ much from
the former.

In addition, BML offers a flexible approach to dealing with double sidedness at the ROI level. When prior information
about the directionality of an effect is available on some, but not all, regions (e.g., from previous studies in the literature),
with the massively univariate approach for the whole brain one may face the issue of performing two one-tailed t-tests at
the same time in a blindfold fashion. In contrast, the ROI-based BML approach disentangles the complexity since the
posterior inference for each ROI can be made separately.

2) No duplication for input data is needed under BML. To keep a balanced data structure and to maintain proper
overall FPR controllability under LME, we have to duplicate the input data with both the lower and upper triangular
components of the ISC correlation matrix due to the fact those two sets of subject effects are parameterized as two separate
parameter sets. In contrast, input data duplication under BML is unnecessary thanks to an implementation technique
similar to the multi-membership modeling strategy available in the R package brms (Bürkner, 2017), halving the input
data and the number of parameters for subject effects under BML, as opposed to LME.

3) BML may achieve higher spatial specificity through efficient modeling. A statistically identified cluster through the
conventional whole brain analysis is not necessarily anatomically or functionally meaningful. In other words, a statistically
identified cluster is not always aligned well with a brain region for diverse reasons such as “bleeding” effect due to contiguity
among regions, and suboptimal alignment to the template space, as well as spatial blurring. In fact, investigators usually
tabulate the location of the “peak” (i.e., maximum effect magnitude or statistic value) voxel for a cluster even though the
cluster may only partially cover an anatomical region or overlap multiple brain regions or subregions. In contrast, the
regions are utilized as prior spatial information, and the statistical inference for each region under BML is assessed by
its effect strength relative to its peers, not by its spatial extent, providing an alternative to the conventional whole brain
analysis with more accurate spatial specificity.

4) Full results reporting is possible for all ROIs under BML. The conventional NHST focuses on the point estimate
of an effect supported with statistical evidence in the form of a p-value. In the same vein, typically the results from the
whole brain analysis are displayed with sharp-thresholded maps or tables that only show the surviving clusters with peak
statistic- or p-values. In contrast, as the focus under the Bayesian framework is on the posterior distribution, not the point
estimate, of an effect, the totality of BML results can be summarized as shown in Figures ??. Such totality pits against the
backdrop in which the effect estimates are usually not reported in the whole brain analysis (Chen et al., 2017b). In other
words, BML modeling at the ROI level directly allows the investigator to present the effect estimate. More importantly,
BML substantiates the reporting advantage not only because of modeling at the ROI level, but also due to the fact that
the uncertainty associated with each effect estimate can be demonstrated in a much richer fashion.

To some extent, the ROI-based BML approach can alleviate the arbitrariness involved in the thresholding with the
current FPR correction practices. Even though BML allows the investigator to present the whole results for all regions,
for example, in a table format, we do recognize that the investigator may prefer to focus the discussion on some regions
with strong posterior statistical evidence. In general, with all effects reported in totality, regardless of their statistical
evidence, the decision of choosing which effects to discuss in a paper should be based on cost, benefit, and probabilities of
all results (Gelman et al., 2014). Specifically for neuroimaging data analysis, the decision still does not have to be solely
from the statistical evidence; instead, we suggest that the decision be hinged on the statistical evidence from the current
data, combined with prior information from previous studies. For example, one may still choose the 95% quantile interval
as an equivalent benchmark to the conventional p-value of 0.05 when reporting the BML results. However, those effects
with, say, 90% quantile intervals can still be utilized with a careful and transparent description, which can be used as a
reference for future studies to validate or refute; or, such effects can be reported if they have been shown in previous studies.
Moreover, rather than a cherry-picking approach on reporting and discussing statistically significant clusters in whole brain
analysis4, we recommend a principled approach in results reporting in which the ROI-based results be reported in totality
with a summary as shown in Figures ?? and be discussed through transparency and soft, instead of sharp, thresholding.
We believe that such a highlighting and soft thresholding strategy is more healthy and wastes less information for a study
that goes through a strenuous pipeline of experimental design, data collection, and analysis.

5) Inferences at the individuals are possible. As BML partitions the effect at subject pair level as the summation of
4A popular cluster reporting method among the neuroimaging software packages is to simply present the investigator only with the icebergs

above the water, the surviving clusters, reinforcing the illusionary either-or dichotomy under NHST.
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multiple additive effects including the two involving subjects, the effect from each individual subject can be teased apart,
revealing the contribution at the subject level as shown in formula (12), even though the input data for ISC analysis are
at subject-pair level. Such effects at individual subject level could be beneficial as auxiliary information in exploring, for
example, outlying subjects or association with behavior data.

Limitations of ROI-based BML and future directions

ROIs can be defined through several ways depending on the specific study or information available regarding the relevant
regions. For example, one can find potential regions involved in a task or condition including resting state and naturalistic
scanning from the literature. Such regions are typically reported as the coordinates of a “peak” voxel (usually highest statis-
tic value within a cluster), from which each region could be defined by centering a ball with a radius of, e.g., 6 mm in the brain
volume (or by projecting an area on the surface). Regions can also be located through (typically coordinate-based) meta
analysis with databases such as NeuroSynth (http://www.neurosynth.org) and BrainMap (http://www.brainmap.org),
with tools such as brain_matrix (https://github.com/fredcallaway/brain_matrix), GingerALE (http://brainmap.org/ale),
Sleuth (http://brainmap.org/sleuth), and Scribe (http://www.brainmap.org/scribe) that are associated with the database
BrainMap. Anatomical atlases (e.g., http://surfer.nmr.mgh.harvard.edu,
http://www.med.harvard.edu/aanlib) and functional parcellations (e.g., Shen et al., 2013; Schaefer et al., 2017) are some
alternatives of region definition.

The limitations of the ROI-based BML are as follows.
1) Just as the FWE correction on the massively univariate modeling results is sensitive to the size of the full domain

in which it is levied (whole brain, gray matter, or a user-defined volume), so the results from BML will depend to some
extent on the number of ROIs (or which) ones included. For a specific ROI j, changing the composition among the rest of
ROIs (e.g., adding an extra ROI or replacing one ROI with another) may result in different prior distributions and different
posterior distributions even though most of the time the differences might be negligible. However, it merits noting that
the regions should not be arbitrarily chosen but rather selected from the current knowledge and relevancy of the involving
effect under investigation. More importantly, the impact of different number of regions on BML modeling is relatively small
due to the adaptivity of the prior Gaussian distribution whose role is only for the general shape, not specific properties
(i.e., mean and variance).

2) ROI data extraction involves averaging among voxels within the region. Averaging, as a spatial smoothing or low-pass
filtering process, condenses, reduces or dilutes the information among the voxels within the region to one number, and
loses any finer spatial structure within the ROI. In addition, the variability of extracted values across subjects and across
ROIs could be different from the variability at the voxel level.

3) ROI-based analysis is conditional on the availability and quality of the ROI definition. One challenge facing ROI
definition is the inconsistency in the literature due to inaccuracies across different coordinate/template systems and publi-
cation bias. In addition, some extent of arbitrariness is embedded in ROI definition; for example, a uniform adoption of a
fixed radius may not work well due to the heterogeneity of brain region sizes. When not all regions or subregions currently
can be accurately defined, or when no prior information is available to choose a region in the first place, the ROI-based
approach may miss any potential regions if they are not included in the model.

4) The exchangeability requirement of BML assumes that no differential information is available across the ROIs in
the model. Under some circumstances, ROIs can be expected to share differential information among some subgroups,
especially when they are anatomically contiguous or more functionally related than the other ROIs (e.g., homologous
regions in opposite hemisphere). Ignoring such hierarchical structure in the data, if substantially present, may lead to
underestimated variability and inflated inferences. In the future we will explore the possibility of accounting for such a
hierarchical correlation structure.

Conclusion

Inter-subject correlation (ISC) captures the extent of the simultaneous synchronization at a brain region among a
group of subjects who experience the same naturalistic setting such as movie watching or music listening. Extending our
previous work of linear mixed-effects (LME) modeling, we adopt here an ROI-base Bayesian multilevel (BML) approach
to decomposing each ISC effect into multiple additive effects. In addition to dissolving the multiplicity issue and achieving
higher inference efficiency, the BML approach allows for full results reporting that pales in comparison with the prevalent
adoption of dichotomous decision making under NHST, increasing transparency and reproducibility.
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